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Abstract
The accurate assessment of business conditions is a long-standing problem in mac-
roeconomics. To construct a coincident index of growth cycles from a given set of 
indicators, we propose a new approach: the co-movement of cyclical components 
(triple-C) approach. For realizing the triple-C approach, we introduce a multi-objec-
tive optimization algorithm. We refer to the coincident index of growth cycles as the 
index of business cycles (IBC) of coincident economic indicators. The IBC based on 
the triple-C approach has the following properties: (1) its mean is globally station-
ary; (2) it is constructed as a common factor in the stationary parts of the selected 
economic indicators; and (3) its variations are as large as possible so that it contains 
a relatively large amount of information for business cycle analysis. We examine the 
performance of the constructed IBC by comparing it with a composite index based 
on data for coincident indicators in Japan.
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1  Introduction

Following the seminal work of Burns and Mitchell (1946), the measurement of busi-
ness cycles has been recognized as an important issue in macroeconomic studies. 
Furthermore, favorable or unfavorable business conditions are of great interest to 
many, because the assessment of business conditions has a significant influence on 
government economic policies. However, conventional indices may not accurately 
capture business cycles. Therefore, the question that arises is: what is a better way 
to produce useful and reliable indices? This is a long-standing problem and was a 
central question addressed by Stock and Watson (1989). In this paper, we present an 
alternative approach to constructing an index of business cycles (IBC) using coinci-
dent economic indicators. Specifically, we attempt to measure the growth cycles of 
the Japanese economy using the proposed approach. To the best of our knowledge, a 
monthly coincident index of growth cycles in Japan is a new development; hence, it 
may be of broad interest to macroeconomists and policy makers.

Conventionally, business conditions are assessed using summary measures for the 
state of macroeconomic activity in Japan and the United States (US). The composite 
index (CI) and diffusion index (DI) are representative summary measures. Although 
both have the advantage of manageability, they have faced criticism because they are 
not based on a structured statistical model. Given this, since the 1980s, many stud-
ies have been conducted on statistical methods for business cycle analysis. In Japan, 
business conditions are typically measured using the business cycle indices CI and 
DI, which are compiled by the Economic and Social Research Institute (ESRI) of 
the Japanese Cabinet Office. Since April 2008, the ESRI has placed greater empha-
sis on the CI than the DI in assessing business conditions in Japan. According to 
the Cabinet Office, the indicators for indices of business conditions are re-examined 
after each business cycle and changed if it is expected that the performance of the 
indices will improve. The DI and CI consist of three indices: a leading index, which 
is constructed based on 11 indicators, for predicting the prospective business con-
ditions; a coincident index, which is based on 10 indicators, for assessing the pre-
sent business conditions; and a lagging index, which is based on 9 indicators, for 
reconfirming the previous assessment of the business conditions. The DI represents 
the ratio of the number of indicators that increased in value during the most recent 
three-month period to the total number of applied indicators. Pioneering works in 
this area are by Stock and Watson (1989, 1991), who developed a statistical method 
to construct an IBC based on a state space model. Stock and Watson (1989, 1991) 
defined the business cycle as a co-movement of macroeconomic variables, and the 
Stock–Watson index is constructed by extracting the common factor hidden in mul-
tiple macroeconomic time series. Thus, their proposed model is commonly called 
the dynamic factor model, and it was first applied to analyze the US business cycle. 
Ohkusa (1992) and Fukuda and Onodera (2001) applied the Stock–Watson dynamic 
factor modeling approach to analyze Japanese business cycles.

The dynamic factor modeling approach has since been extended by Kanoh 
and Saito (1994), Mariano and Murasawa (2003, 2010), Watanabe (2003), and 
Urasawa (2014). Kanoh and Saito (1994) extended the dynamic factor model to 
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include qualitative data from the Short-Term Economic Survey of Enterprises 
(abbreviated to Tankan), which is a statistical survey conducted by the Bank of 
Japan. Focusing on companies’ judgments about business conditions in Tan-
kan, Kanoh and Saito (1994) considered that if such judgments reflect an overall 
assessment of actual business conditions, then a business index that statistically 
extracts the actual state of the economy from such judgments would be a more 
appropriate measure of the overall state of the economy than conventional indi-
ces. They concluded that the peaks and troughs projected by their proposed index 
have systematic relationships with the business cycles identified by experts from 
the Japanese government. Mariano and Murasawa (2003) indicated that the CI 
and Stock–Watson coincident indices have two shortcomings: first, they ignore 
information contained in quarterly indicators, such as quarterly real gross domes-
tic product (GDP); and second, they lack economic interpretation. Therefore, 
Mariano and Murasawa (2003) extended the Stock–Watson coincident index by 
applying maximum likelihood (ML) factor analysis to a mixed-frequency series of 
quarterly real GDP and monthly coincident business cycle indicators. The result-
ing index is related to latent monthly real GDP. Furthermore, Mariano and Mura-
sawa (2010) estimated Gaussian vector autoregression (VAR) and factor models 
for latent monthly real GDP and other coincident indicators using observable 
mixed-frequency series. For the ML estimation of a VAR model, the expectation-
maximization algorithm helps to identify a good starting value for a quasi-New-
ton method. Mariano and Murasawa (2010) concluded that the smoothed estimate 
of latent monthly real GDP is a natural extension of the Stock–Watson coincident 
index. To obtain early estimates of Japan’s quarterly GDP growth in real time, 
Urasawa (2014) estimated a dynamic factor model using mixed-frequency data 
for GDP, industrial production, employment, private consumption, and exports. 
The results of a real-time forecasting exercise suggested that the model performs 
well.

Another prominent approach that differs from the dynamic factor modeling 
approach is the regime-switching modeling approach developed by Hamilton (1989). 
The dynamic factor modeling approach is associated with a CI-type index; however, 
the regime-switching modeling is associated with a DI-type index. Kim and Nel-
son (1998) developed a method that combined the above two approaches. Watanabe 
(2003) applied Kim and Nelson’s (1998) approach to the Japanese economy, and 
estimated a dynamic Markov switching factor model using macroeconomic data.

