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Abstract

We estimate best approximations and moduli of smoothness of functions in Morrey
spaces variable exponent spaces by norms of derivatives of Riesz—Zygmund means
and partial Fourier sums in these spaces. As a consequence, we obtain a description
of Holder spaces based on the Morrey spaces. The direct results on approximation in
these Holder spaces are also obtained.
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1 Introduction

Let I}, 1 <p<oo, be the Lebesgue space of measurable 2n-periodic functions fon
R such that [|f1|? := 02” If (X)Jf dx<oo. If 1 <p<oo,0<A<1 and fis a measurable
2n-periodic function for which

B o oy 1/p
11~ s (17 [ rpas) <.

where the supremum is taken over all I = [a,b] with 0 <b — a <2 and |]] is the
Lebesgue measure of I, then f belongs to the Morrey space L’z’; We note that the

norm || - ||, is invariant with respect to usual translation and that Z27 ¢ 12 L}_
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forall 0</<1and 1 <p<oo (for 2 =1 the space L’;;:‘ coincides with L} ). More
about these spaces see in [1, ch. 1].

It is known that in general case L5 *is not a separable space (see [27, Prop. 2.16]).

Therefore we consider a proper subspace L 0 of I, which is the closure of the

271:’

space of trigonometric polynomials in L with the same norm || - ||, ;. Then
limy—o [f (- +h) =f()l,, =0 for f € LGo (see Lemma 1). Let

ao(f) /2—1—2 (ar(f) cos kx + by (f') sin kx) ZAk(f (1)

be the trigonometric Fourier series of /' € L) and S, (f)(x) = Y_}_, 4k (f)(x) be its
n-th partial sum. If 7}, is the space of trigonometrlcal polynomials of order at most

nez,={0,1,...} and f € I, then E,(f),, = inf{||f — t,|,, : ta € T,,}.
For a function f € L‘;;io and m € N ={1,2,...} we consider the difference of
order m € N with step &

) = Y0 ()t

k=0

and the modulus of smoothness
wm(f7 5)1)71 = Sup‘ ||A;lnf(x)||p7
[h <o

Let 1 <p<oo, 1/p+1/qg = 1. A weight function w (a 2n-periodic, measurable and
positive a.e. on R function) belongs to the Muckenhoupt class A,(T), if the
inequality

1/p 1/q
sup(|[|_l/wp(x)dx> <|I|_1/wq(x)dx> = Dy o] <0,
I I I e

holds, where I are intervals of length at most 27 (see [19]). A weight function w
belongs to the class 4;(T) if Mw(x) <Cw(x) ae. on R. Here Mw(x)=
supys, |~ f, x) dx is the maximal function of w. From the Holder inequality it
follows that Al('ﬂ') C A4, (T) C A4p,(T) for 1 <p; <p,<oo. A measurable 27-pe-
riodic function f belongs to weighted space L! , , 1 <p<oo, if fw € L}

Further we use the famous Riesz-Zygmund or typical means of order » € N for
fely,

w2

70 =3 (1= ey Ju = XL s 0w, @)

k=0 k=0

where n € Z,. The famous Fejér means o,(f) = (n+1)"" > i—oSk(f) coincide
with Z! ().
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Riesz—Zygmund means and trigonometric approximation...

According to [4, Ch. VIII, §§ 7,14] for a function f(x) € L} _ there exists a.e. the
conjugate function

f(x)= lim (2m)~ /(fx—t Flx+1))/tan(t/2) dt

e—0+ 0

the conjugatlon operator is bounded in Z;_, 1 <p<oc and the Fourier series of the
function f af f € L)) has the form

iak(f sin kx — by (f') cos kx) ZBk(f

k=1

Let @ be the space of strictly increasing and continuous on [0, 27] functions w(¢),
with property w(0) = 0.

We will writt w€B, if we® and >0 k 'k =0(wnrn™")),
neN={1,2,...}.

This class and its equivalent definitions was studied by Bary and Stechkin [3]. If
o € ® and w(2t) <w(t), t € [0, 7], then w € A, (or w satisfies Ay-condition).

