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Abstract
Three different approaches to the treatment of quantum effects in plasmas are 
reviewed: quantum fluid theory (QFT), phase-space kinetic theory (PKT) and quan-
tum plasmadynamics (QPD). The simplest form of QFT is analogous to a nonrela-
tivistic fluid model for an unmagnetized plasma with a potential electric field, � . 
The wave nature of the electron is included through the so-called Bohm term, as in 
the Madelung equations. The simplest form of PKT is based on the Wigner function 
and the kinetic equation that it satisfies in a quasi-classical �–� phase space. Fur-
ther development of PKT involves including additional effects piecemeal. The elec-
tron spin is included through a classical model for a spin vector, � , with the phase 
space extended to include � . The inclusion of degeneracy is straightforward. Elec-
tromagnetic effects are described by including the vector potential, � , in Schröding-
er’s equation. It is argued that further extensions, to a magnetized plasma and to 
include relativistic effects, raise conceptual difficulties concerning the phase-space 
approach. In a magnetic field, the electron (Landau) states are discrete, whereas 
the kinetic equation in PKT involves a derivative with respect to � . The relativistic 
case is based on Dirac’s equation, and to derive a Vlasov-like equation for electrons 
requires excluding the positron and virtual-pair contributions to the Dirac wavefunc-
tion, which cannot be achieved exactly. Moreover, specific spin states require a spe-
cific choice of spin operator in Dirac’s theory, whereas the Pauli matrices define the 
only (vectorial) spin operator in PKT. The Dirac wavefunctions for two spin opera-
tors are derived and shown to approximate the eigenstates of the Pauli theory only in 
the nonrelativistic limit. QPD is an exact theory, based on quantum electrodynamics, 
in which kinetic processes are described using Feynman diagrams. The presence of 
the plasma is taken into account through a statistical average of the electron propa-
gator, analogous to the use of thermal Green functions. QPD is introduced for the 
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unmagnetized case, and the generalization to include a background magnetic field is 
presented. It is shown how QPD is used to derive the linear response tensor for an 
electron gas in the relativistic quantum case for both unmagnetized and magnetized 
plasmas. A magnetized vacuum is shown to have response tensors analogous to a 
plasma, allowing processes (such as one-photon pair creation and photon splitting) 
that are forbidden in an unmagnetized vacuum. The various quantum effects that 
may be relevant to a plasma are summarized, and their possible application to labo-
ratory and astrophysical plasmas are discussed briefly.

Keywords Quantum fluid theory · Quantum kinetic theory · Quantum 
plasmadynamics · Magnetized vacuum

1 Introduction

Quantum plasma theory has a long history, includes several different approaches 
and involves a wide range of different applications: to solid-state plasmas, micro-
electronics, compact stars and plasma-like processes in super-strong magnetic fields. 
Relevant quantum effects are quantum mechanical diffraction and tunneling, elec-
tron degeneracy, the quantization of electron states in a magnetic field, electron spin 
and quantum recoil. Renewed interest in quantum effects was triggered by the rec-
ognition that miniaturized semiconductor devices and nanoscale objects can have 
scales comparable with the de Broglie wavelength (Haas et al. 2000; Manfredi and 
Haas 2001), implying that quantum-mechanical tunneling and diffusion can be 
important. In this review, the various approaches used to describe such quantum 
effects are separated into three classes, called quantum fluid theory (QFT), phase-
space kinetic theory (PKT) and quantum plasmadynamics (QPD), each of which is 
discussed separately. Each of these three approaches has been discussed in mono-
graphs: QFT by Haas (2011), PKT by Bonitz (2015), and QPD in the unmagnetized 
and magnetized cases by Melrose (2008, 2013).

In this review, these different approaches are compared and contrasted. Emphasis 
is given to the quantum counterparts of classical theories for collisionless plasmas, 
which are conventionally described by the Vlasov equation without any collisional 
term. In this sense, the present review complements a recent review in this journal 
(Manfredi et al. 2019) that concentrated on quantum effects in solid-state plasmas. 
More specifically, emphasis is placed here on relativistic quantum effects described 
by Dirac’s equation.

QFT is the simplest theory, analogous to the fluid theory of a classical plasma. As 
in the classical case the fluid equations may be simply written down or be derived 
by taking moments of an appropriate kinetic theory, which is the Vlasov theory in 
the classical case. The quantum effect in QFT is a quantum potential, which was first 
identified by Madelung (1926, 1927) and is now called the Bohm potential (Bohm 
1952a, b). PKT is based on the Wigner function (Wigner 1932), which reduces to 
the classical distribution function in the non-quantum limit. Unlike its classical 
counterpart, the Wigner function is not positive definite, and cannot be interpreted 
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as a probability density in phase space. The simplest versions of QFT and PKT are 
based on nonrelativistic quantum mechanics, described by Schrödinger’s equation 
(without spin) including a potential electric field that describes the perturbations 
in the plasma. The equation that describes the evolution of the Wigner function 
due to the potential electric field, which is treated as a perturbation, is a quantum 
counterpart of the Vlasov equation and is used as the basis for a quantum kinetic 
theory. Subsequent generalizations of PKT involved including the spin, electron 
degeneracy, an electromagnetic field rather than a potential electric field, relativistic 
effects and a background magnetic field. The generalization to include the spin, as 
in the Schrödinger–Pauli theory, involves introducing a generalized Wigner function 
that is a 2 × 2 matrix in spin space, calculated from the outer product of two spinor 
wave functions. The generalization to include relativistic effects involves replac-
ing Schrödinger’s equation by Dirac’s equation, leading to a more general but more 
cumbersome version of PKT (e.g., Hurst et al. 2017; Ekman et al. 2019a). With this 
generalization, the Wigner function is a 4 × 4 matrix in Dirac spin space; this com-
plication is avoided by making approximations, with different choices of approxima-
tion resulting in different versions of PKT.

It is straightforward to include degeneracy, which is relevant in relatively dense 
plasmas, notably solid-state plasmas. Exchange interactions also become significant 
in relatively dense plasmas, cf. Manfredi et al. (2019).

The response of the plasma is derived in PKT in an analogous way to that used 
in the classical Vlasov approach, that is, by using the kinetic equation to derive the 
response of the plasma through the weak-turbulence expansion. In this approach the 
Fourier transform of the induced current density, �(�, �) , is expanded in powers of 
the electric field, �(�,�) , in the plasma, defining linear, quadratic, etc., response 
tensors. The linear response is conventionally written in terms of the equivalent die-
lectric tensor, Kij(�, �).

QPD is a generalization of quantum electrodynamics (QED), which is the mod-
ern-day theory for the interaction of electrons and photons. QED is formally a quan-
tum field theory that describes the interaction of the Dirac and electromagnetic 
fields. A conventional approach to QED involves describing interactions between 
electrons and photons, which are quanta of these two fields, respectively, in terms of 
Feynman diagrams. The theory contains divergence and needs to be renormalized, 
with the finite contributions of the divergent diagrams referred to as radiative cor-
rections. In particular, the linear response of the vacuum is divergent, and the finite 
part gives the vacuum polarization tensor. Using a 4-tensor notation, the vacuum 
polarization is described by the linear term in the expansion of the 4-current, J�(k) , 
in powers of the 4-potential, A�(k) , with k� denoting the 4-vector constructed from 
�, � , giving J�(k) = ���(k)A�(k) . A statistical average over a distribution of elec-
trons allows one to generalize ���(k) to include the linear response of the plasma 
(e.g., Melrose 2008). This allows a generalization such that a “photon” in a Feynman 
diagram is re-interpreted as a quantum of a wave mode in the plasma. Similarly, the 
statistical average of the nonlinear terms in the weak-turbulence expansion defines 
a hierarchy of nonlinear response tensors, all of which may be calculated explic-
itly using QPD. The distributions of electrons (and positrons) and wave quanta are 
described in terms of their occupation numbers. The description of the distribution 
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of particles, in terms of the Wigner function in PKT and in terms of occupation 
numbers in QPD, is discussed in Sect. 7.7.

A notable difference between PKT and QPD can be understood by considering 
classical counterparts. A classical version of PKT is the Vlasov theory, in which 
the wave fields are included as perturbations in the distribution function. A clas-
sical version of QPD is the forward-scattering method (e.g., Melrose 2008): scat-
tering of a wave by a single particle leaves the particle unchanged in the forward-
scattering case where the scattered wave is the same as the unscattered wave; one 
may then sum over forward scattering by all the particles to find the collective effect 
on the wave. In the forward-scattering case, the distribution function of the particles 
is fixed and the perturbation is to the motion of the scattering particle. The Vlasov 
and forward-scattering methods lead to different but equivalent expressions for the 
linear response tensor of the plasma, with the two forms being related by partially 
integrating over momentum to remove the derivatives of the distribution function 
that appear in the Vlasov approach but not in the forward-scattering approach. Both 
the Vlasov and forward-scattering approaches may be used to treat the nonlinear 
responses of the plasma. In the Vlasov approach, one expands the distribution func-
tion in powers of the perturbing field and uses the linear, quadratic and cubic terms 
to identify the linear, quadratic and cubic response tensors, respectively. In the for-
ward-scattering approach, one calculates the scattering by a single particle of one 
wave into another wave, into two waves and into three waves, and integrates the for-
ward-scattering amplitude over all the particles in the plasma to obtain the the lin-
ear, quadratic and cubic response tensors, respectively. The same procedures apply 
in the quantum case, with the PKT approach a generalization of the Vlasov method 
and the QPD approach a generalization of the forward-scattering method.

In QPD, as in QED, a distribution of particles is described by its occupation num-
ber, which is simply related to the classical distribution function in the non-quantum 
limit. Unlike the Vlavov and PKT methods where all the perturbations are included 
in the wavefunction and hence in the Wigner function, in the forward-scattering and 
QPD methods, the background distribution of particles is assumed independent of 
the wave fields, and all the perturbations are calculated directly for the given dis-
tribution of particles, defined by its occupation number. Similarly, the wave quanta 
(in a particular wave mode) are described by their occupation number, which is the 
wave action divided by ℏ , with the classical wave action equal to the Fourier trans-
form of the wave energy density divided by the wave frequency.

The inclusion of a strong background field, in either the Schrödinger–Pauli the-
ory or the Dirac theory, is straightforward in principle but involves a considerable 
increase in mathematical complexity. In solving for the wavefunction, one needs 
to find the eigenvalues of a complete set of commuting operators, and this choice 
requires choosing a specific gauge to describe the magnetic field, with the wave-
functions depending on this choice. The generalizations of PKT to the magnetized 
case and to the relativistic case contain subtleties, relating to the discreteness of the 
energy levels in a magnetic field, and to the treatment of spin in Dirac’s theory, as 
discussed critically below. The generalization of QPD to apply to a plasma in a mag-
netic field, including strong-field effects, is straightforward in principle (e.g., Mel-
rose 2013), albeit cumbersome in practice.



1 3

Reviews of Modern Plasma Physics (2020) 4:8 Page 5 of 56 8

QFT is discussed in Sect. 2, PKT based on nonrelativistic quantum mechanics in 
Sect.  3, the extension of PKT to relativistic quantum mechanics in Sect.  4, QPD in 
Sect. 5, and various magnetic effects in Sect. 6. The various quantum effects are sum-
marized and some possible applications are described briefly in Sect. 7.

2  Quantum fluid theory

In this section, the development of QFT is discussed, beginning with the simple form 
proposed in the multistream model of Haas et al. (2000). There was an earlier deriva-
tion of quantum fluid equations, by Takabayasi (1952, 1957), which is discussed briefly 
at the end of this section.

2.1  Schrödinger–Poisson system

The simplest quantum fluid theory is based on Schrödinger’s equation with a potential 
electric field, −e� , where � is the electric potential, which is related to the charge den-
sity, � , by Poisson’s equation.

Schrödinger equation Schrödinger’s equation is

where m is the electron mass and � is the wave function. The wavefunction may be 
written in the form

where A and S are real. All of � , � , A and S are implicit functions of time, t and 
position, � . A conventional interpretation is that A2 gives the probability density for 
the electron, and the gradient of S is its momentum, written here as m�:

Madelung equationsMadelung (1926, 1927) attempted to relate Schrödinger’s 
theory to classical Hamiltonian–Jocobi theory by writing the wave function in the 
form (3). The real and imaginary parts of Schrödinger’s equation (1) then imply the 
Madelung equations:

(1)iℏ
��

�t
= −

ℏ2

2m
∇2� − e�� ,

(2)� = A exp(iS∕ℏ),

(3)n = A2, m� = �S.

(4)
�n

�t
+ � ⋅ (n�) = 0,

(5)
��

�t
+ � ⋅ �� =

e

m
�� +

ℏ2

2m
�

�
∇2

√
n√

n

�
.
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The final term in (5) is now referred to as the Bohm term, which may be regarded 
as describing the diffraction pattern of a single electron (Tsintsadze and Tsintsadze 
2009).

In the Schrödinger–Poisson system, Eqs. (4) and (5) are supplemented by Poisson’s 
equation

where n0 is the number density of background ions.
Multistream model The multistream model follows from Eqs. (4) to (6) by adding 

a subscript i that labels each stream. In its original form, the multistream model was 
assumed one dimensional (Haas et al. 2000), corresponding to ∇ → �∕�x . Haas et al. 
(2000) discussed both the one-stream and two-stream cases is some detail. They found 
that in the one-stream case, the equations possess two first integrals,

interpreted as charge and energy conservation. Writing J = n0u0 , and noting that 
the potential, � , includes an arbitrary constant that may be chosen such that E = 0 , 
Eqs. (4) and (5) may be reduced to a pair of equations that depend only on a single 
parameter,

where �p is the plasma frequency; H characterizes the importance of the quantum 
effects included in the model. Haas et al. (2000) showed that for H < 1 (weak quan-
tum effects) the system can sustain periodic oscillations, whereas for H > 1 (strong 
quantum effects) the system is unstable. This one-stream model establishes the 
importance of the parameter H in characterizing quantum effects.

Small-amplitude oscillation Linearizing the Madelung equations to find small-
amplitude oscillations in the absence in electric and magnetic fields gives the frequency 
of oscillations of a free electron (e.g., Tsintsadze and Tsintsadze 2009),

In the case of a one-stream model with streaming velocity u0 , Haas et  al. (2000) 
found that purely spatial oscillations (for � ≠ 0 ) are possible for

(6)∇2� =
e

�0
(n − n0),

(7)J = nu, E =
1

2
mu2 − e� −

ℏ2

2m

�
1√
n

d2
√
n

dx2

�
,

(8)H =
ℏ�p

mu2
0

,

(9)� =
ℏ|�|2
2m

.

(10)H2

(
ku0

�p

)4

− 4

(
ku0

�p

)2

+ 4 = 0.



1 3

Reviews of Modern Plasma Physics (2020) 4:8 Page 7 of 56 8

In the classical case, H = 0 , oscillations are at ku0 = ±�p , and for H < 1 oscillations 
are real. In the strong quantum case, H > 1 , there are exponentially growing solu-
tions, implying that quantum effects cause the system to become unstable.

In the case of two streams, with n1 = n2 = n0∕2 , u1 = −u2 = u0 and � = 0 , the 
system is known to be unstable to the two-stream instability for |�|2u2

0
< 𝜔2

p
 in the 

classical limit H → 0 . Haas et al. (2000) showed that for H < 1 the system is unsta-
ble for either 0 < H2���2u2

0
∕𝜔2

p
< 2 − 2

√
1 − H2 or 

2 + 2
√
1 − H2 < H2���2u2

0
∕𝜔2

p
< 4 . This two-stream case shows that for H < 1 

quantum effects can have a destablizing effect, whereas for H > 2 they can have the 
opposite effect.

2.2  Generalizations of QFT

In the simplest version of QFT, the electrons are assumed to be nonrelativistic and 
spinless, so that they satisfy the Schrödinger equation, and the field in the plasma 
is assumed to be electrostatic. Specific generalizations are to include the spin, to 
replace the electrostatic field by an electromagnetic field, and to include relativis-
tic effects. These generalizations are discussed below in connection with the cor-
responding generalizations in PKT. In relation to the derivation of fluid equations, 
several features of these generalizations are notable.

The generalization to include electron spin involves replacing the Schrödinger 
equation by the Schrödinger–Pauli equation, and then the Wigner function is derived 
from the outer product of two spinors, and hence is a 2 × 2 matrix. The four com-
ponents of the Wigner function are replaced by their projection onto the unit 2 × 2 
matrix and the three Pauli matrices. These projections define, respectively, a sca-
lar and a vector quasi-distribution function, and moments of both are involved in 
the derivation of fluid equations. For example, the simplest moments give the elec-
tron density, the scalar n, and the spin density, the vector � . The derivation of the 
fluid equations that describe the evolution of these moments, and involve further 
moments, has been reviewed by Manfredi et al. (2019).

