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Abstract
Purpose  Photobiomodulation therapy has proven to be effective in accelerating cell proliferation, migration, and transcrip-
tion. The study aimed to analyze the cell viability effects of different parameters of PBMT in a cultured cell line of human 
gingival fibroblasts after bacterial and ionizing radiation–induced stress.
Methods  Explant technique was used to produce a primary cell culture. Cells were grown in Dulbecco’s modified Eagle’s 
medium with 10% fetal bovine serum until stressful condition induction with lipopolysaccharide of Escherichia coli, Por-
phyromonas gingivalis protein extract, and ionizing radiation. Laser irradiation was carried out in four sessions set with 
660 nm wavelength, an output power of 30 mW and 40 mW and energy density of 2, 3, 4, and 5 J/cm2.
Results  After 24 h from the last laser irradiation session, the groups outputted in 30 mW of power maintained the cell 
viability while operating with 2, 4, and 5 J/cm2. However, 3 J/cm2 dose significantly decreased cell viability (p < 0.05). When 
the laser irradiation session was set in a higher power (40 mW), cell viability was reduced using 2, 3, and 5 J/cm2 doses, 
with statistical significance for 5 J/cm2 (p < 0.001). In addition, operating the same energy using lower power seems to be 
superior to a higher power, being statically significant for 5 J/cm2 dose (p < 0.001). This pattern followed with all different 
groups, except by 3 J/cm2.
Conclusions  The present study showed that delivering 2, 4, and 5 J/ cm2 of density of energy with 30 mW and more time 
of exposure presented better results on cell viability compared to the same density of energy with output power of 40 mW. 
Further studies comparing density energy should be conducted.
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Introduction

Photobiomodulation therapy (PBMT) is a treatment modal-
ity that has proven to be effective in accelerating wound 
healing, pain relief, reducing dentin sensitivity and the 

severity of xerostomia, and herpes labialis frequency [1–3]. 
The application of PBMT in controlling adverse reactions 
of cancer therapies has shown promising results and reached 
significant attention. The Multinational Association for 
Supportive care in Cancer/International Society for Oral 
Oncology (MASCC/ISOO) guidelines recommend PBMT to 
patients undergoing head and neck radiotherapy, associated 
or not with chemotherapy, due to numerous data in which the 
incidence and severity of oral mucositis have been positively 
impacted by PBMT [1, 4, 5].

The therapy operates with photon emission from a low-
level laser light that transfers low energy to tissues and does 
not generate heat [2]. The exposure of biological tissues to 
low-level laser light induces the modulation of cellular func-
tions by activating several pathways involved in cell growth 
and survival, proliferation, migration, and transcription [2, 
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6]. At a cellular level, this therapy promotes local, regional, 
and systemic action, enhancing mitochondrial activity and 
increasing the production of adenosine triphosphate (ATP) 
and reactive oxygen species (ROS) [7, 8].

The mechanism of action of PBMT has been discussed 
and reported in multiple in vitro studies, showing that it 
can promote stimulation or inhibition, depending on light 
parameters [9]. A review has analyzed 32 in vitro studies 
and concluded that an energy density varying from 0.5 to 
4.0 J/cm2 and a light wavelength from 600 to 700 nm for 
PBMT could enhance proliferation of different cell types 
[10]. These findings are in conformity with previous in vitro 
studies and literature reviews that show positive biostimu-
lation effects on fibroblasts, keratinocytes, and osteoblasts 
[11–14].

Moreover, the primary challenge is applying the opti-
mal laser parameters to deliver an ideal amount of energy 
to enhance the metabolism and improve clinical outcomes 
[2, 8, 15]. To test the hypothesis that the same density of 
energy with lower power could lead to an improvement on 
cell viability, stimulated gingival fibroblasts were exposed to 
different densities of energy and two different output powers. 
Thus, this pilot study aimed to analyze the effects of differ-
ent parameters of PBMT on cell viability, using human gin-
gival fibroblast cells stimulated with bacterial and ionizing 
radiation–induced stress.