For w € ® and m € N let us consider a Holder type space

{fELZTEO wm(fﬂ ) SCC&)(&),ZT[Z(SZO}, (3)
where C depends on f and no depends on . The last space with the norm

W llp s = I/, +  sup @f%?w “

0<t<2m

is a Banach one.
Testici and Israfilov [23] proved

Proposition 1 Let 1 <p<oo, 0<A<1, f € 15/, Then

D 1Si0)l < Crlf 0 m € N:
@) (1l < ol
GiD) I =53l < (Co+ DEF) 0 € N;

where C;, C, does not depend on 7 and f.

Let felf, 1<p<oo, and £(f)€T, be such that [f —z:(f)l,=
inf [[f — ],

€T,
Sunouchi [21] established the following result and its analogue for continuous
periodic functions.

Proposition 2 Let f € IS , 1<p<oo, r € N, 0<oa<r. Then the conditions
If =6()l, =00n™), neN,

and
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NN, =0, neN,

are equivalent.

Zhuk and Natanson [30] obtained the estimate of modulus of smoothness in terms
of norms of derivatives of polynomials of best approximation.
Proposition 3 Let 1 <p<oo, me N, r € Z., f € L5 . If the series

o0

ST G ),

k=1

converges, then for 7> 1 a function fis equivalent to f; such that £, .../ are

absolutely continuous on each period and fi” € IZ_(for r = 0 we set fy = /) and the
inequality

on(fy” 1/m), <C N K@) ", neN,
k=n+1
holds.

The aim of the present paper is to obtain Sunouchi and Zhuk—Natanson type
results in the Morrey space using Riesz—Zygmund means (or Fourier partial sums)
instead of polynomials of best approximation. Also we establish a two-sided estimate
for the degree of approximation by Riesz—Zygmund means in Morrey space and
some direct approximation results for Riesz—Zygmund and Bernstein—Rogosinski
means. The approximation in Holder type spaces based on the Morrey spaces is
studied.

2 Auxiliary lemmas

Lemma 1 Let | <p<oo, 0<i<1,f € L5, Then

tim [+ k) = £ ()], = 0

Proof By definition for ¢ > 0 we can find ¢, € T, such that
I = tall, = IFC+R) = ta(- + D), , <&/3.

Since #, is uniformly continuous. there exists J >0 such that |t,(x+h) —
ty(x)| <e/(6m) for all x € R and |h| <. Then
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Riesz—Zygmund means and trigonometric approximation...

. 1/p
o+ ) — () = sgp(w—‘ [t = dx)

1/p 2me

J— P 4/p =¢
< sup (1171 1le/(6m)) ) < (2m) e/ (6m) < 0 =5

and
) =F Ol SIFC+R) = tal+ B + a4 B) = ta()],;
+C) = Ol <e, || <6.
O

Lemma 2 is known, e.g., it is used in [8] without references. But we can not find it
in monographs where Morrey spaces are treated (see [1, 17]) and give a proof here.

Lemma 2 Let 1 <p<oo, 0<A<1, fixy) is measurable on R* and 2n-periodic in
each variable. Then

|/ el

2n
. . dy.
s / Gl dy

Proof LetI = [a,b] C R and b — a < 2=, By the generalized Minkowski inequality

we have
- 2n P 1/p
(= [([ o) a)

<per [ ; ([ronra) ¥ < / el d )

Taking the supremum in the left-hand side of (5) over I we obtain the inequality of
Lemma. U

Corollary 1 Let 1<p<oo, he€ L‘z’;f, g €L . Then the convolution hx g(x) =
2 Y
o h(x—y)g(y)dy belongs to L57 and ||hgl|, ; <I|ll, ;gl;-
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Proof We take f'(x,y) = h(x — y)g(y) in Lemma 2. Then

2
hegl,, < H | =gl v

DA
2n

2n
< / (= g0, dv = Il / 10 dy = 1Al gl

O

Lemma 3 is a variant of Marcinkiewicz multiplier theorem and it is stated in [15]
without proof (the author claims that the proof is similar to one of corresponding
result in weighted Lebesgue space [18]. But in [18] the multipliers in R" were
studied). We prove Lemma 3 by the method of Israfilov and Testici [23].