The generalization from electrostatic to electromagnetic fields can be confusing. 
As in classical Hamiltonian mechanics, this generalization involves a simple pre-
scription called minimal coupling: the momentum � is replaced by � + q� , where � 
is the vector potential and q ( q = −e for electrons) is the charge on the particle. With 
this generalization � is the canonical momentum, which is different from the kinetic 
momentum, � . In the unmagnetized case one has � = �m� with � = (1 − v2∕c2)−1∕2 , 
where � is the velocity of the particle. The canonical momentum, the kinetic 
momentum and the variable � introduced in defining the Wigner function are all dif-
ferent in general, and the difference between them needs to be recognized in deriv-
ing fluid equations.

The generalization to include all relativistic quantum effects involves replacing 
Schrödinger’s equation by Dirac’s equation, so that the Wigner becomes a 4 × 4 
matrix in Dirac spin space. A difficulty that this introduces in the derivation of quan-
tum fluid equations is that one then needs 16 distribution-like functions to describe 
the distribution of electrons, as was pointed out and discussed by Takabayasi (1957) 
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in deriving an early version of relativistic quantum fluid-like equations. The first step 
in this approach is to project the Wigner function onto 16 basis matrices in Dirac 
spin space, e.g., the matrices 1, �5, ��, �5��, S�� (e.g., Takabayasi 1952; Vasak et al. 
1987; Bialynicki-Birula et al. 1991, ) cf. also ( Melrose 2008, pp. 350–352), with the 
definitions (32) and (35). This results in the 4 × 4 Wigner function being replaced 
by a scalar, a pseudo-scalar, a 4-vector, a pseudo-4-vector and an anti-symmetric 
4-tensor, respectively. This complication is by-passed in most discussions by making 
assumptions that simplify the Wigner function. Simplification occurs for an unpolar-
ized electron gas (Hakim and Heyvaerts 1978); in this case, the pseudo-scalar and 
pseudo-4-vector components are zero. As discussed in Sect. 4, a favored approach is 
to make a transformation that separates the electron and positron contributions such 
that the electron contribution to the Wigner function is negligible except in a 2 × 2 
subspace, which allows one to use a procedure similar to that used to include spin 
in nonrelativistic quantum theory. However, this procedure involves approximations. 
No exact version of QFT for the relativistic quantum case has been identified.

3  Phase‑space representation of a quantum system

The subsequent development of the theory involved introducing additional effects 
piecemeal: starting with a derivation of the quantum fluid equations from the 
Wigner–Poisson equations, including the effect of spin, and generalizing from an 
electrostatic to an electromagnetic field. These development are described in this 
Section. The generalization to the relativistic case is discussed in Sect. 4.

3.1  Wigner–Poisson system

The Wigner function (Wigner 1932), cf. also Moyal (1949); Tatarskiĭ (1983), is 
defined in terms of the Schrödinger wave function, �(�, t):

The Wigner function is regarded as a pseudo-distribution function in �–� phase 
space. Note that � is not introduced here as the physical momentum, but rather as 
the conjugate variable to a position vector in a Fourier transform. The �–� phase 
space is essentially a classical construction, and the Wigner function is an attempt 
at reformulation of quantum mechanics in classical phase-space language. There is 
no unique definition of a quasi-distribution; for example, Zamanian et  al. (2010a) 
commented on two alternative definitions. Care is needed in ascribing any physical 
interpretation to the phase space. In particular, the physical quantum states in the 
magnetized case, cf. Sect. 6, have discrete values of the perpendicular momentum, 
implying that the physical states correspond to discrete surfaces in �-space.

Kinetic equation for the Wigner function The Wigner function obeys a kinetic 
equation. In the one-dimensional (1D) case with a potential electric field, this equa-
tion is

(11)W(�, �, t) = ∫
d3�

(2�ℏ)3
exp

(
i� ⋅ �

ℏ

)
�∗

(
� +

1

2
�, t

)
�

(
� −

1

2
�, t

)
.
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with v = p∕m . Combining (12) with the 1D form of Poisson’s equation,

gives the 1D Wigner–Poisson system.
Derivation of QFT from the kinetic equationManfredi and Haas (2001) used the 

Wigner–Poisson equations to derive the fluid equations. The relevant moments are 
the number density, fluid velocity and pressure, given by, respectively,

where arguments x, t and p, x, t are omitted. Equations (12) and (13) then imply

The total pressure in (14) may be separated into a classical part and a quantum part. 
On substituting the form (2) for the wave function, the classical part arises from the 
derivative of the phase and the quantum part from the derivative of the amplitude. 
For a pure quantum state, the classical part gives zero; Manfredi and Haas (2001) 
introduced a statistical model to show how the standard form for the classical pres-
sure can be reproduced for a mixture of states. The quantum part, PQ , with A =

√
n 

gives

The quantum pressure gradient, −dPQ∕dx divided by n, then reproduces the Bohm 
term in (5).

3.2  Inclusion of spin: Schrödinger–Pauli theory

The inclusion of spin in nonrelativistic quantum mechanics involves generalizing 
Schrödinger’s equation to the Schrödinger–Pauli equation. The wave function, � , 
becomes a spinor, �� , where � = 1, 2 denoted components in the two-dimensional 
(Hilbert) spin space. The spin operator, � , in this space is represented by the three 
Pauli matrices, ���

i
 , with i = x, y, z the components in coordinate space. By replacing 

the product of wave functions by spinors, �∗� → �∗��� , in the definition (11) of 
the Wigner function, W, becomes the (spinor) matrix W��.

(12)

(
�

�t
+ v

�

�x

)
W(p, x, t)+

ie

ℏ ∫ dy∫
dp�

2�ℏ
exp

(
i(p − p�)y

ℏ

)

×
[
�

(
x +

1

2
y
)
− �

(
x −

1

2
y
)]

W(p�, x, t) = 0,

(13)
�2�(x, t)

�x2
=

e

�0

(
∫

dp

2�ℏ
W(p, x, t) − n0

)
,

(14)n = ∫
dp

2�ℏ
W, u =

1

n ∫
dp

2�ℏ
W, P = m∫

dp

2�ℏ
(v2 − u2)W,

(15)�n

�t
+

�(nu)

�x
= 0,

�u

�t
+ u

�u

�x
=

e

m

��

�x
−

1

mn

�P

�x
.

(16)PQ =
ℏ2

2m

⎡⎢⎢⎣

�
�
√
n

�x

�2

−
√
n
�2
√
n

�x2

⎤⎥⎥⎦
.



 Reviews of Modern Plasma Physics (2020) 4:8

1 3

8 Page 10 of 56

Spin vector The formal generalizations of the Wigner–Poisson equations to 
include the spin involves using a spinor formalism. This is avoided in PKT by 
introducing a classical model for the spin through a unit vector � . The probabil-
ity of finding the electron with spin up in the �-direction is included by general-
izing the pseudo-distribution function to f (�, �, �, t) , defined by

where ��� is the unit 2 × 2 matrix. Cowley et al. (1986) introduced such a pseudo-
distribution function for the spin, initially in connection with nuclear spins. As with 
the phase-space representation in the absence of spin, there is no unique definition 
of the phase-space representation; alternative representations were reviewed by 
Scully and Wódkiewicz (1994).

The spin � is not a quantum-mechanical variable, in the sense that it is nei-
ther a quantum-mechanical operator nor the eigenvalue of a quantum-mechan-
ical operator. As with the variable � in the pseudo-distribution function in the 
absence of spin, it is introduced to allow the quantum mechanical (Wigner) 
function to be represented in a classical notation. In the presence of spin, the 
components of the 2 × 2 matrix Wigner function is projected onto basis vectors, 
� and � , of the 2 × 2 spin space. Then � is interpreted as a classical variable (in 
the extended phase space) that describes the actual quantum mechanical spin. 
The use of the variable � to describe the spin in the relativistic case is discussed 
in Sect. 7.7.

In a classical model for the spin, the vector � evolves in the presence of a 
magnetic field. The equation of motion in the rest frame of the electron evolves 
according to

where g ≈ 2 is the gyromagnetic ratio.
Magnetization and polarization vectors The electron spin contributes to the 

magnetization and polarization, that is, the magnetic and electric dipole moment 
per unit volume, respectively. The model implies (e.g., Asenjo et al. 2012)

where the factor 3 arises from non-commutation of the spin components, where 
�B = eℏ∕2m is the Bohr magneton and where g = 2.00232 is the gyromagnetic 
ratio.

(17)f (�, �, �, t) =
∑

�,�=1,2

(��� + � ⋅ ���)W��(�, �, t),

(18)
d�

dt
=

ge

2m
� × �,

(19)
�(�, t) = − 3

g

2
�B ∫

d3�

(2�)3
d3� �f (�, �, �, t),

�(�, t) = − 3
g

2
�B ∫

d3�

(2�)3
d3�

� × �

2mc
f (�, �, �, t),
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3.3  Inclusion of electromagnetic effects

The assumption of an electrostatic field, � , needs to be generalized to include 
electromagnetic effects. This involves including the vector potential, � , with the 
electromagnetic field given by

The description of the fields in terms of potentials is not unique, with the fields 
being unchanged by an arbitrary gauge transformation.

Pauli equation The Hamiltonian for an electron with spin in an electromag-
netic field may be written as

where � is now the canonical momentum. The mechanical momentum is 
� = � + e� . The generalization of the Schrödinger equation (1) with the Hamilto-
nian in the form (21) is the Pauli equation

Gauge dependence The Hamiltonian (21) depends on the choice of gauge, and 
hence the specific form of the wavefunction is also gauge dependent. The definition 
of the Wigner function needs to be modified so that it is independent of the choice 
of gauge. The relevant generalization (Stratonovich 1957) involves the phase in the 
�-integral:

The gauge dependence introduced by the generalization to the electromagnetic case 
not only increases the algebraic complexity, but also adds further complication to 
any physical interpretation of the �–� phase space.

3.4  Degenerate plasma

In a sufficiently dense plasma, the electrons become degenerate as the lowest 
energy states become filled. Inclusion of degeneracy in plasma kinetic theory has 
a long history (e.g., Lifshitz and Pitaevskii 1981), cf. Shukla and Eliasson (2011), 
Brodin et al. (2017) and Manfredi et al. (2019) for recent discussions relevant to 
the approach discussed here.

(20)� = −�� −
��

�t
, � = � × �.

(21)H =
1

2m
[� ⋅ (� + e�)]2 − e�,

(22)i�
𝜕𝜓

𝜕t
=
[
1

2m
[� ⋅ (�̂ − e�)]2 − e𝜙

]
𝜓 , �̂ = −i��.

(23)
W(�, �, t) =∫

d3�

(2𝜋�)3
exp

(
i�̃ ⋅ �

�

)
𝜓∗(� +

1

2
�, t)𝜓(� −

1

2
�, t),

�̃ =� − e∫
1∕2

−1∕2

d𝜂�(� + 𝜂�, t).
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One example of the effect of degeneracy is in the derivation of the dispersion 
relation, � = �L(�) , for Langmuir waves. A form that follows when the Bohm term 
is included is (e.g., Eliasson and Shukla 2008; Mushtaq and Melrose 2009)

with V2
e
= Te∕m , where Te is the electron temperature, and with G = 1 for nonde-

generate electrons and G = v2
F
∕5V2

e
 for completely degenerate electrons, where 

v2
F
= TF∕m is the Fermi speed and TF the Fermi temperature. The final term in (24) 

is determined by the Bohm potential in QFT.
Fermi–Dirac distribution Partially degenerate nonrelativistic thermal electrons 

have a Fermi–Dirac distribution

where �e is the chemical potential, with �e large and negative ( 𝜉 ≪ 1 ) in the nonde-
generate limit, and with �e → TF in the completely degenerate limit.

Response of a partially degenerate electrons The dielectric tensor for a degen-
erate electron gas is derived in a similar way to that for a classical gas, with the 
distribution function given by (25). The definition of the classical plasma disper-
sion function is generalized to the form for the Fermi–Dirac distribution (Melrose 
and Mushtaq 2010a, b). Wave dispersion in such a plasma may then be treated in 
the standard way. For example, this leads to a determination of the factor G in the 
dispersion relation (24) that covers the range between nondegenerate and completely 
degenerate electrons.

Some care is needed in attempting to generalize models for degenerate plasmas. 
For example, it is inconsistent to assume two separate distributions of degenerate 
electrons with different temperatures, by analogy with the conventional treatment 
of electron acoustic waves in a nondegenerate plasma. The inconsistency is that the 
electron states below the lower of the two Fermi temperatures for the two distri-
butions are assumed implicitly to be filled twice, which is not allowed. Similarly, 
assuming that both electrons and positrons are degenerate is inconsistent with the 
requirement of thermal equilibrium. In the relativistic case pair creation and anni-
hilation are allowed, and this requires that in thermal equilibrium, the sum of the 
chemical potentials for electrons and positron be equal to that of photons, which is 
zero. Both chemical potentials cannot be positive, as would be implied if both elec-
trons and positrons were degenerate.

3.5  Exchange effects

Exchange effects become significant in relatively dense plasma. There is an exten-
sive literature on this topic (e.g., Crouseilles et al. 2008; Andreev 2014; Trukhanova 
and Andreev 2015; Ekman et al. 2015). An example the exchange correction to the 
dispersion relation for Langmuir waves for Ve ≫ vF , which gives (von Roos 1960; 
Zamanian et al. 2015)

(24)�2
L
(�) = �2

p
+ 3G|�|2V2

e
+ (ℏ|�|2∕2m)2,

(25)n(�) =
1

�−1ep
2∕2mTe + 1

, � = e�e∕Te , ne = 2∫
d3�

(2�)3
n(�),
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The final term inside the parenthesis is the contribution from exchange effects. It is 
interesting to note that this is proportional to H2 , that is, as the square of the param-
eter H, defined by (8), that describes when other quantum effects are important.

4  Phase‑space kinetic theory: relativistic case

The inclusion of relativistic effects requires that the Schrödinger–Pauli equation for the 
wavefunction be replaced by the Dirac equation. This not only increases the complex-
ity of PKT, but also raises questions about its validity, especially concerning the spin, 
whose treatment remains essentially nonrelativistic.

4.1  Dirac equation

The relativistic generalization of the nonrelativistic Hamiltonian, H = �2∕2m , 
may be written H = (m2c4 + �2c2)1∕2 , which includes the rest energy mc2 . The 
usual prescription for deriving a wave equation, by replacing H and � by the opera-
tors p̂0c = Ĥ = i�𝜕∕𝜕dt and �̂ = −i�� , respectively, cannot be applied directly 
because it would involve the square root of an operator. This is avoided by first 
squaring and applying the prescription to H2 = m2c4 + �2c2 . The resulting equa-
tion is the Klein–Gordon equation, which has positive and negative energy eigenval-
ues, � = ±(m2c4 + �2c2)1∕2 . The conventional interpretation of the negative energy 
eigenvalues is that they describe anti-particles, with the anti-particle of the electron 
being the positron. Assuming spin-1/2, one may write the operator �̂2 = (� ⋅ �̂)2 and 
assume separate spinor wavefunctions, � and � say, for the positive and negative energy 
solutions. The Klein–Gordon equation may then be factorized into two equations 
(p̂0 + � ⋅ �̂)𝜂 = mc𝜉 , (p̂0 − � ⋅ �̂)𝜉 = mc𝜂 and combined into the 4 × 4 matrix equation

where the wavefunction has four components, with � the null 2 × 2 matrix. Equation 
(27) is one form of Dirac’s equation, in what is referred to as the spinor represen-
tation. For a particle at rest, the wavefunctions (1000), (0100), (0010), (0001) are 
identified as an electron with spin up and spin down and a positron with spin up and 
spin down, respectively.

There is no unique representation for the Dirac equation. In an arbitrary representa-
tion, the Dirac equation may be written in the form

(26)�2 = �2
p
= 3k2V2

e

(
1 −

1

90

ℏ2�2
p

m2V4
e

)
.