Materials and methods

Cell isolation and primary culture

The explant technique was used to obtain a cell line of 
human gingival fibroblasts. Before the fragment’s collec-
tions, ethics registration and approval had been obtained 
from the Human Research Ethics Committee of the Health 
Sciences College of the University of Brasília (CAAE Nº 
78,679,717.6.0000.0030), and all the donors signed the 
understanding and written consent. Then, the gingival frag-
ments of young donors who underwent third molar extrac-
tion surgery were isolated and transported to the Labora-
tory of Oral Histopathology immersed in cold Dulbecco’s 
modified Eagle medium (DMEM) (Sigma-Aldrich, St. 
Louis, MO) supplemented with 20% fetal bovine serum 
(FBS) (Gibco®, Invitrogen, Carlsbad, CA) and 1% penicil-
lin/streptomycin (Sigma-Aldrich, St. Louis, MO). The frag-
ments were washed twice with phosphate-buffered saline 
(PBS), explanted into small fragments, placed on 6-well 
plates, stabilized with a glass coverslip, covered by 2 mL 
of DMEM supplemented with 20% FBS and antibiotics, 
and maintained in a humidified incubator with ideal condi-
tions (37 ºC and 5% CO2). The culture medium was replaced 
every 3 days and when 80–90% confluency was reached, 

cells were detached with trypsin (0.25%)/EDTA (1 mM) 
solution (Sigma-Aldrich, St. Louis, MO) and replaced in 
100-mm dishes with DMEM plus 10% FBS and antibiotics 
to expand the culture or stored at − 80 ºC in a freezing solu-
tion containing FBS and 8% dimethyl sulfoxide (DMSO).

Bacterial and ionizing radiation–induced stress

For the stressful condition induction, cells were treated with 
three stimuli, as established in previous experiments of the 
Laboratory of Oral Histopathology of the University of Bra-
sília (data not shown): lipopolysaccharide (LPS) of Escheri-
chia coli 0111:B4 purchased from Sigma-Aldrich (St. Louis, 
Missouri, USA), Porphyromonas gingivalis protein extract 
(Pg), and ionizing radiation (IR). The protein extract of Pg 
was prepared in the University of Campinas, São Paulo, 
Brazil, as described by Albiero et al. [16] and donated to 
the Laboratory of Oral Histopathology of the University of 
Brasília. In order to achieve stress induction, before begin-
ning the experiments, the cells were treated with LPS (1 µg/
mL) and Pg (5 µg/mL), incubated for 1 h, and then irradiated 
with 8 Grays (Gy).

Photobiomodulation therapy parameters

The laser irradiation sessions were performed using a con-
tinuous-wave InGaAlP laser (Photon Lase III DMC, São 
Paulo, Brazil) in punctual and contact mode. The wave-
length 660 nm laser was applied with output powers of 40 
and 30 mW. The energy densities were 2, 3, 4, and 5 J/cm2 
for each power. The complete treatment was performed in 
four sessions with 6-h intervals from each session according 
to Meneguzzo et al. [17] and Moreira et al. [18]. The overall 
parameters are presented in Table 1.

Experimental groups

The laser irradiation protocol presented in Table 1 was 
carried out in nine groups, considering a negative control 
group/vehicle (stimulated model without PBMT) and four 
energy densities (2, 3, 4, and 5 J/cm2) irradiated using two 
power doses (30 mW and 40 mW).

Cell viability

Gingival fibroblasts were seeded into 96-well plates 
at a density of 5 × 103 and incubated for 24 h. Then, the 
stressful stimuli protocol was applied in nine biologi-
cal replicates for each group. The first photobiomodula-
tion session was conducted right after ionizing radiation, 
according to experimental groups, and repeated three 
more times, every 6 h. After 24 h from the last session, the 
cells viability was assessed by the tetrazolium dye MTT 
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(3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyltetrazolium 
bromide) reduction assay. For this, 10 µL of MTT solution 
(Sigma-Aldrich, St. Louis, Missouri, USA) was added, and 
the cells were incubated and protected from light for 4 h. 
Then, the solution was removed, and 100 µL of acidified 
isopropanol (25 mL of isopropanol + 104 µL of HCl 100%) 
was added to each well. Cellular viability was analyzed 
after absorbance measurement using the spectrophotometer 
Thermo Plate TP Reader at 570 nm (Thermo Fisher Scien-
tific, Waltham, Massachusetts, USA).