We note a data treatment problem regarding the Stock–Watson dynamic factor 
modeling approach and its extensions. Specifically, many earlier studies used dif-
ferencing in time series data to obtain stationarity in cases where nonstationary data 
(e.g., the mean) was used for convenience. This results in a loss of significant infor-
mation. In this paper, we propose an alternative approach to construct a coincident 
IBC via the decomposition of time series data into several possible components. In 
contrast to the Stock–Watson index, we consider an IBC that has the following prop-
erties: (1) it is globally stationary in the mean; (2) it is constructed using the co-
movement of all the relevant coincident indicators; and (3) it has variations that are 
as large as possible so that it contains a relatively large amount of information for 
business cycle analysis.
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In particular, we emphasize the importance of the measurement of growth cycles 
rather than classical cycles, and contribute to the field of estimation methods for a 
monthly coincident index of growth cycles in Japan. Major studies on issues of clas-
sical cycles and growth cycles include Harding and Pagan (2005) and Zarnowitz 
and Ozyildirim (2006). Harding and Pagan (2005) mentioned that many problems 
arise regarding a lack of clarity as to what cycle is being studied, and provided a 
classification scheme for cycle research. Zarnowitz and Ozyildirim (2006) indicated 
the importance of measuring growth cycles in business fluctuation; that is, growth 
cycles are more numerous than classical cycles because all recessions involve slow-
downs, but not all slowdowns involve recessions. Our approach is also related to the 
unobserved component (UC) model of Morley et  al. (2003) and multivariate UC 
model of Ma and Wohar (2013). Although the model used in our approach is dif-
ferent with the UC model in the formula, it is in fact a multivariate UC model so it 
belongs to the class of the UC models.

The remainder of this paper is organized as follows: In Sect.  2, we present a 
review of existing approaches. In Sect.  3, we explain the framework of our new 
approach for constructing a business cycle index. Then, we describe the parameter 
estimation procedure in Sect. 4. In Sect. 5, we present the results of the constructed 
IBC and compare the performance of the IBC based on the newly proposed approach 
with the CI for coincident indicators using Japanese economic data. In Sect. 6, we 
discuss our new approach. We present our conclusions in Sect. 7.

2 � Review and Evaluation of Existing Approaches

2.1 � A Review

2.1.1 � Diffusion Index, Composite Index, and the MTV Model

No uniform set of official indicators is used to determine business conditions among 
developed countries. For example, the CI has a central role in measuring business 
cycles in the US, the United Kingdom, and Italy, whereas growth rates of GDP are 
emphasized in the measurement of business cycles in Canada.

The CI uses the same data as the DI. However, unlike the DI, which only 
expresses the direction of changes in indicators, the CI also indicates the degree 
of change. Therefore, the CI is considered to be useful in measuring the speed and 
magnitude of a business cycle. However, as indicated by Kanoh and Saito (1994), 
these indices are not derived from any sound statistical methods.

Kariya (1988, 1993) proposed a multivariate time series variance component 
model known as the MTV model. The basic concept of this model is that it uses 
principal component analysis (PCA) with time series data on macroeconomic vari-
ables. When we apply the MTV model to coincident indicators, a principal compo-
nent of these indicators can be regarded as an IBC. Note that the MTV model may 
lead to different results depending on the component on which it focuses. Therefore, 
a definite conclusion cannot be obtained unless there is some objective criterion that 
justifies a focus on the obtained principal component.
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2.1.2 � Stock–Watson Approach

Stock and Watson (1989, 1991) proposed a more reliable index of business cycles 
that measures the state of the economy using a time series model. In this approach, 
the signal for business fluctuations is generally expressed by a co-movement of 
selected macroeconomic variables. Thus, Stock and Watson suggested decomposing 
macroeconomic variables into common factors and unique (idiosyncratic) factors. 
The common factor is considered to be derived using a single unobservable dynamic 
variable, which is called the state of the economy.

The Stock–Watson model contains a common factor that is expressed by an AR 
model, so it is called the dynamic factor model. The dynamic factor model can be 
expressed by a state space representation. Thus, the Kalman filter algorithm can be 
applied to estimate the parameters and the common factor. The estimate for the com-
mon factor is called the Stock–Watson index (SWI).

2.1.3 � Classical Cycles and Growth Cycles

In empirical studies of business fluctuations, researchers need to clarify whether 
they are focusing on growth cycles or classical cycles (see Zarnowitz, 1991; Girar-
din, 2004, 2005; Harding & Pagan, 2005; Zarnowitz & Ozyildirim, 2006; Han et al., 
2020). The difference between growth cycles and classical cycles is whether cycles 
are measured without trends. Specifically, cycles in a series excluding trends are 
called growth cycles, whereas those in a series including trends are called classical 
cycles. A growth cycle-type business index is preferable to highlight the economic 
wave. Additionally, as described in Girardin (2005), growth cycles provide lessons 
on when and how normal growth speeds up and slows down. However, to the best of 
our knowledge, an approach for estimating the monthly coincident index of growth 
cycles in Japan has not been established. We believe that our proposed method will 
be of broad interest to macroeconomists and policy makers.

2.2 � Evaluating Existing Approaches

As mentioned in Fukuda (1994) and Komaki (2001), the approaches used to con-
struct business cycle indices can be classified in terms of whether they consider 
trends and the cyclical components for an indicator as deterministic or stochastic. 
Specifically, DI, CI, and MTV modeling approaches are based on a deterministic 
perspective. By contrast, dynamic factor modeling is based on a stochastic perspec-
tive. An advantage shared by the DI and CI is their simplicity of construction. How-
ever, because they are not based on a clear statistical assumption, there can be dif-
ficulties in using them for prediction. The MTV modeling approach is based on a 
model involving PCA. However, generally, the data structure is not clearly defined.

Conversely, the Stock–Watson dynamic factor modeling approach is based on a 
state space model. Therefore, this approach is based on a set of statistical models that 
express the structure of the data. However, to satisfy the assumption of stationarity 
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for the data used, many existing methods adopt an ad hoc approach to the treatment 
of data, such as the use of differences for the time series. Another problem with the 
Stock–Watson approach is the difficulty of determining whether to use differencing. 
Additionally, differencing a time series in first order is not a general approach to 
obtain stationarity because in a period of rapid economic growth, an economic vari-
able may increase exponentially. Thus, to obtain stationarity, second differencing is 
considered first.

It is widely accepted that GDP is an inclusive measure of an economy’s perfor-
mance and, therefore, that it can be used as a real business cycle index. However, 
using GDP in this manner poses a number of problems, largely because of a lack 
of statistical sufficiency and the conflict between the need for immediate reports 
and the fact that GDP statistics are published quarterly, not monthly, and there is a 
long lag prior to their publication. It should be noted that Mariano and Murasawa 
(2003, 2010) adopted GDP as an additional coincident indicator to construct a busi-
ness cycle index. Although this is an excellent concept, the problem inherent in the 
Stock–Watson approach cannot be completely resolved because it remains based on 
dynamic factor modeling.

