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Abstract
We estimate best approximations and moduli of smoothness of functions in Morrey
spaces variable exponent spaces by norms of derivatives of Riesz–Zygmund means
and partial Fourier sums in these spaces. As a consequence, we obtain a description
of Hölder spaces based on the Morrey spaces. The direct results on approximation in
these Hölder spaces are also obtained.
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1 Introduction

Let Lp2p, 1� p\1, be the Lebesgue space of measurable 2p-periodic functions f on

R such that kf kpp :¼
R 2p
0 jf ðxÞjp dx\1. If 1� p\1, 0\k� 1 and f is a measurable

2p-periodic function for which

fk kp;k¼ sup
I

jI jk�1
Z
I
jf ðxÞjpdx

� �1=p

\1;

where the supremum is taken over all I ¼ ½a; b� with 0� b� a� 2p and |I| is the

Lebesgue measure of I, then f belongs to the Morrey space Lp;k2p . We note that the

norm k � kp;k is invariant with respect to usual translation and that Lp;k2p � Lp2p � L12p
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for all 0\k� 1 and 1� p\1 (for k ¼ 1 the space Lp;k2p coincides with Lp2p). More
about these spaces see in [1, ch. 1].

It is known that in general case Lp;k2p is not a separable space (see [27, Prop. 2.16]).

Therefore we consider a proper subspace Lp;k2p;0 of Lp;k2p , which is the closure of the

space of trigonometric polynomials in Lp;k2p with the same norm k � kp;k. Then

limh!0 kf ð� þ hÞ � f ð�Þkp;k ¼ 0 for f 2 Lp;k2p;0 (see Lemma 1). Let

a0ðf Þ=2þ
X1
k¼1

ðakðf Þ cos kxþ bkðf Þ sin kxÞ ¼
X1
k¼0

Akðf ÞðxÞ ð1Þ

be the trigonometric Fourier series of f 2 L12p and Snðf ÞðxÞ ¼
Pn

k¼0 Akðf ÞðxÞ be its
n-th partial sum. If Tn is the space of trigonometrical polynomials of order at most

n 2 Zþ ¼ f0; 1; . . .g and f 2 Lp;k2p;0, then Enðf Þp;k ¼ inffkf � tnkp;k : tn 2 Tng.
For a function f 2 Lp;k2p;0 and m 2 N ¼ f1; 2; . . .g we consider the difference of

order m 2 N with step h

Dm
h f ðxÞ ¼

Xm
k¼0

ð�1Þm�k m

k

� �
f ðxþ khÞ

and the modulus of smoothness

xmðf ; dÞp;k ¼ sup
jhj � d

kDm
h f ðxÞkp;k:

Let 1\p\1, 1=pþ 1=q ¼ 1. A weight function w (a 2p-periodic, measurable and
positive a.e. on R function) belongs to the Muckenhoupt class ApðTÞ, if the
inequality

sup
I

jI j�1
Z
I
wpðxÞ dx

� �1=p

jI j�1
Z
I
w�qðxÞ dx

� �1=q

¼ ½v�Ap½0;1�\1;

holds, where I are intervals of length at most 2p (see [19]). A weight function w

belongs to the class A1ðTÞ if MwðxÞ�CwðxÞ a.e. on R. Here MwðxÞ ¼
supI3x jI j�1 R

I wðxÞ dx is the maximal function of w. From the Hölder inequality it
follows that A1ðTÞ � Ap1ðTÞ � Ap2ðTÞ for 1� p1 � p2\1. A measurable 2p-pe-
riodic function f belongs to weighted space Lpw;2p, 1� p\1, if fw 2 Lp2p.

Further we use the famous Riesz-Zygmund or typical means of order r 2 N for
f 2 L12p

Zr
nðf ÞðxÞ ¼

Xn
k¼0

1� kr

ðnþ 1Þr
� �

AkðxÞ ¼
Xn
k¼0

ðk þ 1Þr � kr

nr
Skðf ÞðxÞ; ð2Þ

where n 2 Zþ. The famous Fejér means rnðf Þ ¼ ðnþ 1Þ�1Pn
k¼0 Skðf Þ coincide

with Z1
nðf Þ.
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According to [4, Ch. VIII, §§ 7,14] for a function f ðxÞ 2 L12p there exists a.e. the
conjugate function

ef ðxÞ ¼ lim
e!0þ0

ð2pÞ�1
Z p

e
ðf ðx� tÞ � f ðxþ tÞÞ= tanðt=2Þ dt;

the conjugation operator is bounded in Lp2p, 1\p\1 and the Fourier series of the

function ef (if ef 2 L12p) has the formX1
k¼1

ðakðf Þ sin kx� bkðf Þ cos kxÞ ¼:
X1
k¼1

Bkðf ÞðxÞ:

Let U be the space of strictly increasing and continuous on ½0; 2p� functions xðtÞ,
with property xð0Þ ¼ 0.