Lemma 3 Let {w},, satisfy the conditions

2"—1

el <Ci, ke Zy Z It =ty | <Gy me N,
f=am!

If 1<p<oo, 0<i<1and f € L"Z’ﬂA has the Fourier series (1), then there exists a

function F(f) € 15 with the Fourier series 320 uds(f)(x) and
I1F (), < Cllfll, ;> where Cs does not depend on f; p and .

P =

Proof Since [57 C 17 and Lemma 3 is well-known for A = 1, i.e. in 15, 1 <p <oo

(see [31, Ch. XV, Theorem 4.14]), the function F(f) is correctly defined for f* € L‘z’;f.
Coifman and Rochberg [9] proved that for any interval / and its indicator X; the
inequality M (M (X;))(x) <CiM(X;)(x) holds a.e. on R. In other words, M(X;)
belongs to the Muckenhoupt class 4, (T). Since 4,(T) C 4,(T) and F(f) is bounded
in Lf, , for 1<p<oo, w € 4,(T) (see [5, Theorem 4.4]), one has for 7 C [0,27]

/ FO) (P dx = / VE) X (x) de <
I 0
2n . » 2n . » e
< / () ()P M(X;)(x) de < C / (0P M (X) (x) di.

It is known that for x € [0, 27]
MX)(x) < Xi(x) + 327X, (x), o= 21\ 2°1)n (0,27, (6)
=0

where A(x) < B(x), x€Y, means that Cid(x) <B(x)<(CyA(x) for some
Cy > C; > 0and x € Y, and m/ is the interval of length m|l] such that the centers of /
and ml are the same (see [13]). Using (6) we obtain
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Riesz—Zygmund means and trigonometric approximation...

sup 11" / F(N @) dx
<Ciswpltf”! [ [y v
Il I
OO "
+G Y 2 Fsup |1|H/ ()PP dx
k=0 I N/

o0
< (wm £ 2@ sup
k=0

<Gt (1 + ZZ_)) = Gs|/flly.
k=0

el dx)

2k+1f

For a technical purpose we define the following iterated means

2.0 =3 (1= i) (1= gy 0D = 220

k=0
The result of Lemma 4 for even r may be found in [7] and for odd r in [29].
Lemma 4 For f € L} the following equalities

2.0~ 23,0 = S ),

where U!(f) = Z/(f) for even r and U/(f) = Z,',‘N(f) for odd

Lemma 5 Let r €N, 1<p<oo, 0<A<1. Then the operators Z, are uniformly

bounded in Lg;io and

n

I = Zy ()l < Cnt 1) (k1) E(f),

k=0

Proof It is easy to see that Z/(f)=f«F", where F'(x)=n"'(1/2+

i (1=k"/(n+1)")) coskr. Timan [26] proved that {|F"||;}>2, is bounded.
From this result and Corollary 1 the first statement of Lemma 2.5 follows. We note
that for 1 <p < oo this assertion may be proved using the equality

(k1) =
Z,(f)(x) = ZW&‘ () (x)
k=0

and Proposition 1.

For the second statement we use Timan’s method of proof of inequality (1.15) in
[26]. Since the last paper is in Russian, we recommend the proof of Lemma 3.8 in
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[29] for representation of Timan’s method. Here also for 1 <p < oo the proof is more
brief and uses Proposition 1. Namely,

: (k1) -k
I =Z, (O, < ;WW* Se()l,: <
G
STyt B

O

The result of Lemma 6 (i) is established by Israfilov and Tozman [12] while the
result of (ii) may be found in their paper [13]. These inequalities are known as direct
and inverse theorems of approximation by trigonometric polynomials and in general
form for the first time were obtained by Stechkin [20] for continuous functions.

Lemma 6 Letm € N, 1<p<oo, 0<A<1,f € L5, Then

() Ef),, <Coulf,(n+1)7"), . n€Z,.
(i) on(f,n ), SCn S (k+ 1) Ex(f), 0 1 € Zs.

Lemma 7 (i) is due to Nikolskii and Stechkin while part (ii) is established by
Stechkin in [20] in the case of continuous functions. We give proof of this part for the
utility of a reader.

Lemma 7

i) LetmeN,l<p<oo, 0<A<I1.If¢t, € T,, n € N, then

1< (

) I8f a0 O<h<7/(2n).