(27)
(

� p̂0 + � ⋅ �̂

p̂0 − � ⋅ �̂ �

)(
𝜉

𝜂

)
= mc

(
𝜉

𝜂

)
,

(28)i�
𝜕𝛹

𝜕t
= (� ⋅ �̂c + 𝛽mc2)𝛹 ,
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where � and � are 4 × 4 matrices and the wavefunction � is a column matrix with 
four entries. The Dirac Hamiltonian is identified as

Different representations are connected by unitary transformations of the 4 × 4 
matrices. In the standard representation one has, in terms of block matrices,

where each matrix component is itself a 2 × 2 matrix. One has

Another �-matrix that appears is

which satisfies

where † denotes the Hermitian conjugate.
Covariant form of Dirac’s equation
For some formal purposes it is convenient to use a manifestly covariant form of 

Dirac’s equation, that is, one in terms of 4-tensor notation. In this notation, a Greek 
index denotes components, e.g., � = 0, 1, 2, 3 , with 0 denoting the time component, 
and is written as a superscript (subscript) corresponding to contravariant (covariant) 
component. It is also convenient to adopt natural units with ℏ = c = 1 . The basic 4-vec-
tor is an event at time t and point � , written as x� = (t, �) in units with c = 1 . The met-
ric tensor, g�� , is diagonal with components 1,−1,−1,−1 , as is g�� . The covariant 
components of the event are x� = g��x

� = (t,−�) , where the sum over repeated indices 
is assumed. Other relevant 4-vectors are the 4-momentum p� = (�, �) , the 4-potential 
A� = (�,�) and the 4-derivative �� = �∕�x� = (�∕�t,�) . The inner product of two 
4-vectors is written, for example, kx = k�x� = �t − � ⋅ � and k2 = k�k� = (�2 − |�|2).

The covariant form of Dirac’s equation may be written

with ∕� = ���� , ∕A = ��A� , and so on, �� = (�0, �) , and where the relations with � 
and � follow by comparison with (29). The Dirac matrices are requires to satisfy 
���� + ���� = 2g�� . The spin 4-tensor is identified as

(29)Ĥ = � ⋅ �̂c + 𝛽mc2.

(30)

� =

(
� �

� �

)
, �x =

(
� �

� �

)
, �y =

(
� − i�

i� �

)
, �z =

(
� �

� − �

)
,

(31)�� = (�x, i�y�), � = �x�, � = �z.

(32)�5 = −i�0�1�2�3, �5 = −�x,

(33)���5 + �5�� = 0, (�5)2 = 1, (�5)† = �5,

(34)(𝛾𝜇p̂𝜇 − m)𝛹 = (i�∕𝜕 − m)𝛹 , � = 𝛾0�, 𝛽 = 𝛾0,

(35)S�� =
1

2
(���� − ����) =

⎛⎜⎜⎜⎝

0 �x �y �z
−�x 0 − i�z �y
−�y i�z 0 − i�x
−�z − i�y i�x 0

⎞⎟⎟⎟⎠
.
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Dirac’s equation in an electromagnetic field On including an electromagnetic field, 
Dirac’s equations in the forms (28), in natural units, and (34) becomes

respectively. The covariant form may be rewritten by introducing D� = �� − ieA� 
and the ansatz

so that the equation becomes

where F�� is the Maxwell 4-tensor. In terms of Cartesian components of � and � , 
F�� and F�� =

1

2
�����F�� have components

The term −e� ⋅ � is interpreted as the magnetic energy due to the (anomalous) mag-
netic moment of the electron. (In ordinary units, the magnetic moment is �e = g�B , 
with g = 2 and �B = eℏ∕2m the Bohr magneton.) The correct appearance of this 
term was a major success of the Dirac theory.

4.2  Foldy–Wouthuysen transformation

The Dirac equation describes a one-charge system, whereas a phase-space model is 
intended to describe a distribution of electrons. To isolate the electron part from the 
positron part and to ignore additional pairs, one needs, ideally, to choose a represen-
tation of the Dirac algebra in which the terms that connect the upper two and lower 
two components of � are removed. The Hamiltonian may be separated into even, E , 
and odd, O parts, depending on whether they commute, �E = E� , or anticommute, 
�O = −O� with � . This is achieved through a Foldy–Wouthuysen (FW) transforma-
tion (Foldy and Wouthuysen 1950). In the presence of a field, the FW transformation 
involves powers and derivatives of � and � . One can only minimize the odd terms by 
truncating the expansion after a finite number of terms.

For example, by applying the FW transformation four times, Asenjo et al. (2012) 
derived the Hamiltonian operator

(36)i
��

�t
= (� ⋅ (−i∇ + e�) + �m − e�)� , (i∕� + e∕A − m)� = 0,

(37)� = [(i∕� + e∕A + m]� ,

(38)(D�D� − m2 − 2ieS��F��)� = 0, −2ieS��F�� = ie� ⋅ � − e� ⋅ �,

(39)F�� =

⎛
⎜⎜⎜⎝

0 − Ex − Ey − Ez

Ex 0 − Bz By

Ey Bz 0 − Bx

Ez − By Bx 0

⎞
⎟⎟⎟⎠
, F

�� =

⎛
⎜⎜⎜⎝

0 − Bx − By − Bz

Bx 0 Ez − Ey

By − Ez 0 Ex

Bz Ey − Ex 0

⎞
⎟⎟⎟⎠
.

(40)
Ĥ =mc2 − e𝜙 +

1

2m
(�̂ + e�)

2 +
e�

2mc
� ⋅ � +

�2e

8m2c2
� ⋅ �

+
�e

4m2c2
� ⋅

[
� × (�̂ + e�

]
+

i�2e

8m2c2
� ⋅ � × � +

1

8m3c2
(�̂ + e�)

4
,
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which includes terms up to second order in ℏ and in relativistic corrections. The 
first four terms in (40) correspond to the Pauli Hamiltonian, the fifth is the Darwin 
term, the sixth and seventh give Thomas precession and spin–orbit coupling, and 
the eighth term is a higher order correction that also appears in the expansion of the 
Klein–Gordon hamiltonian Ĥ = [m2c4 + (�̂ + e�)2]1∕2 − e𝜙.

Vlasov-type equations The (classical) Vlasov equation in the absence of colli-
sions is

which is relativistically correct, with � = �c2∕� with �2 = m2c4 + p2c2 . The kinetic 
equations derived in PKT are of the same form as (41) with modifications to the 
velocity and the force terms and with a spin contribution included. Including the 
classical model for the spin in (41) involves including the explicit dependence of f 
on � and adding a term

where (18) is used.
Various specific forms for the Vlasov-type equation in the quantum case have 

been derived (e.g., Cowley et  al. 1986; Balescu and Zhang 1988; Zamanian et  al. 
2010a; Hurst et al. 2017; Ekman et al. 2017, 2019a). These forms differ due to dif-
ferences in the truncation of the FW transformation, related to expansions in ℏ and 
1/c. For example, Ekman et al. (2017) generalized an earlier form found by Zama-
nian et al. (2010a), to find a form to first order in ℏ on scales long compared with 
the localization scale of the electron. In this generalized form, the coefficients of the 
derivatives in (41) and (42) are replaced according to

with �∕m defined as the ratio of the electron energy to the rest energy. A further 
generalization was derived by Ekman et al. (2019a). Hurst et al. (2017), generaliz-
ing earlier work (Hurst et al. 2014), defined two different phase-space functions by 
integrating over � , and also included further terms in the kinetic equations for both 
distributions.

Response tensor and wave dispersion The linear response of a plasma to an electro-
magnetic disturbance is described by a response tensor, usually chosen to be the dielec-
tric tensor, Kij(�, �) . A conventional derivation of the response tensor from kinetic the-
ory starts by assuming that the wave amplitude is small, expanding the Vlasov equation 

(41)

[
�

�t
+

d�

dt
⋅
�

��
+

d�

dt
⋅
�

��

]
f (�, �, t) = 0,

d�

dt
= �,

d�

dt
= −e(� + � × �),

(42)
d�

dt
⋅
�

��
f =

ge

2m
� × � ⋅

�

��
f ,

(43)

� →� − �bm
�

��

[
1

�

(
� −

� × �

� + m

)
⋅

(
� +

�

��

)]
,

� + � × � →� + � ×

{
� − �Bm

�

��

[
1

�

(
� −

� × �

� + m

)]}
,

ge

2m
� × � →

ge

2m
� ×

(
� −

� × �

� + m

)
,
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in powers of the wave amplitude, f = f0 + f1 +… , and solving for the first-order 
perturbation, f1 , in terms of the background distribution, f0 . In the absence of a back-
ground magnetic field, one writes � → �1 and � → �1 in the Vlasov equation, and in 
the presence of a background magnetic field, �0 , the latter is replaced by � → �0 + �1 . 
The response of the plasma is described by the induced current, which is found in terms 
of f1 . After Fourier transforming in time and space, the proportionality of the current to 
the electric field allows one to identify the conductivity tensor, which is simply related 
to Kij(�, �) . The Fourier transform of Maxwell’s equations with this induced current 
included then leads to a wave equation, which is solved for the properties of the natural 
wave modes of the plasma. In the quantum case, the same procedure may be used to 
derive the response tensor, with f satisfying a generalized form of the Vlasov equation 
in the extended phase space.

The only current in the classical case is the free (F) current density,

In the quantum case, the spin introduces three further terms: �F is modified by 
the replacement of � in (44) by the spin-dependent term in the relation between 
velocity and momentum, cf. (43), approximated in the nonrelativistic case by 
� = �∕m + (�B∕2mc

2)� × � . There are also the magnetization current, �M = � ×� 
and the polarization current, �p = ��∕�t , with � and � given by (19). The total 
induced current is

Only a few special cases of wave dispersion including quantum effects have been 
treated using this theory. One example is for the effect of the Darwin term on the 
dispersion relation for Langmuir waves for a one-dimensional (1D) distribution with 
average momentum squared ⟨p2

z
⟩ : Asenjo et al. (2012) found the approximate disper-

sion relation

The term ℏ|�|2 . This term is similar in form to the contribution of the Bohm term to 
the oscillations of a free electron, cf. (9). The ratio of the two contributions is 
2|�|2c2∕�2

p
 , with the Zitterbewegung dominating when this term is large.

Another example (Zamanian et al. 2010b) is for waves propagating parallel to the 
magnetic field in a magnetized plasma, for which it was found that spin and dispersive 
effects modify the classical wave dispersion at short wavelengths.

(44)�F = −e∫
d3�

(2�)3
�f (�, �, t).

(45)�tot = �F + � ×� +
��

�t
.

(46)�2 = �2
p

�
1 +

⟨p2
z
⟩���2

m2�2

��
1 +

ℏ2���2
8m2c2

�
.
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5  Quantum plasmadynamics

The name quantum plasmadynamics (QPD) was coined to describe the theory that 
synthesizes quantum electrodynamics (QED) and the kinetic theory of plasmas 
(Melrose and Hardy 1996; Melrose 2008). QED is the quantum field theory for the 
interaction between electrons (including positrons), which are quanta of the Dirac 
field, and photons, which are quanta of the electromagnetic field. QPD involves, 
first, introducing a statistical average that allows one to use QED to calculate the 
response of the plasma and, second, including the response of the plasma in the 
electromagnetic field such that its quanta correspond to those of the natural wave 
modes of the plasma. The interaction between electrons and waves in plasmas is 
described in QPD by Feynman diagrams, as in QED.

5.1  Covariant form of response tensor

The response of a plasma may be described by the Fourier transform of the induced 
current in the plasma. The weak-turbulence expansion of this response in powers of 
the Fourier transform of the electromagnetic is, in 4-tensor notation,

The linear response tensor, ���(k) , and the dielectric tensor, Kij(�, �) , contain the 
same information, in the sense that the components of one may be written in terms 
of the components of the other.

A wave in a plasma may be described by its amplitude A�(k) , which satis-
fies the wave equation, derived from (the Fourier transform of) Maxwell’s with 
J�(k) = ���(k)A�(k),

where the right-hand side is an extraneous current that describes an arbitrary source 
term. The usual way of deriving the dispersion equation, whose solutions give the 
dispersion relations for the natural wave modes of the plasma, is to write the wave 
equation in matrix from and take the determinant of the matrix of coefficients. 
However, this determinant is identically zero in this 4-tensor notation, due to the 
identities k����(k) = 0 = ���(k)k� implying the k� is an eigenfunction with zero 
eigenvalue. Formally, one may identify an invariant form of the dispersion equa-
tion by constructing the matrix of cofactors, ���(k) , of ���(k) , noting that it satisfies 
���(k) = �(k)k�k� , and setting this to zero, giving the invariant dispersion equation 
�(k) = 0 . Alternatively, one may write (48) in 3-tensor notation and set the determi-
nant of the 3 × 3 tensor to zero, giving a dispersion equation equivalent to �(k) = 0.

Photon propagator The photon propagator, D��(k) , satisfies

(47)

J�(k) =���(k)A�(k)

+ ∫
d4k1

(2�)4

d4k2

(2�)4
(2�)4�4(k − k1 − k2)�

���(k, k1, k2)A�(k1)A�(k2)

+⋯ .

(48)��
�(k)A

�(k) = 0, ���(k) = k2g�� − k�k� + �0�
��(k) = −�0J

�

ext(k),
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A solution of (49) is found by first constructing the second-order matrix of cofac-
tors, �����(k) , which satisfy

and noting that

is a solution. The solution (51) corresponds to a particular choice of gauge, 
k�A

�(k) = 0 . For an arbitrary choice of gauge condition of the form G�A
�(k) = 0 , 

k�k�∕k
4 is replaced by G�G�∕(Gk)

2 in (51).

5.2  Quantum field theory

In quantum field theory, specifically QED, one solves the Dirac and Maxwell equations 
for the fields and re-interprets the fields as operators that create and annihilate quanta of 
these fields, called second quantization. The idea is to introduce the familiar raising and 
lowering operators, â† and â , respectively, for a simple harmonic oscillator (SHO) to 
describe creation and annihilation, respectively, of quanta. In the SHO case, these sat-
isfy commutation relations, [â, â] = 0 , [â†, â†] = 0 , [â, â†] = 1 , and they determine the 
number operator, n̂ = â†â , for the excited state of the SHO. An important change for 
fermions is that the commutator, [Â, B̂] = ÂB̂ − B̂Â , is replaced by the anti-commuta-
tor, [Â, B̂]+ = ÂB̂ + B̂Â . In QED and QPD, the annihilation operators for electrons, 
positrons and wave quanta are denoted by, â , b̂ and ĉ , respectively, with â and b̂ satisfy-
ing anti-commutation relations and ĉ satisfying commutation relations. In describing 
the fields, additional labels and arguments are needed to specify the particular field. For 
example, if q, q′ denote specific states, for electrons, the anti-commutation relations 
become [âq, âq� ] = 0 , [â†

q
, â

†

q�
] = 0 , [âq, â

†

q�
] = 𝛿qq� , and the number operator becomes 

n̂+
q
= â†

q
âq , and for positrons, the anti-commutation relations become [b̂q, b̂q� ] = 0 , 

[b̂†
q
, b̂

†

q�
] = 0 , [b̂q, b̂

†

q�
] = 𝛿qq� , and the number operator becomes n̂−

q
= b̂†

q
b̂q.

Dirac wavefunctions Let �q(x) be a solution of Dirac’s equation with quantum num-
bers denoted collectively by q, with energy eigenvalues � = �q . The wavefunction may 
be written as a sum over q of two terms, �+

q
(�) exp(−i�qt) and �−

q
(�) exp(i�qt) . The 

corresponding operator and its adjoint are

(49)��
�(k)D

��(k) = �0

(
g�� −

k�k�

k2

)
.

(50)��
�(k)�

����(k) = �(k)
[
g��k�k� − g��k�k�

]
,

(51)D��(k) = �0

k�k�

k4
�����(k)

�(k)

(52)

�̂�(x) =
∑
q

[
âq𝜓

+
q
(�)e−i𝜀qt + b̂†

q
𝜓−
q
(�)ei𝜀qt

]
,

�̂�†(x) =
∑
q

[
â†
q
𝜓†+
q
(�)ei𝜀qt + b̂q𝜓

†−
q
(�)e−i𝜀qt

]
.
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For a wave in an arbitrary wave mode M in a medium, the second quantized wave 
field is

where V is the volume of the system, aM(k) = (�0RM∕�MV)
1∕2 is the wave ampli-

tude, RM is the ratio of electric to total energy, e�
M
(k) = (0, �M(�)) is the polarization 

4-vector in term of the polarization 3-vector in the temporal gauge, and � = �M is 
the dispersion relation. For waves in vacuo, one has RM → 1∕2 , �M → |�|.

