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Abstract The review summarises recent theoretical achievements and observa-

tional manifestations of a new, recently discovered type of nonlinear oscillations in

multi-component plasmas, namely super-nonlinear periodic waves and super-non-

linear solitary waves (supersolitons). Both are characterised by a non-trivial

topology of their phase portraits, highly anharmonic profile shapes, extremely long

periods, and large amplitudes. Based upon multi-fluid magnetohydrodynamic

plasma models, examples of ion-acoustic and Alfvén super-nonlinear waves are

considered. A multi-component nature of the plasma was revealed to be a crucial

condition for the existence of these super-nonlinear waves, with the complexity of

the system growing with the number of plasma species accounted for in the model.

A minimum number of plasma components which allow for the existence of super-

nonlinear waves are also discussed. From the observational point of view, typical

signatures of periodic super-nonlinear waves are manifested, for example, in the

oscillatory processes operating in the magnetised plasma of the solar corona and

ground-based plasma machines. Super-nonlinear solitary structures (supersolitons)

of an electrostatic origin are recognised in the Earth’s magnetosphere, laboratory

experiments with chemically active plasmas, and numerical simulations.
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1 Introduction

The physical quantity u experiencing oscillations of a constant amplitude in a

periodic wave is well known to correspond to a closed trajectory without self-

intersections in a phase plane ( _u; u). A total phase portrait of the wave,

characterising the whole dynamical system, is represented by a family of such

phase trajectories nested one in another and surrounding the point of a stable equi-

librium (also often referred to as a centre). Small amplitude trajectories in the phase

portrait, concentrated in the vicinity of the equilibrium point, correspond to small

amplitude harmonic oscillations of the quantity u. Their oscillation properties, such

as a typical period and phase speed, can be determined with a standard linearisation

technique and subsequent analysis of the linearised governing equations. On the

other hand, the presence of closed trajectories in the phase portrait indicates the

existence of an invariant energy in the dynamical system, also referred to as a

generalised potential energy, which has a minimum coinciding with the position of

the stable equilibrium point. This formalism is applicable for both the conservative

and non-conservative systems (see, e.g. the closed phase trajectories in Chin et al.

2010).

However, such a trivial topology of the phase portrait of periodic waves is not

unique. For example, the phase portrait containing a special phase trajectory,

separatrix, is shown in the bottom plot of Fig. 1 (Ryskin and Trubetskov 2000). In

this portrait, the outermost phase trajectories enveloping the separatrix correspond

to highly nonlinear periodic waves, whose total energy is above a certain potential

barrier height and the amplitude cannot be smaller than that of the separatrix. Based

on these facts, Ryskin and Trubetskov (2000) called these stationary large-

amplitude waves as super-nonlinear waves (SNWs). They also proposed a particular

Fig. 1 Effective potential
energy, W(u), and the
corresponding phase diagram of
stationary solutions of the
modified Korteweg–de Vries
equation (1). A special phase
trajectory, separatrix, is
indicated by the red line
(adapted from Ryskin and
Trubetskov 2000)
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example of the commonly known modified Korteweg–de Vries (mKdV) equation,

which accounts for the effects of a cubic nonlinearity and has the periodic stationary

solutions of a super-nonlinear type:

ut þ u2ux þ buxxx ¼ 0; ð1Þ

where b is a positive constant coefficient. The stability of these mKdV waves,

including super-nonlinear regimes, was investigated by Murawski (1987) on the

basis of the Infeld–Rowlands method (Infeld and Rowlands 2000). In particular, the

authors found that super-nonlinear mKdV solutions can be stable in a certain range

of their oscillation amplitudes. In addition to the mKdV equation (1), other par-

ticular examples of classical low-dimensional nonlinear oscillators, whose effective

potential energy has two stable equilibria and thus supports super-nonlinear

regimes, are the Duffing equation and the derivative nonlinear Schroedinger

equation (see, e.g. Lopes et al. 2014; Hada et al. 1989, where these equations were

employed for the modelling of the 11-year solar cycle and nonlinear Alfvén waves

and solitons in astrophysical plasma systems, respectively). According to the defi-

nition of SNWs given by Ryskin and Trubetskov (2000), the generalised potential

energy of the oscillating system must have at least two minima separated by a single

maximum, to support the existence of SNWs (see, e.g. Fig. 1). In this configuration

of the generalised energy, the points of the local minima correspond to the positions

of stable equilibria (centres), while the maximum point, where the separatrix

intersects itself, shows the unstable equilibrium, also known as a saddle point. One

can conclude that the presence of several maxima and minima in the generalised

potential energy most likely indicates the ability of the system to sustain SNWs in a

periodic or even solitary form.

Due to their unique properties, such as large amplitudes, long periods, and highly

anharmonic profile shapes (see Sect. 2.1 for details), SNWs are certainly among the

most intriguing extreme phenomena in real physical systems, and the question of

whether they can be detected, in particular, in space and laboratory plasmas attracts

a growing interest in the research community. A comprehensive analysis of the

previous studies dealing with nonlinear waves of various types in plasmas reveals

that there are a number of works where the generalised potential energy (hereafter

the Sagdeev or Bernoulli pseudopotentials) was found to have two or even three

local minima. For example, Kuehl and Imen (1985) and Cairns et al. (1995)

obtained the pseudopotential of the ion-acoustic waves in the electron–ion plasma,

which may have two minima under certain physical conditions. More specifically,

for the existence of a double-well pseudopotential in these models the electron

plasma component must have an essentially non-thermal distribution, which allows

the electrons to be separated into several groups of different energies. Similar

properties of the pseudopotential energy were found for the electrostatic waves

propagating in the electron–positron plasma (Verheest et al. 1996), where both

plasma components were taken to consist of cold and hot populations. Another

interesting example of two minima appearing in the pseudopotential is of the

oblique electrostatic waves in the magnetised four-component plasma with cold and

hot electrons and heavy and light ions, as shown in Ghosh and Lakhina (2004) in the
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application to the auroral regions of the Earth’s magnetosphere. Additionally, ion-

acoustic and dust-acoustic modes in dusty plasmas of various models may also have

a pseudopotential energy with two minima (see, e.g. Choi et al. 2007; Dubinov and

Sazonkin 2008, 2013; Baluku et al. 2010; Akbari-Moghanjoughi 2010; Mamun and

Shukla 2010; Dubinov et al. 2011; Verheest 2011 for recent studies). The

pseudopotential with two minima also appears in the analyses of electrostatic

waves in magnetised electron–positron–ion plasmas (Ansar Mahmood et al. 2005),

and in the magnetised electron–ion plasma with two oppositely charged ion

components (Kaur and Singh Gill 2010). Three minima in the pseudopotential

energy for nonlinear dust-acoustic waves in an electron–ion plasma with negatively

and positively charged dusty grains, were found in Verheest (2009). This particular

example implies an even more complicated topology of the phase portrait of the

wave, with two separatrices, one of which fully envelops the other. Hence, a broader

set of (super-)nonlinear solutions can be naturally expected in this case. We also

need to mention that in addition to electrostatic waves in plasmas, the magneto-

hydrodynamic (MHD) waves can have multi-well pseudopotentials too. For

example, Choi and Lee (2007) and Masood et al. (2010) analysed the propagation

of Alfvén waves in a dusty plasma addressing magnetospheric and laboratory

plasma structures and self-gravitating molecular clouds, and found the correspond-

ing pseudopotentials with two minima. In all the studies listed above, periodic

solutions of the SNW type are possible. However, none of these works consider

waves with amplitudes larger than that of separatrices. It is the purpose of the

present review to rectify this omission.

By studying the details of the plasma models in the above examples, which allow

the potential energy to contain several minima, we emphasise the importance of a

multi-component nature of the plasma. Indeed, an obvious correlation of the number

of plasma species taken into account in a model with the complexity of the potential

energy topology and the nonlinear wave forms, appearing in such a plasma, most

likely exists. The latter in turn seems to be a crucial condition for the identification

of SNWs in plasma systems, which indicates that only multi-component plasmas are

able to support super-nonlinear periodic solutions. Such multi-species plasmas can

be adequately described by the multi-fluid approaches that have been widely used in

space physics and aeronomy (see, e.g. Schunk 1977; Barakat and Schunk 1982 and

all the references mentioned in the above paragraph). In particular, such multi-fluid

models of the plasma are intensively developed in the application to lower layers of

the Earth’s magnetosphere (e.g. Konikov et al. 1989; Demars and Schunk 1994;

Ganguli 1996) and solar wind (e.g. Echim et al. 2011; Abbo et al. 2016).

On the other hand, the special phase trajectories, separatrices, are known to

correspond to essentially nonlinear solutions describing the evolution of shock

waves, double layers, and solitons in plasma. Hence, as a natural extension of the

basic idea of periodic SNWs, one can assume the case, when there are several

separatrices in the phase portrait, and one of them fully envelops the others (see, e.g.

Verheest 2009). Similar to periodic SNWs, this outermost separatrix corresponds to

a new super-nonlinear type of solitary waves in plasma, which can be referred to as

a supersoliton. According to such a definition, the supersolitons represent a group of

solitary SNWs that combines the unique properties of solitary structures and
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extreme characteristics of SNWs. So far, the concept of supersolitons became

commonly accepted among researchers and is extensively developed in a number of

recent works (see, e.g. Hellberg et al. 2013; Maharaj et al. 2013; Verhees et al.

2013a, b, c, 2014; Dutta et al. 2014; Ghosh and Sekar Iyengar 2014; Lakhina et al.

2014; Rufai et al. 2014, 2015, 2016a; Verheest et al. 2014; Verheest 2014; Olivier

et al. 2015; Rufai 2015; Singh and Lakhina 2015; Verheest and Hellberg 2015; Paul

and Bandyopadhyay 2016 and Sect. 3.3 for details). In the present review we focus

on the results obtained in the pioneer studies of periodic SNWs (Dubinov et al.

2011, 2012) and supersolitons (Dubinov and Kolotkov 2012b, c; Dubinov et al.

2012a) in multi-component plasmas typical for astrophysical and laboratory

conditions. We also demonstrate several observational examples of these super-

nonlinear structures detected in the plasma of the solar atmosphere, Earth’s

magnetosphere, laboratory and numerical experiments.

2 Super-nonlinear waves (SNWs)

2.1 Classification and signatures of periodic SNWs

Different oscillatory physical processes have different topologies of their phase

portraits, characterised by a certain number of stable equilibrium points (centres)

and by a number of special phase trajectories, separatrices, which additionally may

vary in shape. In particular, Fig. 2 schematically illustrates the examples of the

phase portraits with 2, 3, and 4 centres and several layers of separatrices. The

complexity of the phase portraits naturally grows with the complexity of the

oscillating system, where the discussed super-nonlinear waves (SNWs) always

represent the most non-trivial cases.

Following the recipe proposed by Dubinov et al. (2012), various forms of SNWs

could be classified according to the topology of their phase portraits as SNWm;n;
where m is a number of centres embedded within the SNW phase trajectory and n is

a number of separatrices enveloped by this trajectory. For example, in a basic case

when the oscillating system has only two stable equilibria (see panel (a) in Fig. 2),

large amplitude SNW2;1 with the phase trajectories located above a single

separatrix, are allowed. In a more complicated scenario when there are three

stable equilibria in the system, the phase portrait can have two essentially different

configurations (see b, c in Fig. 2), with SNW3;1; and SNW3;2 and SNW2;1;
respectively. A variety of topologically different phase diagrams appears in systems

with four stable equilibria (d–g in Fig. 2), thus straightforwardly leading to a much

richer set of super-nonlinear solutions. Additionally, we need to mention that all the

portraits shown in Fig. 2 support the existence of ordinary stationary nonlinear

waves, NW1;0 known as cnoidal waves, whose phase trajectories are concentrated

around each separate centre, and are restricted in amplitude by the nearest

separatrix. However, the aspects of their evolution are out of the scope of the present

review and are not considered further.
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We now describe the unique signatures of SNWs, allowing for the distinguishing

of them among the whole possible oscillating ensemble detected in observations. By

definition, these are essentially large-amplitude fluctuations, with typical amplitudes

which are sufficiently higher than the background level. Their profiles are always

anharmonic, of a symmetric triangular shape, with at least four points appearing in a

single oscillation cycle, where the second derivative is equal to zero. Due to such an

anharmonicity and their original super-nonlinear nature, the Fourier spectral

analysis of SNWs shows the appearance of well-pronounced equidistant higher

harmonics in a power spectrum provided the noise level is sufficiently low.