(i) IfmeN,f el and 1,(f) € Ty, n € N, satisfy the inequality

If — Tn(f)”p,/l Sme(fvnil)p,b neN.

Then @y (14(f),0),, < C(K)on(f,9),
0 € [0,2x].

for some C(K) >0 and all

)

Proof (i) The result of Lemma 7 (i) can be proved by the method of Civin (see [25,
Ch. 4, sect. 4.8.61]) or by the method of Zamansky (see [10, Ch. VII, Lemma 2.6]).
(ii) For 7, (f) satisfying conditions of (ii) we have

(})m(Tn(f), 5),,’/1 < wm(f7 6),;,’/1 + wM(f - T"(f)7 5)[),2
<op(f,0),, +2"If = w()ll,, (7)
< W (fv 5);;,/1 + G wm(f’ nil)p,). < (C1 + l)wm(fa 5)p,/1

for all 6 > 1/n. From (i) and (7) we also deduce that
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Riesz—Zygmund means and trigonometric approximation...

1y (N, < (n/ @sin 1) 0 (2a(f),n7"),; < Con"on(f,n7"). (8)

It is known that usual modulus of smoothness in translation-invariant spaces has the

properties @y (f, 1), ; < C3(1/6)" wn(f,9),;, 0<6<n<2m, and w(14(f),0),,; <

||r§,m) ) ||p,)v5m (see (7.8) and the proof of (7.12) in [10, Ch. II]). Using these facts and
(8) we obtain
(5(1),8) < FIE (1), < Co(n0) " 0n(f ™), , <
< Cy(nd)"(n™"/8)" (f,9), , = Csoo(f',9),,;
for 0 < <n~! and (ii) is proved. O
Lemma 8 may be found in [8, Lemma 2.3].

Lemma8 Letr €N, 1<p<oo,0<Ai<landf € L5, besuch thatf.f', ... .[fo=)

are absolutely continuous on each period and ) € Lg;io. Then

E(f ), SCn " If ), neN.

Lemma 9 is proved for » = 1 by Alexits [2] while its general variant for » > 0 is
established by Joo [16].

Lemma 9 Let >0, (X,| -|y) be a Banach space and ay € X, k € Z,. Let
Ry = "o (1=K /n)ay, 7 = 'o(1 — K /n")k ay, n € N. Then the condition
||T,§r)||X <Ci, neN, holds if and only if there exists R€X such that
IR — R,(f>||X <G, n € N. Note that C; = C(r)C; and vice versa.

Lemma 10 is proved by Timan [24]. By D,(¢) we denote the trigonometric
Dirichlet kernel sin(n + 1/2)¢/(2sin(¢/2)), n € N.

Lemma 10 Let o, = mk(n)/(2n+ 1) + O((nln(n + 1)), n € N, k(n) be an even
natural number, |a,| < m. Then the norms ||Dy,(- + 0y) + Du(- — a)||, are bounded.

3 Approximation by Riesz-Zygmund and Bernstein—Rogosinski
means is Morrey spaces

In view of Lemma 6 (ii) Theorem 1 sharpens the estimate of Lemma 5. We note that a

similar result in L5, 1 <p <oo, was proved by Trigub (see [28, sect. 8.2.6]).

Theorem 1 Letm € N, 1 <p<oo, 0<A<1,[ € L5/, Then
Clon(f 1/n),; <\ = Z) (F)ll, < Com(f, 1/m), ;0 nEN, ©)
for some C > 0.

Proof Suppose that 7,(f) € T, satisfies the equality
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IV = (O = En(F)y 0

Then by Lemma 5 we have

V= Z O < W= (Ol + 12 (2 (1)) = G, i+
HIZ = Dz < CE),; + 12 @) = el o0

It is easy to see that for 7, € T, and even m the equality |1, — Z)(¢,)| = (n +

l)fm\tr(lm)| holds, while for odd m we have |t, — Z"(t,)| = (n + 1)7m|t,(,m) |. Thus, by
Lemmas 6 (i) and 7 (i)