Plane-wave solutions For free electrons and positrons, plane-wave solutions of 
Dirac’s equation are of the form

for a particle with spin s. Dirac’s equation requires

with p0 = � . Noting the identity (�∕p − m)(�∕p + m) = 0 , solutions of (55) may be 
found by constructing the matrix �∕p + m and identifying any column of the matrix 
as a solution. Choosing the first two columns gives the conventional solution

with p± = px ± ipy and where the normalization is to an energy � in the volume V. 
These wavefunctions are often written in terms of us(�) and vs(�) , defined by writing

The spin s in (56) and (57) is the eigenvalue of an unidentified spin operator. 
Although the operator may be identified, it is not of any physical interest to do so. 
Two physically meaningful spin operators are the helicity � ⋅ �∕|�| and the magnetic 
moment operator, cf. (98).

Helicity eigensolutions Writing � = (p
⟂
cos�, p

⟂
sin�, pz) in cylindrical coordi-

nates, the helicity eigenfunctions, for spin eigenvalues � = ±1 , are

(53)
Â
𝜇

M
(x) = V ∫

d3�

(2𝜋)3
aM(k)

[
ĉM(�)e

𝜇

M
(�e−i(𝜔Mt−�⋅�)

+ĉ†
M
(�)e

∗𝜇

M
(�)ei(𝜔Mt−�⋅�)

]
,

(54)�(x) =
∑
s=±1

V ∫
d3�

(2�)3
��

s
(��)e−i�(�t−�⋅�),

(55)(�∕p − m)��

s
(��) = 0,

(56)��

s
(��) =

1

[2��(�� + m)V]1∕2

⎡⎢⎢⎢⎣
1 + s

2

⎛⎜⎜⎜⎝

�� + m

0

�pz
�p+

⎞⎟⎟⎟⎠
+

1 − s

2

⎛⎜⎜⎜⎝

0

�� + m

�p−
�pz

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
,

(57)�+
s
(�) =

us(�)

(2�V)1∕2
, �−

s
(−�) =

vs(�)

(2�V)1∕2
.

(58)��

�
(��) =

1

2(���V)1∕2
⎛⎜⎜⎜⎝

�+�+
���+�−
���−�+
�−�−

⎞⎟⎟⎟⎠
,
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with �± = (� ± �m)1∕2 , �± = (|�| ± ��pz)
1∕2e∓i�∕2.

Magnetic-moment eigensolutions The magnetic moment eigenfunctions, for eigen-
values s� with s = ±1 and � = (m2 + p2

⟂
)1∕2 , are

with a± = (� − �s�)1∕2 , b± = (� ± sm)1∕2e∓i� and P = pz∕|pz|.
Nonrelativistic limit In the nonrelativistic limit, the eigenfunctions (58) for the 

helicity operator may be written

and the eigenfunctions (59) for the magnetic momentum operator may be written

It follows that, unlike the conventional wavefunctions (56), for a particle at rest, 
� = 0 , these wavefunctions reduce to (1000),  (0100),  (0010),  (0001) for electron 
with spin up and down and positron with spin up and down, respectively. An inter-
pretation is that both of these eigenfunctions effectively reduce to the Pauli theory 
for both electrons and positrons. This corresponds to the eigenvalues of the z-com-
ponent of the spin operator � . Granted the classical description of the spin in terms 
of a vector � as representing the Pauli theory, this would also apply approximately in 
the nonrelativistic limit for these choices of spin operators.

Relativistic limit In the ultra-relativistic limit, 𝜀 = |�| ≫ 1 , writing p
⟂
= |�| sin � , 

pz = |�| cos � , the helicity and magnetic moment eigenfunctions reduce to

(59)��

s
(��) =

1

2(��V)1∕2

⎛
⎜⎜⎜⎝

a+b+
−P�sa−b−
Pa−b+
�sa+b−

⎞
⎟⎟⎟⎠
,

(60)��

�
(��) =

1

[2�V]1∕2

⎡
⎢⎢⎢⎣
� + �P

2

⎛
⎜⎜⎜⎝

√
� + �m

0

P
√
� − �m

0

⎞⎟⎟⎟⎠
+

� − �P

2

⎛
⎜⎜⎜⎝

0√
� + �m

0

−P
√
� − �m

⎞⎟⎟⎟⎠

⎤
⎥⎥⎥⎦
,

(61)��

s
(��) =
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2mV1∕2
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respectively. These eigensolutions are obviously different from each other. Moreo-
ver, neither of them can be simply related to a classical vector �.

5.3  Electron propagator

The Dirac equation and Maxwell’s equations both need to be solved in two ways in 
QED and QPD. First, one needs to find the solutions for the wavefunctions of the elec-
tron and of the waves, respectively. Second, one needs to solve for the Green functions 
for the Dirac and electromagnetic fields. The Green function, referred to as a propaga-
tor in quantum field theory, describes the propagation of the field between two events, 
x and x′ . The electron propagator, G(x, x�) , is a 4 × 4 matrix, and the photon propagator, 
D��(x, x�) , is a 4-tensor. Provided that these propagators depend only on the space-time 
separation, x − x� , of the two events, they can be represented by their Fourier trans-
forms, G(P) and D��(k) , respectively.

Electron propagator as a Green function The electron propagator is the Green func-
tion for the Dirac equation. It satisfies

with ∕� = ���� and ∕P = ��P� , and where the second form follows by Fourier trans-
forming the first. Solution of the second form follows by premultiplying by ∕P + m 
and using ∕P∕P = P2,

G(x, x�) is found by inverting the Fourier transform and imposing appropriate bound-
ary conditions. For the Feynman propagator, in which positrons are regarded as 
electrons propagating backward in time, the familiar causal condition is reversed for 
the negative energy states. With P� = �p� , one has

with � = (m2 + |�|2)1∕2 . The resonant part of the propagator is associated with the 
creation or annihilation of real particles.

Propagators as vacuum expectation values An alternative derivation of the propaga-
tors provides an insight that is important in understanding rules for drawing Feynman 
diagrams. In this alternative, the fields are regarded as operators, �̂�(x) for the Dirac 
field, and Â(x) for the electromagnetic field. One first defines the time-ordering opera-
tor, T̂  , for a product of operators, as ordering in a causal sequence such that the opera-
tor at the earliest time operates first. Taking account of the anticommutation of opera-
tors for fermions, the vacuum expectation values give

(64)(i∕� − m)G(x, x�) = �4(x − x�), (∕P − m)G(P) = 1,

(65)G(P) =
∕P + m

P2 − m2
.

(66)
1

P2 − m2
→

1

P2 − m2 + i0
=

1

2�

[
1

P0 − � + i0
−

1

P0 + � − i0

]
,
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where the operators joined by an underline are said to be contracted. Noting that 
the operator wavefunctions include creation and annihilation operators for both elec-
trons and positrons, for t > t′ say, G(x, x�) corresponds to either an electron created 
at x′ , propagating to x, where it is annihilated, or a positron created at x, propagating 
(backwards in time) to x′ , where it is annihilated.

Statistically averaged electron propagator The generalization of QED to QPD 
involves taking the presence of real electrons in the plasma into account. The pres-
ence of electrons leads to modification of the resonant part of the electron propaga-
tor. (Physically, this is obvious when the electrons are degenerate because the crea-
tion of an electron below the Fermi level is then forbidden, and the resonant part 
must be zero due to the presence of degenerate electrons.) The statistically averaged 
electron propagator is, with P� = �p�,

where P denotes the Cauchy principal value, and where n�(�) is the occupation 
number of the electrons, � = +1 , or of the positrons, � = −1 . The statistically aver-
aged propagator includes the special case of a thermal propagator, which is given by 
identifying the occupation number as that for a Fermi–Dirac distribution.

5.4  S‑matrix

The S-matrix is determined by the operator Ŝ(t, t0) , defined such that it converts 
the initial state, � i ⟩ , at t0 , into the final state, � f ⟩ = Ŝ(t, t0)� i ⟩ , at t, with t0 → −∞ , 
t → ∞ . The S-matrix is the matrix element Sfi = ⟨ f �Ŝ(∞,−∞)� i ⟩ , and pfi = |Sfi|2 is 
the probability of a transition from the initial state to the final state.

The evolution of the state at time t in the interaction picture, due to an interaction 
Hamiltonian, HI(t) , implies that Ŝ(t, t0) satisfies the integral equation

where 1̂ is the unit operator and ĤI(x) is the interaction Hamiltonian density opera-
tor. The interaction between the Dirac and electromagnetic fields is described by an 
interaction Hamiltonian density HI = J�(x)A�(x) , with

where �(x) is the Dirac adjoint wavefunction. Converting this into an operator 
involves replacing the fields by the corresponding operators. However, while the 
order of the fields is irrelevant for non-operator functions, the order in which the 

〈0|̂T{ψ̂(x)ψ̂(x′)}|0〉 = ψ̂(x)ψ̂(x′) = iG(x− x′),

〈0|̂T{Âµ(x)Â†ν(x′)}|0〉 = Âµ(x)Â†ν(x′) = −iDµν(x− x′),
(67)

(68)Ḡ(P) =
∑
𝜖=±1

∕P + m

2𝜀

{
P

1

P0 − 𝜖𝜀
− i𝜋𝛿(P0 − 𝜖𝜀)

[
1 − 2n𝜖(𝜖�)

]}
,

(69)Ŝ(t, t0) = 1̂ − i∫
t

t0

dt�ĤI(t
�)Ŝ(t�, t0), ĤI(t) = ∫ d3�ĤI(x),

(70)J�(x) = −e�(x)���(x), �(x) = �†(x)�0,
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operators are written needs to be specified when operators do not commute, specifi-
cally for fermion fields that anti-commute. The convention is that the operators are 
written in “normal order” corresponding to all annihilation operators to the right of 
all creation operators, taking the anti-commutation relations into account. With nor-
mal order denoted by colons, the interaction Hamiltonian density operator is identi-
fied as

Expansion of Ŝ One may solve (69) by a perturbation expansion, which gives

where T̂  is the time-ordering operator.
The term Ŝ(1) describes first-order processes which involve a total of three quanta 

in the initial and final states, with the simplest example being an initial electron 
emitting a photon leaving the electron in its final state. There is a total of eight pos-
sible first-order diagrams: six with two lines in the initial or final state and one line 
in the other state, and two with all three lines in the initial of final states. All first-
order processes are forbidden in vacuo, but they may be allowed in a medium. The 
terms Ŝ(n) with n = 2 describe second-order processes, n = 3 describe third-order 
processes, and so on.

Wick’s theorem The terms with n ≥ 2 in (72) all involve time-ordered products of 
normal-ordered products, which are evaluated by appealing to Wick’s theorem. The 
theorem implies that the time-ordered normal product may be expressed as a sum 
over terms with no contraction, one contraction, etc.

Consider n = 2 . The term with no contractions involves two independent first-
order processes, at x1 and x2 , and is of no particular interest. The terms with one 
contraction are conventional second-order processes, that include (Compton) scat-
tering of a photon by an electron, when the contractions involve �̂�(x1) and �̂�(x2) 
or �̂�(x1) and �̂�(x2) , and electron–electron (including electron–positron and posi-
tron–positron) scattering when the contraction involves the two photon operators. 
The terms involving two contractions described modifications to the propagators, 
specifically, to the photon propagator when the contractions involves �̂�(x1) , �̂�(x2) 
and �̂�(x1) , �̂�(x2) , and to the electron propagator when one of the contractions 
involves the photon operators. These terms are discussed further below. The term 
with three contractions is ignored, as it has no external lines and so involves only an 
unobservable modification to the vacuum state.

Initial and final states The initial and final states may be constructed by operating 
on the vacuum with creation operators, and multiplying by the appropriate wave-
functions. For example, in the case of Compton scattering, the initial state involves 
an electron and a photon, and so is of the form � i ⟩ ∝ â†ĉ†� 0 ⟩ , where labels on the 
operators are omitted. The final state also involves an electron and a photon, and 

(71)ĤI(x) = −e ∶ �̂�(x)𝛾𝜇�̂�(x) ∶ .

(72)
Ŝ(∞,−∞) =

∞∑
n=0

S(n), Ŝ(0) = 1̂, Ŝ(1) = −i∫
∞

−∞

dt ĤI(x),

Ŝ(n) =
(−i)n

n! ∫
∞

−∞

dt1 ∫
∞

−∞

dt2 …∫
∞

−∞

dtn T̂{ĤI(x1)ĤI(x2)… ĤI(xn)},
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its adjoint is of the form ⟨ f � ∝ ⟨ 0 �âĉ . The S-matrix, Sfi = ⟨ f �Ŝ� i ⟩ , then becomes a 
vacuum expectation value, which is nonzero only for those terms in Ŝ that include 
annihilation operators ( ̂a , ĉ ) that match the creation operators in � i ⟩ and creation 
operators ( ̂a† , ĉ† ) that match the adjoint operators in ⟨ f � . Other terms in the expan-
sion of Ŝ that have unmatched creation or annihilation operators have a vacuum 
expectation value of zero, and hence do not contribute to this physical process. 
Higher order terms, Ŝ(n) with n > 2 , with an appropriate number of contractions con-
tribute what are called radiative corrections to lower order processes, such as Comp-
ton scattering.

Conservation of 4-momentum In the unmagnetized case 4-momentum is con-
served, in the sense that the final 4-momentum pf , which is the sum over the 
4-momenta of the final particles, is equal to the initial 4-momentum, pi , which is the 
sum over the 4-momenta of the initial particles. It is convenient to write the S-matrix 
and the probability of a transition in the form

where V and T are the normalization volume and time, respectively. The probability 
of a transition per unit time is identified as wfi = pfi∕T .

5.5  Feynman diagrams

The terms in the expansion of the S-matrix are described by Feynman diagrams.
Rules for Feynman diagrams A Feynman diagram consists of lines that connect 

either two vertices or the initial or final state to a vertex. Here the initial state is cho-
sen to be on the right and the final state on the left. There are three components in a 
Feynman diagram in QED: solid lines with arrows, dashed lines and vertices, where 
a solid line joins a dashed line. A solid line represents an electron or a positron, with 
the arrow pointing from right to left for an electron and left to right for a positron. 
The direction of the arrow is continuous along any given solid line. A vertex repre-
sents the operator HI , and involves a photon line joining an electron line. (In QPD, 
there are also multiple-photon vertices that represent the nonlinear response of the 
plasma.) In general, there are external lines that begin or end in the initial or final 
state, and internal lines that connect two vertices, and represent propagators between 
the two vertices, with each propagator corresponding to a contraction in the expan-
sion (72).

Each of the integrals in the expansion (72) is interpreted as an integral over the 
space-time point of a vertex, that is, xi say is associated with the ith vertex, and it 
has a 4-tensor index, �i , and ��i associated with it.

Momentum space representation In the unmagnetized case, 4-momentum 
is conserved at each vertex, and this allows one to perform all the space-time 
integrals over �-functions, allowing a momentum-space representation of the 
S-matrix. In this case, there are 4-momenta associated with each line in a Feyn-
man diagram. A simple example of a Feynman diagram, that corresponds to Cer-
enkov emission by an electron, is shown in Fig. 1. In this case, there is an electron 
in the initial state and an electron and a photon in the final state. Conservation of 

(73)Sfi = �fi + (2�)4(pf − pi)Tfi, pfi = |Sfi|2 = VT(2�)4(pf − pi)|Tfi|2,
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4-momentum in this case implies p� = p − k , where p and p′ are the 4-momenta 
of the initial and final electrons, respectively.

The eight first-order diagrams are related to that for Cerenkov emission by 
moving lines between the initial and final state. Conservation of 4-momentum 
in all cases is of the form �p − ��p� ± k = 0 , with Cerenkov emission by an elec-
tron corresponding to � = �� = 1 and −k . Moving the photon line from the final 
to the initial state, −k → +k , changes Cerenkov emission into the absorption of 
a photon, which may be referred to as Landau damping. Moving an electron line 
from the initial to final states, or vice versa, converts it into a positron line (the 
direction of the arrow is reversed). Cerenkov emission by a positron corresponds 
to � = �� = −1 and +k , in which case the primed state is the initial state and the 
unprimed state is the final state. Landau damping by a positron is described by 
+k → −k . One-photon pair creation and annihilation correspond to � = −�� so 
that both the electron and the positron are in either the initial or the final state, 
with the photon in the other state. All six of these processes are kinematically for-
bidden in vacuo: k2 = (�p − ��p�)2 = 0 and p2 = p�2 = m2 are incompatible.

