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Abstract
The ideal magnetohydrodynamics (MHD) is a Hamiltonian system of infinite 
degrees of freedom and wave energy plays an important role in stability and bifur-
cation of a steady state. A formula of the energy of waves on a steady incompress-
ible isentropic flow of the ideal MHD is established, which facilitates its calculation 
when the vorticity and the magnetic field is localized. For definition of the wave 
energy, the isovortical perturbation for a neutral fluid is extended to the isomagneto-
vortical perturbation for the MHD. Evolution equations of the two Lagrangian dis-
placement fields included in it are derived from the two-fluid model. Equivalence of 
several energy formulas is proved.

Keywords  Ideal MHD · Wave energy · Isomagnetovortical perturbation · 
Lagrangian displacement field

1  Introduction

Stability and bifurcation of MHD flows have broad application to both laboratory 
research as exemplified by the tokamak, the plasma confinement equipment, and 
to astrophysical phenomena as exemplified by the formation mechanism of a star 
from an accretion disk. According to Krein’s theory of Hamiltonian spectra Krein 
(1950), the signature of wave energy plays a vital role for the stability criterion 
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Arnold (1989); Arnold and Khesin (1998); Morrison (1998). Coexistence of two 
modes with opposite signed energy or of zero-energy modes is necessary for trigger-
ing instability. For flows subject to three dimensional perturbations, negative-energy 
modes are ubiquitously excited together with positive ones Fukumoto (2003); Ilgi-
sonis et  al. (2009) and, therefore, generally speaking to maintain a flow stable is 
rather difficult.

Arnold’s theorem for the hydrodynamics Arnold (1989) states that a steady Euler 
flow is the extremal of the kinetic energy with respect to the isovortical perturba-
tions, which preserves the local circulation, and that the energy of perturbations, 
second order in amplitude, is expressible in terms solely of the first-order distur-
bance field. By taking advantage of this theorem, Arnold Arnold (1966) derived the 
following formula of the wave energy �2H for the ideal incompressible flow (see 
also ref Kop’ev and Chernyshev (2000); Fukumoto and Hirota (2008); Fukumoto 
et al. (2011)):

where �(x, t) is the vorticity field of the basic flow and �(x, t) is the Lagrangian dis-
placement field, with infinitesimal amplitude, of fluid particles as functions of the 
position x and the time t governed by the Frieman–Rotenberg equation Friemann 
and Rotenberg (1960); Goedbloed et al. (2010). There are several expressions of the 
formula for energy of waves Ilgisonis et al. (2009); Fukumoto et al. (2011) and even 
for continuous spectra as well Hirota and Fukumoto (2008a, 2008b). The above for-
mula is, among others, useful when the vorticity is localized in a compact region, 
such as a slender tube and a thin layer. In Appendix 1, we show utility of (1) for 
calculating the wave energy for the Rankine vortex, a circular vortex with uniform 
vorticity in the core.

We intend to extend the energy formula (1) to the ideal MHD and the extended 
MHD. For the ideal MHD, the conservation law of the local circulation is 
destroyed by the Lorentz force, which requires the modification of the isovortical 
perturbations. The so called isomagnetovortical perturbations were heuristically 
constructed for incompressible Vladimirov et al. (1999) and compressible flows 
Isichenko (1998). The ideal MHD is described by a non-canonical Hamiltonian 
equation with Lie–Poisson bracket Morrison et  al. (1980); Holm and Kupersh-
midt (1983), which admit several Casimir invariants Hameiri (2004). The isomag-
netovortical perturbations preserve all the Casimirs and are automatically created 
by taking the Hamiltonian to be an arbitrary functional of the MHD variables 
Hameiri (2003). Alternatively, from the viewpoint of the Lagrangian description, 
these perturbations locally preserve the entropy of a fluid element, the mass of a 
material volume and the magnetic flux of a material surface, without specifying 
the advecting velocity field, and may be called the kinematically accessible per-
turbations. It should be born in mind that, in addition, the cross-helicity is among 
the Casimirs Hameiri (2003, 2004) and that it is characterized by the invariance 
with respect to particle relabeling as the variational symmetry Padhye and Mor-
rison (1996); Webb and Zank (2007); Fukumoto and Sakuma (2013). Arnold’s 

(1)�2H =
1

2 ∫ � ⋅

(
��

�t
× �

)
d3x,
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theorem carries over to the ideal MHD; a steady MHD flow is the extremal of 
the Hamiltonian of the MHD with respect to the isomagnetovortical perturbations 
Hameiri (2003); Vladimirov et al. (1999); Hirota and Fukumoto (2008a).

The energy of an incompressible MHD flow includes the magnetic energy in 
addition to the kinetic energy. Description of the variation of the magnetic field 
necessitates a second Lagrangian displacement field � . Extension of the energy for-
mula (1) to the MHD necessarily includes both � and � . We are requested to find the 
relation of � to given perturbations of the magnetic field as well as of the hydrody-
namic variables. This relation was sought from the MHD Vladimirov et al. (1999) 
and the Hall MHD equations Hirota et  al. (2006). Recently, by an ingenious geo-
metric analysis of the two-fluid model in the context of the extended MHD, the iso-
magnetovortical perturbations were derived from the extended Frieman–Rotenberg 
equations in the incompressible case and the formula for the wave energy in terms 
of the Lagrangian displacements was derived Hirota (2021). In this investigation, 
we establish a formula of the energy of isomagnetovortical waves on a steady MHD 
flow of an ideal incompressible fluid in the form extended from (1) in a straightfor-
ward and comprehensive manner, and then prove its equivalence to the known for-
mulas. As a necessary ingredient, evolution equation of � is derived from those for 
the fundamental relations which hold individually for the Lagrangian displacement 
fields of the ions and the electrons.