I = 23 ()l < Coom (o), 1+
+ Co(n+ 1) """ o (ta(f),n ), < Csom(Ta(F),n ), -

The right-hand side inequality (9) is proved.
Using again the property w,(t,,6),; < ||t,(,m>|| ;0" for t, € T,,, we obtain

on(f,n "), Son(f = Z7(F), 07, + ou(Z) ()07, <
< Callf =2 P+ n7" 1 )0
Using above equalities for |t, — Z"(¢,)| we find that

n+1

)™, = ( )mnu,:"(f) 2w, (10

where U™ (f) = Z"(f) for even m and U”(f) = Z"(f) for odd m. By Proposition 1
and Lemma 5
on(f 1), S Callf = Z3 ()l + 2" Cal U = ZE )] <
<Gllf =27 (O,

and the left-hand side inequality (9) is proved. O

We will write g € W’Lz;io, where r € N, 1 <p<oo, 0<i<1,if g, g, .. .,g("’l)

are absolutely continuous on any period and g € Lg;f:o. Theorem 2 is an analogue

and extension of the result of Bustamante [6, Theorem 1] obtained in the case r = 1
and f €I}, 1<p<oo.

2n>

Theorem 2 Let r € N, 1<p<oo, 0<i<1,f,f € W'L5, . Then
I = Z; (O, < Cn I, n €N, (11)

ForreN,p=10<i<landf,f € W’Lg;io we have the inequality
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Riesz—Zygmund means and trigonometric approximation...

If = ZL)s < Cn o) Nl n €N,
where ¢(f) = f for even r (r € 2N) and ¢(f) = f for odd r (» € 2N — 1)

Proof Letr e N and f ,]7 € WrL‘;;iO. Then the Fourier series of £() is

o0

Z (ar(f) cos(kx 4+ rm/2) + b (f) cos(kx + rn/2)) =
k=1

{:I:Z;i]k’/lk(f)(x), r € 2N;
L EE KB (x), re2N—1.

In a similar manner, the Fourier series of f(r) for odd r has the form
300 KA () (x). If o(f) € W’LZ;IO, then by Lemma 5 the norms of T ;5+>1 =
S (1=K /(n+ 1))k Ax(f) in L5 are bounded by Cy||(p(f))" ”p,i' Thus, by
Lemma 9 Riesz-Zygmund means Z/(f') converges to Z(f) in L} and

) 1N,
12,00 = 26l < =

forall 1 <p<ooand 0<A<1.Itis easy to see that Fourier coefficients of Z(f) and f
are the same and Z(f') = f. Finally, for 1 <p <oo by Proposition 1 (ii) we obtain

1N, < Csllf ]|, and (1) is valid. O

neN (12)

Now we obtain an analogue of Theorem 1 in the case p = 1. For f € L27I omeN
and ¢(g) defined as in Theorem 2 we introduce a K-functional

Ko(f50),, = int{lf = gll,; + " (0(@) ]l : 2,8 € WLy}

Theorem 3 Letp=1,0<i<1,meN,f ELGo Then there exist K, > K| >0
such that

KK (fon ), <IF = Z0 (Ol S KoK (fon 7!y mEN,

Proof It is clear that
Kn(fn ™), < = Z2O) s + 17" o(Z200)) ™ -

By the proof of Theorem 1 and Lemma 5 we have (o(Z(f M™ = +(n+
D™Z () = Z7(Z (1)) and
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Kn(fon™ ) <N =20 () i+
+ ((n+1)/m)™1Z7() = 2327 (DI < Cllf = Z7 (O

On the other hand, for every g such that g, g € W’”L;;:” we obtain by Lemma 5 and
(12) from the proof of Theorem 2

I =Z2 Ol < 2 =220 =)l + g = 22, <
Il

nm

<Gllf —glli;+ G
Taking the infimum over all such g we find that

I =23 (F)lly.; < max(Ca, C5) Ko (07 ")y ;.

From Theorems 1 and 3 we deduce for Fejér means

Corollary 2 Let 1<p<oo, 0<A<1, f € Uz);j,o- Then for some Cy, > C; > 0 we
have

Cron(f,n™),; I = (), < Coon(f,n7"), ;m €N

Ifp=1,0<i<1,f¢€Lh, then for some C4 > C; > 0

CBE(fa ”71)1.1 <|[f - Un(f)”l,/t SKZEU7”71)1,17 neN.