However, traditional spectral techniques based upon Fourier transforms and

wavelets are known to use a priori assigned harmonic basis functions, and, hence,

are obviously limited in the analysis of such highly anharmonic signals, as SNWs.

Instead, a novel Hilbert–Huang Transform (HHT) spectral method has recently been

developed for the analysis of such nonlinear signals (Huang et al. 1998, 2008). It

Fig. 2 Sketch showing the classification of super-nonlinear waves (SNWs) by the topology of their phase
portraits with 2 (a), 3 (b, c), and 4 (d–g) stable equilibrium points (centres). Separatrices are indicated by
the red lines in each phase portrait (adapted from Dubinov et al. 2012)
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uses the empirical mode decomposition (EMD) technique, which expands the signal

of interest into a basis derived directly from the data, iteratively searching for the

local timescales naturally appearing in the signal. Hence, due to its adaptive nature,

the HHT spectral technique is essentially suitable for the processing of highly

nonlinear anharmonic time series typical for SNWs.

Another interesting property of SNWs is related to their temporal evolution,

namely in the case where the oscillating system dissipates the energy and SNWs

decay, their amplitude decreases gradually until a specific value which corresponds

to the amplitude of the nearest separatrix. After that, a very rapid decrease (on the

timescale shorter than the oscillation period) of the oscillation amplitude most likely

occurs, accompanied by the transformation of the wave type (for example, from

SNW3;2 to SNW2;1; as illustrated in Fig. 2). Such sudden changes of the oscillation

amplitude can be detected in observations. Similarly, in the opposite case of the

continuous energy supply or an instability development in the system, the amplitude

of SNWs may increase rapidly when it reaches the upper separatrix level, providing

the corresponding change of the wave type (for example, from SNW2;1 to SNW3;2 or

from SNW3;2 to SNW4;3; according to Fig. 2). In the following sections we consider

a number of distinct examples of various multi-fluid magnetohydrodynamic plasma

models which lead to the possibility of periodic SNWs.

2.2 Ion-acoustic periodic SNW2;1 in a plasma with two oppositely charged
ions

As the first illustration we show that the periodic solutions of an ion-acoustic

SNW2;1 type can exist in a three-species plasma with electrons and two oppositely

charged ion components. The plasma is assumed to be uniform, collisionless, and

unmagnetised.

For the unperturbed initial state of such a plasma the full neutrality condition can

be written as Z1en0i1 � Z2en0i2 � en0e ¼ 0; where e\0 is the electron charge,

ð�Z1eÞ[ 0 is the electric charge of the positive ions, and Z2e\0 is the electric

charge of the negative ions. Hereafter, all variables with the subscript ‘‘1’’ refer to

the positively charged ion component, while the subscript ‘‘2’’ corresponds to the

negative ions. Introducing the dimensionless parameters of the model: a ¼ n0i2=n0i1;

b ¼ mi2=mi1; and v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mi1V2=kTe
p

; where V is the phase speed of the propagating

ion-acoustic wave and k is the Boltzmann constant, the initial neutrality condition

reduces to n0e ¼ n0i1ðZ1 � aZ2Þ: We also assume the temperature of both ion

components to be sufficiently low, allowing for the neglecting of the ion thermal

pressure in the model, while the electrons are taken to be hot and inertialess,

governed by the Boltzmann distribution:

ne ¼ n0e exp � eu
kTe

� �

: ð2Þ

It should be noted here that the neglect of the electron inertia as used in the Hall

plasma approximation is not always valid. Example of oblique travelling wave

solutions for whistler oscillitons in which the electron momentum can be of the
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same order as that of the protons is described in Webb et al. (2008). However, the

further consideration of such higher frequency effects is out of the scope of this

review, and is not addressed in the following discussion.

The set of hydrodynamic equations governing the dynamics of the ion

components in the wave is

oni1;2

ot
þ oðni1;2vi1;2Þ

ox
¼ 0; ð3Þ

ovi1;2

ot
þ vi1;2

ovi1;2

ox
¼ � Z1;2e

mi1;2

ou
ox

; ð4Þ

o2u
ox2

¼ 4peðZ1ni1 � Z2ni2 � neÞ; ð5Þ

where in the equation of motion (4) plus/minus corresponds to the positive/negative

ions, respectively.

Large-amplitude stationary ion-acoustic waves in such a formulation are now

analysed with the use of the mechanical analogy approach based on the Sagdeev

pseudopotential (Davidson 1972). The wave is assumed to propagate in the positive

direction of the x-axis with the phase speed V. Introducing the variable n ¼ x� Vt

in Eqs. (2)–(5) and assuming all quantities to be functions of n only, so that

o

ot
¼ �V

d

d n
;

o

ox
¼ d

dn
; ð6Þ

one changes the frame of reference to that travelling with the phase speed of the

perturbation, V. In addition, when transforming to this new frame, the velocity of

both ion components in the wave should be also modified according to the Galilean

transformation rule,

ui1;2 ¼ vi1;2 � V : ð7Þ

In the transformation (7), vi is the velocity of the ion plasma component in the

laboratory frame, where the unperturbed plasma is at rest, and ui is the corre-

sponding velocity in the frame of reference related to the wave, where the unper-

turbed plasma moves in the opposite direction of the x-axis, with the speed V.

Equations (2)–(5) now reduce to

dðni1;2ui1;2Þ
dn

¼ 0; ð8Þ

ui1;2
dui1;2

dn
¼ � Z1;2e

mi1;2

du
dn

; ð9Þ

d2u

dn2
¼ 4peðZ1ni1 � Z2ni2 � neÞ: ð10Þ
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Integrating the continuity equations (8) and the equations of motion (9) with the

initial conditions ni1;2 ¼ n0i1;2; u ¼ 0; and ui1;2 ¼ �V ; one obtains the explicit

dependence of the ion concentrations ni1;2 upon the electrostatic potential u as

ni1;2 ¼ n0i1;2 1� 2Z1;2eu
mi1;2V2

� ��1=2

: ð11Þ

The subsequent substitution of Eqs. (2) and (11) into the Poisson’s equation (10)

results in

d2u

dn2
¼ 4pqðuÞ; ð12Þ

where

qðuÞ ¼ Z1en0i1 1þ 2Z1eu
mi1V2

� ��1=2

� Z2en0i2 1� 2Z2eu
mi2V2

� ��1=2

� n0e exp � eu
kTe

� �

:

Treating u and n as a generalised coordinate and time of a pseudoparticle, second-

order ordinary differential equation (12) has a form of the equation of motion of a

particle in the force field 4pqðuÞ: Furthermore, in its first integral written as

1

2

du
dn

� �2

þUSðuÞ ¼ const; ð13Þ

the second term on the left-hand side represents a generalised potential energy of the

particle, often referred to as the Sagdeev pseudopotential, USðuÞ: In Eq. (13) USðuÞ
is given by

USðuÞ ¼ � 4p
Z u

0

qðuÞ du ¼ 4pmi1V
2

(

n0i1

"

1�
�

1þ 2Z1eu
mi1V2

�1=2
#

þ n0i2
mi2

mi1

1� 1� 2Z2eu
mi2V2

� �1=2
" #

þ n0e
kTe

mi1V2
1� exp � eu

kTe

� �� �

)

;

ð14Þ

where the constant of integration on the right-hand side of Eq. (13) represents the

total energy of the particle and depends only on the initial conditions. The minimum

of function (14) corresponds to the initial equilibrium (full electrical neutrality) of

the unperturbed plasma with u ¼ 0:
We recall that by definition, this plasma model is able to support periodic ion-

acoustic solutions of the SNW type when the pseudopotential energy (14) has at

least two local minima. Hence, the values of the dimensionless parameters of the

model, providing such a configuration of the function US; are chosen. Figure 3

shows that the latter is possible for both V\Vs and V [Vs cases, where
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Vs ¼ ðkTe=n0eÞ1=2ðZ2
1n0i1=mi1 þ Z2

2n0i2=mi2Þ1=2 is the ion-sound speed in the plasma,

obtained from the dispersion relation of the linear theory describing the oscillations

in the vicinity of u ¼ 0 (see, e.g. Dubinov 2009). In other words, both subsonic

(left-hand column of Fig. 3) and supersonic (right-hand column of Fig. 3) SNW

periodic solutions are possible.

More specifically, both pseudopotentials US shown in Fig. 3 are found to contain

two local minima, guaranteeing the existence of a periodic ion-acoustic SNW in the

analysed three-species plasma, which can be classified as SNW2;1 according to the

scheme described in Sect. 2.1. Their phase trajectories are illustrated in the bottom

plots of Fig. 3 among the whole phase portraits of the dynamical system governed

by Eq. (12). Highly anharmonic profiles of the normalised electrostatic potential u;
obtained from numerical solutions of Eq. (12) and periodically varying in the

revealed subsonic and supersonic SNW2;1; are shown in Fig. 4.

We also need to mention that in addition to the discussed extremely large

amplitude SNW2;1; the potential functions and phase portraits shown in Fig. 3 imply

the existence of stationary solutions in the form of ordinary smaller amplitude

nonlinear waves, NW1;0 known as cnoidal waves. Their phase trajectories in turn

envelop each separate centre in the phase portraits. However, those NW1;0 solutions

whose trajectories do not correspond to the initial equilibrium of the unperturbed

plasma with u ¼ 0 (namely the trajectories enveloping the left-hand centre in the

phase portrait of the subsonic case and all NW1;0 solutions obtained in the

supersonic regime) should be disregarded.

Fig. 3 Left: pseudopotential USðuÞ given by Eq. (14) and the phase portrait of a subsonic ion-acoustic
wave in a plasma with two oppositely charged ion components plotted for a ¼ 0:1; b ¼ 20; v ¼ 0:7;
Z1 ¼ 1; and Z2 ¼ 1: Right: pseudopotential USðuÞ given by Eq. (14) and the phase portrait of a
supersonic ion-acoustic wave in a plasma with two oppositely charged ion components plotted for
a ¼ 0:3; b ¼ 2; v ¼ 1:6; Z1 ¼ 1; and Z2 ¼ 1: Separatrices and super-nonlinear phase trajectories of the
SNW2;1 type are indicated by the red and blue lines, respectively, in each phase portrait (adapted from

Dubinov et al. 2012)
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This example confirms the possibility for the existence of the SNW2;1 periodic

solutions of an ion-acoustic type in a three-species plasma containing the hot

Boltzmann electrons and two oppositely charged cold ion components. It also

allows one to formulate straightforward empirical criteria resulting from the

analysis of the pseudopotential function USðuÞ; which in turn can be rewritten also

in terms of the plasma parameters (e.g. the ratio of the concentrations of different

species, their temperatures, and characteristic velocities) and need to be rigorously

satisfied for the existence of SNWs in a dynamical system:

– The first derivative of a pseudopotential function USðuÞ; which is in fact an

effective generalised force governing the dynamics of a pseudoparticle, must

have at least two real roots, that results in a double-well form of the

pseudopotential;

– The edge points (shown with the blank circles in Fig. 3) of the interval where

USðuÞ has real values, must be above the local maximum of the function USðuÞ;
separating its two local minima.

2.3 Electrostatic periodic SNW2;1; SNW3;1; and SNW3;2 in a four-species
plasma

Consider a more complex model of the plasma consisting of four components: hot

electrons and positrons, and two cold ion species with opposite electric charges.

