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Abstract
Seasonality in economic time series can ‘obscure’ movements of other components 
in a series that are operationally more important for economic and econometric anal-
yses. In practice, one often prefers to work with seasonally adjusted data to assess 
the current state of the economy and its future course. This paper presents a sea-
sonal adjustment program called CAMPLET, an acronym of its tuning parameters, 
which consists of a simple adaptive procedure to extract the seasonal and the non-
seasonal component from an observed series. Once this process is carried out there 
will be no need to revise these components at a later stage when new observations 
become available. The paper describes the main features of CAMPLET. We evalu-
ate the outcomes of CAMPLET and X-13ARIMA-SEATS in a controlled simulation 
framework using a variety of data generating processes and illustrate CAMPLET 
and X-13ARIMA-SEATS with three time series: U.S. non-farm payroll employ-
ment, operational income of Ahold and real GDP in the Netherlands.
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1 Introduction

Seasonality, which Hylleberg (1986, p. 23) defines as ‘the systematic, although not 
necessarily regular or unchanging, intrayear movement that is caused by climatic 
changes, timing of religious festivals, business practices, and expectations’, is often 
considered a nuisance in economic modeling. Consequently, a whole industry has 
come into existence that is devoted to seasonal adjustment. The U.S. Census Bureau 
Basic Seasonal Adjustment Glossary (https ://www.censu s.gov/srd/www/x13as /gloss 
ary.html) describes seasonal adjustment as ‘the estimation of the seasonal compo-
nent and, when applicable, also trading day and moving holiday effects, followed 
by their removal from the time series. The goal is usually to produce series whose 
movements are easier to analyze over consecutive time intervals and to compare to 
the movements of other series in order to detect co-movements.’

Large seasonal movements may hide other movements of importance and it is 
easier to see related movements in different series after seasonal adjustment. There-
fore macroeconomic time series are typically seasonally adjusted before being used 
in economic and econometric analyses. Several procedures are in use, varying from 
the Census X-11 family (U.S. Census Bureau, Bank of Canada; for a brief over-
view see Monsell 2009) to TRAMO/SEATS1 and STAMP (Andrew Harvey and col-
laborators; http://stamp -softw are.com/). Recently, the two most popular methods, 
Census X-12-ARIMA and TRAMO-SEATS, merged into X-13ARIMA-SEATS, to 
become the industry standard.

Underlying all these seasonal adjustment methods is the decomposition of an 
observed series into latent non-seasonal and seasonal components. The aim is to 
extract the unobserved components from the observed series. The methods produce 
seasonal effects that are relatively stable in terms of annual timing, within the same 
month or quarter, direction and magnitude. Trend-cycle and seasonal components 
are traditionally extracted using sequential centered moving average (CMA) filters 
and recently ARIMA and Unobserved Components (UC) models. The series are 
pretreated to adjust for outliers and trading-day and holiday effect, and forecast and 
backcast to deal with the beginning and the end of the series to avoid phase shifts in 
the series.

One consequence of using CMA filters and ARIMA and UC models is that past 
values of the unobserved components change when new observations become avail-
able, thus causing revisions in real-time data. The current practice of changing sea-
sonal factors only once a year implies the existence of annual revisions in vintages of 
time series, going back some three years; see, e.g., Croushore (2011). This property 
of seasonal adjustment is well-known and well-documented in the seasonal adjust-
ment literature, see e.g. Bell and Hillmer (1984), Bell (1995) and more recently Cza-
plicki (2015) and Czaplicki and McDonald-Johnson (2015).2

1 Bank of Spain: http://www.bde.es/bde/en/secci ones/servi cios/Profe siona les/Progr amas_estad i/Notas 
_intro duct_36384 97004 e2e21 .html.
2 It is possible to produce seasonal adjustments without revisions with any seasonal adjustment method 
by freezing the seasonal components after they are first estimated. This alternative is not explored in this 
paper.

https://www.census.gov/srd/www/x13as/glossary.html
https://www.census.gov/srd/www/x13as/glossary.html
http://stamp-software.com/
http://www.bde.es/bde/en/secciones/servicios/Profesionales/Programas_estadi/Notas_introduct_3638497004e2e21.html
http://www.bde.es/bde/en/secciones/servicios/Profesionales/Programas_estadi/Notas_introduct_3638497004e2e21.html
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This paper presents CAMPLET, a new method, especially focusing on the feature 
that the method does not produce revisions when new observations become available, 
and on its ability to deal with changes in seasonal patterns. The method consists of 
a simple adaptive procedure to extract the seasonal and the non-seasonal component 
from an observed time series. Once this process is carried out, there will be no need to 
revise these components at a later stage when new observations become available.

The main strength of CAMPLET is in seasonal adjustment when revisions are 
totally inacceptable, for example inflation realizations should not be revised after a 
wage agreement has been reached, or implausible. Economic Tendency Survey data are 
not revised over time, hence seasonal adjustment should not lead to revisions (Abeln 
et al. 2017). A second application of CAMPLET is on series that have a changing sea-
sonal pattern. Section 4 gives an illustration for the international retailer Ahold. CAM-
PLET might also be employed to seasonally adjust Chinese economic statistics, which 
suffer from moving holidays due to the Chinese New Year (Roberts and White 2015). 
Other applications are the seasonal adjustment of short (volatile) series or series in 
which seasonality is correlated with trend and cycle (Hindrayanto et al. 2018).

Recently, CAMPLET has been used to check the robustness of results obtained with 
other seasonal adjustment methods (Hecq et al. 2017; Smirnov et al. 2017). Although 
turning points are obtained in the same period for many series, differences in the dates 
of turning points, i.e. phase shifts, do occur.