Now we consider Bernstein—Rogosinski means

Ruu(f) = 27! (Sa(f) (- = 0tn) + Su(f) (- + o)),

where {a,}., satisfies the conditions of Lemma 10. Similar to Riesz—Zygmund
means approximation by this means under some restrictions can be estimated by the
modulus of smoothness of higher order, namely, of order 2. Such estimate was
obtained for continuous functions by Stechkin. In the case o, = n/(2n) see Stech-
kin’s result in [11, Ch. 5, Theorem 2.4].

Theorem 4 Let 1 <p<oo, 0<A<1,f € L5l If

— 2 0(sy) e

S P nln(n+ 1)

{k(n)},2, is a bounded sequence of even natural numbers, then

|lf_R"~,“(f)Hp,i§C2w2(f7 nil)p,).’ neN.
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Proof Let 1,(f) € T, be such that [|f —t,(f),, = Eu(f),,- Then Su(z.(f)) =
7,(f) and we have by virtue of Corollary 1, Lemmas 6 and 10

I = R ()l ,.2
= If = (Sulf = () = o) + Sulf = ) (- + ) /2~
= (@ (N =ow) + () + ) /2, < = 0FC—ow) + 7+ o) /2], ,+
+ 27 R (f = TNl + 27 = ) = w(F) (= o)+
F2G = @)+ ol S 502003) + Gl = Pl
I = 5 < Colnf ), + 0n(f ™), )
Finally, it is known that for #, > #; > 0 one has w,(f, tz)p,;_ < (2t2/t|)2c02(f, 4 )p,i

(see, e.g., [II, Ch. 3, (4.18)] for continuous functions). Thus,
s (f, oc,,)p’ , S Can(f, n’l)p, , and the inequality of Theorem 4 holds. O

Corollary 3 Let o, = n/(2n),n € N, 1 <p<oo, 0<A<1,f € Lg;io. Then

I = RuaF)z < Cooa(f im0 mEN.

Proof Let us consider §, = n/n, n € N. Then

n 2n 2n 1
Z_ = =0
n 2n+1 2n(2n+1) nin(n+1)
and {3} satisfies the conditions of Theorem 4. But a, = f3,, and

U = Rua()llp . = = Roup(F),.z < Cro(f, (2m) ),
< C]a)(f,nfl)pﬁ/l.

4 Inverse and equivalence theorems of Sunouchi and Zhuk-
Natanson type

The counterpart of Theorem 6 was proved in [29] for variable exponent Lebesgue
¢

spaces L

. In [29] a general class of exponents p(-) was considered and an analogue
of Proposition 1 is not valid in all such spaces ngr'). Here we give a more simple
proof of such result than in [29] in the case 1 <p <oo.

The content of Theorem 5 is close to one of Proposition 3. Since S, are linear
operators and S, (S,,) = Smin(m.n)> the proof is simpler than for polynomials of best

approximation.

)
Theorem 5 Letm e N, 1<p<oo, 0<1<1,f € sz"n,O. Then
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on(f1/n),; <C Y kIS ()]s neEN.
k=n+1

Proof Using again the property @, (S,(f),d),; < ||S,<,m)(f)||py)~5m, 0 €[0,27], we
have
On(fs1/n),; S On(f = Su(f), 1/n),,; + On(Sa(f), 1/n), ; <
<2 = S+ 1" IS ()

Due to Lemma 8 and Proposition 1 (iii) we write for k € Z

I = Soa ()l = If = Speera (),
< |1Soks1, () — Sary (f)Hp,;~ =
= 18501 () = Spta (S0 ()| 1 < C1Eoin (i1, (F)),; <
< G2 n) " IS5 (O]

(13)

We note that for f € L‘;;f' and m,n € N, m <n, by Proposition 1 (i)