The interaction between economic growth and business cycles is always an issue 
in macroeconomics (see Kaihatsu et al., 2019). The difficulty with this issue is that 
there are no established definitions for these terms. They are also concerned with the 
concepts of trend and cycles for an indicator in statistical analysis. Recently, many 
approaches for trend-cycle decomposition have been proposed. For example, the 
Hodrick–Prescott filter (Hodrick & Prescott, 1997), Baxter–King approach (Baxter 
& King, 1999), UC modeling approach (Morley et al., 2003), and DECOMP pro-
gram (see Kitagawa, 1981; Kitagawa & Gersch, 1984). In the present paper, we take 
the approach in the DECOMP program, that belongs to the UC modeling approach, 
as a base for proposing a new index of business cycles in Japan based on the concept 
of growth cycles.

3 � Proposed Approach

3.1 � Model Construction

Let yit denote a monthly time series, which is one of m coincident indicators with 
i = 1, 2,… ,m . Generally, it is considered that each indicator (or its transformation) 
comprises nonstationary and stationary parts. Furthermore, the nonstationary part 
contains trend, seasonal, and cyclical components, which express a long-term ten-
dency, a patterned variation that appears repeatedly every year, and a short-term 
variation caused by business cycles, respectively. In many cases, an irregular com-
ponent is also taken into consideration. Kitagawa (2020, p. 204) and Kitagawa and 
Gersch (1984, p. 124) assumed that the cyclical component can be expressed by a 
stationary AR model, also called the AR component.

Let zit = g(yit) be a one-to-one transformation of the time series yit for the i-th 
indicator. Based on the above consideration, the model for zit can be written as a 
seasonal adjustment model (see Kitagawa, 2020,  pp. 195–210). In many cases of 
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business cycle analysis, the time series zit has been seasonally adjusted; hence, the 
model is written as follows:

where �it and ait denote the trend and cyclical components, respectively, and �it 
denotes the irregular component (also called observation noise). For statistical 
analysis, observation noise �it is assumed to be a random variable distributed with 
�it ∼ N (0, �2

i
) . Note that the function g(⋅) is determined so that zit = g(yit) can be 

reasonably expressed in an additive multi-component form, as expressed in Eq. (1). 
As an example, a logarithmic function is frequently applied to g(⋅).

To obtain meaningful estimates for every component, we use several models for 
each component based on the assumptions as follows: As is typical for economic 
analysis, we assume that the trend component varies smoothly over time and that the 
cyclical component is stationary. Hence, we introduce a stochastic difference equa-
tion for the trend component. As mentioned in Sect. 2.1.2, in a period of rapid eco-
nomic growth an economic variable may increase exponentially. It may be difficult 
to express the behavior of the trend using a first-order difference equation. Thus, we 
introduce a second-order equation as follows:

where Δ denotes the difference operator and �it denotes a random error distributed 
with �it ∼ N (0,�2

i
) . Furthermore, we use an AR model for ait as follows:

where qi is the model order, {�(i)
j
;j = 1, 2,… , qi} are the AR coefficients, and �it is 

Gaussian white noise distributed with �it ∼ N (0, �2
i
).

The model in Eqs. (1)–(3) describes the structure to decompose the time series zin 
into two meaningful unobserved components, hence it is essentially a UC model. 
The model in Eq. (1) is an observation model for the time series zit , and the models 
in Eqs. (2) and (3) can be considered as models for the trend tit and cyclical ait com-
ponents, respectively. Clearly, Eqs. (1)–(3) take the form of a linear Gaussian model 
for the trend and cyclical components. For the case in which the model for each 
value of i is individually managed, Kitagawa (2020, p. 163) developed a ML method 
to estimate the parameters �2

i
 , �2

i
 , �2

i
 , and {�(i)

j
;j = 1, 2,… , qi} based on the Kalman 

filter algorithm.
As mentioned in Sect.  1, Stock and Watson (1989, 1991) defined the SWI as 

co-movements in a set of macroeconomic variables. Therefore, it is constructed by 
extracting a common factor that is hidden in multiple macroeconomic time series 
data. In contrast to the Stock–Watson approach, we consider that economic cycles 
can be organized using the basic classification of short and long-term cycles. Short-
term cycles generally mean business cycles or business fluctuations. Thus, to sim-
plify the analysis of business fluctuations, it is necessary to separate business cycles 
from other economic cycles in the longer term.

(1)zit = �it + ait + �it (i = 1, 2… ,m),

(2)Δ2�it = �it (i = 1, 2,… ,m),

(3)ait =

qi∑
j=1

�
(i)

j
ai(t−j) + �it (i = 1, 2,… ,m),
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Therefore, based on the concept of growth cycles, we expect that an index for 
business fluctuations would have the following properties: 

1.	 It is globally stationary in the mean.
2.	 It is as a co-movement of the stationary parts of the various economic indicators 

used.
3.	 It has variations that are as large as possible so that it contains a relatively large 

amount of information for business cycle analysis.

Thus, to construct an IBC using the co-movement of cyclical components in the time 
series for selected coincident indicators, we take the common factor of the cyclical 
components {ait;i = 1, 2… ,m} . Hence, we can consider a factor analysis model for 
{ait;i = 1, 2… ,m} . However, the estimation of such a comprehensive model is dif-
ficult; hence, we need some simplification for the estimation. This difficulty can be 
mitigated by applying the PCA method to the estimates for {ait;i = 1, 2… ,m} . The 
first principal component can be considered as an estimate of the common factor; 
thus, it can be used as the IBC.

To derive an index that is free from the scale of the data, we construct the IBC 
based on the results of normalized cyclical components; that is, we normalize the 
cyclical components as follows:

where SD {ait} is the standard deviation of the time series {ait} . Then, we construct 
the IBC using the first principal component of the normalized cyclical components 
{a∗

it
;i = 1, 2,… ,m} as follows:

where {wi;i = 1, 2,… ,m} denotes the principal component loadings for the first 
principal component, in which 

∑m

i=1
w2
i
= 1.

Hereinafter, we refer to the index bt defined in Eq. (5) as the IBC, and call the 
method to construct the IBC the co-movement of cyclical components (triple-C) 
approach. In the following estimation procedure, we regard the cyclical component 
as a stationary AR process with mean zero so that the IBC is a stationary process 
with mean zero. Thus, the IBC coincides with the concept of growth cycles, and 
as with the CI, it can measure the speed and magnitude of business fluctuations. 
Moreover, we regard the zero level for the IBC as the midpoint between states of 
prosperity and depression.