We will write x 2 B, if x 2 U and
P1

k¼n k
�1xðk�1Þ ¼ Oðxðn�1ÞÞ,

n 2 N ¼ f1; 2; . . .g.
This class and its equivalent definitions was studied by Bary and Stechkin [3]. If

x 2 U and xð2tÞ�xðtÞ, t 2 ½0; p�, then x 2 D2 (or x satisfies D2-condition).
For x 2 U and m 2 N let us consider a Hölder type space

Hm;x
p;k ¼ ff 2 Lp;k2p;0 : xmðf ; dÞp;k �CxðdÞ; 2p� d� 0g; ð3Þ

where C depends on f and no depends on d. The last space with the norm

kf kp;k;m;x ¼ kf kp;k þ sup
0\t� 2p

xmðf ; tÞp;k
xðtÞ ð4Þ

is a Banach one.
Testici and Israfilov [23] proved

Proposition 1 Let 1\p\1, 0\k� 1, f 2 Lp;k2p . Then

(i) kSnðf Þkp;k �C1kf kp;k, n 2 N;

(ii) kef kp;k �C2kf kp;k;
(iii) kf � Snðf Þkp;k �ðC1 þ 1ÞEnðf Þp;k, n 2 N;

where C1, C2 does not depend on n and f.

Let f 2 Lp2p, 1� p\1, and t�nðf Þ 2 Tn be such that kf � t�nðf Þkp ¼
inf
tn2Tn

kf � tnkp.
Sunouchi [21] established the following result and its analogue for continuous

periodic functions.

Proposition 2 Let f 2 Lp2p, 1� p\1, r 2 N, 0\a\r. Then the conditions

kf � t�nðf Þkp ¼ Oðn�aÞ; n 2 N;

and
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kðt�nðf ÞÞðrÞkp ¼ Oðnr�aÞ; n 2 N;

are equivalent.

Zhuk and Natanson [30] obtained the estimate of modulus of smoothness in terms
of norms of derivatives of polynomials of best approximation.

Proposition 3 Let 1� p�1, m 2 N, r 2 Zþ, f 2 Lp2p. If the seriesX1
k¼1

k�m�1kðt�k ðf ÞÞðmþrÞkp

converges, then for r� 1 a function f is equivalent to f0 such that f 00 ; . . .; f
ðr�1Þ
0 are

absolutely continuous on each period and f ðrÞ0 2 Lp2p (for r ¼ 0 we set f0 ¼ f ) and the
inequality

xmðf ðrÞ0 ; 1=nÞp �C
X1
k¼nþ1

k�m�1kðt�k ðf ÞÞðmþrÞkp; n 2 N;

holds.

The aim of the present paper is to obtain Sunouchi and Zhuk–Natanson type
results in the Morrey space using Riesz–Zygmund means (or Fourier partial sums)
instead of polynomials of best approximation. Also we establish a two-sided estimate
for the degree of approximation by Riesz–Zygmund means in Morrey space and
some direct approximation results for Riesz–Zygmund and Bernstein–Rogosinski
means. The approximation in Hölder type spaces based on the Morrey spaces is
studied.

2 Auxiliary lemmas

Lemma 1 Let 1� p\1, 0\k� 1, f 2 Lp;k2p;0. Then

lim
h!0

kf ð� þ hÞ � f ð�Þkp;k ¼ 0

Proof By definition for e[ 0 we can find tn 2 Tn such that

kf � tnkp;k ¼ kf ð� þ hÞ � tnð� þ hÞkp;k\e=3:

Since tn is uniformly continuous. there exists d[ 0 such that jtnðxþ hÞ �
tnðxÞj\e=ð6pÞ for all x 2 R and jhj\d. Then
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ktnð� þ hÞ � tnð�Þkp;k ¼ sup
I

jI jk�1
Z
I
jtnðxþ hÞ � tnðxÞjp dx

� �1=p

� sup
I

jI jk�1jI jðe=ð6pÞÞp
� �1=p

�ð2pÞk=pe=ð6pÞ� 2pe
6p

¼ e
3

and

kf ð� þ hÞ � f ð�Þkp;k �kf ð� þ hÞ � tnð� þ hÞkp;k þ ktnð� þ hÞ � tnð�Þkp;k
þ kf ð�Þ � tnð�Þkp;k\e; jhj\d:

□

Lemma 2 is known, e.g., it is used in [8] without references. But we can not find it
in monographs where Morrey spaces are treated (see [1, 17]) and give a proof here.

Lemma 2 Let 1� p\1, 0\k� 1, f(x,y) is measurable on R2 and 2p-periodic in
each variable. Then Z 2p

0
jf ð�; yÞj dy

���� ����
p;k

�
Z 2p

0
kf ð�; yÞkp;k dy:

Proof Let I ¼ ½a; b� � R and b� a� 2p, By the generalized Minkowski inequality
we have

jI jk�1
Z
I

Z 2p

0
jf ðx; yÞj dy

� �p

dx

� �1=p

� jI jðk�1Þ=p
Z 2p

0

Z
I
jf ðx; yÞjp dx

� �1=p

dy�
Z 2p

0
kf ð�; yÞkp;k dy: ð5Þ

Taking the supremum in the left-hand side of (5) over I we obtain the inequality of
Lemma. □

Corollary 1 Let 1� p\1, h 2 Lp;k2p , g 2 L12p. Then the convolution h � gðxÞ ¼R 2p
0 hðx� yÞgðyÞ dy belongs to Lp;k2p and kh � gkp;k �khkp;kkgk1:
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Proof We take f ðx; yÞ ¼ hðx� yÞgðyÞ in Lemma 2. Then

kh � gkp;k �
Z 2p

0
jhðx� yÞjjgðyÞj dy

���� ����
p;k

�
Z 2p

0
khð� � yÞgðyÞkp;k dy ¼ khkp;k

Z 2p

0
jgðyÞj dy ¼ khkp;kkgk1:

□

Lemma 3 is a variant of Marcinkiewicz multiplier theorem and it is stated in [15]
without proof (the author claims that the proof is similar to one of corresponding
result in weighted Lebesgue space [18]. But in [18] the multipliers in Rn were
studied). We prove Lemma 3 by the method of Israfilov and Testici [23].

Lemma 3 Let flkg1k¼0 satisfy the conditions

jlk j �C1; k 2 Zþ;
X2m�1

k¼2m�1

jlk � lkþ1j �C2; m 2 N:

If 1\p\1, 0\k� 1 and f 2 Lp;k2p has the Fourier series (1), then there exists a

function Fðf Þ 2 Lp;k2p with the Fourier series
P1

k¼0 lkAkðf ÞðxÞ and
kFðf Þkp;k �C3kf kjp;k, where C3 does not depend on f, p and k.

Proof Since Lp;k2p � Lp2p and Lemma 3 is well-known for k ¼ 1, i.e. in Lp2p, 1\p\1
(see [31, Ch. XV, Theorem 4.14]), the function F(f) is correctly defined for f 2 Lp;k2p .
Coifman and Rochberg [9] proved that for any interval I and its indicator XI the
inequality MðMðXI ÞÞðxÞ�C1MðXI ÞðxÞ holds a.e. on R. In other words, MðXI Þ
belongs to the Muckenhoupt class A1ðTÞ. Since A1ðTÞ � ApðTÞ and F(f) is bounded
in Lpw;2p for 1\p\1, w 2 ApðTÞ (see [5, Theorem 4.4]), one has for I � ½0; 2p�Z

I
jFðf ÞðxÞjp dx ¼

Z 2p

0
jFðf ÞðxÞjpXI ðxÞ dx�

�
Z 2p

0
jFðf ÞðxÞjpMðXI ÞðxÞ dx�C2

Z 2p

0
jf ðxÞjpMðXI ÞðxÞ dx:

It is known that for x 2 ½0; 2p�

MðXI ÞðxÞ 	 XI ðxÞ þ
X1
k¼0

2�kXJk ðxÞ; Jk ¼ ð2kþ1I n 2kIÞ \ ½0; 2p�; ð6Þ

where AðxÞ 	 BðxÞ, x 2 Y , means that C1AðxÞ�BðxÞ�C2AðxÞ for some
C2 [C1 [ 0 and x 2 Y , and mI is the interval of length m|I| such that the centers of I
and mI are the same (see [13]). Using (6) we obtain
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sup
I

jI jk�1
Z
I
jFðf ÞðxÞjp dx

�C3 sup
I

jI jk�1
Z
I
jf ðxÞjp dx

þ C3

X1
k¼0

2�k sup
I

jI jk�1
Z
Jk

jf ðxÞjp dx

�C3 kf kpp;k þ
X1
k¼0

2�kð2kþ1Þ1�k sup
I

j2kþ1I jk�1
Z
2kþ1I

jf ðxÞjp dx
 !

�C4kf kpp;k 1þ
X1
k¼0

2�k

 !
¼ C5kf kpp;k:

□

For a technical purpose we define the following iterated means

Zr
n;�ðf Þ ¼

Xn
k¼0

1� kr

ðnþ 1Þr
� �

1� kr

ðnþ 2Þr
� �

Akðf Þ ¼ Zr
nðZr

nþ1ðf ÞÞ:

The result of Lemma 4 for even r may be found in [7] and for odd r in [29].

Lemma 4 For f 2 L12p the following equalities

jZr
n;�ðf Þ � Zr

n�1;�ðf Þj ¼
ðnþ 2Þr � nr

ðnþ 2Þrnr jðUr
nðf ÞÞðrÞj;

where Ur
nðf Þ ¼ Zr

nðf Þ for even r and Ur
nðf Þ ¼ gZr

nðfÞ for odd r

Lemma 5 Let r 2 N, 1� p\1, 0\k� 1. Then the operators Zr
n are uniformly

bounded in Lp;k2p;0 and

kf � Zr
nðf Þkp;k �Cðnþ 1Þ�r

Xn
k¼0

ðk þ 1Þr�1Ekðf Þp;k:

Proof It is easy to see that Zr
nðf Þ ¼ f � Fr

n, where Fr
nðxÞ ¼ p�1ð1=2þPn

k¼1ð1� kr=ðnþ 1ÞrÞÞ cos kx. Timan [26] proved that fkFr
nk1g1n¼1 is bounded.

From this result and Corollary 1 the first statement of Lemma 2.5 follows. We note
that for 1\p\1 this assertion may be proved using the equality

Zr
nðf ÞðxÞ ¼

Xn
k¼0

ðk þ 1Þr � kr

ðnþ 1Þr Skðf ÞðxÞ

and Proposition 1.
For the second statement we use Timan’s method of proof of inequality (1.15) in

[26]. Since the last paper is in Russian, we recommend the proof of Lemma 3.8 in
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[29] for representation of Timan’s method. Here also for 1\p\1 the proof is more
brief and uses Proposition 1. Namely,

kf � Zr
nðf Þkp;k �

Xn
k¼0

ðk þ 1Þr � kr

ðnþ 1Þr kf � Skðf Þkp;k �

� C2

ðnþ 1Þr
Xn
k¼0

kr�1Ekðf Þp;k:

□

The result of Lemma 6 (i) is established by Israfilov and Tozman [12] while the
result of (ii) may be found in their paper [13]. These inequalities are known as direct
and inverse theorems of approximation by trigonometric polynomials and in general
form for the first time were obtained by Stechkin [20] for continuous functions.

Lemma 6 Let m 2 N, 1\p\1, 0\k� 1, f 2 Lp;k2p;0. Then

(i) Enðf Þp;k �Cxmðf ; ðnþ 1Þ�1Þp;k, n 2 Zþ.

(ii) xmðf ; n�1Þp;k �Cn�m
Pn

k¼0ðk þ 1Þm�1Ekðf Þp;k, n 2 Zþ.

Lemma 7 (i) is due to Nikolskii and Stechkin while part (ii) is established by
Stechkin in [20] in the case of continuous functions. We give proof of this part for the
utility of a reader.