1SmMp 2 = 1Sm(Su N2 < C3llSu (] 1

Therefore,

15" s
W = Sota (e = I = Saretn(PMp S Ca D =25
j=arr
Summing up these inequalities over £k = 0, 1, ..., we obtain
W = $u Mz <Cs D T IS ()i (14)
Jj=2n+1
If we substitute (14) into (13), then we find that

onlf /), <Ca Y S (),
J=2n+1

2n o)
+2770 3 S O < Co > IS (i

J=n+1 J=n+1
O

By virtue of Lemma 6 (i) Theorem 6 sharpens the result of Theorem ??.

y!
Theorem 6 Let r,m € N, 1<p<oo,0<i<1, f € L5, Then
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onlf 1/m),,<C S N @)™,

J=n+1

Proof Let us put ,u,({") =Q2n+1)/(2n+1) —k"), k=0,1,....n, and ‘ul({") =0
for k£ > n. Then ,u,<c"> increases for k =0,1,...,n and

| (n)| _ (21’1 + 1)r _ (3n>r _ 3r
k n+1) —n = 2n) —n" 27 —1°

On the other hand,

= n n — n n n n 3r
Dol = =30 =) ) —0<ou) =2
=

n—1
k=0
For the operator F,(f) = > ;= H;!l)Ak(f ) we have the equality F,(Z5,(f)) = Su(f).

We obtain |[S, ()|, < Cil1Z5,(F)l, ;> » € N, where C; does not depend on n by

Lemma 3. By Theorem 5 we have for n € N

oulf,1/n),, <Co > YIS ()], <

J=n+1

cce 3 VD s omicic, 5

Jj=n+1 Jj=n+1

25, 1) ™ s

Jm+1

From Theorem 6 and Lemma 5 (i) we deduce

Corollary 4 Under conditions of Theorem 6 we have the inequality

p,_czfmluzr N, meN.

Jj=n+1

Theorem 7 is a counterpart of Proposition 2.

Theorem 7 Suppose that m € N, 1 <p<oo, 0<A<1, f GL w0 and ® € BN A,.
Then the conditions f € H,";” and

1Zr ()™, = 0" w(n™)), neN, (15)
are equivalent.

Proof If (15) holds, then by Theorem 5 we obtain
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on(fin ), <C0 > K@z )™, <

k=n+1

<C22k ok <CGor™), neN,
k=n+1

due to the condition w € B. Since w satisfies the Aj-condition w(2¢) < Csw(t),
t€[0,7], we have forne Nand 6 € (n+1)"",n"]
on(f,0),, S on(fin"),; < CGom™) <
<CGoR2n+ 1)) <CGCo((n+1)") < CGCo(d).
For ¢ € (1,27] a similar inequality follows from monotonicity and boundedness of
@n(f,0),, on [0,2n]. Thus, f € H"”.
Conversely, let f € H)"”

1Zm ()™, < Csn"0n(Z2(f), 1/n),,; <
< Cen" op(f, l/n)p’)y <Cin"o(l/n)

. By Lemma 7 (ii) and Theorem 1

and (15) is proved. O

The statement below sharpens the Proposition 2 in Morrey setting (the case o = m
is included).

Corollary 5 Let me N, 1<p<oo, 0<A<1, feL wo and 0<o<m. Then the
conditions wy(f,9),,, = 0(6"), 8 € 0,2x], and ||(Z2'(f))"||,, = O(" ), n € N,

are equivalent.
In  particular,  the  conditions ~ w:(f,9),, = 0(5"), ¢¢€0,2n], and

o, ()|, = O(n' =), n € N, are equivalent for 0 <o < 1.

5 Approximation in Holder type spaces

We give an application of Lemma 7 to problems of approximation in Holder type
spaces. The following Theorem 8 is an analogue of the result by Telyakovskii [22]
concerning uniform Holder spaces. Let us remind that Holder type spaces H “ and

its norms || - || are defined in (3) and (4).

P A,

Theorem 8 Let 1 <p<oo, 0<i<1l,meN, w,p € ® and yn(t) = w(t)/¢(t) be
increasing on (0,2n]. If f € H;"}f” and t, € T,, n € N, are such that the inequality

If = tall, 1 < Com(f,1/n), ;,  neN. (16)

holds, then
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“f_tn||p7i,m,(pécn(l/n)a neN.