Bubble diagram Of specific relevance when considering the response of a 
plasma are the second-order diagrams with one and two contractions over elec-
tron operators. The diagram with one contraction, shown in Fig.  2, describes 
Compton scattering by an electron; the contraction implies the electron propaga-
tor joining the two vertices. It is the forward-scattering case that is relevant to the 
plasma response. The two external electron lines then have the same 4-momen-
tum, p, and they may be joined such that, in the forward-scattering case, Fig. 2 
may be interpreted as a resonant part of the “bubble” diagram Fig. 3. The bubble 
diagram corresponds to two contractions giving two electron propagators between 
the two vertices, forming a closed loop connected to external photon lines. This 
diagram may be interpreted as a modification to the photon propagator that takes 
account of a photon decaying into a virtual electron–positron pair, which recom-
bines to reproduce the photon. In QED, this diagram leads to a divergence, that is 
removed by renormalization. The renormalization procedure leaves a finite con-
tribution, which implies the response tensor of the vacuum, called the vacuum 
polarization tensor. In the presence of a medium, the same procedure leads with 
the propagators in vacuo replaced by their statistical averages over the plasma, 
leads to the response tensor for the plasma.

pp

k

- k

Fig. 1  Feynman diagram for Cerenkov emission by an electron, represented by the solid line with the 
arrow pointing from the initial state of the right to the final state on the left. The photon line (dashed) 
connects to the electron line at a vertex. 4-momentum is conserved, with the final 4-momentum of the 
electron given by p� = p − k
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5.6  Vertex function

An electron–photon interaction at x is described in the theory by a vertex func-
tion. Consider the first-order term in the expansion (72) with (71). The wave-
functions in the general case, where the states are labeled by quantum numbers 
�, q , �′, q′ and the photon is in a mode M, the time dependence of the integrand 
is only in exponential functions, so that the integral over t is trivial, giving 
2��(��q − ���q� + �M) . The �-integral defines a vertex function

In the unmagnetized case, the �-dependence also has only an exponential depend-
ence; the integral over the � gives (2�)3�3(�� − ���� + �) . Using (56), the vertex 
function then becomes

(74)
[
��

��

q�q
(�)

]�
= ∫ d3� e−i�⋅��

��

q�
(�)��� �

q
(�).

q

k

q''

k'

q' q

k

k'

q'

q'

q''

q

kk '

(a) (b)

(c)

µ µ
νν

Fig. 2  a The Feynman diagram representing a contribution to Compton scattering in which an electron 
in a state q absorbs a photon k′ at an index labeled � producing an electron in a virtual state q′′ which 
decays into the final electron q′ and photon k at a vertex Labeled � . b The Feynman diagram in which the 
sequence of absorption and emission in a is reversed. c An additional contribution to Compton scatter-
ing, referred to as nonlinear scattering, involving a three-photon vertex

q q’

qq q’

kkkk kq’

q’

qk

(a) (c)(b)

Fig. 3  a The bubble diagram involving a single closed electron loop joined to two external photon lines. 
b, c The forward-scattering diagrams corresponding to the first two diagrams in Fig. 2 for Compton scat-
tering
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5.7  Response of a plasma in QPD

The response of a plasma in QPD may be derived by including the statistical 
average over the plasma electrons in the QED derivation of the vacuum polari-
zation tensor. The first step in the derivation is to note that the electron propaga-
tor in vacuo is modified by the inclusion of the bubble diagram, Fig. 3: a photon 
spends part of its time as a virtual electron–positron pair, and this is described by 
including an infinite sequence of bubble diagrams in the propagator. Schemati-
cally, suppose one replaces (49) by a simpler equation, �D = 1 , with � = �0 +� 
and with the photon propagator, D0 , in the absence of bubble diagrams satisfy-
ing �0D0 = 1 . Including bubble diagrams, each with a contribution, w, one has 
D = D0 + D0wD0 + D0wD0wD0 +⋯ = D0∕(1 − wD0) , implying D−1 − D−1

0
= w , 

and hence � = w . Thus, the response tensor is determined by the Feynman ampli-
tude of the bubble diagram with the external (photon) lines omitted. The resulting 
expression for the linear response tensor of the vacuum is

where Tr denotes the trace over the � matrices. The integral diverges, and a renor-
malization procedure is needed to find the finite result for the vacuum polarization 
tensor.

Linear response tensor The medium is included in the response tensor (76) by 
replacing the electron propagators by their statistical averages, given by (68). The 
statistical average is included separately in each propagator, resulting in two contri-
butions. The resulting linear response tensor for a plasma reduces to

with u� = p�∕m or ku = �(� − � ⋅ �) = (�� − � ⋅ �)∕m . The electrons and positrons 
contribute to the response in the same way, so that only the sum of their occupation 
numbers appears.

Quantum resonances In an unmagnetized, non-quantum plasma, the only reso-
nance is at ku = 0 , or � − � ⋅ � = 0 . In the quantum case, there are two resonances 
at ku ± k2∕2m = 0 or, in ordinary units, � − � ⋅ � ± ℏ(�2 − |�|2c2)∕2�mc2 = 0 . The 
response tensor may be written as a non-dispersive term plus two terms for the reso-
nances at these two zeros.

(75)

[
��

��

q�q
(�)

]�
= (2�)3�3(�� − ���� + �)

[
� ���

s�s
(��, �)

]�
,

[
� ���

s�s
(��, �)

]�
= V���

s�
(����)����

s
(��).

(76)���(k) = ie2 ∫
d4P

(2�)4
Tr[��G(P)��G(P − k)],

(77)
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n+(�) + n−(�)

�

(ku)2

(ku)2 − (k2∕2m)2
a��(k, u),

a��(k, u) =g�� −
k�u� + k�u�

ku
+

k2u�u�

(ku)2
,
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Longitudinal and transverse parts One may write a��(k, u) = L��(k, u) + T��(k, u) 
with

In the case of an isotropic plasma, the components of the response tensor along L�� 
and T�� are the longitudinal and transverse parts of the response in the rest frame of 
the plasma. Provided the electrons are unpolarized, the wave modes of the plasma 
are either longitudinal or transverse, in the rest frame, with transverse waves having 
two degenerate states of polarization.

Response of a spin-dependent plasma Spin dependence is usually neglected 
in discussing the response of an unmagnetized plasma. It is of formal interest to 
include spin-dependence in the theory, and it is of some physical significance to 
consider possible implications. For example, electrons produced by decay of neu-
trons have a preferred spin helicity, and hence a preferred handedness, and a plasma 
in which the electrons have a preferred handedness is spin dependent.

Including the spin, in the general case Melrose and Weise (2003) found

Choosing the the spin operator to be the helicity, they showed that if the electrons 
have a net helicity this introduces a rotatory part to the response tensor in an iso-
tropic plasma. Such a medium is said to be optically active, characterized by trans-
verse wave modes that are circularly polarized. The rotatory part is determined by 
the difference between the occupation numbers of electrons with positive helicity, 
� = +1 , and negative helicity, � = −1.

5.8  Nonlinear response tensors

The weak-turbulence expansion defines not only the linear response tensor, but also 
quadratic and cubic nonlinear response tensors. (Higher order response tensor are 
not usually considered.) These may be calculated in QPD in a similar way to the 
linear response tensor.

Quadratic response tensor The quadratic response tensor describes coupling 
between three electromagnetic fields, at k0, k1, k2 say, satisfying a matching condi-
tion of the form k0 ± k1 ± k2 = 0 . In QPD, the quadratic response tensor is related 
to the Feynman amplitude for the triangle diagram, with external photon lines 
omitted. The quadratic response tensor of the vacuum is identically zero. This fol-
lows from the fact that it depends on the sign of the charge, which is opposite for 

(78)
L��(k, u) =

k2

k2 − (ku)2

[
a��(k, u) −

(
g�� −

k�k�

k2

)]
,

T��(k, u) =
1

k2 − (ku)2

[
−(ku)2a��(k, u) + k2

(
g�� −

k�k�

k2

)]
.

(79)

���(k) = − e2
∑

��,�,s�,s
∫

d3�

(2�)3 ∫
d3��

(2�)3
(2�)3�3(���� − �� + �)

×
�n�

s
(�) − ��n�

�

s�
(��)

� − �� + ���� + i0

[
� ���

s�s
(��, �)

]�[
� ���

s�s
(��, �)

]∗�
.
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electrons and positrons. There are two triangle diagrams, Fig. 4, that contribute, 
and they differ only in the direction of the arrow around the triangle, correspond-
ing to electron and positron contributions. In the presence of a plasma, there is a 
net contribution provided that the occupation numbers of electrons and positrons 
are different, with the net contribution depending on the difference between these 
two occupation numbers. The response tensor, ��0�1�2(k0, k1, k2) , may be sym-
metrized over permutations of �i, ki , i = 0, 1, 2.

Cubic response tensor The cubic response tensor is derived, similarly to the 
quadratic response tensor, from the amplitude for the box (rather than the trian-
gle) diagram with the external lines omitted. As with the linear response tensor, 
the contributions from electrons and positrons add. For a given box diagrams, 
there are four contributions, one from each of the statistically averaged propaga-
tors on the four sides of the box. As with the quadratic response tensor, the cubic 
response tensor may be symmetrized over permutations of the external lines and 
associated vertices.

5.9  Multiple‑photon vertices

In QPD, as is classical plasma physics, the nonlinear response tensors imply that 
different wave fields may combine or split, described in the QPD case by cou-
pling between wave quanta. Such coupling may be described by including addi-
tional terms in the interaction Hamiltonian: the quadratic response implies cou-
pling between three wave fields, and the cubic response implies coupling between 
four wave fields. Additional components in Feynman diagrams are then implied, 
and it is convenient to describe these through m-photon vertices, with m = 3 for 
the quadratic response and m = 4 for the cubic response. An example of a Feyn-
man diagram including a multiple-photon vertex is shown in Fig. 2c, correspond-
ing to nonlinear scattering. A multiple-photon vertex arises from the statistical 
average over a closed electron loop, in the sense that each such loop in a Feynman 
diagram is replaced by the appropriate multiple-photon vertex. As in Fig. 2c, a 
multiple-photon vertex may be represented by shading the closed loop, indicating 
that it is replaced by its statistical average over the plasma.

k0

k2

k1 k0

k2

k1

Fig. 4  The two triangle diagrams that contribute to the quadratic nonlinear response tensor when the 
external photon lines are omitted. The statistical average over the sum of the two closed-loop diagrams 
results in the three-photon vertex
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6  Quantum magnetized plasmas

The inclusion of a background magnetic field, B ≠ 0 , is straightforward in prin-
ciple in QPD, but raises conceptual issues in PKT related to the discreteness of 
the eigenvalues and the interpretation of the spin. Before discussing magnetized 
plasmas, it is relevant to comment on the magnetized vacuum.

6.1  Response of a magnetized vacuum

The response of a magnetized vacuum has similar features to the response of a 
plasma, in that it includes a hierarchy of response tensors. The linear response 
implies that the magnetized vacuum is birefringent, with two linearly polarized 
wave modes. The quadratic nonlinear response is nonzero, allowing photon split-
ting (one photon splitting into two photons). These properties may be treated 
using a modification of QED to include the magnetic field in the propagators. 
This procedure leads to exact but cumbersome results for the magnetized vacuum. 
There is an older approach, that is simpler and more convenient for most pur-
poses, based on the Heisenberg–Euler Lagrangian. This older approach gives the 
wave properties of the magnetized vacuum in the limit 𝜔 ≪ m . The method may 
also be used to derive the quadratic (and higher order response tensors for the 
magnetized vacuum.

Heisenberg–Euler Lagrangian The response of the vacuum in the presence 
of a static electromagnetic field was derived by Heisenberg and Euler (1936). A 
more general derivation by Schwinger (1951) led to an expression for the Lagran-
gian density

with X2 = (� + i�)2 = −2S + 2iP , where S = B2 − E2 and P = � ⋅ � are Lorentz 
invariants describing the electromagnetic field. Expanding (80) in powers of the 
fields gives

Electromagnetic wrench For static electromagnetic field in vacuo, one is free to 
transform to a convenient inertial frame, with S = B2 − E2 and P = � ⋅ � unchanged. 
In the special cases, (i) P = 0 , S > 0 and (ii) P = 0 , S < 0 , one can transform to a 
frame in which (i) the electric field is zero and (ii) the magnetic field is zero, so that 
these correspond to (i) a magnetostatic field and (ii) an electrostatic field. For P ≠ 0 , 
the field is referred to as an electromagnetic wrench.

Low-frequency response The Lagrangian (80) may be used to derive the hierar-
chy of response tensors for the vacuum for 𝜔, |�| ≪ m . The linear response tensor 
is given by

(80)LI(x) =
S

�0

−
1

8� ∫
∞

0

ds

s3
e−im

2s

[
(es)2P

Re cosh(esX)

Im cosh(esX)
− 1 +

(2es)2S

3

]
,

(81)LI =
S

�0

+
e4

360�2m4
(4S2 + 7P2) +

e6

630�2m8
(8S3 + 13SP2) +⋯ .
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with

The tensors F�� and F�� are given explicitly by (39).
The quadratic nonlinear response tensor is

Susceptibility 3-tensors In 3-vector notation, the response may be described in terms 
of electric (e), magnetic (m) and magneto-electric (em, me) susceptibility tensors. 
The polarization, � , and magnetization, � , are related to � and � by

In the case E = 0 of a magnetization vacuum, the magneto-electric response tensors 
are zero, and the electric and magnetic susceptibility tensors are different perpen-
dicular and parallel to � , with components, to lowest order in B2,

where �c = e2∕4��0 ≈ 1∕137 is the fine structure constant, and 
Bc = m2∕e ≈ 4.4. × 109 T is the critical magnetic field.

Wave modes The two natural wave modes of the magnetized vacuum have 
refractive indices and polarization vectors, in the approximation made in (86),

where � is assumed along the 3-axis.
Spontaneous pair creation (Schwinger effect) An electrostatic field and an 

electromagnetic wrench are intrinsically unstable to spontaneous decay into pairs. 
The decay rate is extremely slow for electric fields much smaller than the criti-
cal electric field, Ec = m2c3∕eℏ = 1.3 × 1018 V m−1 , analogous to the critical mag-
netic field, Bc = m2c2∕eℏ = 4.4 × 109 T, in that they depend only on fundamental 
constants.

The spontaneous decay rate in an electromagnetic wrench is determined by 
the imaginary part of the Lagrangian density (80). Writing X = a + ib , there are 
poles at s = sn = �n∕eb , and the imaginary parts are determined using the Landau 
prescription. The probability of spontaneous pair production (spe) per unit time 
and per unit volume is

(82)���(k) = k�k�
�2LI

�F�
��F

�
�

,

(83)
�S

�F��

= −F�� ,
�P

�F��

= F
�� =

1

2
�����F�� .

(84)��0�1�2(k0, k1, k2)) =
i

2
k�
0
k
�

1
k
�

2

�3LI

�F�
�0
�F�

�1
�F�

�2

.

(85)�∕�0 = �
e
⋅ � + �

em
⋅ �, �0� = �

me
⋅ � + �

m
⋅ �.

(86)�e
⟂
= −

2�c

45�

B2

B2
c

, �e
∥
=

�c

90�

B2

B2
c

, �
m
⟂
=

2�c

45�

B2

B2
c

, �m
∥
=

2�c

15�

B2

B2
c

,

(87)

n2
±
= 1 +

(11 ± 3)�c

90�

B2

B2
c

sin2 �, �+ = (cos �, 0,− sin �), �− = (0, 1, 0),



1 3

Reviews of Modern Plasma Physics (2020) 4:8 Page 33 of 56 8

where the latter expression, in ordinary units, applies in the limit B → 0 , that is, to 
an electrostatic field.

6.2  Solutions of Dirac’s equation for B ≠ 0

QPD may be generalized to include a background magnetic field exactly by 
assuming that the electron states are described by solutions of Dirac’s equation in 
the presence of a background magnetostatic field. Before discussing the solution 
of Dirac’s equation for B ≠ 0 , it is helpful to consider the nonrelativistic case.

Landau quantum number A classical nonrelativistic electron spirals about a 
magnetic field line. The momentum, pz , parallel to the field line can have any 
value, and this translates into a continuous quantum number in the quantum case. 
However, the momentum, p

⟂
 , perpendicular the field line has discrete values in a 

quantum treatment. Classically, the perpendicular motion is circular motion at the 
cyclotron frequency, �B = eB∕m , and circular motion is simple harmonic motion. 
Hence, the perpendicular energy is quantized as a simple harmonic oscillator, 
p2
⟂
∕2m = (l +

1

2
)ℏ�B , with l = 0, 1, 2,… The spin contributes an additional energy 

1

2
sℏ�B , giving

where n is the Landau quantum number. The ground state, n = 0, l = 0, s = −1 is 
nondegenerate, and each excited state, n = 1, 2,… , is doubly degenerate.

The quantization (89) also applies in the relativistic case. The energy eigenval-
ues found by solving Dirac’s equation are

As in the nonrelativistic case, the ground state, n = 0 , is nondegenerate and all 
excited states are doubly degenerate.