In Sect. 2, we reproduce the non-canonical Hamiltonian structure of the ideal 
MHD system and then, in Sect. 3, deduce the isomagnetovortical perturbations. 
By introducing the two Lagrangian displacement fields and two scalar functions, 
of infinitesimal amplitude, which are left arbitrary, we express the state variables 
of the ideal MHD in such a way to preserve all the Casimirs, with the effects 
of compressibility and baroclinicity taken into account. Section 4 writes out the 
evolution equation of the two Lagrangian displacements � and � , together with 
Appendix 2, where, given the isomagnetovortical perturbations, they are derived 
from the two-fluid model with allowance made for the Hall and the electron–iner-
tia effects. In Sect. 5, an energy formula is derived in the form of an extension 
of (1) augmented with the counterpart of the magnetic field. The last section 
(Sect. 6) is devoted to summary and conclusions, where comments are given to 
possible relevance of (1) and the formula of Sect. 5 to the variational principle for 
the motion of vortex filaments and to future investigations. Proof of equivalence 
between the formulas of the wave energy is given in Appendices 3 and 4.

2 � Ideal MHD system

Let us consider motion of an inviscid electrically conducting fluid of infinite con-
ductivity, namely, the ideal magnetohydrodynamics (MHD). The basic equations 
governing the ideal MHD consist of the conservation laws of the momentum and 
the mass, the induction law and the assumptions of the adiabatic motion and sole-
noidal magnetic field:
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where �, p, s,u and B represent the density, the pressure, the entropy per unit mass, 
the fluid velocity and the magnetic field, respectively, and J = ∇ × B is the electron 
current density. For the boundary conditions, the velocity and the magnetic fields 
are assumed not to penetrate through the boundary, that is

where n is the unit normal vector to the boundary. Let A be the vector potential for 
the magnetic field and it satisfies

 For the coupled system of (2–7) of the MHD equations, the mass of a material vol-
ume, 3-form, the magnetic-flux through a material surface element, 2-form, and the 
magnetic–helicity density (with the gauge for A chosen, so that � = −u ⋅ A ) and the 
specific entropy, both being 0-forms, are advected by the flow Webb, et al. (2014):

where

is the Lagrangian derivative and Lu is the Lie derivative with respect to the vector 
field u . The ideal MHD equations (6) are a Hamiltonian system and are describable 

(2)�

(
�u

�t
+ u ⋅ ∇u

)
= −∇p + J × B,

(3)
��

�t
+ ∇ ⋅ (�u) = 0,

(4)
�s

�t
+ u ⋅ ∇s = 0,

(5)
�B

�t
= ∇ × (u × B),

(6)∇ ⋅ B = 0,

(7)u ⋅ n = 0, B ⋅ n = 0 on the boundary ,

(8)
�A

�t
= u × (∇ × A) + ∇�.

(9)

D

Dt
(�dV) = 0,

D

Dt
(B ⋅ dS) = 0,

D

Dt

(
A ⋅ B

�

)
= 0,
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Dt
= 0,
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�
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+ u ⋅ ∇ =

�
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+ Lu,
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as the Poisson equation Morrison et  al. (1980); Holm and Kupershmidt (1983); 
Morrison (1998); Hameiri (2003):

where F(w,  t) is a functional of the state variables and, in this paper, we take 
w = (M,B, �, s) , with M = �u being the momentum density. The Hamiltonian H is

where e is the internal energy per unit mass. The Lie–Poisson bracket for any func-
tional F(w, t) and G(w, t) is given by

By partial integration, the Lie–Poisson bracket (13) can be rewritten in the form as

where J  is an antisymmetric operator and is written explicitly as

with ◦ denoting the position of the elements operated by J  Morrison et al. (1980); 
Hirota and Fukumoto (2008a). The Poisson equation (11) yields equations for w as

which coincides with Eqs. (2–5).
An equilibrium state satisfies J�H∕�w = 0 , and therefore, {F,H} = 0 for any 

F(w,  t). The degeneracy of the Poisson bracket admits Casimir invariants, con-
stant functionals C(w, t):

for any functional G(w, t). Therefore, a Casimir satisfies

(11)
dF

dt
= {F,H},

(12)H = ∫
{
1

2
�u2 +

1

2
B2 + �e(�, s)

}
d3x,

(13)

{F,G} =∫
{
M ⋅
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−
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��

]
+ s∇ ⋅

[
�G

�M

�F

�s
−

�F

�M

�G

�s

]}
d3x.

(14){F,G} =∫
�F

�w
J
�G

�w
d3x,

(15)J =

⎡
⎢⎢⎢⎣

−(∇◦) ⋅M − ∇ ⋅ (◦M) −(∇◦) ⋅ B + ∇ ⋅ (B◦) −�∇ ∇s

−∇ ⋅ (◦B) + B ⋅ ∇ 0 0 0

−∇ ⋅ (�◦) 0 0 0

−(◦ ⋅ ∇)s 0 0 0

⎤⎥⎥⎥⎦
,

(16)
�w

�t
= J

�H

�w
,

(17){C,G} = 0,
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The total mass ∫ �d3x and the total entropy ∫ �sd3x are Casimirs by the mass 
conservation law and the assumption of adiabatic motion. The magnetic helicity 
∫ A ⋅ Bd3x is the well-known Casimir. In addition, the cross-helicity is qualified as 
a Casimir, though there is some difficulty in showing that it satisfies (18) Hameiri 
(2004); Webb, et al. (2014).