3.2 � Outline for Parameter Estimation

To estimate the parameters in the models in Eqs. (1)–(3), we introduce the following 
assumptions: 

(4)a∗
it
=

ait

SD {ait}
(i = 1, 2,… ,m),

(5)bt =

m∑
i=1

wia
∗
it
,
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1.	 �it , �it , and �it are independent of each other for all values of i and t.
2.	 �it1 and ��t2 are independent of each other when i ≠ � or t1 ≠ t2.
3.	 �it1

 and ��t2
 are independent of each other when i ≠ � or t1 ≠ t2.

4.	 �it1
 and ��t2

 are independent when i = � for t1 ≠ t2 , but may be dependent when 
i ≠ � for any values of t1 and t2.

5.	 The parameters �2
i
 , �2

i
 , �2

i
 , and {�(i)

j
;j = 1, 2,… , qi} are constant over time.

Under the above assumptions, except for �it and ait , qi + 3 parameters exist for 
each indicator. When the values of these parameters are given, we can obtain the 
estimates for �it and ait . Hereafter, for each value of i, we refer to �it and ait as 
latent variables, and �2

i
 , �2

i
 , �2

i
 , and {�(i)

j
;j = 1, 2,… , qi} as parameters.

The fourth assumption is based on the consideration that, among the cycli-
cal components ait with i = 1, 2,… ,m , there is a common factor to be estimated. 
Thus, in principle, �it and ait should be estimated simultaneously for all time 
points and all values of i = 1, 2,… ,m ; that is, let the sample size for the time 
series yit be N. Then it is necessary to estimate �it and ait for t = 1, 2,… ,N and 
i = 1, 2,… ,m simultaneously based on the estimates for the 

∑m

i
qi + 3m param-

eters. This is very difficult in practice.
To mitigate the estimation difficulties, we develop a new estimation technique 

that combines the ML method and PCA. A key quantity is the ratio of the vari-
ance of error in the cyclical component to that in the trend component; that is, for 
i = 1, 2,… ,m , the proportion

is a key parameter for the present problem. By introducing this parameter, we can 
control the relative variations in the trend and cyclical components and, therefore, 
maintain the balance between the variances of errors.

As mentioned in the preceding subsection, our first objective in this study is to 
obtain the IBC in Eq. (5) with a relatively large variance, and our second is to fit 
the models to the data with a large goodness of fit. Thus, we propose a numeric 
optimization method for the parameter estimation as follows. We first estimate 
the ratio �i by maximizing the variance of the IBC in Eq. (5) for given values of 
the other parameters. Then, we estimate the other parameters by maximizing the 
likelihood under the estimate of the parameter �i in the early stage. Thus, this 
scheme of parameter estimation is essentially as a hierarchical optimization (HO) 
method (see Friesz, 1992). We introduce the algorithm for parameter estimation 
in Sect. 4.3 in detail.

Moreover, as we show in the following section, a set of initial values for the 
cyclical components ain is necessary for parameter estimation. As the initial val-
ues for ait (i = 1, 2,… ,m) , we use the differences between zit and its moving aver-
age with term 2L + 1:

(6)�i =
�2
i

�2
i
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for t = L + 1, L + 2,… ,N − L ; otherwise, we use â(0)
it

= 0.

4 � Estimation Method

4.1 � Estimating the Trend and Cyclical Components

To simplify the estimation process, we tentatively assume that the parameters can be 
estimated individually for the model of each indicator with i = 1, 2,… ,m . To express 
the model in a state space representation, we define the state vector based on related 
quantities in the trend and cyclical components as follows:

and we use the following matrices:

Moreover, to reduce the number of parameters that have to be estimated using 
numeric methods, we follow Kitagawa (2020, p. 165) and combine

with

Then, the models in Eqs. (1)–(3) can be expressed by the following state space 
representation:

where vit = (�̃it, �̃it)
� . In the state space model comprising Eqs. (9) and (10), the 

latent variables tit and ait are included in the state vector xit . Therefore, we can obtain 

(7)â
(0)

it
= zit −

1

2L + 1

L∑
�=−L

zi(t+�)

xit = (�it, �i(t−1), ait, ai(t−1),… , ai(t−qi+1))
�,

Fi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 − 1 0 ⋯ ⋯ ⋯ 0

1 0 0 ⋯ ⋯ ⋯ 0

0 0 �
(i)

1
�
(i)

2
⋯ ⋯ �(i)

qi

⋮ ⋮ 1 0 ⋯ ⋯ 0

⋮ ⋮ 0 1 ⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮

0 0 0 ⋯ 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 0

0 1

0 0

⋮ ⋮

⋮ ⋮

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0

1

0

⋮

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

�

.

�̃it =
�it

�i
, �̃it =

�it

�i
, �̃it =

�it

�i
,

(8)�̃2
i
=

�2
i

�2
i

, �̃2
i
=

�2
i

�2
i

.

(9)xit =Fixi(t−1) + Gvit,

(10)zit =Hxit + �̃it,
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their estimates from the estimate of xit under the assumption that the AR model 
order qi and the parameters �̃2

i
 , �̃2

i
 , and �(i) = (�

(i)

1
, �

(i)

2
,… , �(i)

qi
)� are given.

Let xi0 denote the state at the initial time point and let Zik = {zi1, zi2,… , zik} 
denote a set of transformed observations for zit up to time point k. We assume that 
xi0 ∼ N (xi(0|0),Ci(0|0)) . It is well known that the density function f (xit|Zik) for the 
state xit , conditional on Zik , is Gaussian and, therefore, it is only necessary to obtain 
the mean xi(t|k) and the covariance matrix Ci(t|k) of xit with respect to f (xin|Zik).

When we provide the values of qi , �̃2
i
 , �̃2

i
 , and �(i) , the distribution N (xi(0|0),Ci(0|0)) 

for xi0 , and a set of observations for zit up to the time point N, we can obtain the 
estimates for the state xit using the well-known Kalman filter (for t = 1, 2,… ,N ) 
and fixed-interval smoothing (for t = N − 1,N − 2,… , 1 ) recursively as follows (see 
Kitagawa, 2020, pp. 156–158):

[Kalman filter]

[Fixed-interval smoothing]

where Ri = �2
i
 , Qi = diag (�̃2

i
, �̃2

i
) , and I denotes an identity matrix.

Then, the smoother distribution of xit can be defined using xi(t|N) , which is the 
mean vector, and Ci(t|N) , which is the covariance matrix. Subsequently, estimates for 
�it and ait can be obtained from xi(t|N) because the state space model described by 
Eqs. (9) and (10) incorporates �it and ait in the state vector xit . Hereinafter, the esti-
mates of �it and ait are denoted by �̂it and âit , respectively.