Similar to the previous section, the initial full electrical neutrality condition for the

unperturbed state of such a plasma is Z1en0i1 � Z2en0i2 � en0e þ en0p ¼ 0; where an

additional term en0p describing the positron contribution appears. Introducing again

the dimensionless parameters of the model, as a ¼ n0i2=n0i1; b ¼ mi2=mi1; d ¼
n0p=n0i1; s ¼ Tp=Te; and v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mi1V2=kTe
p

; where V and k are the phase speed of the

electrostatic wave propagating in the plasma and the Boltzmann constant,

respectively, the initial neutrality condition can be rewritten as

n0e ¼ n0i1ðZ1 � aZ2 þ dÞ:

Fig. 4 Top: variations of the electrostatic potential u in a subsonic ion-acoustic SNW2;1 (plotted with the

same set of parameters as shown in Fig. 3, left-hand column) in a plasma with two oppositely charged ion
components. Bottom: variations of the electrostatic potential u in a supersonic ion-acoustic SNW2;1

(plotted with the same set of parameters as shown in Fig. 3, right-hand column) in a plasma with two
oppositely charged ion components (adapted from Dubinov et al. 2012)

Rev. Mod. Plasma Phys. (2018) 2:2 Page 11 of 46 2

123



Based on the multi-fluid description of the plasma, the dynamics of the cold ion

components in the ion-acoustic wave is governed by Eqs. (3)–(4) with the Poisson’s

law having the form

o2u
ox2

¼ 4peðZ1ni1 � Z2ni2 � ne þ npÞ: ð15Þ

The set of Eqs. (3)–(4) and (15) is complemented by the Boltzmann law for the

electron concentration (2) and the following Boltzmann distribution for positrons,

which, in the spirit of the previously discussed model, are assumed to be hot and

inertialess:

np ¼ n0p exp
eu
kTp

� �

: ð16Þ

Performing the calculations, which are identical to those described in detail in

Eqs. (6)–(13) of Sect. 2.2, one can derive the pseudopotential US as a function of

the electrostatic potential u; as

USðuÞ ¼ �4p
Z u

0

qðuÞ du ¼ 4pmi1V
2

(

n0i1

"

1�
�

1þ 2Z1eu
mi1V2

�1=2
#

þ n0i2
mi2

mi1

1� 1� 2Z2eu
mi2V2

� �1=2
" #

þ n0e
kTe

mi1V2
1� exp � eu

kTe

� �� �

þ n0p
kTp

mi1V2
1� exp

eu
kTp

� �� �

)

;

ð17Þ

where

qðuÞ ¼ Z1en0i1 1þ 2Z1eu
mi1V2

� ��1=2

� n0e exp � eu
kTe

� �

� Z2en0i2 1� 2Z2eu
mi2V2

� ��1=2

þ n0p exp
eu
kTp

� �

:

Figures 5 and 6 show the pseudopotential USðuÞ (17) and the phase portraits of the

ion-acoustic wave propagating in a four-species plasma plotted for various sets of

the dimensionless parameters of the model. The pseudopotential US is clearly seen

to have three local minima, which indicates the ability of this plasma model to

support periodic ion-acoustic waves of the SNW2;1; SNW3;2 (Fig. 5), and SNW3;1

(Fig. 6) types. In the obtained configurations of USðuÞ; the position of the initial

equilibrium and full electrical neutrality of the plasma correspond to either its

central local minimum in the subsonic regime (Fig. 5, left-hand column) or to the

right-hand local maximum in the supersonic regimes shown in the right-hand col-

umn of Figs. 5 and 6.
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Variations of the electrostatic potential u in the revealed ion-acoustic SNW2;1;
SNW3;1; and SNW3;2 propagating in a four-species plasma are shown in Fig. 7.

Their profiles are essentially anharmonic of a symmetric triangular shape with large

amplitudes. In contrast to the previous case (see Sect. 2.2), where only SNW2;1 was

detected in a three-species plasma model, the present example shows a broader

selection of SNWs. The latter clearly illustrates an obvious correlation between the

number of plasma components in the model and the variety of super-nonlinear

solutions which can be expected to exist in such a plasma.

2.4 Shear Alfvén SNW2;1 in a four-species magnetised plasma

In addition to the electrostatic nature (see Sects. 2.2 and 2.3), SNWs may be of an

electromagnetic origin too, and it is worth searching for them, for example, among

plasma magnetohydrodynamic waves. For illustration, in this section the relevant

model of super-nonlinear large-amplitude and high-frequency shear Alfvén waves

propagating in a multi-component magnetised plasma is considered. The developed

model can be attributed to the class of models investigating the contribution of high-

frequency oscillatory phenomena in the solar atmosphere (with typical periods

shorter than one second) to the heating of the solar corona and acceleration of the

solar wind. They may be driven, for example, by various micro-turbulences and

Fig. 5 Left: pseudopotential USðuÞ given by Eq. (17) and the phase portrait of a subsonic ion-acoustic
wave in a four-species plasma plotted for a ¼ 0:52; b ¼ 1:6; v ¼ 3:2; d ¼ 0:07; s ¼ 1; Z1 ¼ 1; and
Z2 ¼ 2: Right: pseudopotential USðuÞ given by Eq. (17) and the phase portrait of a supersonic ion-
acoustic wave in a four-species plasma plotted for a ¼ 4:9; b ¼ 0:495; v ¼ 11:36; d ¼ 0:044; s ¼ 1;
Z1 ¼ 41; and Z2 ¼ 4: In each phase portrait, separatrices are shown by the red lines; phase trajectories of
periodic SNW2;1 and SNW3;2 are shown by the blue and green lines, respectively (adapted from Dubinov

et al. 2012)
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spontaneous magnetic reconnection occurring in the photospheric–chromospheric

magnetic network (Axford and McKenzie 1992; Tu and Marsch 1997), or by

nonlinear cascading from lower frequencies in the corona (Isenberg and Hollweg

1983; Tu 1987).

In the model the plasma is assumed to be of an identical composition as considered

in Sect. 2.3, with hot and inertialess electrons and positrons, and two sorts of cold

massive ion components. The external magnetic field B0 is directed along the z-axis.

The plasma is taken to be sufficiently magnetised with the plasma parameter b � 1

that allows one to neglect the ion thermal pressure and the ion velocity components

parallel to B0: Perturbing the plasma in the x-direction, consider a 2.5D shear Alfvén

wave propagating in the xoz-plane. The schematic sketch illustrating the geometry

of the problem is shown in Fig. 8. Following the assumption of a low b plasma, the

electromagnetic field in the wave is determined according to the two potentials

formalism (see, e.g. Chen et al. 2000; Choi and Lee 2007), with Ex ¼ �ou=ox; and
Ez ¼ �ow=oz � �ou=oz� c�1oAz=ot; where Az is a magnetic vector potential

directed along the external magnetic field B0 and c is the speed of light.

Under the simplifying assumptions described above, the transverse dynamics of

the ion plasma components in the wave is governed by the following set of

magnetohydrodynamic equations:

Fig. 6 Pseudopotential USðuÞ given by Eq. (17) and the phase portrait of a supersonic ion-acoustic wave
in a four-species plasma plotted for a ¼ 4:7; b ¼ 0:48; v ¼ 11:36; d ¼ 0:0485; s ¼ 1; Z1 ¼ 412; and
Z2 ¼ 4: Separatrix and phase trajectories of periodic SNW3;1 are shown by the red and yellow lines,

respectively (adapted from Dubinov et al. 2012)
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oni1;2

ot
þ oðni1;2vi1;2xÞ

ox
¼ 0; ð18Þ

ovi1;2x

ot
þ vi1;2x

ovi1;2x

ox
¼ � �Xi1;2vi1;2y þ

e

mi1;2
Ex

� �

; ð19Þ

Fig. 7 a, bVariations of the electrostatic potential u in a subsonic ion-acoustic SNW2;1 (a) and SNW3;2 (b)
(plotted with the same set of parameters as shown in Fig. 5, left-hand column) in a four-species plasma.
c,d Variations of the electrostatic potential u in a supersonic ion-acoustic SNW2;1 (c) and SNW3;2 (d)
(plotted with the same set of parameters as shown in Fig. 5, right-hand column) in a four-species plasma.
e Variations of the electrostatic potential u in a supersonic ion-acoustic SNW3;1 (plotted with the same set

of parameters as shown in Fig. 6) in a four-species plasma (adapted from Dubinov et al. 2012)

Fig. 8 Schematic sketch
illustrating the geometry of a
2.5D shear Alfvén wave in a low
b plasma
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ovi1;2y

ot
þ vi1;2x

ovi1;2y

ox
¼ �Xi1;2vi1;2x; ð20Þ

where Xi1;2 ¼ eB0=mi1;2c are the cyclotron frequencies of the ion plasma compo-

nents, the plus/minus signs in Eqs. (19) and (20) refer to the negative/positive ions,

respectively, and the ion charge numbers Z1 ¼ Z2 ¼ 1:
Electrons and positrons in turn are assumed to be hot and inertialess, and hence

are distributed in the wave according to the Boltzmann law written with respect to

the scalar potential w:

ne ¼ n0e exp � ew
kTe

� �

; ð21Þ

np ¼ n0p exp
ew
kTp

� �

¼ n0pn
s
0en

�s
e ; ð22Þ

where the dimensionless parameter s ¼ Tp=Te:

Additionally, the quasi-neutrality assumption is applied to the plasma:

ni1 þ np � ni2 � ne ¼ 0; ð23Þ

which reduces to n0e ¼ n0i1ð1� aþ dÞ; where a ¼ n0i2=n0i1 and d ¼ n0p=n0i1 are

the dimensionless parameters of the initial unperturbed state of the plasma.

From equations of motion (19) and (20) one can derive the ion polarisation drift

velocities, as

vi1;2x ¼ �mi1;2c
2

eB2
0

oEx

ot
; ð24Þ

where plus/minus corresponds to the negative/positive ions, respectively.

From Maxwell’s equations one obtains an expression for the parallel current

density, jz

o4

ox2oz2
ðu� wÞ ¼ 4p

c2
o2jz

otoz
: ð25Þ

Taking into account the continuity equations (18) and the quasi-neutrality condition

(23), Eq. (25) can be rewritten as

o4

ox2oz2
ðu� wÞ ¼ � 4pe

c2
o2ðne � npÞ

ot2
: ð26Þ

Combining Eqs. (18) and (24) results in

oni1;2

ot
¼ � o

ox

ni1;2mi1;2c
2

eB2
0

o2u
oxot

� �

; ð27Þ

where plus/minus corresponds to the negative/positive ions, respectively. Intro-

ducing a new variable
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n ¼ xþ z� Vt;
o

ox
¼ o

oz
¼ d

dn
;
o

ot
¼ �V

d

dn
; ð28Þ

where V is the phase speed of the propagating wave, Eq. (27) reduces to

dni1;2

dn
¼ � d

dn
ni1;2mi1;2c

2

eB2
0

d2u

dn2

� �

: ð29Þ

Integrating Eq. (29) with the initial conditions n ¼ 0; ni1;2 ¼ n0i1;2; and u ¼ 0; one can
derive an explicit relation between the ion concentrations in the wave, ni1 and ni2:

ni2 ¼ n0i2
ni1

ni1ð1þ cÞ � cn0i1
; ð30Þ

where c ¼ mi2=mi1: Substituting Eq. (30) into the quasi-neutrality condition (23),

rewrite it with respect to ni1:

ni1 ¼
1

2ð1þ cÞ

h

n0i2 þ cn0i1 � ð1þ cÞðnp � neÞ þ
ffiffiffiffi

D
p i

; ð31Þ

where D ¼ ð1þ cÞðnp � neÞ � n0i2 � cn0i1
� �2þ4cð1þ cÞn0i1ðnp � neÞ: Then sub-

stituting ni1 (31) into the once-integrated Eq. (29) and accounting for Eq. (22), one

can obtain an explicit dependence of the second derivative d2u=dn2 upon the

electron concentration ne; which is used in further calculations:

d2u

dn2
¼ 2n0i1ð1þ cÞ eB2

0 ðmi1c
2Þ�1

n0i2 þ cn0i1 � ð1þ cÞðnp � neÞ þ
ffiffiffiffi

D
p � 1: ð32Þ

Writing the variable (28) in Eq. (26), the latter takes the form

d4

dn4
ðu� wÞ ¼ �4pe

V

c

� �2
d2ðne � npÞ

dn2
; ð33Þ

which can be twice integrated with the initial conditions n ¼ 0; u ¼ 0; w ¼ 0; and
ne;p ¼ n0e;p; to give

d2u

dn2
� d2w

dn2
¼ �4pe

V

c

� �2

ðne � np þ n0p � n0eÞ: ð34Þ

Condition (21) allows one to obtain an explicit dependence wðneÞ; written as

w ¼ � kTe

e
ln

ne

n0e

� �

: ð35Þ

Finally, substituting Eqs. (22), (32), and (35) into Eq. (34), we obtain the following

second-order ordinary differential equation with respect to the function neðnÞ:

f ðneÞ
d2ne

dn2
þ df ðneÞ

dne

dne

dn

� �2

¼ gðneÞ; ð36Þ
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where the functions f ðneÞ and gðneÞ are determined as

f ðneÞ ¼
dwðneÞ
dne

¼ � kTe

e

1

ne
; ð37Þ

gðneÞ ¼
eB2

0

mi1c2

"

2n0i1ð1þ cÞ
n0i2 þ cn0i1 � ð1þ cÞðnp � neÞ þ

ffiffiffiffi

D
p � 1

#

þ 4pe
V

c

� �2

ðne � np þ n0p � n0eÞ;
ð38Þ

with the function D given in Eq. (31).