3 � Isomagnetovortical perturbations

By leaving the Hamiltonian H an arbitrary functional, the Poisson equation (11) 
automatically generates perturbations, called the dynamically accessible variation, 
that preserve all the Casimirs Morrison (1998). This is applied to the MHD Hameiri 
(2003, 2004); Hirota and Fukumoto (2008a) and to the extended MHD Kaltsas et al. 
(2021). For a neutral fluid, such a perturbation is referred to as the isovortical per-
turbation Arnold (1989); Arnold and Khesin (1998). Following ref Vladimirov et al. 
(1999), we may call its MHD version the isomagnetovortical perturbation.1

Taking an arbitrary functional K in place of H and denoting the virtual time to be 
� , dF∕d� = {F,K} generates the isomagnetovortical perturbation:

The functional derivative �K∕�w is evaluated at � = 0 . Denoting 
� = (�, � , �, �) = (�K∕�M, �K∕�B, �K∕��, �K∕�s) , a collection of arbitrary vector 
and scalar fields, the perturbation is written as

where with abuse of notation, u,B, �, s denote the basic or the unperturbed state. 
To be precise, for the variations of the state variables, we have to translate as 

(18)J
�C

�w
= 0.

(19)�w =
�w

��
|�=0 = J

�K

�w
.

(20)
�u

��
= � × (∇ × u) + (∇ × �) × B∕� − ∇(� + � ⋅ u) + �∇s,

(21)
��

��
= −∇ ⋅ (��),

(22)
�s

��
= −� ⋅ ∇s,

(23)
�B

��
= ∇ × (� × B),

1  This kind of perturbation may be alternatively called the kinematically accessible perturbations, since 
it is driven by arbitrary velocity field and arbitrary current field Hirota and Fukumoto (2008a, 2008b).
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(�w∕��|�=0)� → �w, together with � → �� . Any functional G can be expanded with 
respect to infinitesimal � as

By virtue of (18), the following theorems hold Hameiri (2003).

Theorem 1  For any Hamiltonian K, the first variation of a Casimir C vanishes, that 
is

This is a strong conclusion and does not require the flow to be at an equilibrium. 
Otherwise stated, (25) is valid over the whole range of � , and therefore, the following 
is true.

Theorem 2  For kinematically accessible disturbance, any Casimir satisfies

Extension of Arnold’s theorem to the ideal MHD, which states that an equilibrium 
attains the extremum, is represented compactly by vanishment of the first-order varia-
tion of the Hamiltonian at the equilibrium as Hameiri (2003)

The second-order variation furnishes us with the energy of waves on the equilib-
rium, and the rest of section is devoted to derivation of one of the energy formulas:

From the structure of the Poisson bracket, the last term in (28) becomes

where the last term is the vector originating from the derivatives of the Lie–Poisson 
structure in the bracket (13): 

(24)G =G|�=0 + dG

d�
|�=0� + 1

2

d2G

d�2
|�=0�2 +⋯ .

(25)
dC

d�
= {C,K} = −{K,C} = −�

�K

�w
J
�C

�w
dx ≡ 0.

(26)d
n
C

d�n
= 0 for ∀n.

(27)�H =
dH

d�
= {H,K} = −{K,H} = −∫

�K

�w
J
�H

�w
d
3
x = 0.

(28)�2H =
1

2

d
2
H

d�2
=

1

2
{{H,K},K} =

1

2 ∫
�{H,K}

�w
J
�K

�w
d
3
x.

(29)
�{H,K}

�w
=

�2H

�w2
J
�K

�w
−

�2K

�w2
J
�H

�w
+ (H,K)1,
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The second term in (29) vanishes at the equilibrium, since J�H∕�w = 0 , resulting in

In (31), the second-order functional derivative of H is

where the thermodynamic law de = Tds − pdv , with v = 1∕� , has been used to get 
�T∕�v = −�p∕�s or �T∕�� = �2�p∕�s , and J� is

For the incompressible isentropic MHD flow, upon substitution from (32) and (33), 
the energy (31) simplifies to

where subscript � signifies the partial derivative with respect to � and use has been 
made of ∇ ⋅ u = ∇ ⋅ � = 0.

For a flowing MHD, the second-order variation of the energy requires the 
knowledge of second-order variation of both the velocity and the magnetic field:

in which, for correctness, the Lagrangian displacement fields should include higher 
order terms as

(30)

(F,G)1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�G

�M
⋅ ∇

�F

�M
−

�F

�M
⋅ ∇

�G

�M
�G

�M
⋅ ∇

�F

�B
−

�F

�M
⋅ ∇

�G

�B
+
�
∇
�G

�M

�
⋅

�F

�B
−
�
∇
�F

�M

�
⋅

�G

�B
�G

�M
⋅ ∇

�F

��
−

�F

�M
⋅ ∇

�G

��

∇ ⋅

�
�G

�M

�F

�s
−

�F

�M

�G

�s

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(31)
d2H

d�2
= ∫

{[(
�2H

�w2
J�

)
J� + (H,K)1

]
J�

}
d3x.

(32)
�2H

�w2
=

⎡
⎢⎢⎢⎢⎢⎣

1

�
0 −

M

�2
0

0 1 0 0

−
M

�2
0

1

�

�p

��
+

M2

�3
T + �

�T

��

0 0 T + �
�T

��
�
�T

�s

⎤
⎥⎥⎥⎥⎥⎦

,

(33)J� =

⎡⎢⎢⎢⎣

−(∇�) ⋅M − ∇ ⋅ (�M) − (∇�) ⋅ B + ∇ ⋅ (B�) − �∇� + �∇s

−∇ ⋅ (�B) + B ⋅ ∇�

−∇ ⋅ (��)

−� ⋅ ∇s

⎤⎥⎥⎥⎦
.