4.2 � Estimating the parameters

For i = 1, 2,… ,m , Eqs. (6) and (8) lead to �i =
�̃2
i

�̃2
i

 . Thus, �̃2
i
(�i) = �i�̃

2
i
 ; that is, �̃2

i
 

corresponds to �i one-to-one for the given value of �̃2
i
 . Therefore, we regard �i as a 

parameter instead of �̃2
i
 . When the values of qi , �2

i
 , and �i together with the time 

series data ZiN = {zi1, zi2,… , ziN} are given, the likelihood function for the hyperpa-
rameters �̃2

i
 and �(i) , which is derived from the algorithm of the Kalman filter, is as 

follows:

xi(t|t−1) =Fixi(t−1|t−1),
Ci(t|t−1) =FiCi(t−1|t−1)F

�

i
+ GQiG

�
.

Lit =Ci(t|t−1)H
�(HCi(t|t−1)H

� + Ri)
−1
,

xi(t|t) = xi(t|t−1) + Lit(zit −Hxi(t|t−1)),
Ci(t|t) = (I − LitH)Ci(t|t−1);

Pit =Ci(t|t)F
�

i
C−1

i(t+1|t),

xi(t|N) = xi(t|t) + Pit(xi(t+1|N) − xi(t+1|t)),
Ci(t|N) =Ci(t|t) + Pit(Ci(t+1|N) − Ci(t+1|t))P

�

it
,
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where fit(zit|�̃2i , �(i);Zi(t−1), �
2
i
, �̃2

i
(�i)) is the conditional density function of zit 

given past history Zi(t−1) = {… , zi(t−2), zi(t−1)} and the parameters. We assume that 
Zi0 = {… , zi(−1), zi0} is an empty set. Then,

By taking the logarithm of fi(ZiN|�̃2i , � (i);�2
i
, �̃2

i
(�i)) , we obtain the log-likelihood as 

follows:

Following Kitagawa (2020, pp. 163–166), when the Kalman filter is achieved, the 
conditional density fit(zit|�̃2i , �(i);Zi(t−1), �

2
i
, �̃2

i
(�i)) has a normal density given by

where ẑi(t|t−1) is the one-step ahead prediction for zit and wi(t|t−1) is the variance of the 
predictive error. They are given respectively by

Thus, under a given value of �i together with �2
i
= 1 which is a provisional setting 

for �2
i
 , we obtain the estimates of the parameters �̃2

i
 and �(i) numerically using the 

ML method; that is, we estimate the parameters �̃2
i
 and �(i) numerically by maxi-

mizing LLi(�̃2i , �
(i)|�2

i
, �i) in Eq. (11) together with Eq. (12). Furthermore, based on 

Kitagawa (2020, pp. 163–166), we obtain the estimate �̂2
i
 for �2

i
 analytically using

It is notable that we can increase the efficiency of estimating �(i) by applying the fast 
recursive estimation method proposed by Kyo and Noda (2011). Additionally, let ̂̃�

2

i
 

and �̂i denote the estimates of �̃2
i
 and �i , respectively. Then, from the above settings, 

the estimates for �2
i
 and �2

i
 are given by

fi
(
ZiN|�̃2i , �(i);�2

i
, �̃2

i
(�i)

)
=

N∏
t=1

fit
(
zit|�̃2i , �(i);Zi(t−1), �

2
i
, �̃2

i
(�i)

)
,

fi1

(
zi1|�̃2i , �(i);Zi0, �

2
i
, �̃2

i
(�i)

)
= fi1

(
zi1|�̃2i , �(i);�2

i
, �̃2

i
(�i)

)
.

(11)

LLi
(
�̃2
i
, �(i)|�2

i
, �i

)
= log fi

(
ZiN|�̃2i , � (i);�2

i
, �̃2

i
(�i)

)

=

N∑
t=1

log fit

(
zit|�̃2i , �(i);Zi(t−1), �

2
i
, �̃2

i
(�i)

)
.

(12)

fit
(
zit|�̃2i , � (i);Zi(t−1), �

2
i
, �̃2

i
(�i)

)
=

1√
2��2

i
wi(t|t−1)

exp

{
−

(zit − ẑi(t|t−1))2

2�2
i
wi(t|t−1)

}
,

ẑi(t|t−1) = Hxi(t|t−1), wi(t|t−1) = HCi(t|t−1)H
� + �2

i
.

(13)�̂2
i
=

1

N

N∑
t=1

(zit − ẑi(t|t−1))2

wi(t|t−1)
.
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respectively.
Clearly, the estimates for the parameters �̃2

i
 and �(i) depend on the value of �i . 

Furthermore, from the Kalman filter algorithm, we can see that the estimates for the 
elements of the state vector constitute a set of functions of �i ; that is, under a given 
value of �i , we can estimate the parameters �̃2

i
 and �(i) . Thus, as a function of �i , we 

can obtain the estimate for the cyclical component ait using the Kalman filter and 
fixed-interval smoothing. We assume that the estimates of the cyclical components 
for the other indicators (except that of the i-th) are given in advance. Hence, we nor-
malize the estimates of the cyclical components using Eq. (4), and then apply PCA 
to the normalized estimates of the cyclical components. Then, we take the first prin-
cipal component as bt defined in Eq. (5), which is called the IBC.

As mentioned in Sect. 3.1, as a measurement of business fluctuations, we expect 
that our IBC will have relatively large variations. Therefore, we obtain the estimate 
�̂i of the parameter �i by numerically maximizing the variance Var {bt} of bt , and 
simultaneously, we determine the order qi for the AR model. Note that we perform 
the above computation for parameter estimation iteratively because it has to be run 
for i = 1, 2,… ,m recursively.

4.3 � The Algorithm

To run the scheme for parameter estimation, the algorithm for the triple-C approach 
based on a numeric HO method is summarized as follows: 

1.	 Assume k = 0 , set an appropriate value for L, and then set the initial values: 

 for the cyclical components using Eq. (7), where N is the length of the time 
series data.

2.	 For i = 1, 2,… ,m , perform the following steps.
3.	 Replace the value of k with k + 1 . 

(a)	 Estimate the parameters �̃2
i
 and �(i) numerically by maximizing the log-

likelihood in Eq. (11) together with Eq. (12) under the given value of �i.
(b)	 Compute the estimate of �2

i
 using Eq. (13).