The remainder of this paper is structured as follows. The next section presents CAM-
PLET. In Sect. 3 we evaluate the outcomes of CAMPLET and X13-ARIMA-SEATS in 
a controlled simulation framework using a variety of data generating processes. Sec-
tion 4 shows the potential of CAMPLET by focusing on similarities and differences 
with respect to X13-ARIMA-SEATS in the analysis of three time series: U.S. non-farm 
employment, operational income of Ahold, an international retailer, and real GDP in 
the Netherlands. Section 5 concludes.

2  CAMPLET

The CAMPLET program does not require pretreatment of a time series to adjust for 
outliers, trading day and holiday effects. Forecasting or backcasting is not necessary 
either, since the method does not employ CMA filters, ARIMA or UC models to do 
seasonal adjustment; only information that is available at the moment the seasonal 
adjustment has to be made is used.

The package including documentation and examples can be downloaded from http://
www.campl et.net. CAMPLET is also available as a MATLAB function in Yvan Leng-
wiler’s X-13 Toolbox for Seasonal Filtering.

2.1  Seasonals and Non‑seasonals

CAMPLET is based on the decomposition of an observed series ( yt ) into a non-
seasonal ( yns

t
 ) and ( ys

t
 ) seasonal component

(1)yt = yns
t
+ ys

t
, t = 1,… , T .

http://www.camplet.net
http://www.camplet.net
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For ease of exposition we assume that we want to seasonally adjust a quarterly time 
series, in particular we assume that seasonal adjustment for yt , a fourth observa-
tion, is done so we have ysa

t
≡ yns

t
 and ys

t
 for a specific observation t = � . We want 

to obtain the seasonal and non-seasonal values for the next observation t + 1 , which 
is in this case a first quarter. The gradient of the non-seasonals gt , i.e., the average 
growth over a segment of the time series ending in period t, plays an important role 
in the seasonal adjustment procedure of CAMPLET. In our example we take the 
gradient equal to gt = 0.

A feature of CAMPLET is that every period of a time series has a full set of latent 
seasonal components ys

t,1
, ys

t,2
, ys

t,3
, ys

t,4
 , one of which applies. In our example, period 

t + 1 is a first quarter, so ys
t+1

= ys
t+1,1

 . Figure 1 illustrates how the seasonals belong-
ing to period t change when the gradient gt changes. As shown in the left panel the 
gradient gt is assumed to be zero. If the gradient rotates with a degrees through the 
center of the series, which is assumed to be at position 2.5 (= (1 + 2 + 3 + 4)∕4 ), 
then all seasonals belonging to period t are assumed to change according to their 
distance to the center of the series. So the seasonals belonging to period t + 1 change 
according to: ys

t+1,1
= ys

t,1
+ 1.5a , ys

t+1,2
= ys

t,2
+ 0.5a , ys

t+1,3
= ys

t,3
− 0.5a , and 

ys
t+1,4

= ys
t,4

− 1.5a.

2.2  Seasonal Adjustment in CAMPLET

CAMPLET seasonally adjusts a time series on a period-by-period basis. Given the 
decomposition of yt into seasonally adjusted value ysa

t
 and seasonal ys

t
 in period t 

and the requirement that sufficient observations are available for the calculation of 
the gradient gt , CAMPLET calculates the seasonally adjusted value ysa

t+1
 and sea-

sonal ys
t+1

 for observation yt+1 by comparing observation yt+1 with the extrapolated 
values of the average growth of the non-seasonal (the gradient) and the seasonal 

x

x

x

x
x

x

x

x

gradient series’ center                             seasonal components

Fig. 1  If the gradient gt changes, all seasonals change
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component of the previous period t, allocating the difference over the seasonal and 
the non-seasonal component.

Figure 2 describes the extrapolation. The left panel of the figure shows the situ-
ation in period t. If observation yt+1 becomes available, the seasonal component for 
quarter 1 in period t, ys

t,1
 , is added to the extrapolated value of the average non-sea-

sonal growth line in period t, in our example we extrapolate the gradient gt = 0 . The 
difference between the observed value yt+1 and the extrapolated value for t + 1 based 
on information available in t is denoted by the extrapolation error êt+1.

The extrapolation error in period t + 1 is divided over changes in the seasonal and 
changes in the gradient in period t + 1 , as shown in Fig. 3. We assume that the gradi-
ent rotates according to gt+1 = gt + êt+1∕�t+1 , where �

t+1
 is the adjustment length. 

In other words, 1∕�t+1 of the extrapolation error is matched by a rotation of the 
non-seasonal. The seasonal component for observation t+1, a first quarter, changes 
by 1.5êt+1∕�t . The three other seasonal components are updated too, as illustrated 
above in Fig. 1.3 In our example with a time series segment of 4 quarters, the adjust-
ment length equals 4 quarters. This can be seen as follows. The seasonal component 
changes by 1.5êt+1∕4 , as seen above, while the gradient in period t + 1 , 2.5 periods 
from the center, changes by 2.5êt+1∕4 , so the extrapolation error êt+1 is divided over 
the seasonal component and a change of average non-seasonal growth. Once we 
know the value of the new seasonal component in period t + 1 , ys

t+1
 , we can calculate 

the seasonally adjusted value ysa
t+1

 from the basic decomposition ysa
t+1

= yt+1 − ys
t+1

.