Wavefunctions To solve Dirac’s equation, one needs to make a particular 
choice of gauge for the vector potential, � , for the background magnetic field. 
Choosing � = (0,Bx, 0) the Hamiltonian is independent of t,  y,  z, so that one 
may seek solutions of the form f (x) exp(−iEt + iPyy + iPzz) , where f(x) is a col-
umn matrix with component fi(x) , i = 1, 2, 3, 4 , and E,Py,Pz are constants of the 
motion. One is free to write E = �� , Py = �py , Pz = �pz . Choosing the standard 
representation of the Dirac algebra, the fi(x) satisfies

(88)

wspe =
e2EB

4�2

∞∑
n=1

1

n
exp

(
−n�

Ec

E

)
coth

(
n�

B

E

)

→

(eE)2

4�3cℏ2

∞∑
n=1

1

n2
exp

(
−n�

Ec

E

)
,

(89)p2
⟂
= 2nℏeB, n = l +

1

2
(1 + s),

(90)�n(pz) = (m2c4 + p2
z
c2 + 2nℏeBc2)1∕2.
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with x appearing only through

Normalizable solutions exist only for � = �n(pz) , and involve simple harmonic oscil-
lator wavefunctions

where Hn is a Hermite polynomial. The solutions of the two equations (91) are 
f1,3 ∝ nn−1(�) , f2,4 ∝ vn(�) . A general solution is

where the constants Ci are to be determined.
One choice of the coefficients Ci , made by Johnson and Lippmann (1949), gives

where cn is a normalization constant and with pn = (2nℏeB)1∕2 . Although this is an 
acceptable solution, the eigenvalues s = ±1 correspond to an unidentified spin oper-
ator, as discussed below.

For other choices of gauge, the solutions have different forms. For example, 
for the choice, � =

1

2
(−By,Bx, 0) , the solutions are found in terms of generalized 

Laguerre polynomials, rather than Hermite polynomials (e.g., Sokolov and Ternov 
1968, 1986).

6.3  Spin operators

A point emphasized by Sokolov and Ternov (1968) is that the spin operator S�� , 
cf. (35), does not commute with the Dirac Hamiltonian, and hence its eigenval-
ues are not conserved. More generally, when seeking to find a wavefunction with 
eigenvalues that are constants of the motion, one needs to choose a complete set of 

(91)

[
d2

d�2
+

�2 − m2 − p2
z

eB
− (�2 + 1)

]
f1,3 =0,

[
d2

d�2
+

�2 − m2 − p2
z

eB
− (�2 − 1)

]
f2,4 =0,

(92)� = (eB)1∕2
(
x +

�py

eB

)
.

(93)vn(�) =
1

(
√
�2nn!)1∕2

Hn(�)e
−�2∕2,

(94)�(x) = exp(−iEt + iPyy + iPzz)f (x), f (x) =

⎛⎜⎜⎜⎝

C1vn−1(�)

C2vn(�)

C3vn−1(�)

C4vn(�)

⎞⎟⎟⎟⎠
,

(95)

⎛⎜⎜⎜⎝

C1

C2

C3

C4

⎞⎟⎟⎟⎠
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1 + s

2

⎛⎜⎜⎜⎝
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commuting operators. Sokolov and Ternov (1968) identified several spin operators 
that commute with Ĥ = � ⋅ �̂ + 𝛽m by considering the components of the tensor

which commutes with Ĥ by construction. The components of the tensor (96),

are interpreted as components of the electric dipole moment operator, �̂ , and mag-
netic dipole moment operator, �̂ , of the electron,

Another spin operator that commutes with � ⋅ �̂ + 𝛽m is the 4-vector operator

which is interpreted as the helicity (4-vector) operator.
Evolution of spin operators in an electromagnetic field When fields � ≠ 0 , � ≠ 0 

are included in the Hamiltonian, � = � ⋅ (�̂ + e�) + 𝛽m − e𝜙 , the operators S̃𝜇𝜈 and 
ŵ𝜇 evolve, satisfying the equations

It follows that for � = 0 and � along the z-axis, the conserved components are d̂z , �̂�z , 
ŵ0 and ŵz = 0 . Any of these may be chosen as the spin operator. The helicity opera-
tor, � ⋅ �̂ , and the parallel component of the magnetic momentum operator, �̂�z , are 
favored choices.

Helicity eigenstates For the helicity eigenstates, � = ±1 , the coefficient Ci are 
given by

with hn = (p2
n
+ p2

z
)1∕2.

Magnetic-momentum eigenstates For the magnetic-moment eigenstates, s = ±1 , 
the coefficient Ci are given by

(96)S̃𝜇𝜈 =
1

2m
Ĥ𝛾0S𝜇𝜈 + 𝛾0S𝜇𝜈Ĥ,

(97)S̃𝜇𝜈 =
i

m

⎛
⎜⎜⎜⎜⎝

0 − d̂x − d̂y − d̂z
d̂x 0 �̂�z − �̂�y

d̂y − �̂�z 0 �̂�x

d̂z �̂�y − �̂�x 0

⎞
⎟⎟⎟⎟⎠
,

(98)
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1

2
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1

2
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(99)ŵ𝜇 =
1

4
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dŵ0

dt
= −e� ⋅ �,

d�̂

dt
= e𝛾5� − e� × �.

(101)

⎛⎜⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎟⎠
=

1

2(hn�nV)
1∕2

⎛
⎜⎜⎜⎝

(�n + �m)1∕2(hn + ��pz�)1∕2
i�P�n + �m)1∕2(hn − ��pz�)1∕2
�P�n − �m)1∕2(hn + ��pz�)1∕2
i��n − �m)1∕2(hn − ��pz�)1∕2

⎞
⎟⎟⎟⎠
,



 Reviews of Modern Plasma Physics (2020) 4:8

1 3

8 Page 36 of 56

with P± =
1

2
(1 + P) ±

1

2
(1 − P) , P = pz∕|pz| , and where V is the normalization 

volume.
Sokolov and Ternov (1968) argued that when the radiative correction to the Ham-

iltonian is included, as discussed below, the only acceptable spin operator is �̂�z . Her-
old (1979) gave a different argument that leads to the same conclusion, that �̂�z is 
the appropriate operator to choose when discussing gyromagnetic processes (Herold 
et al. 1982).

6.4  Radiative correction to Dirac Hamiltonian

The radiative correction to the Dirac Hamiltonian is actually to the anomalous gyro-
magnetic ratio g = 2 ; to lowest order in the fine-structure constant, �c , the correction 
is (Schwinger 1948) 1

2
(g − 2) = �c∕2�.

Pauli (1941) wrote down a modified form of Dirac’s equation that takes the 
anomalous magnetic moment into account:

Sokolov and Ternov (1968) showed that only �̂�z satisfies this requirement that the 
spin operator commute with the Hamiltonian implied by (104) with final term 
included.

Mass operator for B ≠ 0 A derivation of the final term in (104) involves calculating 
the mass operator. Similar to the calculation of the polarization tensor in terms of the 
amplitude of the bubble diagram, the mass operator is calculation from the amplitude of 
the loop section of the Feynman diagram Fig. 5. The interpretation is that an electron, 
described by the solid line representing the electron propagator, emits and reabsorbs a 
virtual photon; summing over an infinite sequence of such emissions and absorptions 
leads to an additional term in the electron propagator, referred to as the mass operator. 
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2�0
n

)
,

(104){i∕� + e∕A(x) − m +
1

2

[
1

2
(g − 2)

]
�BF���

���}� (x) = 0.

pp

Fig. 5  Feynman diagram showing an electron emitting and reabsorbing a photon. The amplitude of this 
diagram determines the mass operator in an analogous way to the relation between the bubble diagram 
and the polarization tensor
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In the absence of a magnetic field, the amplitude of the diagram diverges implying an 
infinite correction to the mass, which is incorporated into the physical mass by a renor-
malization. In the presence of a magnetic field, additional finite terms that depend on B 
give the mass operator (e.g., Ritus 1972; Parle 1987). The final term in (104) is deter-
mined by the mass operator.

Splitting of degenerate excited states The radiative correction to the Hamiltonian 
leads to a splitting of the degenerate Landau states. The energy eigenvalues become 
(Sokolov and Ternov 1968; Parle 1987)

where s = ±1 denote the spin states of the magnetic moment operator. Spontaneous 
emission from the state n, s = +1 to the state n, s = −1 is possible. Parle (1987) esti-
mated the transition rate and found it to be very small. Such transitions are discussed 
briefly in Section 7.1.

6.5  Vertex function and electron propagator

Essential ingredients in QPD in the magnetized case are the form of the vertex function 
and the form of the propagator. Various different choices are possible.

Vertex function The vertex function is defined by (74), with the quantum numbers q′ 
and q interpreted as n′, s′, p′

z
 and n, s, pz . The integral over � in (74) is over a product of 

functions vn� (��) , vn(�) , which can be evaluated in terms of a standard integral, giving 
an expression in terms of generalized Laguerre polynomials, L�

n
(x) . It is helpful to write 

the quantum formulae in terms of the functions (e.g., Melrose and Parle 1983; Melrose 
2013)

with, in ordinary units, x = ℏk2
⟂
∕2eB . An advantage of these functions is that they 

reduce to Bessel functions in the nonquantum limit, n → ∞

An expression for the vertex function, for the choice of gauge � = (0,Bx, 0) and of 
�̂�z as spin operator, is
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2�0
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with P± =
1

2
(1 + P) ±

1

2
(1 − P) , P = pz∕|pz.

The functions Jn
�
(x) , defined by (106), appear in the vertex function (107) and 

approximations to gyromagnetic emission involves approximation to Jn
�
(x) . The 

classical limit corresponds to ℏ → 0 , n → ∞ with nℏ → p2
⟂
∕2eB and Jn

�
(x) → J�(z) 

with z = k
⟂
p
⟂
∕eB . In the nonrelativistic case, both Jn

�
(x) and J�(z) are approxi-

mated by the leading terms in expansions in powers of x and z, respectively. In 
the highly relativistic (synchrotron) case, both functions are approximated by 
Airy functions.

Electron propagator for B ≠ 0 The statistical average of the electron propagator 
in a magnetized plasma with electron occupation number n�

q
 is

with the wavefunction given by the general form (94) with (102) for the choice of �̂�z 
as the spin operator.

Propagator in a magnetized vacuum The unit term in the numerator in (108) 
gives the propagator in a magnetized vacuum. The sum over states may be per-
formed explicitly in this case. The result gives a closed form for the electron propa-
gator in a magnetized vacuum. This form, derived by Géhéniau and Demeur (1951) 
in a different way, is a product of a gauge-dependent term and a gauge-independent 
part.

6.6  Response tensor for a magnetized quantum electron gas

An expression for the linear response tensor for a magnetized quantum electron gas 
is derived using the same QPD procedure used to derive the response tensor for an 
unmagnetized electron gas, with the electron propagator replaced by the magnetized 
version. For unpolarized electrons with occupation number n�

n
(pz) the response ten-

sor summed over polarizations is (Melrose and Weise 2009)

with p�
∥
= (�n, 0, 0, pz) , p

��

∥
= (��

n�
, 0, 0, p�

z
) , and with

The term proportional to 1
2
(�� − �) , after renormalization, gives the polarization ten-

sor of the magnetized vacuum, and the remaining terms describe the response of the 
plasma.

(108)

Ḡ(x, x�) =
∑
𝜖,q
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q
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+
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]
,
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Resonant values The resonant denominator in (109) may be rationalized to 
remove square roots by multiplying numerator and denominator by � + ��n − ����

n�
 

and rewriting the denominator using

with

and

The right-hand side of Eq. (111) is also equal to −(��p�
z
− p�

z+
)(��p�

z
− p�

z−
) , with 

p�
z±

= kz(fnn� − 1) ± �gnn� , �
�±
n�

= �(fnn� − 1) ± kzgnn�.
The condition gnn� = 0 corresponds to a threshold for a gyromagnetic process 

with given n, n′.
Nongyrotropic and gyrotropic parts The sum over �′ may be performed explicitly, 

with the result separating naturally into nongyrotropic (N) and gyrotropic (G) parts, 
that depend on the sum n̄ of and difference nd between the electron and positron 
occupation numbers n±:

The identity (pz+ − pz−)∕(�pz − pz+)(�pz − pz−) = 1∕(�pz − pz+) − 1∕(�pz − pz−) 
allows one to write (114) as (a nondispersive part plus) a sum over contributions 
from the resonances at �p

�

∥
= p

�

± = (��±
n�
, 0, 0, pz±) . Explicit expressions for 

[Nn�n(p±, k)]
�� and [Gn�n(p±, k)]

�� were given by Melrose and Weise (2009).
Relativistic plasma dispersion function The resonant integrals may be evalu-

ated in terms of a relativistic plasma dispersion function (RPDF). Writing 
pz∕�

0
n
= 2t∕(1 − t2) , �n∕�0n = (1 + t2)∕(1 − t2) , with �0

n
= (m2 + p2

n
)1∕2 , and similarly 

for pz± , �± defining t± , the integrals may be reduced to the form

with n(t) any of n�
n
(pz) , n̄n(pz) or nd

n
(pz) . Melrose and Weise (2009) evaluated the 

RPDF (115) explicitly for a completely degenerate distribution and for a Jüttner 
distribution.

(111)
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6.7  Gyromagnetic emission

Gyromagnetic emission is described by the same Feynman diagram as Cerenkov 
emission, Fig.  1, with electron states labeled by appropriate quantum numbers, 
q, q′ , rather than by 4-momenta. The inclusion of a magnetic field not only allows 
emission and absorption, but also allows one-photon pair creation and annihilation. 
Unlike the unmagnetized case in vacuo, six of the possible eight Feynman diagrams 
correspond to physically allowed processes. (The remaining two have an electron, a 
positron and a photon all in either the initial or the final state.) The classical theory 
of gyromagnetic emission and absorption is modified but not changed radically in 
the quantum case. An exception concerns the effect of the spin: the quantum theory 
includes spin-flip transitions that have no classical counterpart. The effect of the 
spin is emphasized in the following discussion. The spin operator is assumed to be 
�̂�z : for all other choices of the spin operator, the eigenvalues of the spin evolve unre-
lated to emission and absorption.

Anharmonicity In nonrelativistic theory, the energy eigenvalues of an electron are 
equally spaced such that a transition between Landau levels n and n − 1 produces a 
photon at the cyclotron frequency �B for any n. This is not the case when relativ-
istic effects are included, as illustrated in Fig. 6. The dependence of the transition 
frequency for n → n − 1 on n is referred to as anharmonicity. Each such gyromag-
netic transition occurs at a unique frequency. Also shown in Fig. 6 are the states for 
s = ±1 . It is convenient to refer to transitions in which the spin does not change as 
non-spin-flip (nsf), transitions in which s = +1 changes to s = −1 as spin-flip (sf), 
and transitions in which s = −1 changes to s = +1 as reverse-spin-flip (rsf).

m

m

m

m

n = 0 

s = -1 s = +1 

n = 1 

n = 2 

n = 3 

n = 4 

n = 5 

n = 6 

n = 7 

2

3

4

Fig. 6  The energy eigenvalues for B∕Bc = 1 and pz = 0 are plotted to show how the spacing between the 
decreases with increasing n 
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Probability of gyromagnetic emission The probability per unit time that an 
electron emit a photon in the range d3�∕(2�)3 at � , with frequency � , due to a 
transition q = (n, s, pz) to q� = n�, s�, p�

z
 is given by

with ��p�
z
= �pz − kz , ��n� = (m2 + p�2

z
+ 2n�eB)1∕2 , and with � ���

q�q
(�) the space compo-

nents of the vertex function (107). The relevant spin operator is �̂�z . Gyromagnetic 
emission by an electron corresponds to �� = � = 1 with the transition q → q′ ; gyro-
magnetic emission by a positron corresponds to �� = � = −1 with the transition 
q′ → q . Pair creation and annihilation correspond to �� = −�.

Gyromagnetic emission by a nonrelativistic electron
In the nonrelativistic limit, nsf transitions n → n� = n − j , s = s� correspond 

to 2j-electric-multipole transitions (dipole for j = 1 , quadrupole for j = 2 , and 
so on), sf transitions n → n� = n − j , s = +1 , s� = −1 , correspond to 2j-magnetic-
multipole transitions, and rsf transitions n → n� = n − j , s = −1 , s� = +1 corre-
spond to higher order multipole radiation. The rate of a transition n → n − j in 
vacuo may be found by summing the probability (116) over the two states of 
transverse polarization and integrating over d3�∕(2�)3.