Using a standard reduction of order technique, one can reduce the second-order

Eq. (36) to a first-order Bernoulli differential equation with respect to the function

PðneÞ ¼ dne=dn; whose integral has the form of Eq. (13) with the generalised

potential energy function referred to as the Bernoulli pseudopotential, UBðneÞ:

UB ¼ �
Z ne

n0e

f ðneÞgðneÞ dne: ð39Þ

More details about the analysis of nonlinear waves in multi-component plasmas

with the Bernoulli pseudopotential technique can be found in Dubinov (2007a, b),

Dubinov et al. (2010, 2011), and in references therein. Theory of highly nonlinear

oscillations of current sheets generated by coalescing plasmoids has recently been

developed in Kolotkov et al. (2016), with the use of the Bernoulli pseudopotential.

Additionally, the Bernoulli pseudopotential method was used for the analysis of

nonlinear oscillations in self-gravitating quantum plasmas and in two- and three-

dimensional graphene-like fluids (Akbari-Moghanjoughi 2013, 2014).

Figure 9 shows the pseudopotentialsUBðneÞ (39) and the phase portraits of a shear
Alfvén wave propagating in a low-beta four-species plasma plotted for various sets of

the dimensionless parameters of the model. The present configurations of UB exhibit

two local minima, which indicate the ability of the plasma to support the propagation

of periodic Alfvén SNW2;1: The initial neutrality of the unperturbed plasma in the

examples shown in Fig. 9 may correspond to the local minimum of UB (left-hand

column of Fig. 9) or to its local maximum (right-hand column of Fig. 9). Stationary

variations of the electron concentration ne in the detected periodic Alfvén SNW2;1 are

illustrated in Fig. 10. We would like to point out that in contrast to the linear small

amplitude case, in the discussed super-nonlinear regime theAlfvénmode is essentially

compressive, with extremely large amplitudes (typically comparable to the initial

unperturbed background value or even higher) and anharmonic triangular profiles.

Although there are a few indirect observational evidences of the presence of a

non-negligible positron fraction in the solar corona (see, e.g. Shar et al. 2004;

Fleishman et al. 2013; Murphy et al. 2014), one should admit that the developed

model is still sufficiently far from the actual coronal conditions. Nevertheless, its

findings suggest the need for a similar analysis of a pure coronal case. For example,

a background thermal plasma penetrated by the energetic electron, proton and alpha

particle beams could be considered.
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3 Solitary SNW in plasma: supersolitons

As a natural extension of the original idea of periodic super-nonlinear waves,

proposed in Dubinov et al. (2011, 2012) and described in detail in Sect. 2, whose

phase trajectories envelop at least one separatrix loop, one can imagine the case,

where there are several separatrix layers in the phase portrait, and one of them fully

envelops the others (see, e.g. schematic examples shown in (c) and (e–g) of Fig. 2).

In that case the outermost separatrix represents a new form of a large-amplitude

solitary wave in a system, which may be referred to as a supersoliton. Similar to

periodic SNWs, for the existence of supersolitons in a dynamical system its

Fig. 9 Pseudopotential UBðneÞ given by Eq. (39) and the phase portrait of a shear Alfvén wave in a four-

species plasma plotted for a ¼ 0:1; c ¼ 0:07;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mi1V2=kTe
p

¼ 2500; d ¼ 0:1; s ¼ 3; xi1=Xi1 ¼ 0:01; and

kTe=mi1c
2 ¼ 0:01 (left-hand column); and for a ¼ 0:1; c ¼ 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mi1V2=kTe
p

¼ 500; d ¼ 1; s ¼ 3;

xi1=Xi1 ¼ 0:01; and kTe=mi1c
2 ¼ 0:01 (right-hand column). The colour scheme is identical to that used

in Fig. 3 (adapted from Dubinov et al. 2012)

Fig. 10 Variations of the electron concentration ne in a shear Alfvén SNW2;1 in a four-species plasma

plotted for the same set of parameters as shown in Fig. 9, left-hand column (top plot) and in Fig. 9, right-
hand column (bottom plot) (adapted from Dubinov et al. 2012)
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generalised potential energy must contain several (at least three) local minima

separated by two local maxima. For the latter condition to be fulfilled in the

electrically active medium, such as a plasma, its multi-component nature is of a

crucial importance. In the following sections we demonstrate a few analytical

examples of electrostatic waves in the form of supersolitons, propagating in multi-

component plasmas of various hydrodynamic models. Clear agreement between

theoretical solutions and observational records obtained in laboratory experiments,

indicating the possibility of the existence of supersolitons in real plasmas, is also

achieved.

3.1 Supersolitons in epii-plasma

As a first example, the most trivial model of an unmagnetised, collisionless, and

uniform plasma supporting the existence of supersolitons and consisting of four

charged species: namely hot and inertialess electrons ‘‘e’’ and positrons ‘‘p’’, and

cold and massive positively ‘‘1’’ and negatively ‘‘2’’ charged ion components is

considered. Such a composition of the plasma is identical to that discussed in

Sect. 2.3, where the periodic SNW2;1; SNW3;1; and SNW3;2 of an electrostatic

origin were studied. Similar to the analysis performed in Sect. 2.3, we write the

initial full electrical neutrality condition for the unperturbed state of such a four-

species plasma, as Z1en0i1 � Z2en0i2 � en0e þ en0p ¼ 0; where the subscript ‘‘0’’

refers to the parameters of the initial equilibrium of the plasma, e\0 is the electron

charge, ð�eÞ[ 0 is the positron charge, and ð�Z1eÞ[ 0 and Z2e\0 are the electric

charges of the positive and negative ions, respectively.

The dynamics of the cold and massive ion components in the ion-acoustic wave

is governed by the set of hydrodynamic equations (3)–(4) and (15), while the hot

and inertialess electrons and positrons are distributed in the wave according to the

Boltzmann laws (2) and (16), respectively. Repeating the calculations performed in

Eqs. (6)–(11), one can obtain a second-order ordinary differential equation with

respect to the function uðnÞ where u is an electrostatic potential in the wave, and

n � x� Vt with V being a phase speed of the wave, which has a form of Eq. (12).

By definition, supersolitons are essentially large-amplitude structures; hence, for

their analysis the perturbation theory approach based on the introduction of a small

parameter into the model and reducing the initial set of equations to a single

governing evolutionary equation of the Korteweg–de Vries (KdV) type are no

longer applicable. Instead, supersolitary solutions determined by Eq. (12) can be

successfully analysed with the use of the mechanical analogy approach, which uses

the generalised potential energy function, also known as the Sagdeev pseudopo-

tential, allowing for the studying of arbitrarily large-amplitude fluctuations. We

recall, that according to the Sagdeev pseudopotential technique, Eq. (12) has a form

of the equation of motion of a pseudoparticle, where u and n play the role of the

generalised coordinate and time, respectively, and the right-hand side of Eq. (12)

can be treated as an effective force field governing the dynamics of a particle.

Following this approach, Eq. (12) has an integral of motion written in the form of

Eq. (13), with the Sagdeev pseudopotential function UðuÞ determined by Eq. (17).
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The Sagdeev pseudopotential UðuÞ (17) allowing for the existence of supersoli-

tons in epii-plasma and the corresponding phase portrait of the whole dynamical

system (stationary ion-acoustic wave) are shown in Fig. 11. For certain values of the

dimensionless parameters of the model, the function UðuÞ is found to have three

local minima separated by two local maxima, with the most right maximum

showing the so-called saddle point, where the initial equilibrium of an oscillating

particle is unstable, and corresponding to the unperturbed state of the plasma. Such a

configuration of the pseudopotential UðuÞ implies the existence of two separatrix

layers in the phase portrait of the wave (see bottom plot of Fig. 11), with a certain

separatrix enveloping the other in the region of negative values of the electrostatic

potential u; and thus corresponding to a supersolitary solution. We need to mention

that Verheest (2009) also showed the Sagdeev pseudopotential of nonlinear dust-

acoustic waves in a four-species eidd-plasma consisting of electrons, ions, and two

dusty components of opposite electric charges, which could have three local minima

and two maxima. However, in that example, the values of the dimensionless

parameters of the model were adjusted to provide equal heights of the local maxima

of the function UðuÞ (see Fig. 9 in Verheest 2009). The latter geometry of UðuÞ
represents a limiting case, which supports the propagation of double layers in the

plasma and prevents the existence of supersolitons. Hence, supersolitary solutions

were not studied earlier by Verheest (2009).

Figure 12 allows one to compare stationary profiles of the electrostatic potential

uðnÞ varying in a supersoliton (b) and in an ordinary soliton (a) of an ion-acoustic

type in epii-plasma, obtained from numerical solutions of the governing Eq. (12).

Fig. 11 Sagdeev
pseudopotential UðuÞ (17) (top)
and the phase portrait (bottom)
of an ion-acoustic wave in epii-
plasma plotted for n0i2=n0i1 ¼
4:8; n0p=n0i1 ¼ 0:045; m2=m1 ¼
0:495; Tp=Te ¼ 1:02;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1V2=kTe
p

¼ 11:35; Z1 ¼ 48;
and Z2 ¼ 4: Separatrices of
ordinary (KdV-like) solitons are
shown by the red lines; a
supersolitary separatrix is
indicated by the blue line
(adapted from Dubinov and
Kolotkov 2012c)
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As supersolitons cannot be described by the KdV equation, their profiles highly

differ from the ordinary bell-shaped soliton solutions determined by the sech2ðx�
VtÞ function in a weakly nonlinear theory. In particular, variation of the electrostatic

potential u in the ion-acoustic supersolitary regime, shown in Fig. 12, has at least

four points where its second derivative is zero. Additionally, amplitudes and widths

of these supersolitary structures are always sufficiently larger compared to the

ordinary KdV-solitons.

We would like to emphasise that electrostatic supersolitons exist in unmagnetised

plasmas consisting of at least four electrically active components. Indeed, in simpler

models of two- and three-species plasmas, the Sagdeev pseudopotential was

empirically found to have up to two or three local extrema, respectively (see, e.g.

Sect. 2.2). Hence, the required scenario when the external separatrix envelops the

internal one cannot occur and supersolitons are impossible. There are a few

additional conditions for the existence of supersolitons in a dynamical system,

resulting from the analysis of the generalised potential energy function, UðuÞ;
namely the second maximum of the function UðuÞ must be always lower than its

first maximum corresponding to the initial neutrality of the plasma (cf. Verheest

2009), while the point of the reflection of ions from the potential barrier in the wave

(i.e. the point ‘‘A’’ in Fig. 11) must be always above it.

The contrast between super- and ordinary solitons becomes even more

pronounced if one looks at the first derivative of the signal that can be used to

distinguish them in laboratory experiments and astrophysical observations. In

particular, Fig. 12 shows that the first derivative of the electrostatic potential u;
which is in fact the electric field magnitude, varying in the ordinary ion-acoustic

Fig. 12 Profiles of an ordinary ion-acoustic soliton (a) and supersoliton (b), propagating in epii-plasma
and plotted for the same values of the dimensionless parameters of the model as shown in Fig. 11. Profiles
of the first derivative of an ordinary ion-acoustic soliton (c) and supersoliton (d) in epii-plasma. Colours
are consistent with those used in Fig. 11 (adapted from Dubinov and Kolotkov 2012c)

2 Page 22 of 46 Rev. Mod. Plasma Phys. (2018) 2:2

123



soliton (c) has only a single extremum on a half-period of the structure, while the

supersolitary regime is characterised by the appearance of additional side extrema

on the electric field profile (d). Moreover, the number of the equilibrium points in

the phase portrait, enveloped by the corresponding separatrix, is unambiguously

determined by the number of extrema in the first derivative of the supersoliton.