Fig. 2  Extrapolation on the basis of period t 

3 Note that the seasonal components are updated by a time-dependent parameter rather than by a fixed 
parameter, as with, for instance, the additive seasonal Holt-Winters method.
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2.3  Initialisation

Starting values are required for the seasonally adjusted value in the starting period ysa
0

 , 
the gradient g0 , and the seasonals ys

0,1
, ys

0,2
, ys

0,3
, ys

0,4
 . These can be obtained from as short 

as one full year of observations—if no outliers are present—for example as follows:

• ysa
0

 is the mean of the observed series over the year;
• assuming that ysa

i
 does not change during a year, we have g0 = 0 , and 

ys
0,i

= yi − ysa
0
, i = 1,… , 4.

If these first period values include an outlier, this outlier also appears in the initial sea-
sonal pattern. To avoid this situation the adjustment procedure is applied for the first 
three years of the series, then the resulting gradient is extrapolated backwards to the 
first observation of the series and the procedure is repeated for the full series, now with 
a more appropriate seasonal pattern.

2.4  Outliers and Change in Seasonal Pattern

Let ȳt+1 =
1

p

∑p

i=1
�yt+1−i� be the annual average of absolute values of the preceding p 

observations, where p equals 4 for quarterly observations and 12 for monthly observa-
tions. An outlier is defined to occur if 100(êt+1∕ȳt+1) is larger than the parameter Limit 
to Error (LE). Default values for LE are 6% for quarterly observations and 8% for 
monthly observations. To mitigate the effects of an outlier on the seasonal components 
we increase the adjustment length

(2)�t+1 = �t + pM

(
êt+1

ȳt+1

)
,

Fig. 3  Division of extrapola-
tion error over changes in the 
seasonal and changes in the 
seasonally adjusted values of 
period t + 1



79

1 3

Journal of Business Cycle Research (2019) 15:73–95 

where M is the parameter Multiplier, which takes as default value M = 50 . For the 
next observation the adjustment length � is reset to the Common Adjustment default 
value of 6 quarters for quarterly series or 18 months for monthly series.

If the outlier also occurs 1 year later (denoted by parameter Pattern), we assume 
that the seasonal pattern has changed. Instead of increasing the adjustment length to 
put an upper limit to the change in the seasonal components as in the outlier case, 
we now set the adjustment length � to 1 year. Hence, the second time an outlier is 
detected, the seasonal of this observation becomes larger, while the other seasonal 
components change correspondingly. This property of CAMPLET makes it well 
suited to capture breaks in seasonal patterns.

A sudden decrease in the series’ development, such as occurred during the 2008 
Global Financial Crisis, is at first regarded an outlier and its impact on the seasonal 
component will be reduced by incrementing the adjustment length. If the next obser-
vation is in the same (negative) direction, i.e., another outlier, a turn of the non-sea-
sonal development is signaled and the common adjustment length will be applied, 
thus adopting the new gradient of the non-seasonal. Sequential similar outliers then 
result in a rapid adoption of the new gradient.

2.5  Automatic Parameter Adjustment for Volatile Series

Volatile series contain frequent but unsystematic fluctuations, that are often much 
larger than seasonal fluctuations. Such series may occur, for example, in company 
interim results such as net profit and earnings per share. Strong and unsystematic 
fluctuations are recognized in CAMPLET as outliers whose impact on the seasonal 
pattern and on the gradient is reduced by increasing the adjustment length of the 
series. If outliers occur frequently, a simultaneous change in the seasonal pattern 
and/or the overall direction of the series’ development may not be picked up. This 
situation may arise even more often, because the gradient is extended from the sea-
sonally adjusted level of the new observation including the outlier. This extrapola-
tion will be way off if the next observation is in line with the original series’ trajec-
tory but considered an outlier. An aberrant observation in one period will then result 
in outliers in the current and the next period.

The objective of automatic parameter resetting is to reduce the number of outli-
ers. To this end parameter Limit to Error (LE), the criterion for a new observation to 
be an outlier or not, is raised by 5 percentage points whenever during the adjustment 
run the number of outliers identified is higher than 50% of the number of observa-
tions so far adjusted. This goes on until LE surpasses a threshold of 30%. For a quar-
terly series the default value of LE is 6%, which can be incremented in 5 steps of 
5 percentage points each to a maximum of 31%. To mitigate the impact of fluctua-
tions that are no longer regarded as aberrant, the adjustment length is incremented at 
every step by p / 2.

If the limit to error (LE) has reached its maximum value and outliers continue to 
occur at a rate of 50% or more of the number of observations adjusted, parameter 
Times (T), which denotes the number of times an outlier returns before a change in sea-
sonal pattern is assumed to have occurred, is increased from its default value of 1 to 2, 
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to ensure that frequent outliers do not cause too many shifts of the seasonal pattern. At 
the same time parameter Multiplier (M), which determines the adjustment length, will 
be reduced from its default value of 50 to 25 to mitigate the impact of outliers on the 
seasonal components. Whenever the proportion of outliers falls below 50% these steps 
are retraced in inverse order.

2.6  CAMPLET Parameters

The procedure of CAMPLET comes down to selecting the adjustment length for each 
observation to divide the extrapolation error over the seasonal and the non-seasonal 
components. This selection is guided by the 5 tuning parameters of CAMPLET, listed 
in Table 1. Two of the parameters decide on the characteristics of the new observa-
tion: (1) is it aberrant or not? (Limit to Error) and (2) if aberrant, does the seasonal 
pattern change or not? (Times). If the new observation is not aberrant, the Common 
Adjustment length is applied. If it is aberrant and the seasonal pattern does not change, 
parameter Multiplier increments the adjustment length, as in (2). If the observation is 
an outlier and the seasonal pattern changes, parameter Pattern reduces the adjustment 
length to 1 year.