It is convenient write the transition rate for nsf transitions in terms of 
l = n − 1 → l − j = n − 1 − j for s = +1 and l = n → l − j = n − j for s = −1 , giv-
ing (Melrose and Russell 2002)

with � = �n − �n−j . To lowest order in B∕Bc , one has �∕m ≈ jB∕Bc ; with this 
approximation the transition rate is proportional to (B∕Bc)

j+1 . The rate of sf transi-
tions is

With �∕m ≈ jB∕Bc , the sf transition rate is proportional to (B∕Bc)
j+2 , one power of 

B∕Bc higher than the nsf transition rate. The rsf transition rate is smaller than the sf 
rate by a further factor of (B∕Bc)

2 (Melrose and Russell 2002) .
Relaxation to the ground state A nonrelativistic electron initially in a state 

n ≫ 1 relaxes to the ground state, n = 0 through spontaneous gyromagnetic emis-
sion. For B ≪ Bc the most probable transitions involve stepwise jumps from 
n → n − 1 with no change in s. Electrons initially with s = +1 tend to relax to 
n = 1, l = 0, s = +1 , before the slower final sf transition to n = 0 . This effect 
plays an important role in determining the plasma properties in a pulsar mag-
netosphere, where B∕Bc can be of order 0.1. The transition rate to the ground 
state is determined primarily by the slowest transition, n = 1 → n = 0 , which 
occurs at a rate (4�c∕3)(mc2∕ℏ)(B∕Bc)

2 . This transition rate is very rapid, of order 
1021(B∕Bc)

2 s−1 , leading to the conclusion that all electrons should be in their 
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ground state, corresponding to a 1D plasma distribution that depends only on pz , 
with p

⟂
= 0.

Gyromagnetic emission by a relativistic electron Gyromagnetic emission by a rel-
ativistic electron, referred to as synchrotron emission, is dominated by high harmon-
ics j = n − n� ≫ 1 . The relativistic quantum theory of synchrotron emission has been 
discussed in detail by Sokolov and Ternov (1968, 1986). The differences between the 
quantum and classical theories are relatively minor in comparison with the differences 
in the nonrelativistic case. Two notable differences that depend specifically on the spin 
are discussed here. The spin operator is �̂�z in this discussion.

Bump in synchrotron spectrum for spin-1
2
 An interesting spin-dependent effect was 

discussed by Lieu and Axford (1993), who considered a peculiar bump in the syn-
chrotron spectrum identified by Sokolov and Ternov (1968). Lieu and Axford (1993) 
showed that this bump is present for spin-1

2
 particles, but not for spin-0 particles. No 

physical explanation for this bump seems to be available.
Sokolov–Ternov effect When high-energy electrons are allowed to relax to their 

ground state through gyromagnetic emission, sf transitions occur at a faster rate than 
rsf transitions. The fraction of electrons with s = −1 to those with s = +1 increases 
systematically. An initially unpolarized distribution of high-energy electrons develops 
a net polarization. Sokolov and Ternov (1968) showed that the degree of polarization 
approaches a limiting value 8

√
3∕15 ≈ 92.4%.

6.8  One‑photon pair creation

One-photon pair creation is possible in the magnetized vacuum for a photon with per-
pendicular energy above twice the electron self-energy, that is, for �k

⟂
c > 2mc2 in ordi-

nary units. One may make a Lorentz transformation to the frame in which the photon 
is propagating across the magnetic field, and then conservation of parallel momentum 
implies that the parallel momenta of the electron and positron are equal and opposite. 
The resonance condition, in this frame, is � = �n + �n� , with pz = −p�

z
 . The probability 

of decay of the photon into a pair is found by integrating the probability (116), with 
� = 1, �� = −1 , over dpz∕2� . As with gyromagnetic emission, there is a nonrelativistic-
like case in which the discreteness of the values of n, n′ is important, and a relativistic, 
synchrotron-like, case in which n, n′ are large and may be treated as continuous.

Synchrotron-like limit The synchrotron-like limit applies when the pair is highly rel-
ativistic, and n, n′ are large such that the sums over them may be replaced by integrals. 
The probability per unit time that a photon (with frequency � propagating perpendicu-
lar to the magnetic field) decay into a pair is (e.g., Erber 1966; Tsai and Erber 1974)

where K1∕3 is a Macdonald function that arises from the Airy-integral approxima-
tion, e.g., to Jn

�
(x) . The rate (119) is a maximum for � of order unity, and cuts off 

exponentially as for 𝜒 ≫ 1.

(119)R̄ = 𝛼c
mc2

�

B

Bc

3
√
3

16
√
2

2𝜒

𝜋
K2
1∕3

(𝜒) 𝜒 =
4mc2Bc

2�𝜔B
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One-photon pair creation is an important ingredient in models for pulsar magne-
tospheres. Early models for the pair creation, following Sturrock (1971), were based 
on the synchrotron-like case (119). In early models, the high-energy photons were 
assumed to be emitted by “primary” particles (from the stellar surface) accelerated 
to very high energy by an electric field, E∥ , parallel to the magnetic field. A very 
high energy particle emits into a small cone about its direction of motion, implying 
that the photons are initially directed nearly parallel to the magnetic field. A photon 
propagating in a straight line deviates away from the curved magnetic field line, such 
that k

⟂
 increases with distance from the point of emission. Pair creation becomes 

possible when k
⟂
 reaches the threshold 2mc∕ℏ . The synchrotron-like approximation 

(119) applies only when this threshold is exceeded by a large factor.
Multiple singular thresholds As k

⟂
 increases, due to the increasing angle between 

the direction of the photon and the magnetic field, a photon with energy �𝜔 ≫ 2mc2 
encounters multiple thresholds for creation of a pair with increasing values of n, n′ . 
The probability of producing a pair has a square-root singularity at the threshold for 
each n, n′ , as shown in Fig. 7. The square-root singularities are at gnn� = 0 , cf. (113), 
that is, in ordinary units in an arbitrary frame, at ℏ2(�2 − k2

z
c2) − (�n

0
− �0

n�
)2 = 0 , 

with �n
0
= (m2c4 + 2neBℏc2)1∕2 and where (�2 − k2

z
c2)1∕2 is equal to the wave fre-

quency in the frame in which the photon is propagating across the magnetic field. 
Each square-root singularity is integrable, and one needs a specific model to deter-
mine whether or not a photon produces a pair at a given n, n′ . The probability of a 
pair being produced at the lowest threshold encountered, that is, at n = n� = 0 or 
n + n� = 1 depending on the polarization, is large for B∕Bc ≳ 0.2 , and it is only for 
weak fields, B∕Bc ≪ 0.1 , that the synchrotron-like limit (119) applies.

Formation of positronium It was pointed out by Shabad and Usov (1986) that 
as the lowest threshold ( n = n� = 0 or n + n� = 1 depending on the polarization) is 
approached, the initial photon can evolve into a bound pair, corresponding to a form 
of positronium. Due to the very strong magnetic field, the positronium state is dif-
ferent from the conventional picture of positronium, which corresponds to a hydro-
gen-like atom, in which the electron and positron are bound by the Coulomb force 
between them. To a first approximation, both the electron and positron are in 1D 
motion along the field line, with the Coulomb field binding them together, similar to 
a 1D model for the hydrogen atom (Loudon 1959).

Although it is of interest (notably when considering pulsed high-energy emis-
sion) to determine which of the various possibilities occurs, the net effect may be 
similar in all cases. Assuming the “primary” electron has a sufficiently high energy, 
a pair cascade develops, such that the initial energy is shared amongst a large num-
ber of secondary pairs. It is these secondary pairs that constitute the “pulsar plasma” 
from which the observed radiation is thought to originate.

7  Discussion

A variety of intrinsically quantum effects of direct or indirect relevance to plasmas 
are identified above. Familiar quantum effects, such as degeneracy, tunneling and 
diffusion, are relevant to solid-state plasmas, and have been reviewed recently by 
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Manfredi et al. (2019). In the summary here, emphasis is on high-energy, high-field 
and relativistic quantum effects, and quantum treatments of linear and nonlinear 
response tensors.

7.1  Quantum effects in nonrelativistic, unmagnetized plasmas

Although applications to solid-state plasmas are not discussed in detail here, it is 
appropriate to summarize possibly relevant quantum plasma effects. Most of the 
quantum effects of interest in nonrelativistic thermal plasmas apply at high densities 
and low temperatures.

Degeneracy Degeneracy is perhaps the simplest example of an intrinsically quan-
tum effect relevant to plasmas. The characteristic number density at which degen-
eracy becomes significant in an electron gas is when it exceeds the inverse cube of 
the de Broglie wavelength, ℏ∕p , with p → mVe in a weakly degenerate plasma and 
p → mvF as the completely degenerate limit is approached.

2
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= 3n’ n-
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= 2n’ n-
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Fig. 7  The dependence of the logarithm of the emission coefficient on �∕�B is shown for B∕Bc = 0.5 
for the first three harmonics. The calculations were performed for � = �∕2 and radiation polar-
ized a perpendicular to � , and b along � . The thresholds for the lowest transitions correspond to 
�∕m =

√
2 − 1,

√
3 − 1,

√
4 − 1 for n� − n = 1, 2, 3 , respectively, with �B∕m = B∕Bc , (Melrose 2013)
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Bohm term The Bohm term describes intrinsically quantum effects associated 
with the wave-like nature of electrons: diffraction and tunneling, cf. (9). In QFT, the 
condition for the Bohm term to be important is characterized by the parameter H, 
given by (8). With the energy, mu2

0
 , of a particle in the fluid replaced by the thermal 

energy, Te = mV2
e
 , this also requires high density and low temperature.

Exchange effects Two other effects that become increasingly significant as the 
electron density increases are exchange effects and electron–electron correlations. 
The exchange interaction (or force) is associated with the Pauli exclusion principle, 
which becomes relevant as degeneracy is approached. Electron–electron correlations 
also become increasingly important with increasing density. Properties of dense 
plasmas have been reviewed recently in this journal by Ichimaru (2017)

Electron spin The importance of spin is one quantum effect whose importance 
does not require high density or low temperature in a nonrelativistic plasma. In the 
Schrödinger–Pauli theory, spin is independent of the dynamics, and is described by 
components in a 2 × 2 spin space that is orthogonal to the Hilbert space used to 
describe the dynamics. The associated magnetic moments of individual electrons 
lead to a magnetization of the electron gas, which can play an important role in a 
solid-state plasma.

7.2  The semi‑classical approach

The quantum recoil plays an important role in the semi-classical version of the 
kinetic theory of plasmas.

Quantum recoil and radiation reaction A weakness in classical electrodynam-
ics is that energy and momentum are not conserved: on calculating the emission of 
radiation by an individual charged particle in a specified motion, the motion of the 
particle does not change as energy and momentum are carried away by the emit-
ted radiation. The radiation reaction force is postulated as one way of overcom-
ing this weakness in classical theory, but it is known to lead to other difficulties, 
such as pre-acceleration. Appeal to the quantum recoil (to the emission of a wave 
quantum) provides a simpler method of including the radiation reaction. One intro-
duces quantum mechanical notation, and imposes energy and momentum conserva-
tion in the form �� = � − ℏ� , �� = � − ℏ� , where a prime denoted the particle state 
after emission of a wave quantum. The requirement, e.g., in the relativistic case, 
�� = (m2c4 + ��2c2)1∕2 , gives � = (m2c4 + �2c2)1∕2 to zeroth order in ℏ , the classical 
(Cerenkov) resonance condition, � − � ⋅ � = 0 , to first order in ℏ , and the quantum 
recoil to second order in ℏ . The recoil term implies energy and momentum loss at 
the same rate as implied by the radiation reaction force in simple cases where the 
theories can be compared directly.

Detailed balance Detailed balance relates two processes that are the inverses of 
each other, specifically, emission and absorption in the present case. Let the proba-
bility of spontaneous emission between two states q and q′ be wq,q� (�) , which can be 
calculated classically and rewritten in this notation. Assuming a distribution of par-
ticles with occupation number nq , the total rate of spontaneous emission is wq,q� (�)nq 
summed over q. The Einstein coefficients, which correspond to detailed balance 
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in this case, imply that the total probability of emission is wq,q� (�)nq[1 + N(�)] , 
where N(�) is the occupation number for the wave quanta. The term proportional to 
N(�) is interpreted as stimulated emission. The probability of absorption q′ → q is 
wq,q� (�)nq�N(�).

Derivation of kinetic equations The major advantage of this semi-classical 
approach is that kinetic equations for the waves and the particles may be derived 
using a simple form of bookkeeping. Each transition q → q′ increases N(�) by unity 
and each transition q′ → q decreases N(�) by unity. The difference between the tran-
sition rates for emission and absorption summed over states q gives the semi-clas-
sical form of the kinetic equation for the waves. Each transition q → q′ decreases nq 
by unity and increases nq′ by unity. The kinetic equation for the particles is found 
by considering, in addition, emission q′′ → q and absorption q → q′′ , with q′′ inter-
preted at ��� = � + ℏ� for Cerenkov emission. The rate of change of nq is found from 
the differences between gains due to emission q′′ → q and absorption q′ → q and 
losses due to the inverse processes, integrated over �-space. The classical forms of 
the kinetic equations are found by expanding in powers of ℏ , with only the first-
order terms included in deriving the kinetic equation for waves and second-order 
terms ruired in the derivation of the kinetic equation for the particles.

7.3  Relativistic quantum effects in gyromagnetic processes

Gyromagnetic emission by nonrelativistic electrons is cyclotron emission and gyro-
magnetic emission by highly relativistic electrons is synchrotron emission, both of 
which may be treated classically. Quantum effects in gyromagnetic emission include 
transitions between discrete Landau levels, spin-flip transitions and, in the relativis-
tic quantum case, one-photon pair creation. Gyromagnetic transitions in the relativ-
istic case are well-defined only if the spin is identified as the eigenvalue of the mag-
netic-moment operator (Sokolov and Ternov 1968). For other spin operators that do 
not commute with the Dirac Hamiltonian (including the radiation correction), the 
spin eigenvalue continuously evolves with time.

Gyromagnetic emission A particularly important quantum effect is the quantiza-
tion of perpendicular momentum to discrete values, p

⟂
= (2neBℏ)1∕2 , where n is the 

Landau quantum number. First-order processes, which are forbidden in a vacuum 
with B = 0 , are allowed: these are gyromagnetic emission and absorption of a pho-
ton by an electron or positron, and one-photon pair creation and annihilation, all 
of which depend on the quantum numbers n, n′ . For emission by an electron, n and 
n′ are the quantum numbers before and after emission of the photon. Spontaneous 
emission leads to electrons losing their perpendicular energy very rapidly, even for 
modest values of B∕Bc , such that all the electrons quickly relax to the ground Lan-
dau state, n = 0.

Spin-flip transitions Each Landau level, except n = 0 , is doubly degenerate due 
to the spin. Transitions in which s changes sign are referred to as spin-flips for 
s = +1 → s = −1 and reverse spin flips for s = −1 → s = +1 . In the nonrelativistic 
case for fields B ≪ Bc , non-spin-flips, spin-flips and reverse spin-flips correspond 
to electric dipole, magnetic dipole and higher order magnetic multipole transitions, 
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respectively, with transition rates proportional to increasing powers of B∕Bc . In the 
relativistic case, difference between the spin-flip and reverse spin-flip rates leads to 
the Sokolov–Ternov effect in which electrons initially with high n become polar-
ized, strongly favoring s = −1 , as they transition to lower n.

One-photon pair creation One-photon pair creation is important in populating a 
pulsar magnetosphere with pairs. The probability per unit time of a photon decaying 
into a pair has a square-root singularity at the threshold for a pair with given n, n′ . 
In the frame in which the photon is propagating across the magnetic field, the pair 
has pz = −p�

z
= 0 at threshold. Slightly above threshold the electron and positron are 

nonrelativistic, in the sense that one has pz = −p�
z
 with |pz| ≪ mc . This is qualita-

tively different from the synchrotron-like case discussed in earlier literature, where 
one has |pz| ≫ mc and n, n′ are large and may be regarded as continuous, allowing 
the sums over them to be replaced by integrals.

Photon splitting The quadratic response tensor for the magnetized vacuum is 
nonzero, cf. (84), allowing three-wave coupling, and hence photon splitting in which 
one photon splits into two photons. Kinematic restrictions imply that photon split-
ting is allowed only when the refractive indices of the wave modes are taken into 
account. Photon splitting was first discussed in detail by Adler (1971).

7.4  Quantum effects in strong fields

There is a rich variety of quantum processes that occur in strong magnetic fields. 
Even in the absence of any plasma, the magnetized vacuum has plasma-like proper-
ties in the sense that it has a hierarchy of linear and nonlinear response tensors.