(c)	 Obtain the estimates {â(k)
it
;t = 1, 2,… ,N} for the cyclical component ain 

using the Kalman filter and a fixed-interval smoothing algorithm.
(d)	 Compute the normalized values {â∗(k)

it
;t = 1, 2,… ,N} for {â(k)

it
 ; 

t = 1, 2,… ,N} using Eq. (4).
(e)	 Perform PCA for 

(14)�̂2
i
= �̂2

i
̂̃�
2

i
, �̂2

i
= �̂2

i

̂̃
�
2

i
=

̂̃
�
2

i

̂̃�
2

i

�̂2
i
̂̃�
2

i
= �̂i�̂

2
i
,

{â
(0)

it
;t = 1, 2,… ,N;i = 1, 2,… ,m}
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 Consider {a∗(i,k)t ;t = 1, 2,… ,N} as a set of m-variate time series data, and 
then obtain 

 as the first principal component of a∗(i,k)t  , where w = (w1,w2,… ,wm)
� is 

the vector of principal component loadings and Var {b(i,k)t } is its variance.
(f)	 Estimate �i and qi by numerically maximizing Var {b(i,k)t }.

4.	 When the value of Var {b(m,k)t } almost converges to a fixed level, proceed to the 
next step; otherwise, return to step 2.

5.	 End the calculation and take the estimates corresponding to the values of �i and 
qi as the final results.

6.	 Calculate the estimates for �2
i
 and �2

i
 using Eq. (14).

Note that we implemented this algorithm using a program that was written in R and 
it is used for real data analysis, as we illustrate in the next section.

5 � IBC Results for Japan

5.1 � Data Used for Analysis

In this paper, we focus on the analysis of business cycles in Japan using the pro-
posed approach. We consider time series data for the coincident indicators, which 
are listed in Table 1, as the main materials, and use the coincident CI as an objective 
for comparing the performance with our IBC. We use GDP data as references.

The functions we use to transform the coincident indicators in the model in Eq. 
(6) are also shown in Table 1. To construct the additive multi-component form in 
Eq. (6) and equalize the error variance for each component over time, we use a loga-
rithmic transformation as the function g(⋅) for most indicators, excluding C6 and C7, 
which contain some negative values; hence, the logarithmic transformation cannot 
be applied. We use the data for the indicators in the period January 1975 to Decem-
ber 2019. Figure 1 shows the transformed time series data for the indicators. Note 
that we obtained the original data for the indicators from the website of the ESRI, 
Cabinet Office, Government of Japan (https://​www.​esri.​cao.​go.​jp/​jp/​stat/​di/​di.​html).

a
∗(i,k)
t

=

⎧
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��
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https://www.esri.cao.go.jp/jp/stat/di/di.html
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In Japan, monthly CI estimates are constructed from January 1985 and pub-
lished on the same ESRI website as that for the indicators. Thus, as the objec-
tive for comparing the performance with our IBC, we can only use the estimated 
results for the CI in Japan in the period January 1985 to December 2019. Figure 2 
shows the monthly time series of the coincident CI in Japan during this period.

We obtained quarterly time series data for GDP from another part of the web-
site of the Cabinet Office, Government of Japan (https://​www.​esri.​cao.​go.​jp/​jp/​
sna/​data/​data_​list/​sokuh​ou/​files/​2001/​qe011/​gdeme​nuja.​html). However, we 
could not obtain the entire set of time series data throughout the analyzed period. 
Thus, we obtained two sets of data as follows: one was the dataset for the period 
Q1, 1955 to Q4, 2000 (with the net asset value in 1990 of 10 hundred million 
Yen), and the other was the dataset for the period Q1, 1994 to Q4, 2019 (with the 
net asset value in 2005 of 10 hundred million Yen). The data for the time series of 
the logarithm of GDP are shown in Fig. 7a and b, respectively.

5.2 � Constructing the Coincident IBC

To obtain the result of our IBC for the Japanese data, we apply our triple-C 
approach to the transformed data of 10 coincident indicators during the period 
January 1975 to June 2019 that are shown in Table 1 and Fig. 1.

As expressed in the algorithm in Sect. 4.3, the computation for parameter esti-
mation is based on a set of initial values of the cyclical components using Eq. (7) 
in which the value of L is determined as L = 12 . Then, the parameter estimation 
is computed by repetition. The result indicates that the variance of the IBC con-
verges to a limited larger value (approximately 6.55) and it stabilizes from the 
sixth repetition.

Table 1   Outlines of the indicators

No. Indicator name Variable Function g(⋅)

C1 Index of industrial production (mining and manufacturing) y1 log(y1)

C2 Index of producers’ shipments (producer goods for mining and manufac-
turing)

y2 log(y2)

C3 Index of producers’ shipments of durable consumer goods y3 log(y3)

C4 Index of nonscheduled working hours (industries covered) y4 log(y4)

C5 Index of producers’ shipments (investment goods excluding transport 
equipment)

y5 log(y5)

C6 Retail sales value (change from previous year) y6 y6

C7 Wholesale sales value (change from previous year) y7 y7

C8 Operating profits (all industries) y8 log(y8)

C9 Index of shipments in small and medium-sized enterprises y9 log(y9)

C10 Effective job offer rate (excluding new graduates) y10 log(y10)

https://www.esri.cao.go.jp/jp/sna/data/data_list/sokuhou/files/2001/qe011/gdemenuja.html
https://www.esri.cao.go.jp/jp/sna/data/data_list/sokuhou/files/2001/qe011/gdemenuja.html


116	 Journal of Business Cycle Research (2022) 18:101–127

1 3

For reference purposes, the main results for the hyperparameters in the models 
for the indicators are listed in Table 2, where i denotes the number of indicators. 
Note that we set the upper limit of the parameter �i to 1.00 × 105.
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Fig. 1   Transformed time series data for the indicators
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Figure 3 shows the estimated trend components for each transformed indicator. 
We can see that the behavior of each trend is distinct and, therefore, it may be dif-
ficult to extract a common factor from the estimated trend components.

Figure 4 shows the estimated cyclical components for each transformed indicator. 
We can see that the estimates for the cyclical components vary with irregular cycles; 
however, most of the estimated cyclical components drop suddenly around 2009, 
caused by Lehman Brothers. The correlation matrix for the estimated cyclical compo-
nents is provided in Table 3 (note that because the matrix is symmetric, only the ele-
ments below the diagonal are shown). This table illustrates that there is a very high 
positive correlation between pairs among the estimated cyclical components. Thus, it 
is possible to extract a common factor using the first principal component composed of 
the estimated cyclical components with a very high contribution rate.