Statistical analysis

The Shapiro–Wilk test was applied to assess data normal-
ity. As data resulted in parametric distribution, the one-way 
ANOVA followed by Dunnett’s and Turkey’s post-tests were 
applied to compare groups. The level of statistical signifi-
cance was 95% (p < 0.05). The tests were performed using 
GraphPad Prism 9.3.0 (GraphPad Software, CA, EUA).

Results

Combination of energy and power can differently 
modulate cell response

The PBMT effect was analyzed in cells stimulated with bac-
terial and ionizing radiation–induced stress. For cell viability 
analysis, all treated groups irradiated with different doses 
of low-level laser were compared to a control group (non-
irradiated with low-level laser). After 24 h from the last laser 
irradiation session, the groups outputted in 30 mW of power 
presented cell viability when operated with 2, 4, and 5 J/cm2; 
however, 3 J/cm2 dose significantly decreased mitochondrial 
activity (p < 0.05). In contrast, when the laser irradiation ses-
sion was set up in a higher power (40 mW), the cell viability 
was reduced using 2, 3, and 5 J/cm2 doses, with statistical 
significance for 5 J/cm2 (p < 0.001). Hence, the results indi-
cated that the combination of energy and power can differ-
ently modulate cell response (Fig. 1).

Inhibitory response could be dependent on laser 
parameters

The same density of energy can be delivered setting different 
parameters, while performing a PBMT protocol [9]. In this 
study, two power outputs (30 and 40 mW) were set, using dif-
ferent times of exposition to deliver and compare four energy 
densities (2, 3, 4, and 5 J/cm2). The results demonstrated that 
operating the same energy, using lower power, seems to be 
superior to a higher power, being statically significant for 5 J/
cm2 dose (p < 0.001). This pattern followed with all different 
groups, except by 3 J/cm2. Thus, bacterial and ionizing radia-
tion–induced cells exposed to four PBMT sessions of 2, 4, 
and 5 J/cm2 were more capable to keep mitochondrial activ-
ity, operating at 30 mW than 40 mW (Fig. 2). These results 
suggested that inhibitory response could be power-dependent.

Table 1   Laser parameters used 
for photobiomodulation therapy Parameters Values

Wavelength 660 nm
Active medium InGaAIP
Beam area 0.044 cm2

Power 30 mW 40 mW
Power density 0.68 W/cm2 0.90 W/cm2

Energy density 2 J/cm2 3 J/cm2 4 J/cm2 5 J/cm2 2 J/cm2 3 J/cm2 4 J/cm2 5 J/cm2

Irradiation time 2.8 s 4.3 s 5.7 s 7.2 s 2.2 s 3.3 s 4.4 s 5.5 s
Energy per point 0.084 J 0.129 J 0.171 J 0.216 J 0.088 J 0.132 J 0.176 J 0.22 J

Fig. 1   Cell viability after application of different photobiomodula-
tion doses powered at 30 and 40 mW compared to a model of ioniz-
ing radiation and bacterial-induced stress. LPS lipopolysaccharide of 
Escherichia coli; Pg protein extract of Porphyromonas gingivalis; IR 
ionizing radiation. Analytical statistics: One-way ANOVA for para-
metric data followed by Dunnett’s post-test (*p < 0.05; *** < 0.001)
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Discussion

The effects of PBMT depend on laser parameters, including 
wavelength, power, energy, spot area, and time of exposure. 
Also, these combined aspects could differently influence cell 
activity, such as proliferation [15, 19–21]. Thus, the effects 
of different parameters in wound healing are in current inter-
est, since it can enhance cell growth depending on the set 
output.

This pilot study investigated the effect of low-power 
InGaAlP laser irradiation comparing the output power of 30 
and 40 mW and the corresponding energy densities of 2, 3, 
4, and 5 J/cm2, while laser irradiation was performed in four 
sessions with an interval of 6 h between them. In accordance 
with published findings, lower power delivering the same 
density of energy was more capable to maintain cell viability 
than higher output power which suggests the influence of 
PBMT parameters in cell response [22–27].