Default values of the Common Adjustment length are six quarters for quarterly 
observations and 18 months for monthly data. These values are based on analyses of 
time series segments of 2 years, with centers at 4.5 quarters and 12.5 months respec-
tively. The common adjustment lengths imply changes in the seasonal of 1.5êt+1∕6 for 
quarterly observations and 5.5êt+1∕18 for monthly observations, and 4.5êt+1∕6 and 
12.5êt+1∕18 for the change in the non-seasonals.

We investigated the sensitivity of the default value of the Common Adjustment 
parameter in combination with the Limit to Error for the U.S. non-farm payroll employ-
ment series described in Sect. 4 below. Differences in terms of seasonal adjustments for 
this series were small. Results are available upon request. Default values of the other 
parameters are chosen on the basis of plausibility rather than statistical accuracy.

3  Simulations

We evaluate CAMPLET and X-13ARIMA-SEATS seasonal adjustment with con-
trolled simulations using a variety of Data Generating Processes (DGPs). We 
simulate 24 DGPs based on a stylized representation of the trend-cycle-seasonal 

Table 1  CAMPLET parameters 
and default settings

Frequency of series Quarterly Monthly

Common adjustment (periods) 6 18
Multiplier 50 50
Pattern (periods) 4 12
Limit to error (%) 6 8
Times 1 1
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decomposition of Ghysels and Osborne (2001, Equation (4.2)). An observed time 
series yt is decomposed into a trend-cycle ytc

t
 , seasonal ys

t
 , and irregular yi

t
 compo-

nent, abstracting from deterministic effects due to the length of months, the number 
of trading days, and holidays. We use the additive version of the decomposition

3.1  Design

Our starting point is the Basic Structural Model (Harvey 1989) for the simulated 
series yt , which consists of equations for the level (trend-cycle) �t , a random walk 
with drift, and the seasonal �t in dummy-variable form, supplemented with outliers

where k is the number of outliers, the size of outlier i is equal to �i , while dit defines 
when the outlier occurs. For additive outliers dit equals zero except for the period of 
the outlier, where dit is equal to one. For a level shift, the value of dit is zero up to 
the period of the shift and one thereafter. The errors �t , �t and �t are assumed to be 
independent.

For each DGP we generate 1000 series for 35  years of quarterly observations. 
Observations for the first 10  years are discarded to reduce the impact of starting 
values. Hence, our simulated series consist of 100 observations. The DGPs derived 
from our simulation model (4)–(6) are based on an extended parameter search, 
aimed at generating sufficient variation between the 1000 series for each DGP, but 
avoiding extremely volatile series.

We make the following choices with respect to parameters and standard deviations:

• the starting value of the level, �0 , equals 100;
• starting values for the seasonal factors �j for j = 1,… , 3 are drawn from a uni-

form distribution U[−20, 20] , while �4 = −�1 − �2 − �3;
• �� gets a low noise value of 3 and a high noise value of 7;
• �� gets values of 1 and 10 to mimic series with slow and strong development in 

the level of the series, respectively;
• �� gets the value 0 for a constant seasonal pattern and the value of 2 for a varying 

seasonal pattern; we also simulate season breaks in one arbitrary period between the 
10th and the 90th observation for series with a constant seasonal pattern by generat-

(3)yt = ytc
t
+ ys

t
+ yi

t
.

(4)yt = �t + �t +

k∑

i=1

�idit + �t, �t ∼ NID
(
0, �2

�

)

(5)�t = �t−1 + �t, �t ∼ NID

(
0, �2

�

)

(6)�t = −�t−1 − �t−2 − �t−3 + �t, �t ∼ NID
(
0, �2

�

)
,
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ing a new random seasonal pattern that begins in a period drawn from a uniform 
distribution between the 10th and the 90th observation.

When adding outliers,

• the series are not simulated again to be able to analyse the pure effect of outliers;
• we simulate one level shift in a randomly chosen period between the 10th and the 

90th observation, and five single period outliers in random periods between obser-
vation 0 and 100;

• the size of the additive outliers is drawn from a uniform distribution ±(2��, 5��) ; a 
level shift is treated as an extraordinary event and drawn from ±(4��, 5��).

By this we obtain 12 DGPs without outliers and 12 DGPs with outliers. 8 DGPs do not 
have a constant seasonal, 8 DGPs a varying seasonal pattern and 8 DGPs have a season 
break. Table 2 summarizes the simulation settings.

3.2  X‑13ARIMA‑SEATS

The X-13ARIMA-SEATS seasonal adjustment procedure consists of two steps. In the 
pretreatment or first step, the series is extended backwards and forwards using a regres-
sion model with ARIMA residuals, commonly referred to as a regARIMA model, 
while at the same time adjusting for outliers and trading-day and holiday effects, if 
appropriate. The second step, seasonal adjustment, consists of a combination of CMA 
filters (from the Census X-11 program) or ARIMA model-based adjustment from 
SEATS.

The Census X-11 program is described in, for instance, Ghysels and Osborn 
(2001,  Chapter  4) and Ladiray and Quenneville (2001), whereas the appendix of 
Wright (2013) presents the X-12-ARIMA algorithm. Maravall (2008) presents the 
methodology behind the program SEATS (Signal Extraction in ARIMA Time Series). 
For further details we refer to the X-13ARIMA-SEATS Seasonal Adjustment Program 
homepage at the U.S. Department of Commerce Census Bureau https ://www.censu 
s.gov/srd/www/x13as /.