Birefringence of the magnetized vacuum It has been known since the 1930s that 
the magnetized vacuum is birefringent, with both wave modes having refractive 
indices slightly greater than unity, cf. (87). This is an intrinsically quantum effect, 
in the sense that the refractive indices depend on (B∕Bc)

2 = (ℏ�B∕mc
2)2 . The wave 

modes are linearly polarized, so that the vacuum plasma has dispersive properties 
similar to a birefringent crystal.

Vacuum resonance Suppose that an electron gas is present in the strongly mag-
netized case. The combination of the response tensor of the magnetized vacuum and 
of the electron gas for the combined system leads to unusual properties of the wave 
dispersion (e.g., Gnedin et al. 1978). The plasma tends to dominate at low frequen-
cies giving refractive indices less than unity and the magnetized vacuum tens to 
dominate at high frequencies giving refractive indices greater than unity. The fre-
quency where the refractive index passes through unity is referred to as the vacuum 
resonance. As the resonance is approached (in frequency), the polarization of the 
natural modes changes from nearly linear to nearly circular. This change affects the 
absorption coefficient for X-rays propagating through the resonant region.

Schwinger effect An electrostatic field decays spontaneously into pairs. 
The rate of decay (88) is significant only if the E∕Ec is sufficiently large, with 
Ec = 1.3 × 1018 V m−1 . Electric fields strong enough for this effect to play a role 
appear in the surface layer of a bare quark star (e.g. Alcock et al. 1986; Usov 2004, 
), which have been postulated as possible alternatives to neutron stars.
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Splitting of degenerate Landau states The inclusion of the radiative correction to 
the Dirac Hamiltonian leads to splitting of the otherwise degenerate Landau levels, 
cf. (105). Spontaneous emission allows transitions between the split states with a 
given n: an electron in the state n, s = +1 can jump to the state n, s = −1 with emis-
sion of a photon with frequency (Parle 1987) ��B ≈ (�c∕2�)�B . The transition rate 
is very small, ≈ (�6

c
∕8(2�)5)(B∕Bc)

3m(p2
n
�2
n
) , which Parle (1987) estimated to be 

more than fifteen orders of magnitude smaller than the gyromagnetic transition rate 
from n = 1, s = 1 to the ground state, n = 0, s = −1.

The frequency ��B of the transition between the split states appears in a recent 
discussion of linear waves in a quantum plasma (e.g., Ekman et  al. 2019b), using 
the PKT approach discussed in Sect. 4. It is interesting to speculate whether waves 
associated with this splitting frequency might play a role, for example, in a pulsar 
magnetosphere. However, because the splitting only applies to excited states, n ≥ 1 , 
whose lifetime is very short in a strong magnetic field, it seems unlikely that elec-
trons could remain in an excited state for long enough for the effect to play a role.

7.5  Relativistic quantum calculations of linear and nonlinear response tensors

Of specific interest in plasma physics are specific forms for the linear and the non-
linear response tensors. Exact forms in the relativistic quantum case may be derived 
using QPD. These exact forms may be compared with the approximate forms 
derived using PKT, providing a check on the validity of the approximations made. 
The linear response tensor in QPD, ���(k) , contains the same information as the 
dielectric tensor Kij(�, �) , in the sense that given either one may construct the other.

Unpolarized electrons The linear response tensor in the both theunmag-
netized and magnetized cases have relatively simple forms provided the elec-
trons are unpolarized. These forms are given by (77) and (114), respectively. 
In both cases, the non-quantum resonance are modified by a quantum term: 
� − � ⋅ � = 0 → � − � ⋅ � ± ℏ(�2 − |�|2c2)∕2mc2� in the unmagnetized case. In the 
magnetized case, the resonances are at �pz − pz± = 0 , with pz± given by (112) with 
(113). The dispersive part of the response in the magnetized case may be described 
by a single relativistic plasma dispersion function (RPDF) for a given electron distri-
bution function. In the unmagnetized case, the response tensor may be evaluated in 
terms of a single RPDF provided the distribution is isotropic or 1D. No comparison 
of these QPD forms and the analogous forms derived using PKT has been made 
because the latter forms are not available.

Polarized electrons For polarized electrons examples of the linear response ten-
sor derived using QPD are available for both the unmagnetized case (Melrose and 
Weise 2003) and the magnetized case (Melrose and Weise 2009). In both cases, 
specific spin operators that commute with the Dirac Hamiltonian are chosen. With 
existing forms of PKT based on FW transformations to separate the electron and 
positron contributions, no detailed comparison is possible because the distinction 
between the different spin operators in the Dirac theory is obscured by the FW 
transformation.



1 3

Reviews of Modern Plasma Physics (2020) 4:8 Page 49 of 56 8

Nonlinear response tensors An advantage of the QPD method of calculation of 
nonlinear response tensors is that it builds in a natural symmetry. The quadratic 
response tensor, ��0�1�2 (k0, k1, k2) say, with signs chosen such that the 4-vectors 
satisfy k0 + k1 + k2 = 0 , is calculated as a statistical average (over the electron gas) 
of the Feynman amplitude for two triangle diagrams that differ by interchange of 
two of the external lines. This response tensor is symmetric under permutations 
of the labels 0, 1, 2. In contrast, in the Vlasov approach, and analogously in PKT, 
the form of the quadratic response tensor is derived from the second-order terms in 
the expansion of the kinetic (e.g., Vlasov) equation, which involves derivatives of 
the form �1 ⋅ �∕�� and �2 ⋅ �∕�� . The result is different depending on an arbitrary 
choice: the order in which the perturbations labeled 1 and 2 are included. No simpli-
fication occurs on symmetrizing over 1 and 2, which results in the sum of two dif-
ferent terms. Similarly, the symmetrized QPD form for the cubic nonlinear response 
tensor is simpler than the Vlasov form.

7.6  Quantum effects in plasma astrophysics

Quantum plasma effects are significant in astrophysical plasmas only under extreme 
conditions, such as superstrong fields and relativistic temperatures. For such effects 
to be of interest they need to have observational consequences for observed emission 
or play an important role in influencing how observed emission is generated. The 
following examples illustrate these points.

AGN Active galactic nuclei (AGN) emit high-energy radiation from hot plasma, 
in which pair creation can be important. Pairs in an unmagnetized plasma can be 
created by various processes with the most familiar being two-photon pair produc-
tion, � + � → e+ + e− , which is related to Compton scattering by a crossing sym-
metry, and hence has a cross section that is simply related to the Thomson cross 
section, �T . Assuming a spherical source of radius R, which can be estimated from 
the angular size of the source, this allows one to describe the importance of pair 
creation for a luminosity, L, through a compactness parameter, � = L�T∕mc

3R (e.g., 
Done and Fabian 1989). For � ≫ 1 , the plasma is dominated by pairs.

White dwarf stars It is sometimes suggested that various quantum plasma 
effects may be relevant to compact stars, including white dwarf stars. These stars 
are supported against their self-gravity by degenerate electrons pressure. However, 
although the interiors of these stars involve degenerate matter, the magnetospheres, 
from where nonthermal radiation can be emitted, are populated by non-degenerate 
plasma. Quantum plasma effects are relatively unimportant. A partial exception is a 
subclass of white dwarf stars, called cataclysmic variables (e.g., Mukai 2017), that 
are accreting from a companion, leading to X-ray cyclotron emission from accre-
tion columns over the magnetic poles. The plasma in the source region is hot and 
strongly magnetized, and may be regarded as a quantum plasma. An interesting 
effect associated with CVs is that the columns can be optically thick to cyclotron 
emission, and the birefringence of the plasma implies that although the X mode is 
more strongly emitted than the O mode, it is also the more strongly absorbed, such 
that the escaping cyclotron radiation can be predominantly in the O mode.
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Pair creation in pulsars One-photon pair creation plays a central role in the gen-
eration of the plasma that populates the source region for pulsar radio emission 
(Sturrock 1971). In the absence of screening by plasma, there is an extremely strong 
parallel electric field, E∥ , due to the rapidly rotating magnetic field, and this E∥ accel-
erates charges to very high energy where they emit �-rays due to curvature emis-
sion or Compton scattering of soft photons. One-photon pair creation by such �-rays 
occurs provided that they exceed the threshold �𝜔 sin 𝜃 > 2mc2 . On emission by an 
accelerated particle with Lorentz factor � , the �-rays are confined to a cone 𝜃 ≲ 1∕𝛾 . 
As a �-ray propagates the angle � (between the ray path and the curved magnetic 
field line) increases systematically until the threshold is reached. It then triggers a 
pair cascade, which populates the magnetosphere with relativistic pairs. Although it 
was originally assumed that the pair creation operates in the synchrotron-like limit 
with n, n′ ≫ 1 for both the electron and positron. However, as � increases and the 
threshold ℏ� sin � = 2mc2 is approached, two effects need to be considered: the 
square-root singularity at the threshold implies a significant probability that the 
electron and positron may be created in their ground states, n, n� = 0 , or n + n� = 1 , 
depending on the polarization of the photon. The other possibility is that the photon 
may evolve into a bound electron–positron pair, that is, into positronium. Which of 
these various possibilities occurs depends on B∕Bc , with the latter two being likely 
for B∕Bc > 0.1–0.2.

Pulsar plasma The plasma that results from the pair cascade, referred to as a 
“pulsar plasma”, consists of relativistic pairs propagating outward along the mag-
netic field lines. Due to the superstrong magnetic field, all particles quickly radiate 
away any perpendicular energy, so that all the particles in the pulsar plasma are in 
their ground Landau state, p

⟂
= 0 . Wave dispersion, at radio frequencies, in such 

a pulsar plasma is an exotic example of plasma dispersion theory (e.g., Rafat et al. 
2019, ), but it may be treated classically. In this sense, pulsar plasma is not intrinsi-
cally quantum mechanical.

Photon splitting in pulsars Photon splitting (Adler 1971) is relevant to the propa-
gation of �-rays in a pulsar magnetosphere. Splitting of �-rays with �𝜔 > 2mc2 may 
occur before they decay into a pair, thereby affecting the creation of the pair plasma 
(e.g., Baring and Harding 2001).

Magnetars Magnetars are pulsar-like objects with super-critical surface magnetic 
fields B ≳ Bc (e.g., Duncan and Thompson 1992). Strong-field effects are expected 
to be important in magnetars, but definitive observational consequences are not 
obvious. One suggestion concerns the effect of the vacuum resonance, and its impli-
cations for the absorption coefficient for X-rays. The suggestion (e.g., Bulik and 
Miller 1997) was that the effect of this absorption may have observational conse-
quences for soft gamma repeaters (SGRs) which are one subclass of magnetars.

It was also suggested that there should be no radio emission from magnetars due 
to the superstrong magnetic field (Baring and Harding 1998). However, subsequent 
discovery of radio emission from some magnetars required a reconsideration of this 
argument. Presumably, the source of the radio emission in these cases is at heights 
where the magnetic field has fallen to B ≪ Bc.

Bare strange stars It is postulated that strange stars exist with the interior domi-
nated by deconfined (i.e. free) strange quarks (Witten 1984; Alcock et al. 1986). The 
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question arises as to what happens at the surface of “bare strange stars” that have 
no crust of ordinary nuclear matter. The electric field strength at the surface is esti-
mated to be E ≈ 5 × 1019 ,V m−1 (Alcock et al. 1986), which exceeds the Schwinger 
field Ec = 1.3 × 1018 V m−1 . The emission from bare strange stars is assumed to be 
dominated by pairs generated through the Schwinger effect. There is no observa-
tional confirmation of the existence of such bare strange stars.

7.7  Validity of the phase‑space approach

The underlying idea in PKT is to represent the quantum mechanical system in a 
classical �, � phase space. As already noted, no such representation is unique, and 
various alternative choices may be made. This implies an intrinsic uncertainty as to 
what is the most appropriate choice, and as to the implications of making different 
choices. There are three more serious concerns. The nonrelativistic version of PKT, 
discussed in Sect. 3, is founded on the Wigner function and the kinetic equation that 
it satisfies. The generalization to include the spin is less straight-forward, as dis-
cussed below, and the generalization to include relativistic effects introduces further 
difficulties, as discussed in Sect. 4. The relativistic case is based on Dirac’s equa-
tion, and in order to discuss an electron gas, the first step is to identify the electron 
contribution.

Neglect of positrons and pairs The FW transformation is applied to Dirac’s equa-
tion in an attempt to separate the electron component from the positron component, 
and to exclude virtual pairs. Neither objective can be achieved exactly. Approxima-
tions need to be made, including truncating an expansion in relativistic effects. The 
pseudo-distribution function f (�, �, t) , for electrons, derived from the Wigner func-
tion in the case of Dirac’s theory, necessarily includes a contribution from virtual 
pairs. Qualitatively, this may be understood by considering a conventional inter-
pretation of the Zitterbewegung: the instantaneous velocity of the electron is the 
speed of light, with the electron oscillating about a mean position that drifts with 
the classical velocity, and with the electron continuously emitting and absorbing vir-
tual pairs. The pseudo-distribution function is an attempt to describe this is classical 
terms, and no such description can be exact. This adds uncertainty as to what the 
pseudo-distribution function actually describes.

In contrast, in quantum field theory, and in QPD, the occupation numbers of elec-
trons and of positrons are well defined, and they must depend only on constants of 
the motion. The concept of a phase space is not relevant in this case: the occupation 
numbers do not include the influence of the wave fields on the particles. The wave-
particle interactions are described by Feynman diagrams. This difference between 
PKT and QPD is analogous to the difference between two classical approaches used 
to derive the response of a plasma using kinetic theory: the Vlasov method and the 
forward-scattering method (cf. Melrose 2008, ).

Discrete energy levels in phase space The kinetic equation in PKT involves 
a derivative of the pseudo-distribution function with respect to � . This raises an 
obvious difficulty in the magnetized case, where p

⟂
= (2neBℏ)1∕2 has only dis-

crete values, corresponding to the Landau levels, n = 0, 1,… . The physically 
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allowed states are cylinders in �-space, centered on the pz-axis and of radius 
p
⟂
= (2neBℏ)1∕2 . Allowed transitions involve jumps between these allowed states, 

and transition rates involve the difference between the occupation numbers in the 
two states. The derivative of the distribution function with respect to p

⟂
 , e.g., in 

the linear response tensor, is replaced by differences between occupation numbers 
with different Landau quantum numbers. How the perpendicular component of 
�∕�� in the kinetic equation in PKT is to be interpreted is unclear. The momen-
tum variable, � , in phase space is artificial, in the sense that it does not corre-
spond to a physical momentum.

Quasi-classical spin space There are differences of opinion regarding the 
validity of the extension of phase space to include � , defined by (17). One view is 
that there is no loss of information, in the sense that that f (�, �, �, t) merely gives 
an alternative description of the quantum mechanical spin. This view is supported 
by showing that the same results may be derived using the Wigner function itself 
(e.g., Manfredi et al. 2019, ). A contrary view expressed by Zhang and Balescu 
(1988), Balescu and Zhang (1988): “the spin is a dynamical variable that has no 
classical analogue: it therefore cannot be described by a continuous variable, even 
in the quasi-classical limit.”

A more serious concern arises from the use of this formalism in the relativis-
tic case. The extension of phase space to include dimensions defined by the spin 
vector � is based on the Schrödinger–Pauli theory, where the inclusion of spin 
involves an extension of the Hilbert space by two dimensions, with the spin oper-
ator defined by the Pauli matrices in this additional 2D spin space. Thus the “spin 
operator” in the Schrödinger–Pauli theory is well defined, and there is no confu-
sion as to what “spin operator” means. In contrast, in the Dirac theory, there is 
no unique spin operator, and any choice of spin operator must operate in the 4D 
Hilbert space defined by the Dirac matrices. None of the possible choices of spin 
operator reduces to the Schrödinger–Pauli theory, except in the nonrelativistic 
limit. The extension of phase space to include � seems incompatible with Dirac’s 
theory, except in the nonrelativistic limit.

A critical comparison of PKT with exact theory is needed to explore the valid-
ity of including the spin through a classical model for the spin. This has not been 
done. Moreover, as emphasized above, there is no unique spin operator, and dif-
ferent choices of spin operator lead to different wavefunctions, especially in the 
relativistic case. The meaning of � is then ill-defined. There is a favored spin 
operator (the parallel component of the magnetic moment operator) in the mag-
netized case, and any critical comparison needs to be made for this particular 
choice of spin operator.

In brief, despite the recent emphasis on the use of classical phase-space meth-
ods to treat quantum kinetic theory, there are unanswered questions relating to the 
validity of PKT, especially for magnetized plasma in general and in treating spin 
effects in particular.
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