3.2 Supersolitons in a warm dusty epiid-plasma

In this section we demonstrate the possibility for the existence of ion-acoustic

supersolitons in a more complicated multi-species plasma model, which accounts

for the effect of a non-zero ion temperature and includes an additional negatively

charged plasma component, for example static dusty grains. Similar to the previous

section, the plasma is assumed to be uniform, collisionless, and unmagnetised. The

initial full electrical neutrality condition for the unperturbed state of such a five-

species plasma takes the form Z1en0i1 � Z2en0i2 � en0e þ en0p � qdnd ¼ 0; where

an additional term ð�qdndÞ describes the contribution of the dusty component, with

qd\0 and nd being its electric charge and concentration, respectively. The amount

of the spatial electric charge of the dusty fraction relative to other plasma

components is characterised by the dimensionless parameter a ¼ qdnd=en0i1; which
in turn allows one to rewrite the above neutrality condition as n0e ¼ n0i1ðZ1 �
cZ2 þ d� aÞ; where additional dimensionless parameters c ¼ n0i2=n0i1 and d ¼
n0p=n0i1 are introduced.

The dynamics of the warm ion components in the wave is governed by the

following set of hydrodynamic equations, which in contrast to the previous sections

takes into account an additional restoring force produced by the ion thermal pressure

gradients, oPi1;2=ox:

oni1;2

ot
þ oðni1;2vi1;2Þ

ox
¼ 0; ð40Þ

ovi1;2

ot
þ vi1;2

ovi1;2

ox
¼ � Z1;2e

mi1;2

ou
ox

� 1

mi1;2ni1;2

oPi1;2

ox
; ð41Þ

o2u
ox2

¼ 4peðZ1ni1 � Z2ni2 � ne þ np � an0i1Þ; ð42Þ

where in Eq. (41) the plus/minus sign refers to the positive/negative ions,

respectively.

For simplicity, both ion components are assumed to be of the Maxwellian

distribution in the wave, with the isothermal equations of state:

Pi1;2 ¼ ni1;2kTi1;2; ð43Þ

where the temperatures of different species are constant but in general different. The

hot and inertialess electrons and positrons are still governed by the Boltzmann laws

(2) and (16).
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Introducing again the variable n ¼ x� Vt into set (40)–(43) and transforming it

to a new frame of reference travelling with the phase speed of the wave, V as

ui1;2 ¼ vi1;2 � V ; one can integrate the continuity equations (40) and the equations

of motion (41) with the initial conditions ui1;2 ¼ �V ; ni1;2 ¼ n0i1;2; and u ¼ 0; and
obtain explicit dependences of the ion concentrations ni1;2 upon the electrostatic

potential u; as

ni1ðuÞ
n0i1

¼ �mi1V
2

kTi1

	 
1=2	

W0;�1

�

� mi1V
2

kTi1
exp �mi1V

2

kTi1
� 2Z1eu

kTi1

� ��
�1=2

; ð44Þ

ni2ðuÞ
n0i2

¼ �mi2V
2

kTi2

	 
1=2	

W0;�1

�

� mi2V
2

kTi2
exp �mi2V

2

kTi2
þ 2Z2eu

kTi2

� ��
�1=2

; ð45Þ

with the Lambert W-function that has principal (main) ‘‘0’’ and lower ‘‘- 1’’ real

branches (Corless et al. 1996; Valluri et al. 2000; Dubinova 2004; Dubinov and

Dubinova 2005).

In fact, dependences (44) and (45) are of great importance in the discussed

model, carrying the information about the ion momentum and ion number

conservations in the wave. They are clearly seen to be multivalued functions, and

those branches which do not correspond to the initial neutrality of the plasma should

be disregarded. On the other hand, the branches passing through the plasma

equilibrium point with the coordinates ni1;2 ¼ n0i1;2 and u ¼ 0 should be selected

for further calculations. Analysis shows that in Eq. (44) the lower branch W�1ð::Þ of
the Lambert W-function should be taken for mi1V

2 [ kTi1; while in the opposite

case when mi1V
2\kTi1 the principal branch W0ð::Þ needs to be used. Similarly, in

Eq. (45) one should choose the lower W�1ð::Þ or principal W0ð::Þ branch of the

Lambert W-function, when mi2V
2 [ kTi2 or mi2V

2\kTi2; respectively.
Figure 13 shows dependences (44) and (45) plotted for the case when both lower

branchesW�1ð::Þ satisfy the initial neutrality condition with ni1;2 ¼ n0i1;2 and u ¼ 0;
while both principal branches W0ð::Þ are physically meaningless and, hence, are

disregarded. Furthermore, using coordinates of the conjugation point of the Lambert

W-function real branches (we recall, that by its definition in the conjugation point

the argument of the Lamber W-function is equal to � exp½� 1�), one can

straightforwardly obtain the maximum and minimum values of the electrostatic

potential u; allowed in the wave (see Fig. 13):

umin ¼ � kTi2

2Z2e
ln

mi2V
2

kTi2

� �

� mi2V
2

kTi2
þ 1

� �

; ð46Þ

umax ¼
kTi1

2Z1e
ln

mi1V
2

kTi1

� �

� mi1V
2

kTi1
þ 1

� �

: ð47Þ

Then substituting Eqs. (2), (16), (44), and (45) into Poisson’s law (42), one obtains

the following second-order ordinary differential equation governing the dynamics of

a stationary ion-acoustic wave in the warm dusty epiid-plasma:
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d2u

dn2
¼ 4pqðuÞ; ð48Þ

where

qðuÞ ¼ Z1en0i1 � kTi1

mi1V2
W0;�1 �mi1V

2

kTi1
� exp �mi1V

2

kTi1
� 2Z1eu

kTi1

� �� �	 
�1=2

� Z2en0i2 � kTi2

mi2V2
W0;�1 �mi2V

2

kTi2
exp �mi2V

2

kTi2
þ 2Z2eu

kTi2

� �� �	 
�1=2

� n0ee exp � eu
kTe

� �

þ n0pe exp
eu
kTp

� �

� aen0i1:

Following the mechanical analogy formalism, Eq. (48) has the Sagdeev pseu-

dopotential, UðuÞ ¼ �4p
R u
0
qðuÞ du written in the explicit form as

UðuÞ
4pkTi1

¼ n0i1

h

R1ðf01Þ � R1ðf1Þ
i

þ n0i2

h

R2ðf02Þ � R2ðf2Þ
i

þ n0e
Te

Ti1
1� exp � eu

kTe

� �� �

þ n0p
Tp

Ti1
1� exp

eu
kTp

� �� �

þ an0i1
eu
kTi1

;

ð49Þ

Fig. 13 Dependences (44) and (45) shown for mi1V
2 [ kTi1 and mi2V

2 [ kTi2; determined by the lower
branch W�1ð::Þ of the Lambert W-function (yellow and green lines, respectively). Blank circles
correspond to the initial neutrality condition of the plasma, ni1;2 ¼ n0i1;2 and u ¼ 0: Grey lines show the

principal branchW0ð::Þ of the LambertW-function in dependences (44) and (45), not corresponding to the
initial neutrality of the plasma. Blue asterisks show the conjugation points of real branches of
dependences (44) and (45), determined by the Lambert W-function (adapted from Dubinov and Kolotkov
2012b)
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where

f1;2 ¼ �mi1;2V
2

kTi1;2
	 2Z1;2eu

kTi1;2
; f01;2 � f1;2ðu ¼ 0Þ; and

R1;2ðf1;2Þ ¼
ðTi1;2=Ti1ÞW�1 f01;2 exp f1;2

� �� �

þ 1

f01;2 W�1 f01;2 exp f1;2
� �� � �1=2

:

Figure 14 shows the Sagdeev pseudopotential UðuÞ determined by Eq. (49) and

the corresponding phase portrait of nonlinear stationary ion-acoustic waves

propagating in the warm dusty epiid-plasma plotted for certain values of the

dimensionless parameters of the model. Similar to previous Sect. 3.1, the geometry

of the generalised potential energy UðuÞ is clearly seen to correspond to the

existence of supersolitary solutions in the discussed five-species plasma model, i.e.

there are three local minima in the potential energy function UðuÞ and there is an

external separatrix, which fully envelops the internal one, in the phase portrait. For

comparison, Fig. 15 illustrates variations of the normalised electrostatic potential u
and its first derivative (that is an effective electric field in the wave) in the ordinary

Fig. 14 Pseudopotential UðuÞ (49) (top) and the phase portrait (bottom) of an ion-acoustic wave in a
warm dusty epiid-plasma plotted for a ¼ 0:1852; c ¼ 0:8; d ¼ 0:13; Tp=Te ¼ 0:87; Ti1=Te ¼ 1:76;

Ti2=Te ¼ 9:2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mi1V2=kTe
p

¼ 2:1; mi2=mi1 ¼ 2; and Z1 ¼ Z2 ¼ 1: Blank circles correspond to the

reflection of ions from the potential barrier in the wave. kDe is the electron plasma Debye length. The
colour scheme is identical to that used in Fig. 11 (adapted from Dubinov and Kolotkov 2012b)
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and supersolitary regimes obtained from numerical solutions of the governing

equation (48).

3.3 Further development of the concept of supersolitons in plasma

The idea of supersolitons, originally proposed by Dubinov and Kolotkov

(2012a, b, c), has opened a new actively developing research area in the field of

nonlinear waves in plasma. Since the discovery of this type of waves in plasma in

2012, tens of follow-up and original studies were published, indicating the

possibility of their existence in various plasma models and analysing their physical

properties. The Sagdeev pseudopotential technique was used in all these works as a

conventional instrument for analysis. In this paragraph we briefly outline state-of-

the-art achievements obtained in the theory of supersolitons in plasma during these

5 years.

Verheest et al. (2013) shows that electrostatic supersolitons are not a feature of

exotic, complicated plasma models, but can exist even in a three-species non-

thermal plasma and are likely to occur in space plasmas. A methodology is given to

derive their existence domains in a systematic manner by determining the specific

limiting factors. A model of plasma with two groups of kappa-distributed electrons

Fig. 15 Profiles of an ordinary ion-acoustic soliton (top left) and supersoliton (bottom left) propagating
in a warm dusty epiid-plasma. Profiles of the first derivative of an ordinary ion-acoustic soliton (top right)
and supersoliton (bottom right) in a warm dusty epiid-plasma. Colours are consistent with those used in
Fig. 14 (adapted from Dubinov and Kolotkov 2012b)
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is considered in Verheest et al. (2013), where the ion-acoustic supersolitons are

shown to exist too. Properties of ion-acoustic supersolitons in a plasma with two-

temperature electrons, positrons, and ions (treating all the light plasma components

as non-thermal) are studied in Dutta et al. (2014). Steffy and Ghosh (2017) explore

a transition of an ordinary ion-acoustic soliton into a supersoliton in a four-species

plasma with two groups of electrons and two sorts of ions, delineating the

parametric ranges of the existence of supersolitons. Ion-acoustic solitary waves with

a W-shaped profile are found in a four-component plasma in Paul et al. (2016). Such

type of solitons may be also referred to as supersolitons.

A series of publications, Rufai et al. (2014, 2015, 2016a, b) and Rufai (2015),

investigate the details of oblique (with respect to the magnetic field) propagation of

ion-acoustic supersolitons in a magnetised auroral plasma. Ion-beam plasmas with

stationary dust grains are also found to support ion-acoustic supersolitons (Dutta and

Sahu 2017). It turns out that not only ion-acoustic waves in multi-component

plasmas can have a form of supersolitons. For example, a possibility for the

existence of dust-acoustic supersolitons in a four-component dusty plasma is shown

in El-Wakil et al. (2017).

An important step forward in the theory of supersolitons in plasma has been made

by Olivier et al. (2017), where the mathematical formalism based on the Taylor

expansion of the Sagdeev pseudopotential Uðu;MÞ in the vicinity of the acoustic

speed M and the equilibrium electrostatic potential u is developed for a description

of low-amplitude supersolitons in a general fluid model consisting of an arbitrary

number of species. The authors derive a simplified form of the Sagdeev

pseudopotential as a fifth-order polynomial (cf. Eqs. 17 and 49), which is able to

support supersolitons

Uðu;MÞ ¼ AdMu2 þ Bu3 þ Cu4 þ Du5; ð50Þ

where dM is the incremental velocity and the constant coefficients A, B, C, and

D are always non-zero and determined by the equilibrium parameters of the plasma.