Proof By the condition of Theorem 8 we have
If = tall,; < Cro(m™") = Cin(n™e(n™") < CLo2m)n(n™"). (17)

Let us estimate @, (f — ,9), /(). For 6 >1/n we have

Onlf = 10,0),; _ Collf = tall,s w(n')
£ < 2L <C =Cn(n™'). (18)
o) o) =g - O
For 0 <d<1/n by virtue of Lemma 7 (ii) we find that
m - tn»é A m 75 + O tn’é A
on(f )p. < ou(f )p,A O ( )pA <c (0) §C417(n’1). (19)
@(0) ®(0) ®(0)

From (17), (18) and (19) we deduce the statement of Theorem 8. O

Now we give some applications of Theorem 8 to approximation by famous means
of Fourier series.

Corollary 6 Let 1 <p<oo, 0<i<1,meN, w,¢ € ® and n(t) = w(t)/p(t) be
increasing on (0,2x]. If f € H;";f”, then

V= $ai)psmep < Cn(1/m), neN. (20)

Proof By Proposition 1 (iii) and Lemma 6 (i) we have

1f = Su(Olp < Craom(f,1/n),,, neN.
Using Theorem 8 we obtain (20). O

Now we consider the Vallée-Poussin means
V(1) (%) = 225, (1) (x) = Z, () (x) = 20201 () = au1 ().

Corollary 7 Let 1 <p<oo, 0<A<1, meN, w,p € ® and n(t) = w(t)/p(t) be
increasing on (0,2n]. If f € H,")", then

WV = va Ml ime < Cn(1/n),  neN. (21

Proof Letr,(f) € T, be such that [/ —t,(f)||,, = Ex(f),, It is known that
Vu(ty) = t, for t, € T,, n € N, and that Z! (f) = F! x f, where ||F}||, =1 (see [4,
Ch. 1, § 47,(47.10)]). By Corollary 1 we have [[v,(f)ll,, <3|[fll,,, while by the
previous inequality and Lemma 6 (i) we find that
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V= va) s < W =t + 12 () = va (w1
Fvalf = D <4 = (Ol
<Cou(f,1/n),,, neN.
Using Theorem 8 we obtain (21). O

Corollary 8 Let 1 <p<oo, 0<i<1,meN, w,¢p € ® and n(t) = w(t)/p(t) be
increasing on (0,2n]. If f € H,")", then

W =Z Ol smp < CA(L ), €N (22)

If p = 1, m is even and other conditions above are valid, then (22) also holds. Finally,
if p=1, mis odd and w € B, then (22) is valid.

Proof By Theorem 1 we have for 1 <p<oo and m € N
I =2l < Crom(finh),, neN. (23)

In turn, (26) is valid for p = 1 and even m by Theorem 3. Applying Theorem 8§ we
prove (22) in these cases.
Ifp=10¢€B,andf € H)"", the inequality of Lemma 5 together with Lemma

6 (i) gives us
) G & T B
I —Z,()ll, < m;(wﬂ) Lok < Cyo(n™).

Repeating the proof of Theorem 8 we obtain

On(f = Z1(1):0)p, _ Gl = Z7 s _ ., oo(n™")
2 =< <G = Csn(n™! (24)
”0) o) o)~ 1
for 6 >n~!. Since the translation and the convolution commute, we obtain A} (f *

FI") = Ajf « F' (the definition of F' see in the proof of Lemma 5) and
on(Z)(f),6),; < Caon(f,0), ;. Now we have

onlf = Z0).0)ps _ Onlf,0)y, + on(Z7(f), 0),,,

<
@(9) - »(9) =
w(9) -
29 <
Cs oa) S Gl (25)
for 0<d<n'. From (24), (25) and obvious inequality |/ —
Zi(),; < C3p(1)n(n~") we deduce (22). 0O

Corollary 9 Let 1 <p<oo,0<A<1, w, @ € ®and n(t) = w(t)/p(t) be increasing
on (0,2x]. If {o, },, satisfies the conditions of Theorem 4, f € H;’f, then
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Proof By Theorem 4 we have the inequality ||f — B,.(f)|l

I = Busf)llp 12 < Cin ™), mEN. (26)

. < Cl wz(fan_l)pw

Applying Theorem 8, we obtain (26). O
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