Thus, to construct the IBC, we use PCA based on the correlation matrix shown in 
Table 3. The largest eigenvalue for the correlation matrix is 6.550, and the correspond-
ing eigenvector is

1985 1990 1995 2000 2005 2010 2015 2020

75
85

95
10

5

Fig. 2   Time series data for the CI in Japan (January 1985 to December 2019)

Table 2   Main results for hyperparameter estimation

i 1 2 3 4 5

qi 10 10 10 1 4
�̂2
i

4.09 × 10−8 7.23 × 10−8 9.67 × 10−5 1.81 × 10−8 4.87 × 10−8

�̂2
i

4.25 × 10−8 3.24 × 10−8 5.62 × 10−8 2.74 × 10−7 3.64 × 10−7

�̂2
i

2.92 × 10−4 3.00 × 10−4 1.24 × 10−3 1.81 × 10−4 4.87 × 10−4

�̂i 6.89 × 103 9.26 × 103 2.20 × 104 6.58 × 103 1.34 × 103

i 6 7 8 9 10

qi 12 4 1 1 4
�̂2
i

2.89 × 10−1 7.57 × 10−4 1.86 × 10−5 4.30 × 10−5 7.58 × 10−8

�̂2
i

4.65 × 10−5 2.86 × 10−4 4.36 × 10−7 8.46 × 10−7 1.44 × 10−7

�̂2
i

4.64 7.57 2.14 × 10−3 4.37 × 10−4 7.58 × 10−4

�̂i 1.00 × 105 2.65 × 104 4.89 × 103 5.17 × 102 5.26 × 103
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From these results, we can see that the contribution rate for the first principal com-
ponent is 65.50% because the sum of the variances for each of the normalized 

w = (0.382, 0.361, 0.323, 0.268, 0.347, 0.164, 0.304, 0.352, 0.316, 0.290)�.
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Fig. 3   Estimated trend components (January 1975 to December 2019)
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cyclical components is 10. Moreover, the eigenvector w is equivalent to the vector 
of the principal component loadings for the IBC. An element in the vector of the 
principal component loadings expresses how the IBC depends on the corresponding 
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Fig. 4   Estimated cyclical components (January 1975 to December 2019)
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indicator. For example, w1 = 0.382 is the maximum element and w2 = 0.361 is the 
second maximum element in the vector of principal component loadings. Hence, we 
can say that the index of industrial production (C1) has the largest effect on the IBC, 
the index of producers’ shipments (C2) has the second-largest effect, and so on.

Based on the normalized estimates for the cyclical components and the vector of 
principal component loadings w , we compute the estimate of the IBC, say bt , using Eq. 
(5). Figure 5 shows the time series for the estimate of the IBC during the period Janu-
ary 1975 to December 2019. We can observe that the IBC varies around zero, and then 
drops suddenly in the first half of 2009 after the collapse of Lehman Brothers.

5.3 � Comparing the Performance of our IBC with the Coincident CI

To verify the performance of our IBC, we compare it with the coincident CI. However, 
they cannot be directly compared because our IBC expresses growth cycles and the CI 
is concerned with classical cycles, although it looks almost stationary in the mean from 
Fig. 2. To retain the original cycles in the time series of the CI and remove the trend (if 
it has a trend) simultaneously, we consider a regression model for the time series CIt of 
the CI as

Table 3   Correlation matrix for the estimated cyclical components

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 1
C2 0.942 1
C3 0.831 0.752 1
C4 0.650 0.595 0.504 1
C5 0.878 0.753 0.659 0.612 1
C6 0.372 0.335 0.300 0.136 0.356 1
C7 0.703 0.708 0.519 0.445 0.664 0.451 1
C8 0.862 0.847 0.701 0.519 0.746 0.373 0.720 1
C9 0.766 0.627 0.586 0.548 0.838 0.328 0.561 0.724 1
C10 0.731 0.731 0.701 0.479 0.532 0.059 0.484 0.643 0.447 1
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5
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5

Fig. 5   Time series for estimate of the IBC
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We simply estimate the parameters a and b using a least squares method, and 
then regard r̂t = CIt − â − b̂t as the detrended CI (abbreviated to DCI). Then, we 
can compare our IBC with the DCI. Note that the estimates of the parameters are 
â = 84.25 and b̂ = 0.0407 , respectively, and the time series of the DCI is shown in 
Fig. 6a. Moreover, to illustrate how the IBC correlates with the DCI, we create a 
scatter diagram of the IBC versus the DCI (see Fig. 6b) during the period January 
1985 to December 2019, which corresponds to the data span of the CI. Note that the 
correlation coefficient between these two indices is 0.9257. This implies that there is 
a very high positive correlation between the IBC and DCI.

An important issue is how well does the IBC express the state of business fluc-
tuations? It is difficult to examine the performance of the IBC because we have no 
objective standard that expresses the level of business fluctuations. However, as 
mentioned in Sect. 2.2, it is widely accepted that GDP is an inclusive measure of 
economic performance; hence, Mariano and Murasawa (2010) used real GDP to 
measure business cycles. Thus, we use real GDP as an expediential reference for 
business cycles.

We use a seasonal adjustment model as follows:

where yt denotes the quarterly time series data for real GDP; �t , st , and at denote the 
trend, seasonal, and cyclical components, respectively; and �t denotes the irregular 
component. We apply the models in Eqs. (2) and (3) for the trend and cyclical com-
ponents. For the seasonal component, we use the seasonal model as follows:

CIt = a + bt + rt (n = 1, 2,…).

log(yt) = �t + st + at + �t, �t ∼ N (0, �2),

st = −st−1 − st−2 − st−3 + vt, vt ∼ N (0, �2),
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Fig. 6   a Time series of the DIC, and b scatter diagram of the IBC versus the DCI
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where �2 denotes the unknown variance. Then, the logarithm of real GDP (log-
GDP) can be decomposed into the trend, seasonal, and cyclical components together 
with the irregular component. A detailed explanation of the modeling and parameter 
estimation can be found in Kitagawa (2020, p. 204). Note that we applied the above 
modeling method to the time series data of log-GDP during the period Q1, 1955 to 
Q4, 2000 and that during the period Q1, 1994 to Q4, 2019 separately. The results for 
the decomposition of log-GDP shown in Fig. 7c, e, and g are the results for period 
Q1, 1955 to Q4, 2000, those shown in Fig. 7d, f, and h are the results for the period 
Q1, 1994 to Q4, 2019.

We consider the cyclical component of log-GDP (abbreviated to CLGDP) as 
a referential indicator of growth cycles. Thus, we can measure the performance 
of the IBC using its correlation with the CLGDP. We compare the performance 
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of the IBC and CI by comparing the correlation coefficients of the IBC and DCI 
with the CLGDP for the data during each period. We perform comparative analy-
sis in the following two overlapping periods, which are determined by the com-
mon data spans for the used data: the first period is 1985–2000, and the second 
period is 1994–2019. Note that for the correspondence to the quarterly GDP data, 
we take the sum of each three-month period as the value of each quarter for the 
IBC and DCI.