Several implementations of X-13ARIMA-SEATS are available. In the simulations 
of this Section we use the X-13 program of the US Census Bureau called from the soft-
ware environment R. For practical reasons we use the X-13ARIMA-SEATS module of 
Eviews 9 in the applications in Sect. 4.4 Computational effort for X13-ARIMA-SEATS 
is much higher than for CAMPLET. Below the X-13ARIMA-SEATS outcomes are 
referred to as X13 seasonal adjustments.

4 A formal comparison between both implementations is considered beyond the scope of the present 
paper.

https://www.census.gov/srd/www/x13as/
https://www.census.gov/srd/www/x13as/
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3.3  Quality Measures

For a general discussion of criteria to judge the quality of seasonal adjustment pro-
cedures see e.g. Bell and Hillmer (1984). Fok et al. (2006) apply a number of diag-
nostic and specification tests on seasonal patterns before and after seasonal adjust-
ment, using several DGPs.

We compare the simulated non-seasonal observations and the seasonally adjusted 
values using standard accuracy measures. Let {yt} , t = 1,… , T  be a simulated series 
with non-seasonal component yns

t
≡ yt − ys

t
 and ysa

t
 the seasonally adjusted value. We 

calculate two quality measures:

1. Root Mean Squared Error: RMSE =

�
1

N

∑T

t=1
(ysat − ynst )

2;

2. Mean Error: ME =
1

N

∑T

t=1
(ysa

t
− yns

t
).

Table 2  Simulation settings DGP �� �� �� Season break Outliers

1 3 1 0 No No
2 7 1 0 No No
3 3 1 2 No No
4 7 1 2 No No
5 3 1 0 Yes No
6 7 1 0 Yes No
7 3 10 0 No No
8 7 10 0 No No
9 3 10 2 No No
10 7 10 2 No No
11 3 10 0 Yes No
12 7 10 0 Yes No
13 3 1 0 No Yes
14 7 1 0 No Yes
15 3 1 2 No Yes
16 7 1 2 No Yes
17 3 1 0 Yes Yes
18 7 1 0 Yes Yes
19 3 10 0 No Yes
20 7 10 0 No Yes
21 3 10 2 No Yes
22 7 10 2 No Yes
23 3 10 0 Yes Yes
24 7 10 0 Yes Yes
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We calculate the quality measures for three different horizons: (i) all observations: 
t = 1,… , 100; N = 100 ; (ii) the last four observations: t = 97,… , 100;N = 4 ; and 
(iii) single observations: t = 100 ∶ N = 1 , both in the first simulation experiment.

3.4  Current Vintage Comparison

Table 3 shows the fraction of the 1000 series for which the CAMPLET quality 
measures are better than the X13 measures. Note we compare absolute values 
of ME outcomes. A first conclusion is that X13 generally performs better than 
CAMPLET in terms of both quality measures distinguished and all horizons; the 
relative performance of CAMPLET improves for shorter horizons, despite the 
fact that changes in seasonal patterns and season breaks cannot occur in the first 

Table 3  Relative quality 
measures: current vintage

For all 1000 series we determine per series whether CAMPLET pro-
duces a smaller value of the quality measure than X13. We compare 
ME outcomes in absolute value. The numbers in the table indicate 
the fraction of the 1000 series for which this is the case

DGP 100 Observations Last 4 observations Final observa-
tion

RMSE ME RMSE ME RMSE ME

1 0.000 0.366 0.188 0.113 0.367 0.367
2 0.002 0.366 0.192 0.131 0.366 0.366
3 0.004 0.498 0.265 0.385 0.414 0.414
4 0.003 0.435 0.287 0.327 0.406 0.406
5 0.013 0.557 0.516 0.171 0.555 0.555
6 0.006 0.500 0.357 0.183 0.416 0.416
7 0.011 0.246 0.197 0.068 0.344 0.344
8 0.010 0.263 0.212 0.075 0.345 0.345
9 0.000 0.397 0.248 0.246 0.403 0.403
10 0.005 0.346 0.272 0.254 0.398 0.398
11 0.007 0.427 0.350 0.099 0.456 0.456
12 0.007 0.406 0.347 0.114 0.427 0.427
13 0.001 0.384 0.186 0.107 0.372 0.372
14 0.006 0.322 0.217 0.123 0.369 0.369
15 0.003 0.486 0.277 0.384 0.420 0.420
16 0.001 0.393 0.019 0.534 0.101 0.101
17 0.013 0.535 0.460 0.180 0.512 0.512
18 0.006 0.461 0.347 0.155 0.427 0.427
19 0.008 0.240 0.194 0.056 0.338 0.338
20 0.015 0.252 0.225 0.092 0.389 0.389
21 0.002 0.401 0.247 0.256 0.402 0.402
22 0.004 0.366 0.294 0.255 0.406 0.406
23 0.008 0.446 0.368 0.094 0.447 0.447
24 0.009 0.427 0.317 0.112 0.433 0.433
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ten and the last ten observations and thus do not affect the CAMPLET outcomes 
for the last four observations and the final observation positively compared to 
the X13 outcomes.

For the 100-period horizon CAMPLET ME outcomes are better than corre-
sponding X13 ME outcomes in 50% or more of the 1000 simulations if the DGP 
has a season break (DGP5 and DGP6). This conclusion also holds for DGP17, 
which combines a season break with outliers.

Table 4 compares the size of the the quality measures of CAMPLET and X13. 
By and large CAMPLET quality measures are quite close to X13 outcomes. 
We observe the same pattern as in Table 3. CAMPLET outcomes are in general 
larger than X13 outcomes, except for DGPs with season breaks.