Brueghel and Dop Bärr [9] suggested that power density 
and time of exposure seem to be more important than the 
total energy dose of PBMT on human fibroblasts. Azevedo 
et al. [20] found an inverse influence between power density 
and cell growth [9, 22, 28, 29]. Previous studies showed the 
same results, indicating that higher output power had inhibi-
tory characteristics [6, 15, 24, 30].

Low doses of PBMT activate a proton gradient, releasing 
calcium from mitochondria into the cell’s cytoplasm. This 
process stimulates a cascade of cellular functions and protein 
secretion enhancing cell proliferation. In contrast, higher 
doses can release an excessive amount of calcium promoting 
hyperactivity of calcium-adenosine triphosphatase, inhib-
iting cell metabolism [30–32]. Our results indicated that 
the same energy density, outputted in the power of 30 mW, 
showed higher viable cells than 40 mW, suggesting that the 
power can determine the stimulatory or inhibitory effect of 
the laser irradiation on cellular responses.

Hawkins and Abrahams [30] demonstrated that the 
cumulative effect from the accumulated doses determines 

the biomodulation effect, multiple exposures at higher doses 
cause additional stress and significantly reduced cell viabil-
ity, and lower doses and fewer exposures maintained cell 
viability.

The response of the tissue exposed to PBMT protocols is 
the combination of time of exposure, total energy delivered, 
and cell response. The study design was defined with a pri-
mary culture of gingival fibroblasts collected from patients. 
Even though the followed inclusion criteria considered 
healthy patients, the PBMT results may vary according to 
patients’ response, cell type, tissue condition, and explant 
methods used for the culture [24]. Also, it is possible that, 
in this preliminary study, the total energy delivered in 3 J/
cm2 and 30 mW of output power associated with the time 
that the energy was delivered was unable to produce effect 
comparable with other parameters; this could be associated 
with different degrees of the effect produced by PBMT [6].

Considering that wound healing depends on cell prolifera-
tion, it is crucial to study and deeper understand the effect of 
power densities of PBMT in vitro, since this is the first step 
to understand the cascade process in a complex body [31]. 
There is not a well-defined standard of output power setting, 
although various studies have been performed to observe the 
effects of low-level laser in cellular response [2, 8, 10–12]. 
Comparing different protocols of application can contribute 
to determine the optimal combination of parameters accord-
ing to different cell types and expected results. In addition, it 
is possible to obtain lower or higher doses to reach an energy 
density, controlling the output of power and the laser irra-
diation time which can facilitate the replication of protocols 
even when different equipment is available [6, 9].

There are some limitations in this study that should be 
addressed. First, this is a pilot study that only focused on 
cell viability. Considering the importance of laser param-
eters for different culture conditions, a single trial experi-
ment assessing different PBMT outputs was conducted to 
allow future analysis since cell response depends on that. 
Second, the definition of output parameters was based on 
literature research, which contemplates different cell types 
and objectives. Thus, the future proposal is to continuously 
study cellular response after bacterial and ionizing radia-
tion–induced stress, comparing output powers of 30 mW 
and lower with further experiments to analyze the effects of 
PBMT on cell morphology, proliferation, migration, gene 
and protein expression, and specific pathway signalization.

Conclusion

The present pilot study showed that PBMT effects can be 
influenced by the power outputted parameter. After analyz-
ing PBMT set in 660 nm wavelength, output power of 30 
and 40 mW, and energy densities of 2, 3, 4 and 5 J/cm2, 

Fig. 2   Comparison of same energies density powered at 30 and 40 
mW. Analytical statistics: One-way ANOVA for parametric data fol-
lowed by Tukey’s post-test (*** < 0.001)



209Lasers in Dental Science (2022) 6:205–210	

1 3

it was possible to conclude the PBMT effect. The results 
using a protocol of PBMT, set with 660 nm of wavelength 
in four sessions of laser application with 6-h interval suggest 
that delivering 2, 4, and 5 J/cm2 of density of energy with 
output power of 30 mW, leading to more time of exposure, 
presented better results on cell viability compared to the 
same energy density with 40 mW. However, further studies 
comparing density energy should be conducted.
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