Figure 8a and b show scatter diagrams of the CLGDP with the DCI and IBC 
during the period Q1, 1985 to Q4, 2000, and Fig. 8c and d show similar scatter 
diagrams during the period Q1, 1994 to Q4, 2019.

Incidentally, in the period Q1, 1985 to Q4, 2000, the correlation coefficients of 
the CLGDP with the DCI and IBC are 0.7034 and 0.8038, respectively, whereas 
in the period Q1, 1994 to Q4, 2019, they are 0.4962 and 0.8023, respectively. 
Thus, the IBC has a higher correlation with the log-GDP than the coincident CI, 
which implies that the IBC outperforms the coincident CI.

It should be noted that the method for detrending the log-GDP is different from 
that for detrending the coincident CI, so it is somewhat inconsistent; But it is dif-
ficult to develop a consistent method because the structures for these time series 
are very different. However, it still can be used as a set of references.
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6 � Discussion

Although the analyzed results in Sect. 5 imply that the triple-C approach has very 
high performance, there are several issues that need to be discussed.

6.1 � Hierarchical Optimization (HO)

To obtain a large variance of the IBC, we used a numeric HO method in the appli-
cation of the triple-C approach. Using this method, we can estimate the cyclical 
components for the used indicators simultaneously, and thus construct a system-
atic method for obtaining the IBC. However, this method needs repetition of com-
putation; hence, the computational costs may increase.

Alternatively, a natural approach for parameter estimation exists: the use of the 
ML method; that is, we can estimate all hyperparameters by directly maximiz-
ing the log-likelihood in Eq. (11) for each indicator separately. Although the ML 
method is more efficient for computation, it may reduce the performance of the 
constructed IBC.

We compare our HO method with the ML method numerically because a the-
oretical comparison may be very difficult. First, the averages of the correlation 
coefficients between every different pair of estimated cyclical components for the 
HO and ML methods are 0.5937 and 0.2841, which implies that the total cor-
relation between the estimated cyclical components based on the ML method is 
low. Furthermore, the variance of the constructed IBC based on the ML method 
is 4.58, whereas that based on the HO method is 6.55 (as was shown previously); 
that is, the HO method can lead to an IBC with large variance. Finally, in the 
period Q1, 1985 to Q4, 2000, the correlation coefficients of the CLGDP with the 
IBCs based on the ML and HO methods are 0.7040 and 0.8038, whereas in the 
period Q1, 1994 to Q4, 2019, they are 0.7169 and 0.8023, respectively. Thus, the 
IBC based on the HO method has a higher correlation with the CLGDP than that 
based on the ML method. The above results demonstrate the high performance of 
the IBC using the HO method.

As typical examples, Fig. 9 shows the estimated trend and cyclical components 
using the ML method for the indicators C4 and C5. By comparison with the results 
using the MO method (as was shown in Figs. 3 and 4), we can see the following. 
In the ML method, only the goodness of fit is considered as the purpose function; 
hence, a part of the cyclical variation remains in the estimated trend. Thus, the vari-
ances of the estimated cyclical components are small, which leads to a small vari-
ance for the constructed IBC; hence, its expressive power becomes low.

6.2 � Differencing Order in the Trend Model

In Sect. 2.2, we justified the use of second differencing for the trend model. How-
ever, it is only a guess, not an inference. This issue can be confirmed from the 
perspective of goodness of fit for the models. To compare the goodness of fit for 
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the trend models with first differencing and second differencing, we compute the 
maximum log-likelihood (MLL) for each model of the indicators.

Table 4 shows the values of the MLL of the model for each indicator with dif-
ferencing orders k = 1 and k = 2 . From this table, we can see that the goodness of 
fit, which is expressed by the MLL, for the model with k = 2 is larger than that for 
the model with k = 1 , except for the model for C6. This justifies the use of second 
differencing in the trend model empirically.

6.3 � Comparison with Existing Methods

Another important issue is that comparing our approach or the constructed IBC with 
other existing methods or other indices can be considered as follows: (1) compare 
the triple-C approach with the Stock–Watson dynamic factor modeling approach; 

(a) Trend component for C4

1980 1990 2000 2010 2020

4.
30

4.
40

4.
50

4.
60

(b) Cyclical component for C4

1980 1990 2000 2010 2020

−0
.0
10

0.
00

0
0.
01

0

(c) Trend component for C5

1980 1990 2000 2010 2020

4.
2

4.
4

4.
6

4.
8

(d) Cyclical component for C5

1980 1990 2000 2010 2020

−0
.0
15

0.
00

0
0.
01

5

Fig. 9   Estimated trend and cyclical components for C4 and C5

Table 4   MLL values of the model for each indicator with various differencing orders

Indicator C1 C2 C3 C4 C5

k = 1 1338.1 1356.5 954.7 1621.2 1248.4
k = 2 1419.7 1413.2 983.4 1703.5 1305.5

Indicator C6 C7 C8 C9 C10

k = 1 − 1213.3 − 1311.0 963.4 1267.0 1108.8
k = 2 − 1220.1 − 1308.7 992.2 1277.5 1166.2
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(2) compare the triple-C approach with the multivariate UC modeling method; and 
(3) compare the performance of the constructed IBC with other indices, for example, 
SWI and NBI (see, http://​www.​nikkei.​com/​biz/​report/​nkidx/). These are the subjects 
of current work and the details will be presented elsewhere.

7 � Conclusions

In this paper, we proposed an alternative approach, which we refer to as the triple-C 
approach, to develop an IBC of coincident economic indicators, and constructed a coinci-
dent index of growth cycles, called the IBC, in Japan using the proposed approach.

We can summarize the framework of the triple-C approach as follows: (1) we 
used the same time series data as the CI and DI compiled by the ESRI; (2) we 
decomposed seasonally adjusted data into trend, cyclical, and irregular components; 
and (3) we constructed the IBC based on the first principal component of the nor-
malized estimates for the cyclical components.

We examined whether the constructed coincident IBC performed better than that 
of the CI. The correlation coefficients of the cyclical component of real GDP with 
the CI and IBC for the data during the period Q1, 1985 to Q4, 2000 were 0.7034 and 
0.8038, and those for the data during the period Q1, 1994 to Q4, 2019 were 0.4962 
and 0.8023, respectively. This indicates that the IBC performed better than the CI.

Additionally, if we use the model in Eq. (5) instead of that in Eq. (6) and add 
a prior model for the seasonal component, we can process the time series data in 
advance without the need for seasonal adjustment. Thus, our triple-C approach can 
be widely applied as a more general method.
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