Table 4  Quality measures of 
CAMPLET versus X13: current 
vintage

DGP 100 Observations Last 4 observations Final observa-
tion

RMSE ME RMSE ME RMSE ME

1 1.53 1.32 1.35 5.52 1.25 1.25
2 1.64 1.40 1.43 5.20 1.32 1.32
3 1.39 0.99 1.24 1.39 1.16 1.16
4 1.53 1.08 1.24 1.88 1.20 1.20
5 1.50 0.93 0.97 3.12 0.90 0.90
6 1.60 0.98 1.22 3.81 1.19 1.19
7 1.71 2.26 1.50 13.74 1.39 1.39
8 1.65 2.10 1.44 11.30 1.37 1.37
9 1.60 1.28 1.28 2.52 1.17 1.17
10 1.59 1.36 1.26 2.46 1.23 1.23
11 1.64 1.09 1.21 8.88 1.09 1.09
12 1.64 1.13 1.25 8.81 1.17 1.17
13 1.68 1.33 1.45 6.08 1.33 1.33
14 1.75 1.53 1.45 6.13 1.36 1.36
15 1.42 1.01 1.22 1.44 1.16 1.16
16 5.09 1.35 5.00 0.91 6.12 6.12
17 1.51 0.94 1.04 3.38 1.00 1.00
18 1.64 1.01 1.25 4.26 1.26 1.26
19 1.71 2.22 1.48 14.27 1.37 1.37
20 1.67 2.08 1.41 10.34 1.31 1.31
21 1.60 1.26 1.27 2.47 1.17 1.17
22 1.61 1.39 1.29 2.66 1.24 1.24
23 1.64 1.07 1.21 8.69 1.12 1.12
24 1.64 1.15 1.26 8.86 1.16 1.16
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3.5  Quasi Real‑Time Comparison Experiment

Seasonally adjusted values produced by X13 are subject to revision in contrast to 
the CAMPLET ones. Let ysa,�t , t = 1,… , �, � = 1,… , T  be the series of seasonally 
adjusted values produced by X13 based on y1,… , y� , and ysa

t
 the series of seasonal 

adjustments produced by CAMPLET. Table 5 summarizes seasonal adjustment of 
X13 and CAMPLET focusing on revisions.

The series of X13 seasonal adjustments based on y1,… , yT consists of a first 
release for the most recent period ysa,T

T
 , a first revision for period T − 1 , a second revi-

sion for period T − 2 , etc. The whole series is being revised, so in the X13 seasonal 
adjustments for earlier periods than the current period T information is used that is 
not available at the moment the seasonal adjustment is computed for the first time.

In our first comparison experiment we compared the X13 seasonal adjustments 
y
sa,T
t  and the CAMPLET seasonal adjustments ysa

t
 , for t = 1,… T  for the current 

vintage T. Here we want to compare Census and CAMPLET seasonal adjustments 
in quasi real-time. For that purpose we generate the X13 seasonal adjustments first 
for the the whole time series y1,… , yT , then for the the whole time series except the 
last observation y1,… , yT−1 , etc. Then we compare the series of first releases of X13 
seasonal adjustment ysa,tt  and the CAMPLET seasonal adjustment SAt t = 1,… T .

The second and the third column of Table 6 show the quality measures for this 
quasi real-time experiment. For computational reasons we only show the quality 
measures for the horizon of the last 25 periods. Differences compared to Table 3 for 
the final period and the last four periods are expected to be small and hence omitted.

The relative RMSE outcomes are still in favor of X13, but CAMPLET produces a 
smaller RMSE in a larger fraction of series than in the previous current vintage case. 
CAMPLET performs better than X13 for two DGPs, DGP5 with a season break and 
DGP17 with a season break and outliers. However, CAMPLET produces a higher 
fraction of ME values that are smaller than X13 ME outcomes for all but three 
DGPs: DGP7 (no season break, no outliers), DGP16 (no season break, outliers) and 
DGP19 (no season break, outliers).

In the last two columns of Table 6 we re-calculate the relative quality meas-
ures for the quasi real-time experiment for growth rates. This does not affect the 
conclusions based on RMSE outcomes. CAMPLET performs better than X13 

Table 5  Seasonal adjustment in 
X13 and CAMPLET

Period Census Series CAMPLET

1 2 … T − 2 T − 1 T

1 y
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1
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… y
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for DGP5 and DGP17. ME outcomes change a lot though. For growth rates ME 
outcomes are approximately .2 smaller than ME level outcomes, which leads to 
CAMPLET being favored to X13 much less often (DGP5, DGP6 and DGP17).

Table 7 compares the size of RMSEs and MEs of CAMPLET to X13. CAM-
PLET RMSEs are still larger than X13 values, but much closer than in the cur-
rent vintage case. We observe the same pattern as for the relative quality meas-
ures in Table  6. For levels the ME values of CAMPLET are smaller than the 
X-13 values for most DGPs, in contrast to the growth rates outcomes.