(34)
d2H

d�2
|�=0 =∫

{
�
[
u� + (� ⋅ ∇)u − (u ⋅ ∇)�

]
⋅ u�

+
[
B� + J × � − (∇ × �) × u + ∇(� ⋅ B − � ⋅ u)

]
⋅ B�

}
d3x,

(35)
u
(
x, t

)
=u + �u

(
x, t

)
+ �2u

(
x, t

)
+⋯ ,

B
(
x, t

)
=B + �b

(
x, t

)
+ �2b

(
x, t

)
+⋯ ,
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The second-order variation of energy, or the wave energy, is calculated through

In Appendix 3, we show that, for a steady basic flow, the second order variations �2 
and �2 are ruled out as in the case of the neutral fluid Fukumoto and Hirota (2008), 
and a formidable mathematical manipulation is avoided. Notably, this result shares 
the concept of a wave property Bühler (2009). With cancellation of the terms includ-
ing �2 and �2 , (37) is shown to reduce to (34). It is easy to confirm that (34) is the 
same as the correspondent d2H∕d�2|�=0 of ref Hameiri (2003).

The above formula (34) includes the two Lagrangian displacement fields, of first 
order, � and � . In the next section, we inquire into time evolution of these Lagran-
gian displacement fields.

4 � Evolution of Lagrangian displacement

Given the isomagnetovortical perturbations (20–23), let us find the time evolu-
tion equation of � and � , which have so far been taken as arbitrary vector fields. To 
derive the formula of wave energy, (20–23) should be compatible with the linearized 
equations of the MHD.

Suppose that a trajectory of a fluid particle is given by x(t) . Then, the velocity of 
the basic flow at x(t) is given by u(x(t), t) = dx(t)∕dt . When a infinitesimal perturba-
tion is superimposed on the basic flow, the particle trajectory is shifted from x(t) to 
x(t) + �(x, t) , where �

(
x, t

)
 is the Lagrangian displacement. The velocity field u is 

perturbed to u + �u by �u so as to satisfy

Retaining the terms linear in the amplitude |�| , we are led to the relation of the 
velocity variation �u to the Lagrangian displacement � as Goedbloed et al. (2010)

For the isomagnetovortical perturbation, the velocity variation is given by (20) and 
�u = �u∕�� is identified as the right-hand side of (20).

For the ideal MHD, � or �(= ∇ × �) is expressed in terms of � and the system 
of the governing equations are closed by the second-order equation in � called the 
Frieman–Rotenberg equation is Friemann and Rotenberg (1960); Goedbloed et al. 
(2010):

(36)
�
(
x, t

)
→�

(
x, t

)
+ ��2

(
x, t

)
+⋯ ,

�
(
x, t

)
→�

(
x, t

)
+ ��2

(
x, t

)
+⋯ .

(37)�2H =
1

2 ∫
{
�u ⋅ �u + 2u ⋅ �2u + �b ⋅ �b + 2B ⋅ �2b

}
d3x.

(38)
d

dt

(
x(t) + �

(
x(t), t

))
= u

(
x(t) + �

(
x(t), t

)
, t
)
.

(39)�u =
��

�t
+ (u ⋅ ∇)� − (� ⋅ ∇)u.
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where F(�) is the force operator and is given, for the ideal gas, in the language of the 
dyadic notation by

where � is the ratio of the specific heat of constant pressure to that of constant vol-
ume and Φ is the potential for the external body force. The boundary condition to be 
imposed is

The Frieman–Rotenberg equation (40) is obtained by substituting into the linearized 
equation of (2), the disturbances of velocity, density, entropy and magnetic field 
as the right hand sides of (39), (21), (22) and (23), which are guaranteed by mass, 
magnetic-flux and specific entropy conservation laws in the perturbation process. 
Invoking the self-adjointness of the force operator Goedbloed et  al. (2010) (see 
Hirota (2021) for the incompressible case), the second-order wave energy is directly 
deduced from (41) as Goedbloed et al. (2010); Ilgisonis et al. (2009)

An alternative form of the wave energy is obtained by eliminating F from (43), by 
use of the Frieman–Rotenberg equation (40):

For time-periodic waves, like purely oscillating modes � ∝ Re[e−i�t] , the wave 
energy becomes Fukumoto et al. (2011)

This formula clearly tells that negative-energy waves do not exist for the static basic 
state or when the basic flow u is absent. In the presence of a steady basic flow, neg-
ative-energy waves are commonly excited and are not easy to be suppressed, par-
ticularly in three dimensions, for guaranteeing the positive or negative definiteness 
of the energy for an equilibrium state Ilgisonis et al. (2009). Equivalence of (43) to 
d2H∕d�2 given by (34) was confirmed Hameiri (2003). For the case of an incom-
pressible isentropic flow, equivalence of (44) to (34) is proved in Appendix 4.

The origin of the second Lagrangian displacement �(= ∇ × �) is the difference of 
the Lagrangian displacements of the ions �i and the electrons �e . Its proper defini-
tion is

(40)�
�2�

�t2
+ 2�(u ⋅ ∇)

��

�t
= F(�),

(41)
F(�) =∇ ⋅ (��u ⋅ ∇u − �uu ⋅ ∇�) + ∇(�p∇ ⋅ �) − B × (∇ × �b)

+ ∇(� ⋅ ∇p) + J × �b + (∇Φ)∇ ⋅ (��),

(42)� ⋅ n = 0 on the boundary .