3.4 Minimum number of plasma species needed for the existence
of electrostatic supersolitons

Section 3.1 and Dubinov and Kolotkov (2012c) conclude with an important fact that

parallel electrostatic supersolitons can exist in plasmas with at least four electrically

charged components. For example, it was previously found that for simpler two- and

three-species plasma models the Sagdeev pseudopotential can have up to two or

three local extrema, respectively (see, e.g. Sect. 2.2). In these cases, it is impossible

for the external separatrix to envelop the internal one, and thus a supersoliton cannot

exist. This simple empirical rule has been recently independently confirmed by

Verheest et al. (2014), where the authors rigorously proved the absence of

electrostatic supersolitons in two-species plasmas. On the other hand, in the work by

Verheest et al. (2013) a three-species eii-plasma model supporting supersolitary

solutions was developed, thus contradicting the above conclusions. However, the

latter discrepancy can be easily resolved by a closer view at the electron distribution
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functions used in the models. More specifically, in Dubinov and Kolotkov

(2012b, c) and Dubinov et al. (2012a) light and hot particles were assumed to be

distributed by the Boltzmann law having the form of Eq. (2), which cannot be

separated into individual energetic groups. In contrast, Verheest et al. (2013, 2014)

used the following non-thermal distribution function for the electron plasma

component (given in the normalised form),

neðuÞ ¼ ð1� buþ bu2Þ expðuÞ; ð51Þ

where u is the normalised electrostatic potential in the wave, and b is the parameter

of the electron non-thermality. Distribution (51) reduces to the traditional Boltz-

mann distribution (2) only in the limiting case b ¼ 0; i.e. when all the non-thermal

effects are suppressed, while for b 6¼ 0 it describes the evolution of three separate

electron populations (one thermal and two non-thermal). Essentially, each separate

electron in the plasma is able to contribute to only a single population among those

three on the right-hand side of Eq. (51), which in turn appear as three individual

terms in Poisson’s equation. For example, if one considers a plasma consisting of

the electrons distributed by Eq. (51) and ions, it could be treated as a two-species

plasma according to the formulation used in Verheest et al. (2013). On the other

hand, it is in fact a four-species plasma, as there are four terms (corresponding to

one ion and three electron populations) on the right-hand side of Poisson’s equation.

Moreover, this formulation is also applicable to an example of dust-acoustic waves

in a plasma with non-thermal positively charged ionic components distributed by

niðuÞ ¼ ð1þ buþ bu2Þ expð�uÞ; ð52Þ

which was considered by Mendoza-Briceño et al. (2000) in the application to space

and astrophysical dusty plasma situations.

Another illustrative example is given by Rufai et al. (2015), where the analytical

model of the magnetised plasma consisting of a cold ion fluid and cool Boltzmann

and hot kappa-distributed electrons was developed. Again according to Verheest

et al. (2013), it represents a two-species plasma, where the obliquely propagating

ion-acoustic supersolitons were successfully detected (cf. Verheest et al. 2014).

Hence, the correct accounting of the light component populations, included in the

multi-species plasma model, is essential when analysing the possibility for the

existence of supersolitary solutions. We would like to finalise the current discussion

pointing out that unjustified partitioning of plasma electrons into several species of

different energies sometimes may lead to erroneous results (Yu and Luo 2008).

4 Periodic SNW and supersolitons in space, laboratory, and numerical
experiments

4.1 Signatures of SNW and supersolitons detected in earlier records

Nonlinear oscillatory phenomena in astrophysical and laboratory plasmas are

regularly observed with the imaging and spectral instruments throughout the whole
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electromagnetic spectrum. More specifically, electrostatic waves in plasma are

usually measured in experiments as the variations of electrostatic potential or

concentration of a certain plasma component. Also, the time variability of a local

electric field recorded at the location of a measuring detector is often of interest in

plasma experiments. According to the theory developed above, a physical quantity

experiencing oscillations in a periodic SNW or supersoliton would have an

oscillation profile with characteristic wiggles (see, e.g. Figs. 4, 7, 10, and the bottom

left panels in Figs. 12 and 15) and non-monotonic patterns (see, e.g. the bottom

right panels in Figs. 12 and 15), which enable the discussed waves to be identified in

experimental records. The latter behaviour is determined by a number of

separatrices enveloped by a phase trajectory of the wave (see Sect. 2.1). A

comprehensive literature survey shows that there are a great number of earlier works

reporting on the experimental detection of periodic and solitary waves in laboratory

plasma machines and space missions, which have very straightforward signatures of

SNW and supersolitons. However, the presence of those wiggling and non-

monotonic patterns in the observational signals was usually ignored by the authors.

In this section we summarise several most illustrative observational examples

obtained in space, laboratory and numerical plasma experiments, which can be

considered as potential candidates for SNW and supersolitons.

Ikezi (1973) shows profiles of periodic ion-acoustic waves excited at various

frequencies in a large double-plasma device (Taylor et al. 1972). Behaviour of the

electron concentration in the observed propagating wave is reproduced in Fig. 16.

These wiggling and non-monotonic profiles are clearly different from a cnoidal

form of usual nonlinear ion-acoustic waves in a two-component electron–ion

plasma (Dubinov 2007) and may be possibly referred to as one of the earliest

observational evidences of periodic ion-acoustic SNW.

Fig. 16 Variations of the electron density in the propagating ion-acoustic wave excited at various
frequencies in a large double-plasma device (adapted from Ikezi 1973)
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More recent examples clearly illustrating typical signatures of periodic SNW

were detected in the magnetised plasma of the solar atmosphere, a natural laboratory

for studying fundamental plasma processes including nonlinear waves and

oscillations (Nakariakov and Verwichte 2005; Nakariakov et al. 2016). In

particular, Nakariakov et al. (2010) detected so-called quasi-periodic pulsations

(QPP) in the electromagnetic emission of a powerful X1.2 class solar flare which

occurred on 29 May 2003. The oscillations were found in two independent

observations made with the Nobeyama Radio Polarimeters and with the ACS

instrument on-board the INTEGRAL satellite in the radio and hard X-ray band,

respectively. Spectral analysis of the observational signals, performed with the use

of the empirical mode decomposition technique (EMD), revealed that the

oscillations shown in the bottom panels of Fig. 17 have an anharmonic profile of

a symmetric triangular shape with several points on a single oscillation cycle, where

its second derivative equals zero, which are typical signatures of the discussed

SNWs. Furthermore, the following temporal evolution of the oscillation profile

shows a well-pronounced rapid decrease of the oscillation amplitude, which may

look similar to the transformation of the wave type from SNW to NW through a

Fig. 17 Time–distance map showing an anharmonic profile of a standing fast magnetoacoustic mode of a
coronal loop, detected with the Atmospheric Imaging Assembly on-board the Solar Dynamics
Observatory mission, in the extreme ultraviolet band. The elapsed time starts at 20:41:48.34 UT, 26
May 2012 (top, adapted from Pasco et al. 2016). Anharmonic quasi-periodic pulsations of a symmetric
triangular shape in an X1.2 class solar flare on 29 May 2003, observed in the radio band at 9.4 GHz with
the Nobeyama Radio Polarimeters (middle) and in the hard X-ray band (bottom), measured with the ACS
instrument on-board the INTEGRAL satellite. The elapsed time starts at 01:00 UT (adapted from
Nakariakov et al. 2010)
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separatrix, as proposed in Sect. 2.1. Similar anharmonic and non-stationary QPPs

are often seen in other flaring events and most likely require involvement of the

discussed higher order nonlinear effects for the interpretation (see, e.g. Nakariakov

and Melnikov 2009; Van Doorsselaere et al. 2016, for recent reviews).

A standing fast magnetoacoustic mode of a coronal loop can also manifest typical

SNW signatures (Pasco et al. 2016), as shown in the top panel of Fig. 17. The

oscillation profile was obtained from a high-resolution time–distance map created

with the Atmospheric Imaging Assembly on-board the Solar Dynamics Observa-

tory, AIA/SDO in the extreme ultraviolet band. Before the loop displacement gets

sufficiently damped, the first few oscillation cycles clearly represent highly

anharmonic behaviour with a symmetric triangular shape and well-distinguished

wiggles.

In addition to typical signatures of periodic SNW, space plasma observations

often show intensive bursts of the electric field, occurring in the form of electrostatic

supersolitons. For example, the space missions S3-3 (6000–8000 km, Temerin et al.

1982), Viking (817–13,527 km, Bostrom et al. 1988), Polar (up to 10,000 km,

Mozer et al. 1997), and FAST (350–4175 km, Ergun et al. 1998) were used for

registration of electrostatic solitary structures in the magnetospheric plasma, such as

ion-acoustic solitons, double layers, and phase holes. Their records are widely

available in the literature and often contain certain patterns which can be interpreted

as supersolitons. The difference between the electric field profiles in an ordinary

(KdV-type) ion-acoustic soliton, ion double layer, ion phase hole, and ion-acoustic

supersoliton is illustrated in Table 1. More specifically, parallel component of the

electric field in a conventional ion-acoustic soliton/ion double layer has a localised

symmetric bipolar/unipolar structure, respectively; in an ion phase hole it is always

constrained by two double layers of opposite polarities; while the electric field

profile associated with an ion-acoustic supersoliton is inherently different from that

in traditional solitary structures, having additional extrema on the wings. The latter

can be used for distinguishing of these localised electrostatic ion structures and

detection of supersolitons in observations. For example, Fig. 18 shows potential

candidates for electrostatic supersolitons detected in the Earth’s auroral plasma and

chosen on the basis of the unique properties given in Table 1. The top panel of

Fig. 18 illustrates a single bidirectional structure of the electric field, observed near

Southern auroral oval simultaneously by three out of four Cluster satellites, on 23

January 2001 (Gustafsson et al. 2001). The structure is clearly seen to be

embroidered with subsidiary local extrema (wiggles) on its both wings, coinciding

with the expected behaviour of the electric field in electrostatic supersolitons. The

bottom panel of Fig. 18 shows a 20 ms portion of observations of a parallel electric

field measured in the high-altitude polar magnetosphere by the polar plasma wave

instrument (PWI) on 4 June 1997 (Franz et al. 2005). Although the authors were

searching for phase holes in the observational data, at least two distinct pulses

(delineated in Fig. 18) behave rather like supersolitons than phase holes or ordinary

solitary waves (cf. Table 1).

Consider another type of experiments, numerical simulations, where possible

candidates for supersolitary solutions were detected too. Earlier works (Lu et al.

2005; Kakad et al. 2014) show 1D electrostatic particle-in-cell simulations of

2 Page 32 of 46 Rev. Mod. Plasma Phys. (2018) 2:2

123



Fig. 18 Possible candidates for supersolitons (highlighted by yellow) detected in the high-altitude
Earth’s auroral plasma. Top: a coherent solitary bidirectional electric field structure observed by the
cluster electric field and wave (EFW) instrument. The time is given in hours and decimal of hours
(adapted from Gustafsson et al. 2001). Bottom: 20 ms measurements of the parallel electric field observed
by the Polar Plasma Wave Instrument (PWI) in the high-altitude polar magnetosphere (adapted from
Franz et al. 2005)

Table 1 Expected theoretical profiles of the parallel electric field in an ordinary (KdV-type) ion-acoustic

soliton, ion double layer, ion phase hole, and ion-acoustic supersoliton and their experimental analogies

with corresponding references

Localised

electrostatic ion

structures

Ion-acoustic soliton Ion double layer Ion phase hole Ion-acoustic

supersoliton

Theoretical

profiles of Ez

Recorded

profiles of Ez

References Fragment of Fig. 3

(Bostrom et al.

1988)

Fragment of

Fig. 1p (Vasko

et al. 2015)

Fragment of Fig. 7

(Goldman et al.

1999)

Fragment of

Fig. 7b (Lu

et al. 2005)
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nonlinear evolution of electrostatic solitary waves in space plasmas, particularly

focusing on the Earth’s auroral regions. The electric fields detected in simulations

are shown in Fig. 19 and have a localised bipolar structure with well-distinguished

non-monotonic patterns and wiggles, which is consistent with the form of

electrostatic supersolitons predicted by theory (see Table 1).