Table 6  Relative quality 
measures: Quasi real-time

For the last 25 observations of all 1000 series we determine whether 
CAMPLET produces a smaller value of the quality measure than 
X13. We compare ME outcomes in absolute value. The numbers in 
the table indicate the fraction of the 1000 series for which this is the 
case

DGP Levels Growth rates

RMSE ME RMSE ME

1 0.105 0.631 0.111 0.339
2 0.116 0.614 0.128 0.481
3 0.145 0.575 0.170 0.372
4 0.138 0.552 0.160 0.377
5 0.645 0.693 0.614 0.590
6 0.323 0.553 0.357 0.518
7 0.119 0.437 0.166 0.375
8 0.168 0.513 0.200 0.416
9 0.185 0.537 0.281 0.389
10 0.210 0.534 0.279 0.409
11 0.385 0.529 0.410 0.482
12 0.315 0.545 0.365 0.468
13 0.131 0.602 0.136 0.367
14 0.167 0.583 0.180 0.462
15 0.212 0.586 0.232 0.361
16 0.009 0.212 0.011 0.031
17 0.585 0.677 0.582 0.593
18 0.338 0.573 0.375 0.498
19 0.139 0.452 0.186 0.373
20 0.192 0.539 0.217 0.441
21 0.196 0.557 0.287 0.384
22 0.212 0.547 0.287 0.423
23 0.361 0.538 0.405 0.485
24 0.322 0.534 0.363 0.478
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3.6  Discussion

Several explanations may drive the simulation results. The simulation set-up based 
on the decomposition of a series into a level (trend-cycle), seasonal and irregu-
lar component corresponds to the basic composition of X13 but much less to the 
decomposition of CAMPLET. CAMPLET does not explicitly distinguish an irregu-
lar component in its basic decomposition, and does not aim at modeling the individ-
ual trend/cycle and irregular components. In addition, X13 ‘smoothens’ the seasonal 
pattern over time which also results in smooth adjusted values; CAMPLET does not 
share this property. See also the illustration using Ahold data in Sect. 4 below.

Moreover, both X13 and CAMPLET can be written down in a model which 
decomposes a series into latent components and is estimated via the Kalman filter.5 
Application of the Kalman filter produces the best outcomes in terms of the RMSE. 

Table 7  Quality measures of 
CAMPLET versus X13: Quasi 
real-time

DGP Levels Growth rates

RMSE ME RMSE ME

1 1.25 0.66 1.24 1.32
2 1.33 0.73 1.31 1.15
3 1.16 0.79 1.15 1.28
4 1.22 0.85 1.20 1.49
5 0.86 0.61 0.88 0.76
6 1.09 0.82 1.04 0.92
7 1.40 1.17 1.13 1.13
8 1.32 0.94 2.25 2.28
9 1.19 0.92 1.03 1.04
10 1.20 0.92 1.21 1.23
11 1.06 0.88 0.68 0.60
12 1.13 0.83 10.20 10.47
13 1.33 0.72 1.33 1.32
14 1.35 0.77 1.25 1.16
15 1.15 0.76 1.14 1.34
16 4.40 2.75 12.37 44.94
17 0.90 0.63 0.90 0.78
18 1.12 0.78 0.72 0.62
19 1.37 1.08 0.94 0.94
20 1.30 0.89 1.51 1.55
21 1.19 0.88 3.39 3.44
22 1.21 0.87 0.92 0.91
23 1.08 0.89 1.16 1.16
24 1.14 0.87 11.54 11.69

5 Wright (2013) makes this claim for the X-12 filter; for CAMPLET it still has to be shown formally.
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X13 can be associated with the Kalman smoother in which the data is used twice 
(forward and backward), while the Kalman filter applies to CAMPLET. The Kalman 
smoother employs the data much more efficiently than the Kalman filter, see e.g. 
Durbin and Koopman (2012, Chapter 4), and produces superior seasonally adjusted 
values in terms of RMSEs.

4  Illustration

In this section we present three illustrations of seasonal adjustment. The first exam-
ple, on U.S. non-farm payroll employment, shows that both CAMPLET and X13 
produce similar outcomes. The second example, on operating income of Ahold, 
illustrates that CAMPLET picks up a change in the seasonal while X13 does not. 
The third example, on real GDP in the Netherlands, compares revisions in X13 and 
CAMPLET seasonal adjustments.

4.1  U.S. Non‑farm Payroll Employment

There are not many series for which real-time vintages are available both in season-
ally adjusted and non-seasonally adjusted form. One of the exceptions is non-farm 
payroll employment. Wright (2013) looks at this series too. The source of the series 
is Bureau of Labor Statistics/Alfred, Federal Reserve Bank of St. Louis. Seasonally 
adjusted values are only available for the 2014M2 vintage, the latest vintage when 
we downloaded the data, and cover the 1939M1–2014M1 period. We retrieved raw 
data, i.e. non-seasonally adjusted figures, for the vintages from 2008M9 up to and 
including 2014M2; all vintages start in 1939M1.

Our non-farm payroll employment data trapezoid consists of initial revisions with 
changes in the most recent observations, annual (seasonal) revisions in February due 
to updated seasonal factors and the confrontation of quarterly with annual informa-
tion resulting in changes up to 3 years back, and historical, comprehensive or bench-
mark revisions in February 2013 and February 2014, possibly related to changes in 
e.g. statistical methodology, which affect the whole vintage. Generally, revisions in 
the employment series are small.

Figure 4 shows the 2014M2 vintage of seasonally unadjusted non-farm payroll 
employment data (NSA) from 2000M1 onwards, together with the published sea-
sonally adjusted figures (SA) and seasonally adjusted values obtained with the Cen-
sus X-13 routine in EViews6 (SA X-13) and CAMPLET figures produced with the 
default settings of Table 1 (SA CAMPLET).

The first finding is that differences between all seasonally adjusted series are 
quite small, at least visually. CAMPLET seasonally adjusted figures are very 
close to the published SA figures and the EViews X-13 outcomes. This observa-
tion also holds for the timing of peaks and troughs. Note however that CAMPLET 

6 In all computations we use the Auto (None / Log) transform, no ARIMA model and default X13 set-
tings for seasonal adjustment.
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picks up the end of the trough in 2009 two months before the X13 seasonal 
adjustments. A second finding is that the seasonally adjusted figures of CAM-
PLET are slightly lower than the other two SA series towards the end of 2009. 
Apparently, the trough in the raw data enters the seasonally adjusted component 
of CAMPLET instead of the seasonal.