(43)�2H =
1

2 ∫
{
�
||||
��

�t

||||
2

− � ⋅ F(�)

}
d3x.

(44)�2H = ∫ �

{
��

�t
⋅

(
��

�t
+ (u ⋅ ∇)�

)
−

1

2

�

�t

(
��

�t
⋅ �

)}
d3x.

(45)�2H = ∫ �
��

�t
⋅

(
��

�t
+ (u ⋅ ∇)�

)
d3x.
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where �q is the charge density and is written, with use of the elementary charge e 
and the charge number density ne , as �q = ene . Neutrality in the local electron charge 
is presumed. Equation describing the time evolution was derived from the system 
of equations governing the incompressible MHD Vladimirov et al. (1999) and the 
extended MHD Hirota et  al. (2006); Hirota (2021). Equations for the Lagrangian 
disturbance (�, �) was virtually derived for the compressible MHD in ref Hirota 
and Fukumoto (2008a), in which they are shown to be the adjoint problem of the 
equations of Eulerian disturbances (�u, �b) . In Appendix 2, we derive it from the 
fundamental relation between the velocity perturbation and the time evolution of 
the Lagrangian displacement that holds individually for the ions and the electrons, 
allowing for the Hall and the electron–inertia effects. For the incompressible ideal 
MHD flow of uniform number density, the resulting relation (82) restores equation 
of � , as an auxiliary vector field, derived from the MHD equations in ref Vladimirov 
et al. (1999):

On the left-hand side, �j is provided by the curl of (23). Eq. (47) satisfies equations 
derived by linearizing (2) and (5) with the disturbances of velocity, density, entropy 
and magnetic field expressed by right hand sides of (20) to (23), which conversely 
verifies the ansatz (46).

5 � Energy formula in terms of vorticity and magnetic field

The vorticity field � = ∇ × u and the magnetic field B have tendency to be localized 
in space, and the formula of wave energy expressed in terms of � and B is advanta-
geous for efficient calculation. In this section, we extend (1) to include the counter-
part of B by exploiting (34). This extension necessitates the evolution equation of 
the second Lagrangian displacement field �.

We restrict our attention to the incompressible isentropic flow and take the den-
sity and the specific entropy to be uniform. Under these conditions, (20) and (23) 
become

where P[ ⋅ ] is the operator projecting a vector field to a solenoidal one and we set 
� = 1 . Time evolution of the displacement field � is described by (39) with �u sub-
stituted from (48), and that of � by (47) with �j substituted from the curl of (49). For 
� = (∇×)−1� , (47) reads

(46)� = �q(�
i − �e),

(47)�j =
��

�t
+ (J ⋅ ∇)� − (� ⋅ ∇)J + (u ⋅ ∇)� − (� ⋅ ∇)u.

(48)�u =P[� × � + � × B],

(49)�b =∇ × (� × B),
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We assume ∇ ⋅ � = 0 , correspondingly to solenoidality of �b.
With identification of u� = �u and B� = �b , the wave energy (34) collapses to

Further substituting (48) and (49) and taking partial integration, (51) becomes

and we have thus reached a desired formula for the energy of a wave on a steady 
flow u subject to a steady magnetic field B of an incompressible and isentropic fluid:

Time average of (52) further simplifies (53) to

Equations (53) and (54) are desired formulas of the wave-energy, of second order in 
wave amplitude, on a steady state of an incompressible isentropic flow of the ideal 
MHD. By developing a refined geometric machinery, a formula generalizing (53) for 
the extended MHD was concisely derived Hirota (2021). Our step-by-step derivation 
admits a wider accessibility and provides a physical insight into the wave energy. 
Equivalence of (53) to the standard form (37) is proved in Appendix 3, and to (44), 
directly derived from the Frieman–Rotenberg equation (40) is proved in Appendix 4.

Formula (53) or (54) is particularly useful when the vorticity for the magnetic 
field is localized, as exemplified by a vortex tube and a vortex sheet or by a mag-
netic-flux tube. In case the electric current J and its perturbation �j are localized, 
Eq. (47) governing the time evolution of � may rather be easy to handle.

6 � Conclusion

Arnold’s theorem that a steady Euler flow of an incompressible fluid is the extremal of 
the kinetic energy with respect to the isovortical, or kinematically accessible, perturba-
tions makes the energy of waves, of second order in amplitude, expressible solely in 
terms of the first-order Lagrangian displacement field, if perturbations are limited to 
isovortical ones. For an electrically conducting fluid, the local circulation is no longer 
conserved by the action of the Lorentz force, but Arnold’s theorem is applicable as it is 
to the ideal MHD if the isovortical perturbations are replaced by the isomagnetovortical 

(50)∇ × (� × B) =
��

�t
+ P[� × J + (∇ × �) × u].

(51)�2H =
1

2

d2H

d�2
=

1

2 ∫
{

��

�t
⋅ �u +

��

�t
⋅ �b

}
d3x.

(52)�2H =
1

2 ∫
{[

� × � + (∇ × �) × B
]
⋅

��

�t
+ (� × B) ⋅

�(∇ × �)

�t

}
d3x,

(53)�2H =
1

2 ∫
{
� ⋅

(
��

�t
× �

)
+ B ⋅

(
��

�t
× � − � ×

��

�t

)}
d3x.