Kakad et al. (2016) shows 1D modelling of the dynamics of a Gaussian

perturbation of plasma density in a three-species plasma with cold ions and two

groups of kappa-distributed electrons, performed within the hydrodynamic numer-

ical scheme developed by Lotekar et al. (2016). The initial perturbation was found

to rapidly transform into an ion-acoustic supersoliton propagating further with a

distinctly wiggling shape and constant speed. The results of these simulations

obtained at two different instants of the computational time are illustrated

Fig. 19 Possible candidates for supersolitons (highlighted by yellow) detected in earlier particle-in-cell
simulations of electrostatic solitary structures in the Earth’s magnetospheric plasma. Top panels: spatial
distribution of the electron and ion concentrations (right) and electric field (left) simulated in an electron–
ion plasma perturbed by a Gaussian pulse (adapted from Kakad et al. 2014). Middle and bottom panels:
spatial profiles of electrostatic field detected in a three-component plasma excited by the electron beam.
The profiles were obtained in two numerical realisations with different equilibrium parameters of the
plasma (adapted from Lu et al. 2005)
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in Fig. 20. We would like to emphasise the importance of this work, which is in fact

the first-ever dedicated numerical simulation of ion-acoustic supersolitons in

plasma.

The question of the detection of supersolitons in laboratory experiments with

chemically active plasmas is addressed in detail in Sect. 4.2 and references therein.

4.2 Supersolitons detected in laboratory experiments with SF6–Ar–plasma
with negative ions

Ion-acoustic solitary structures have been actively studied in laboratory experiments

with a chemically active plasma representing a mixture of the ionised sulphur

hexafluoride, SF6 and argon, Ar gases (see, e.g. Nakamura 1982; Ludwig et al.

1984; Nakamura et al. 1985; Nakamura and Tsukabayashi 1985; Cooney et al.

1991a, b, and references therein). In addition to the electron population and tiny

fractions of other components, the positive Arþ; SFþ5 and negative F�; SF�5 ions are

believed to be the most abundant species in such a plasma (according to Ludwig

et al. 1984). The interest in these experiments has been stimulated by a number of

in situ and remote observations reporting an important role of negative ions in the

processes operating in the lower ionosphere and atmosphere, such as nightglows

(see, e.g. detailed studies Swider et al. 1988, 1992) and ball lightnings (see, e.g.

Smirnov 1993, for a comprehensive review). Additionally, the presence of

negatively charged dusty grains can strongly affect physical processes, for example,

in the plasma of cometary comas, planetary ring systems, accretion discs, and the

transient atmospheres near the Moon and Mercury surfaces (see, e.g. Popel and

Fig. 20 First dedicated numerical modelling of the ion-acoustic supersoliton in plasma, formed from the
initial density perturbation of a Gaussian shape. Top and bottom panels show the behaviour of the
electrostatic potential (a) and electric field (b) in the observed supersoliton. Red and blue curves are
obtained at two different instants of the computational time (taken from Kakad et al. 2016)
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Gisko 2006, and references therein). Other interesting phenomena (such as

formations of ion-acoustic shocks, discontinuities, and negative ion density fronts)

appearing in plasmas with negative ions are described in Kaganovich and Tsendin

(1993), Takeuchi et al. (1998), and Kaganovich et al. (2000). In almost all the

laboratory experiments described in the above publications, large-amplitude ion-

acoustic solitons of unusual form were detected. More specifically, they were found

to be highly different from a traditional bell-shaped KdV-soliton, with a distinctly

wiggling profile containing a few points where its second derivative equals zero. In

some cases, the solitary structures were recorded to have non-monotonic slopes with

a few clearly distinguished extrema. Examples of these ‘‘unusual’’ and ‘‘non-

monotonic’’ ion-acoustic solitons observed in SF6–Ar–plasma are illustrated in

Fig. 21. Interestingly, these observational facts are inconsistent with previous

analytical theories dealing with solitary waves in plasma systems, and these

anomalies were not addressed in the studies listed above. On the other hand, these

detected unusual properties (wiggling and non-monotonic profiles) of the ion-

acoustic solitary structures shown in Fig. 21 are clearly seen to be similar to the

typical signatures of supersolitons and their first derivatives (see, e.g. Figs. 12 and

15). In this section, the concept of supersolitons is employed for the interpretation of

these unusual forms of ion-acoustic solitons shown in Fig. 21, and a theoretical

Fig. 21 Left: oscilloscope traces showing relative variations of the electron concentration in the ion-
acoustic solitons propagating through SF6–Ar–plasma. Different curves correspond to different
amplitudes of the initial excitation, which are given on the right-hand side. Profile of the initial
excitation is illustrated in the top left corner. Three top and three bottom curves have a clear anharmonic
(wiggling) shape, typical for supersolitons (adapted from Nakamura and Tsukabayashi 1985). Right:
oscilloscope traces showing the electron concentration in the ion-acoustic rarefaction solitons in SF6–Ar–
plasma, measured at different distances (shown on the right-hand side) from the initial excitation site. All
curves clearly show a non-monotonic behaviour with a few extrema (adapted from Nakamura et al. 1985)
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possibility for the existence of supersolitary solutions in a chemically active SF6–

Ar–plasma is demonstrated.

Consider a uniform, collisionless, and unmagnetised multi-species plasma

consisting of the singly-charged positive Arþ; SFþ5 and negative F�; SF�5 ions,

and electrons. The initial neutrality condition for the equilibrium state of such a

plasma has a form en0Arþ � en0F� þ en0SFþ
5
� en0SF�5 � en0e ¼ 0; where e\0 is the

electric charge of the electron and negative ion components, ð�eÞ[ 0 is the electric

charge of the positive ions, and the subscript ‘‘0’’ hereafter refers to the unperturbed

values of the plasma parameters. Introducing the dimensionless parameters of the

model, a ¼ n0F�=n0Arþ ; b ¼ n0SF�5 =n0Arþ ; and c ¼ n0SFþ
5
=n0Arþ ; the above neutrality

condition can be rewritten as n0e ¼ n0Arþð1� a� bþ cÞ: Absolute values of these

parameters can be estimated from the actual experimental conditions used in

Ludwig et al. (1984), where the partial pressure of the primary SF6 molecular gas in

the discharge chamber was taken to be low, hence n0SF6 � n0e: In this case, under a

constant discharge current the initial concentration of the F� ion gas is naturally

lower than that of the SF�5 ion gas, resulting to a � b: Moreover, Ludwig et al.

(1984) established additional empirical relations for the relative concentrations of

the ion components in the performed experiment: 0:65\n0SF�5 =ðn0SF�5 þ
n0F�Þ\0:95 and 0:11\n0SFþ

5
=ðn0SFþ

5
þ n0ArþÞ\0:77; allowing one to obtain that

0:027\a\0:28 and 0:12\c\3:35 for a certain value of b ¼ 0:52: Hence, the
following values of the parameters a ¼ 0:035; b ¼ 0:52; and c ¼ 0:2 were chosen

for further analysis.

In the model, the electrons are assumed to be inertialess and hot with a constant

temperature, and are, therefore, distributed by the Boltzmann law (2) in the wave.

The massive ion gases are taken to be of a sufficiently low temperature allowing for

the neglecting of the effect of the ion thermal pressure on the ion wave dynamics,

which is governed by the following set of hydrodynamic equations:

onl

ot
þ oðnlvlÞ

ox
¼ 0; ð53Þ

ovl

ot
þ vl

ovl

ox
¼ � e

ml

ou
ox

; ð54Þ

o2u
ox2

¼ 4peðnArþ � nF� þ nSFþ
5
� nSF�5 � neÞ; ð55Þ

where l ¼ Arþ; F�; SFþ5 ; SF
�
5 ; and the plus/minus sign in the equation of motion

(54) refers to the positive/negative ions, respectively.

Similar to the previous models, one can introduce the variable n ¼ x� Vt into the

set (53)–(55), transfer it to a new frame of reference, travelling with the phase speed

of the wave, V, and afterwards derive the Sagdeev pseudopotential USðuÞ of the

whole dynamical system, depending upon the electrostatic potential u in the wave,

as
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USðuÞ ¼ �4p
Z u

0

qðuÞ du ¼ 4pmArþV
2 n0Arþ 1� 1þ 2eu

mArþV
2

� �1=2
" #(

þ n0F�
mF�

mArþ
1� 1� 2eu

mF�V2

� �1=2
" #

þ n0SF�5
mSF�

5
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1� 1� 2eu

mSF�5
V2

 !1=2
2

4

3

5
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5

mSFþ
5

mArþ
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5
V2

 !1=2
2

4

3

5þ n0e
kTe

mArþV
2

1� exp � eu
kTe

� �� �

9

=

;

;

ð56Þ

where

qðuÞ ¼ en0Arþ 1þ 2eu
mArþV

2

� ��1=2

� en0F� 1� eu
mF�V2

� ��1=2

� en0SF�5 1� eu
mSF�5

V2

 !�1=2

þen0SFþ
5

1þ eu
mSFþ

5
V2

 !�1=2

� en0e exp � eu
kTe

� �

:

Figure 22 shows the pseudopotential USðuÞ determined by Eq. (56) of an

oscillating pseudoparticle, i.e. of the stationary ion-acoustic wave, and the

corresponding phase portrait of the whole dynamical system plotted for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mArþV
2=kTe

p

¼ 1:7; that provides the phase speed of the wave, V to be certainly

supersonic, and for mSFþ
5
=mArþ ¼ 3:18; mSF�5

=mArþ ¼ 3:18; and mF�=mArþ ¼ 0:476:

This analysis indicates that indeed a large-amplitude supersolitary solution is

possible in the developed SF6–Ar–plasma model, whose phase trajectory, the

external separatrix in the phase portrait, is of a guitar-like form and envelops the

Fig. 22 Dependence of the
Sagdeev pseudopotential USðuÞ
(56) (top) upon the electrostatic
potential u; and the phase
portrait (bottom) of
an ion-acoustic wave in
SF6–Ar–plasma,
normalised as following:
~US ¼ US=4pn0ArþkTe;
~u ¼ �eu=kTe; ~u0 ¼
�ekDeðkTeÞ�1ðdu=dnÞ; where
kDe is the electron plasma Debye
length. The colour scheme is
identical to that used in Fig. 11
(adapted from Dubinov et al.
2012a)
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internal separatrices. Variations of the electrostatic potential u; electron and Arþ

ion concentrations, ne and nArþ ; and their first derivatives in the detected

supersoliton are illustrated in Fig. 23. They are clearly seen to have a wiggling

profile shape (left-hand column of Fig. 23) and a non-monotonic behaviour with a

few extrema (right-hand column of Fig. 23), typical for the solitary structures

observed in the experiments (see Fig. 21).

Such an excellent agreement between the experimental results and their

independent theoretical interpretation presented in the current section strongly

supports the idea that the ion-acoustic solitary structures of unusual form, detected,

in particular, by Nakamura et al. (1985) and Nakamura and Tsukabayashi (1985) in

a laboratory four-ion SF6–Ar–plasma, could be supersolitons with a non-trivial

topology of their phase portraits, and a comprehensive search for these structures in

multi-component space and astrophysical plasmas is needed.

Fig. 23 Profiles of the physical quantities (left) and their first derivatives (right) in the ion-acoustic
supersoliton propagating in SF6–Ar–plasma: electrostatic potential u (top), electron concentration ne
(middle), and Arþ ion concentration nArþ (bottom). The quantities are normalised as ~u ¼ �eu=kTe;
~ne ¼ ne=n0Arþ ; ~nArþ ¼ nArþ=n0Arþ ; ~n ¼ nk�1

De ; where kDe is the electron plasma Debye length (adapted

from Dubinov et al. 2012a)
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5 Conclusions

The review addresses current trends in the analysis of a new type of stationary

nonlinear waves in multi-species plasmas, periodic super-nonlinear waves (SNW)

and solitary super-nonlinear waves (supersolitons), characterised by a non-trivial

topology of their phase portraits, long periods, and large amplitudes. The

scheme allowing for the classification of these super-nonlinear solutions and their

convenient notation is proposed. Using the multi-fluid plasma models, SNWs are

shown to have both electrostatic and magnetohydrodynamic nature. The presence of

at least three electrically active components in the plasma (e.g. thermal and non-

thermal electrons, ions, charged dusty grains, positrons, etc.) is found to be among

the essential criteria for the existence of SNWs. In the space plasma context the

nearest candidates are an electron–proton plasma penetrated by alpha particles (e.g.

typical for the physical conditions of the solar corona and solar wind) and dusty

electron–ion plasmas represented in the vast majority of the astrophysical and space

objects, which can be expected to support SNW. The increase of the number of

plasma species results in a more complicated topology of the SNW’s phase

portraits, providing a broader set of topologically different SNW types. Alterna-

tively, non-neutral plasma systems with intense beams are also known to support

solitary waves (see, e.g. Mo et al. 2013, where the first experimental observation of

a KdV-type soliton wave train in electron beams is reported), and thus should be

also included into the list of natural plasmas which are expected to sustain

supersolitons. First results in this direction have been achieved by Dutta and Sahu

(2017), who showed the possibility for the existence of ion-acoustic supersolitons in

ion-beam plasmas with stationary dust grains.