To investigate the impact of new information becoming available, we do a 
quasi real-time analysis and compute seasonally adjusted figures with X13 and 
CAMPLET for the 2014Q2 vintage, starting from the 2000M1-2008M8 period, 
adding one observation at the time. Figure  5 shows the outcomes. CAMPLET 
outcomes do not change when new observations become available, in contrast 
with X13 figures. However X13 does not produce large revisions in (quasi) real-
time, if seasonal factors are updated for every observation. This point has been 
noted for the X11 filter by e.g., Wallis (1982).

To further illustrate that CAMPLET does a solid job in seasonally adjusting 
U.S. non-farm payroll employment, we show Matlab power spectra of the raw 
data and X13 and CAMPLET seasonal adjustments in Fig. 6. CAMPLET filters 
out the seasonal frequencies quite well, but clearly more research is needed in 
this area.

Fig. 4  U.S. non-farm payroll 
employment, vintage 2014Q2

Fig. 5  Quasi real-time analysis
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4.2  Ahold

The U.S. non-farm payroll employment series has a fairly constant seasonal pat-
tern with small seasonals. Our second illustration is operating income of Ahold, 
an international retailer based in the Netherlands. Figure  7 reveals that this 

Raw data
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Fig. 6  Spectra of US non-farm employment
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series, with quarterly observations from 2006Q1 up to and including 2013Q4, 
has a stronger seasonal pattern. Again CAMPLET seasonally adjusted figures 
are fairly close to the X13 outcomes, but there are striking differences in 2006 
through 2008.

In the beginning of 2008 Ahold announced a change in accounting policies: 
“As of 2008, Ahold has applied IFRS 8 ‘Operating segments’. IFRS 8 introduces 
new disclosure requirements with respect to segment information. This adoption 
of IFRS 8 did not have an impact on Ahold’s segment structure, consolidated 
financial results or position; however, segment results no longer include inter-
company royalties. Consequently, operating income decreased from 421 million 
in 2007Q1 to 336 million in 2008Q1.”

Figure  8 shows the seasonal patterns as identified by CAMPLET and X13. 
Whereas the latter method finds a constant seasonal pattern throughout the 
sample, CAMPLET picks up a change! Future research in the form of a (quasi) 
real-time analysis will reveal how the seasonal pattern of X-13ARIMA-SEATS 
evolves over time.

Fig. 7  Ahold Operating income. 
Source: Ahold Quarterly Bul-
letin (various issues)

Fig. 8  Ahold operating income: 
seasonal pattern
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4.3  Real GDP in the Netherlands

To focus once more on revisions in seasonal adjustments, we do a quasi real-time 
analysis using the 2014Q3 vintage of real GDP in the Netherlands. We calculate sea-
sonally adjusted values of levels and corresponding growth rates for all observations 
between 2005Q1 and 2011Q3, allowing X13 outcomes to be revised up to 3 years 
backwards.7

Figure 9 shows successive seasonally adjusted values of X13 (here abbreviated 
as X-13) and CAMPLET both in levels (left axis) and growth rates (right axis) for 
three quarters: 2005Q3, 2008Q2 and 2008Q3. The outcomes are representative for 
the other quarters as well. Whereas X13 seasonally adjusted values are subject to 
revision when observations are added to the series, CAMPLET outcomes stay the 
same. In contrast to our first illustration on U.S. non-farm payroll employment, revi-
sions are considerable.

5  Conclusion

Over the years, seasonal adjustment has become standard in empirical economic 
research and many other fields where periodic time series are being used and ana-
lysed. Various methods exist to seasonally adjust time series as noted in the Intro-
duction. In this paper we present a new seasonal adjustment program called CAM-
PLET, which does not produce revisions when new observations become available. 
CAMPLET consists of a simple adaptive procedure to separate the seasonal and the 
non-seasonal component from an observed time series. Once this process is car-
ried out there will be no need to revise these components at a later stage when new 
observations become available.

A controlled simulation experiment revealed that X13 generally performs better 
than CAMPLET in the set-up of the simulation experiments. In particular RMSEs of 
X13 are lower than RMSEs of CAMPLET. This does not come as a surprise given 
the fact that X13 ‘smoothens’ the unobserved components, while CAMPLET ‘fil-
ters’ the components, i.e., only uses information when it comes available. In our 
simulations CAMPLET outperforms X13 in terms of MEs for the 100-period hori-
zon if the series have a season break. A comparison in quasi real-time shows that 
X13 still performs better than CAMPLET according to RMSE outcomes. However, 
on the basis of ME outcomes CAMPLET is preferred for a large variety of the data 
generating processes studied.

The potential of CAMPLET is illustrated for U.S. non-farm payroll employment, 
operational income of AHOLD, and real GDP in the Netherlands. CAMPLET does 
a solid job in seasonal adjustment, although small differences in the timing of turn-
ing points with respect to X13 do occur. CAMPLET does not produce revisions, and 
can pick up changes in seasonal patterns. Additional advantages are its low compu-
tational effort and its capability to deal with short, volatile series.

7 The settings of X13 are the same as in Sect. 3, but here we also detect working day patterns.
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Fig. 9  Real GDP in the Nether-
lands (levels: left axis; growth 
rates: right axis)
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