(54)�2H =
1

2 ∫
{

� ⋅

(
��

�t
× �

)
+ 2B ⋅

(
��

�t
× �

)}
d3x.
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ones that preserve all the Casimirs of the ideal MHD. The velocity and the magnetic 
field, the density and the specific entropy belonging to the isomagnetovortical one 
are generated by the Lie–Poisson bracket. For the ideal MHD, the isomagnetovortical 
perturbation is expressed in terms of the two Lagrangian displacements � and � , and 
accordingly the formula of wave energy may be represented in terms of the both.

To calculate the wave energy, we are requested to derive equations governing � and 
� . Equation for � is well-known as the Frieman–Rotenberg equation. That for � is less 
known and is derived in Appendix 2 from the two fluid model comprising the ions and 
the electrons. We have established a formula (53) of the wave energy including the vor-
ticity and the magnetic field of the steady basic flow, which invites the both Lagrangian 
displacements. Equivalence of this formula to other ones (37) and (44) has been proved 
by invoking the evolution equations of � and �.

We point out that the wave energy of an ideal incompressible fluid bears resem-
blance with the action for deriving motion of a vortex filament Rasetti and Regge 
(1975); Lund and Regge (1976). The kinetic part Lkin of the Lagrangian of the varia-
tional principle for the position �(�, t) on a vortex filament, as a vector-valued function 
of the arcwise parameter � and the time t, is given by a line integral along the filament:

where Γ is the circulation or the total vorticity over the core of a vortex filament, and 
the vorticity distributed in the infinitely thin core is represented by

where �(x) is 3 dimensional Dirac’s delta function. The form (53) of the energy for-
mula of the MHD may give a hint for formulating a variational principle for the 
dynamics of a magnetic flux tube.

The formula (52) facilitates calculation of the energy of waves when the vorticity 
and/or the magnetic filed of the basic flow is localized in a thin region and its utility 
will be demonstrated in the future. These are several directions for extending the analy-
sis developed here. The effects of compressibility and that of baroclinicity associated 
with the density stratification may have a substantial influence on the stability of MHD 
flows and are worth pursuing. The wave energy is indispensable for understanding the 
results. Influence of the Hall effect and of the electron–inertia effect on stability of the 
MHD flow attracts a broad attention, and the energy will play a crucial role.

For the Hall-MHD, the wave energy Hh
2
 is manipulated as

where the time evolution of � , as shown in (81), gives way to

(55)Lkin =
Γ�

3 ∫
��

��
⋅

(
��

�t
× �

)
d�,

(56)�(x, t) = Γ∫ �(x − �)
��

��
d�,

(57)Hh
2
=

1

2 ∫
{
� ⋅

(
��

�t
× �

)
+ B ⋅

(
��

�t
× � − �e ×

��

�t

)}
d3x,

(58)
��

�t
= �j + ∇ × (u × � + J × �e),
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with �j = ∇ ×
(
∇ ×

(
�e × B

))
 . The formula (57) is the special case of the one for 

the extended MHD Hirota (2021).
There are important issues, in connection with wave energy, which wait for future 

investigations.

Appendix A Enegy of waves on a circular vortex patch

To illustrate the utility of the formula (1), we calculate the energy of the 2D Kelvin 
waves on the Rankine vortex, that is, waves on a circular vortex patch of uniform vorti-
city, embedded in an inviscid incompressible fluid. We begin with calculation based on 
the definition Fukumoto (2003), followed by calculation by use of (1).

As a basic flow, we consider a circular region, of radius a, endowed with uniform 
vorticity �0 , surrounded by an irrotational flow. We introduce cylindrical coordinates 
(r, �, z) , with ei being the unit vector along the i direction. The velocity and the vorticity 
fields of the basic flow is given by U = V(r)e� and � = �(r)ez , where

Suppose that the boundary of the vortex patch is perturbed to 
r = �(�, t) = a + D cos(m� − �t) , by a wave of infinitesimal amplitude D, with m 
being an integer. The irrotational velocity field guarantees the isovorticity. The veloc-
ity field perturbed by an irrotational disturbance is given by u = ũer + (Ṽ + ṽ)e𝜃 , 
where

and

where the frequency � satisfies the dispersion relation:

(59)V =

⎧⎪⎨⎪⎩

1

2
𝜔0r

𝜔0a
2

2r

, 𝜔 =

�
𝜔0 = const. (r ≤ a)

0 r > a
.

(60)Ṽ =

⎧⎪⎨⎪⎩

V− =
1

2
𝜔0r (r ≤ 𝜂(𝜃, t))

V+ =
𝜔0a

2

2r
(r > 𝜂(𝜃, t))

,

(61)

ũ =

⎧
⎪⎨⎪⎩

−
𝜔0

2

�
r

a

��m�−1
D sin(m𝜃 − 𝜔t) (r ≤ 𝜂(𝜃, t))

−
𝜔0

2

�
a

r

��m�+1
D sin(m𝜃 − 𝜔t) (r > 𝜂(𝜃, t))

,

ṽ =

⎧
⎪⎨⎪⎩

−
𝜔0

2

�
r

a

��m�−1
D cos(m𝜃 − 𝜔t) (r ≤ 𝜂(𝜃, t))

𝜔0

2

�
a

r

��m�+1
D cos(m𝜃 − 𝜔t) (r > 𝜂(𝜃, t))

,
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We take the density of fluid to be � = 1 . The wave energy is calculated to O(D2) as 
follows:

where the ‘kinetic energy’ �2K and the ‘potential energy’ �2U are defined by

By substitution from (60) and (61), we obtain, after some manipulation:

and thus we are led to the energy of the Kelvin wave:

Next, we calculate the energy of the Kelvin wave through (1). Since the vorticity � 
is confined in the core ( r < 𝜂 ), we may dispense with the calculation of the displace-
ment field � outside of the core. Equation (39) of � = �rer + ��e� reads, for r ≤ �:

For the perturbation velocity (61), (68) is easily integrated to give, for r ≤ �:

where use has been made of the dispersion relation (62). For the wave energy of 
second order in amplitude, it suffices to perform integration (1) in the circular region 
of radius a, resulting in (67). This example illustrates the efficiency of using the for-
mula (1) for evaluating the wave energy for a slender vortex tube.