So far, periodic SNW and supersolitons have been analytically studied by the

mean of the mechanical analogy method based on the Sagdeev pseudopotential

representation. One should admit that the application of the perturbation reductive

procedures introducing a small parameter into the model for the analysis of these

highly nonlinear structures is compromised by their naturally large amplitudes. For

instance, neither KdV equation (with the second-order nonlinearity) nor modified

KdV equation (third-order nonlinearity) is able to describe supersolitons. In

contrast, the Sagdeev pseudopotential technique allows for studying arbitrarily

large-amplitude fluctuations, which justifies the choice of it as a conventional tool

for the analysis of SNW and supersolitons in all considered works. Following its

importance in the discussed problem of super-nonlinear waves in plasma, we would

like to briefly outline some more aspects behind this approximation, namely the role

of the momentum and energy integrals of the governing equations and the role of

different sonic Mach numbers in a fully nonlinear analysis is emphasised by

McKenzie et al. (2004). This approach should be treated as an alternative to the

Sagdeev potential technique, and can be useful in describing spiky wave forms

associated with choked flows at the sonic points. The aspects of a Hamiltonian

description of the travelling waves in plasma are discussed by Webb et al. (2005)

and McKenzie et al. (2007). The role of generalised vorticities and Bernoulli

integrals in the formulation of travelling waves in multi-fluid plasmas is studied by
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Mace et al. (2007). Webb et al. (2007, 2014) show that there are two different

Hamiltonian formulations for the travelling waves, which use the x-momentum

integral and the energy integral of the system. The momentum integral can be

thought of as the Hamiltonian of the system, in which the variables are constrained

by the energy integral. An alternative Hamiltonian formulation also results from

using the energy integral as the Hamiltonian in which the momentum integral is a

constraint. These formulations are related to the multi-symplectic view of the

equations, as developed by, e.g. Bridges (1992), Bridges et al. (2005), Hydon

(2005), and Webb et al. (2015).

Typical signatures of SNWs allowing for the detection of them in astrophysical

observations and under laboratory conditions are given. More specifically, their

oscillation amplitudes are always large (typically greater than or comparable to a

non-oscillating background level) and scale with the oscillation periods, while the

oscillation profiles are highly anharmonic of a symmetric triangular shape.

Furthermore, several observational signals clearly manifesting such a super-

nonlinear behaviour and observed in the magnetised plasma of the solar atmosphere,

Earth’s magnetosphere, in laboratory and numerical experiments are demonstrated.

Despite a significant progress in the field, a further comprehensive search for

observational evidences of these super-nonlinear structures using modern ground-

based and space-borne instruments and experimental plasma machines, and the

developing of corresponding analytical models is of the great interest and

importance.

Acknowledgements The authors are grateful to Prof. Valery Nakariakov and Prof. George Rowlands for

valuable discussions and constructive comments. D.Y. Kolotkov acknowledges the support of the STFC

consolidated grant ST/L000733/1. A. E. Dubinov worked in the framework of the Program of Increasing

the Competitiveness of NRNU MEPhI.

Compliance with ethical standards

Conflict of interest The authors would like to state that there is no conflict of interest associated with this

publication.

References

L. Abbo, L. Ofman, S.K. Antiochos, V.H. Hansteen, L. Harra, Y.-K. Ko, G. Lapenta, B. Li, P. Riley, L.

Strachan, R. von Steiger, Y.-M. Wang, Slow solar wind: observations and modeling. Space Sci. Rev.

201, 55–108 (2016)

M. Akbari-Moghanjoughi, Double-wells and double-layers in dusty Fermi-Dirac plasmas: Comparison

with the semiclassical Thomas-Fermi counterpart. Phys. Plasmas 17(12), 123709 (2010)

M. Akbari-Moghanjoughi, Universal aspects of localized excitations in graphene. J. Appl. Phys. 114(7),
073302 (2013)

M. Akbari-Moghanjoughi, Large-amplitude solitons in gravitationally balanced quantum plasmas. Phys.

Plasmas 21(8), 082707 (2014)

M. Ansar Mahmood, S. Mahmood, M. M. Arshad, H. Saleem, Low frequency solitary waves in

magnetized electron positron ion plasmas. Chin. Phys. Lett. 22, 632–635 (2005)

W.I. Axford, J.F. McKenzie, The origin of high speed solar wind streams, in Solar Wind Seven

Colloquium, ed. by E. Marsch, R. Schwenn (Pergamon Press, Oxford, 1992), pp. 1–5

Rev. Mod. Plasma Phys. (2018) 2:2 Page 41 of 46 2

123



T.K. Baluku, M.A. Hellberg, I. Kourakis, N.S. Saini, Dust ion acoustic solitons in a plasma with kappa-

distributed electrons. Phys. Plasmas 17(5), 053702 (2010)

A.R. Barakat, R.W. Schunk, Transport equations for multicomponent anisotropic space plasmas–a

review. Plasma Phys. 24, 389–418 (1982)

R. Bostrom, G. Gustafsson, B. Holback, G. Holmgren, H. Koskinen, Characteristics of solitary waves and

weak double layers in the magnetospheric plasma. Phys. Rev. Lett. 61, 82–85 (1988)

T.J. Bridges, Spatial Hamiltonian Structure, Energy Flux and the Water-Wave Problem. Proc. R. Soc.

Lond. Ser. A 439, 297–315 (1992)

T.J. Bridges, P.E. Hydon, S. Reich, Vorticity and symplecticity in Lagrangian fluid dynamics. J. Phys.

A Math. Gen. 38, 1403–1418 (2005)

R.A. Cairns, A.A. Mamum, R. Bingham, R. Boström, R.O. Dendy, C.M.C. Nairn, P.K. Shukla,

Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 2709–2712 (1995)

Y. Chen, Z.-Y. Li, W. Liu, Z.-D. Shi, Solitary kinetic Alfvén waves in the inertial limit region. Phys.

Plasmas 7, 371–374 (2000)

R. Chin, E. Verwichte, G. Rowlands, V.M. Nakariakov, Self-organization of magnetoacoustic waves in a

thermally unstable environment. Phys. Plasmas 17(3), 032107 (2010)

C.R. Choi, D.-Y. Lee, Solitary Alfvén waves in a dusty plasma. Phys. Plasmas 14(5), 052304 (2007)

C.R. Choi, C.-M. Ryu, D.-Y. Lee, N.C. Lee, Y.-H. Kim, Dust ion acoustic solitary waves in a magnetized

dusty plasma with anisotropic ion pressure. Phys. Lett. A 364, 297–303 (2007)

I.L. Cooney, M.T. Gavin, I. Tao, K.E. Lonngren, A two-dimensional soliton in a positive ion-negative ion

plasma. IEEE Trans. Plasma Sci. 19, 1259–1266 (1991a)

J.L. Cooney, M.T. Gavin, K.E. Lonngren, Radiation of ion acoustic waves in a dispersive positive ion-

negative ion plasma. IEEE Trans. Plasma Sci. 19, 545–547 (1991b)

R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert W function. Adv.

Comput. Math. 5, 329–359 (1996)

R.C. Davidson, Methods in Nonlinear Plasma Theory (Academic Press, New York, 1972)

H.G. Demars, R.W. Schunk, A multi-ion generalized transport model of the polar wind. J. Geophys. Res.

99, 2215–2226 (1994)

A.E. Dubinov, Gas-dynamic approach in the nonlinear theory of ion acoustic waves in a plasma: an exact

solution. J. Appl. Mech. Tech. Phys. 48, 621–628 (2007a)

A.E. Dubinov, Theory of nonlinear space charge waves in neutralized electron flows: gas-dynamic

approach. Plasma Phys. Rep. 33, 210–217 (2007b)

A.E. Dubinov, On a widespread inaccuracy in defining the mach number of solitons in a plasma. Plasma

Phys. Rep. 35, 991–993 (2009)

A.E. Dubinov, I.D. Dubinova, How can one solve exactly some problems in plasma theory. J. Plasma

Phys. 71, 715–728 (2005)

A.E. Dubinov, D.Y. Kolotkov, Interpretation of ion-acoustic solitons of unusual form in experiments in

SF6–Ar plasma. High Energy Chem. 46, 349–353 (2012a)

A.E. Dubinov, D.Y. Kolotkov, Ion-acoustic super solitary waves in dusty multispecies plasmas. IEEE

Trans. Plasma Sci. 40, 1429–1433 (2012b)

A.E. Dubinov, D.Y. Kolotkov, Ion-acoustic supersolitons in plasma. Plasma Phys. Rep. 38, 909–912
(2012c)

A.E. Dubinov, M.A. Sazonkin, Nonlinear adiabatic models of ion-acoustic waves in dust plasma. J. Tech.

Phys. 53, 1129–1140 (2008)

A.E. Dubinov, M.A. Sazonkin, Supernonlinear ion-acoustic waves in a dusty plasma. Phys. Wave

Phenom. 21, 118–128 (2013)

A.E. Dubinov, A.A. Dubinova, M.A. Sazonkin, Nonlinear theory of the isothermal ion-acoustic waves in

the warm degenerate plasma. J. Commun. Technol. Electron. 55, 907–920 (2010)

A.E. Dubinov, D.Y. Kolotkov, M.A. Sazonkin, Nonlinear ion acoustic waves in a quantum degenerate

warm plasma with dust grains. Plasma Phys. Rep. 37, 64–74 (2011)

A.E. Dubinov, D.Y. Kolotkov, M.A. Sazonkin, Supernonlinear waves in plasma. Plasma Phys. Rep. 38,
833–844 (2012)

I.D. Dubinova, Application of the Lambert W function in mathematical problems of plasma physics.

Plasma Phys. Rep. 30, 872–877 (2004)

D. Dutta, B. Sahu, Nonlinear structures in an ion-beam plasmas including dust impurities with nonthermal

nonextensive electrons. Commun. Theor. Phys. 68, 117 (2017)

D. Dutta, P. Singha, B. Sahu, Interlaced linear-nonlinear wave propagation in a warm multicomponent

plasma. Phys. Plasmas 21(12), 122308 (2014)

2 Page 42 of 46 Rev. Mod. Plasma Phys. (2018) 2:2

123



M.M. Echim, J. Lemaire, Ø. Lie-Svendsen, A review on solar wind modeling: kinetic and fluid aspects.

Surv. Geophys. 32, 1–70 (2011)

S.A. El-Wakil, E.M. Abulwafa, A.A. Elhanbaly, Super-soliton dust-acoustic waves in four-component

dusty plasma using non-extensive electrons and ions distributions. Phys. Plasmas 24(7), 073705
(2017)

R.E. Ergun, C.W. Carlson, J.P. McFadden, F.S. Mozer, L. Muschietti, I. Roth, R.J. Strangeway, Debye-

scale plasma structures associated with magnetic-field-aligned electric fields. Phys. Rev. Lett. 81,
826–829 (1998)

G.D. Fleishman, A.T. Altyntsev, N.S. Meshalkina, Microwave signature of relativistic positrons in solar

flares. Publ. Astron. Soc. Jpn. 65, S7 (2013)

J.R. Franz, P.M. Kintner, J.S. Pickett, L.-J. Chen, Properties of small-amplitude electron phase-space

holes observed by Polar. J. Geophys. Res. (Space Phys) 110, A9212 (2005)

S.B. Ganguli, The polar wind. Rev. Geophys. 34, 311–348 (1996)

S.S. Ghosh, G.S. Lakhina, Anomalous width variation of rarefactive ion acoustic solitary waves in the

context of auroral plasmas. Nonlinear Process. Geophys. 11, 219–228 (2004)

S.S. Ghosh, A.N. Sekar Iyengar, Effect of cooler electrons on a compressive ion acoustic solitary wave in

a warm ion plasma—forbidden regions, double layers, and supersolitons. Phys. Plasmas 21(8),
082104 (2014)

M.V. Goldman, M.M. Oppenheim, D.L. Newman, Theory of localized bipolar wave-structures and

nonthermal particle distributions in the auroral ionosphere. Nonlinear Process. Geophys. 6, 221–228
(1999)
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