(62)� =
1

2
�0m

(
1 −

1

|m|
)
.

(63)�2H =
1

2 ∫
(
u2 − U2

)
dS = �2K + �2U,

(64)𝛿2K =
1

2 ∫
2𝜋

0

d𝜃

{
∫

𝜂

0

[
2V−ṽ + ũ2

]
rdr + ∫

∞

𝜂

[
2V+ṽ + ũ2

]
rdr

}
,

(65)�2U =
1

2 ∫
2�

0

d�

{
∫

�

a

(V−)2rdr + ∫
a

�

(
V+

)2
rdr

}
.

(66)�2K =
�

4

(
1

|m| − 2

)
�2
0
a2D2, �2U =

�

4
�2
0
a2D2,

(67)�2H =
�

4

(
1

|m| − 1

)
�2
0
a2D2.

(68)

𝜕𝜉r

𝜕t
+

𝜔0

2

𝜕𝜉r

𝜕𝜃
= ũ,

𝜕𝜉𝜃

𝜕t
+

𝜔0

2

𝜕𝜉𝜃

𝜕𝜃
= ṽ.

(69)
�r =

m

|m|
(
r

a

)|m|−1
D cos(m� − �t),

�� = −
m

|m|
(
r

a

)|m|−1
D sin(m� − �t),
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Appendix B Equations of Lagrangian displacement fields from two 
fluid model

Given the disturbance field �u and �J , we derive evolution equation of the 
Lagrangian displacement fields � and � . The existing derivation Vladimirov et al. 
(1999); Hirota et al. (2006); Hirota (2021) starts with the momentum equations. 
We retain only the kinematic relation between the velocity perturbation and the 
Lagrangian displacement field of ions and electrons. We allow for the Hall and 
the electron inertia effects.

Let xi,e denote to be trajectories of the ions and electrons of the basic flow and 
��i,e(xi,e(t), t) to be displacement from the basic trajectories with a small param-
eter � . Here, the superscript i, e represent ion and electron, respectively. Then, the 
disturbed trajectories of the ions and electrons are, to first order in �:

The velocity at the displaced position reads

Substitution from (70) on the left-hand side, the disturbance of the velocity reads, to 
O(�):

We impose the condition niZ = ne of quasi charge neutral, where ni,e are the number 
densities of ion and electron and Z is the charge number of the ion. Let mi,e be the 
mass of the ion and electron, with me ≪ mi . The appropriate definition of the aver-
aged velocity and the averaged displacement is

On the other hand, the electric current density J and the corresponding Lagran-
gian displacement field � are defined by difference, of the velocity and the Lagran-
gian displacement, between the ions and the electrons, with the charge density 
�q ≡ eZni = ene for multiplication factor. Here, e is the elementary charge:

In the matrix form, (73) and (74) are written as

(70)xi,e
�
(t) = xi,e(t) + ��i,e(xi,e(t), t),

(71)
vi,e
�
(xi,e

�
(t), t) =

D

Dt
(xi,e(t) + ��i,e(xi,e(t), t), t)

=vi,e(xi,e(t), t) + �

(
��i,e

�t
+ vi,e ⋅ ∇�i,e

)
(xi,e(t), t).

(72)
��vi,e(xi,e(t), t) =vi,e

�
(xi,e(t), t) − vi,e(xi,e(t), t)

=�

(
��i,e

�t
+ vi,e ⋅ ∇�i,e − �i,e ⋅ ∇vi,e

)
(xi,e(t), t).

(73)u =
nimiv

i + nemev
e

nimi + neme

, � =
nimi�

i + neme�
e

nimi + neme

.

(74)J = �q(v
i − ve), � = �q(�

i − �e).
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where

and m̂i ≡ mi∕(Zme + mi) and m̂e ≡ Zme∕(Zme + mi).
By using (72) and (73), the disturbed velocity is expanded as

We are thus led to the link between time evolution of � and the disturbance velocity 
�u as

The last terms including J express the electron inertia effect. In the limit of 
me∕mi → 0 , the condition applicable to the Hall-MHD as well as the MHD, these 
terms vanish and (78) reduces to (39).

Similarly, the disturbed electric current density becomes

where mass conservation is used as (nedx1 ∧ dx2 ∧ dx3)� = nedx1 ∧ dx2 ∧ dx3 . It fol-
lows that evolution of � is related to the disturbance electric current via

(75)
[
�i
�e

]
= T

[
�

�∕�q

]
,

[
vi
ve

]
= T

[
u

J∕�q

]
,

(76)T =

[
1 m̂e

1 − m̂i

]
,

(77)

u𝜖 =m̂iv
i
𝜖
+ m̂ev

e
𝜖

=m̂iv
i + m̂ev

e + 𝜖

(
𝜕

𝜕t

(
m̂i�

i + m̂e�
e
)
+
(
m̂i(v

i
⋅ ∇�i)

− m̂i(�
i
⋅ ∇vi) + m̂e(v

e
⋅ ∇�e) − m̂e(�

e
⋅ ∇ve)

))

=u + 𝜖

{
𝜕�

𝜕t
+ u ⋅ ∇� − � ⋅ ∇u + m̂im̂e

(
J

𝜌q
⋅ ∇

�

𝜌q
−

�

𝜌q
⋅ ∇

J

𝜌q

)}
.

(78)
�u ≡u� − u

�

=
��

�t
+ u ⋅ ∇� − � ⋅ ∇u +

Zmime

(mi + Zme)
2

(
J

�q
⋅ ∇

�

�q
−

�

�q
⋅ ∇

J

�q

)
.

(79)

J𝜖 =𝜌q(v
i
𝜖
− ve

𝜖
) − 𝜖∇ ⋅ (𝜌q�)

J

𝜌q

=J + 𝜖

{
𝜌q

𝜕

𝜕t

(
�

𝜌q

)
+ J ⋅ ∇� − 𝜌q� ⋅ ∇

J

𝜌q
+ 𝜌qu ⋅ ∇

�

𝜌q
− � ⋅ ∇u

+(m̂i − m̂e)

(
� ⋅ ∇

J

𝜌q
− J ⋅ ∇

�

𝜌q

)
− ∇ ⋅ (𝜌q�)

J

𝜌q

}
,
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 The last two terms reflect the Hall effect. In the limit of me∕mi → 0 , (80) recovers 
(27) in ref Hirota et al. (2006) for compressible Hall-MHD and for an incompress-
ible Hall-MHD flow of uniform number density, (80) further becomes

If we assume |�∕𝜌q| = |�i − �e| ≪ |�| and |J∕𝜌q| = |vi − ve| ≪ |u| , then the last two 
terms in (80) are neglected and

For an incompressible ideal MHD flow of uniform number density, (82) further sim-
plifies to

which coincides with (47).

Appendix C Alternative formula 1 of wave energy

In this Appendix, we derive the formula (34), starting from the standard one (37). 
Moreover, we prove that, for a steady basic flow, the formula of wave energy, of second 
order in amplitude, for the isomagnetovortical disturbances is expressible by the first-
order Lagrangian displacement only.

Let �2, �2, �2 be the variation of �, �, � and �2 = ∇ × �2 as expressed by (36). 
Then, the first- and second-order isomagnetovortical perturbations of the velocity and 
the magnetic field are found, for an incompressible isentropic flow, to be Vladimirov 
et al. (1999); Isichenko (1998); Kaltsas et al. (2021):

(80)

�j ≡J� − J

�

=�q
�

�t

(
�

�q

)
+ J ⋅ ∇� − �q� ⋅ ∇

J

�q
+ �qu ⋅ ∇

�

�q
− � ⋅ ∇u

+
mi − Zme

mi + Zme

(
� ⋅ ∇

J

�q
− J ⋅ ∇

�

�q

)
− ∇ ⋅ (�q�)

J

�q
.

(81)�j =
��

�t
+ J ⋅ ∇�e − �e ⋅ ∇J + u ⋅ ∇� − � ⋅ ∇u.

(82)�j = �q
�

�t

(
�

�q

)
+ J ⋅ ∇� − �q� ⋅ ∇

J

�q
+ �qu ⋅ ∇

�

�q
− � ⋅ ∇u.

(83)�j =
��

�t
+ J ⋅ ∇� − � ⋅ ∇J + u ⋅ ∇� − � ⋅ ∇u,

(84)�u =P[� × � + � × B],

(85)�2u =
1

2
P
[
� × �� + �2 × � + � × �b + �2 × B

]
,

(86)�b =∇ × (� × B),
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Here we retain the Lagrangian displacements �2 and �2 , of second order, and con-
structively show below that, when the basic state is steady, these are excluded from 
the final formula of wave energy (see Fukumoto and Hirota (2008) for a neutral 
fluid).

We start with the second-order energy (37):

Upon substitution from (84)–(87), (88) is manipulated as

In (89), the last terms including �2 and �2 vanish when the basic flow u and B is a 
steady solution.

By partial integration, the rest of �2H is reduced to

which recovers Eq. (34) supplemented by � = 1.

Appendix D Alternative formula 2 of wave energy

In this appendix, we show the equivalence of (44), a direct consequence of (43), 
to (51), a consequence of (34) under the restriction of an incompressible isen-
tropic flow. We take � = 1.

Substitution of (39), with �u provided by (48), into (44) yields, by use of 
∇ ⋅ u = 0 and (49):

(87)�2b =
1

2

{
∇ × (� × �b) + ∇ ×

(
�2 × B

)}
.

(88)�2H =
1

2 ∫
{
�u ⋅ �u + 2u ⋅ �2u + �b ⋅ �b + 2B ⋅ �2b

}
d3x.

(89)

�2H =
1

2 ∫
{
�u ⋅ �u + u ⋅

[
� × (∇ × �u) + �2 × � + � × �b + �2 × B

]

+ �b ⋅ �b + B ⋅

[
∇ × (� × �b) + ∇ ×

(
�2 × B

)]}
d3x

=
1

2 ∫
{
�u ⋅ �u + u ⋅

[
� × (∇ × �u) + � × �b

]

+ �b ⋅ �b + B ⋅

[
∇ × (� × �b)

]

− �2 ⋅ [∇ × (u × B)] − �2 ⋅ (u × � + J × B)

}
d3x.

(90)

�2H =
1

2 ∫
{
(�u + � ⋅ ∇u − u ⋅ ∇�) ⋅ �u + (�b + J × � − � × u) ⋅ �b

}
d3x,
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completing the proof.
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