Lemma 7

(i) Let m 2 N, 1\p\1, 0\k� 1. If tn 2 Tn, n 2 N, then

ktðmÞn kp;k �
n

2 sin nh

� �m
kDm

h tnkp;k; 0\h� p=ð2nÞ:

(ii) If m 2 N, f 2 Lp;k2p;0 and snðf Þ 2 Tn, n 2 N, satisfy the inequality

kf � snðf Þkp;k �Kxmðf ; n�1Þp;k; n 2 N:

Then xmðsnðf Þ; dÞp;k �CðKÞxmðf ; dÞp;k for some CðKÞ[ 0 and all

d 2 ½0; 2p�.

Proof (i) The result of Lemma 7 (i) can be proved by the method of Civin (see [25,
Ch. 4, sect. 4.8.61]) or by the method of Zamansky (see [10, Ch. VII, Lemma 2.6]).

(ii) For snðf Þ satisfying conditions of (ii) we have

xmðsnðf Þ; dÞp;k �xmðf ; dÞp;k þ xmðf � snðf Þ; dÞp;k
�xmðf ; dÞp;k þ 2mkf � snðf Þkp;k
�xmðf ; dÞp;k þ C1xmðf ; n�1Þp;k �ðC1 þ 1Þxmðf ; dÞp;k

ð7Þ

for all d� 1=n. From (i) and (7) we also deduce that
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ksðmÞn ðf Þkp;k �ðn=ð2 sin 1ÞÞmxmðsnðf Þ; n�1Þp;k �C2n
mxmðf ; n�1Þ: ð8Þ

It is known that usual modulus of smoothness in translation-invariant spaces has the
properties xmðf ; gÞp;k �C3ðg=dÞmxmðf ; dÞp;k, 0\d� g� 2p, and xðsnðf Þ; dÞp;k �
ksðmÞn ðf Þkp;kdm (see (7.8) and the proof of (7.12) in [10, Ch. II]). Using these facts and

(8) we obtain

xðsnðf Þ; dÞ� dmksðmÞn ðf Þkp;k �C2ðndÞmxmðf ; n�1Þp;k �
�C4ðndÞmðn�1=dÞmxðf ; dÞp;k ¼ C4xðf ; dÞp;k

for 0\d� n�1 and (ii) is proved. □

Lemma 8 may be found in [8, Lemma 2.3].

Lemma 8 Let r 2 N, 1\p\1, 0\k� 1 and f 2 Lp;k2p;0 be such that f, f 0; . . .; f ðr�1Þ

are absolutely continuous on each period and f ðrÞ 2 Lp;k2p;0. Then

Enðf Þp;k �Cn�rkf ðrÞkp;k; n 2 N:

Lemma 9 is proved for r ¼ 1 by Alexits [2] while its general variant for r[ 0 is
established by Joó [16].

Lemma 9 Let r[ 0, ðX ; k � kX Þ be a Banach space and ak 2 X , k 2 Zþ. Let

RðrÞ
n ¼Pn�1

k¼0ð1� kr=nrÞak , T ðrÞ
n ¼Pn�1

k¼0ð1� kr=nrÞkrak , n 2 N. Then the condition

kT ðrÞ
n kX �C1, n 2 N, holds if and only if there exists R 2 X such that

kR� RðrÞ
n kX �C2n�r, n 2 N. Note that C2 ¼ CðrÞC1 and vice versa.

Lemma 10 is proved by Timan [24]. By DnðtÞ we denote the trigonometric
Dirichlet kernel sinðnþ 1=2Þt=ð2 sinðt=2ÞÞ, n 2 N.

Lemma 10 Let an ¼ pkðnÞ=ð2nþ 1Þ þ Oððn lnðnþ 1Þ�1ÞÞ, n 2 N, k(n) be an even
natural number, janj � p. Then the norms kDnð� þ anÞ þ Dnð� � anÞk1 are bounded.

3 Approximation by Riesz–Zygmund and Bernstein–Rogosinski
means is Morrey spaces

In view of Lemma 6 (ii) Theorem 1 sharpens the estimate of Lemma 5. We note that a
similar result in Lp2p, 1\p\1, was proved by Trigub (see [28, sect. 8.2.6]).

Theorem 1 Let m 2 N, 1\p\1, 0\k� 1, f 2 Lp;k2p;0. Then

C�1xmðf ; 1=nÞp;k �kf � Zm
n ðf Þkp;k �Cxmðf ; 1=nÞp;k; n 2 N; ð9Þ

for some C[ 0.

Proof Suppose that snðf Þ 2 Tn satisfies the equality
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kf � snðf Þkp;k ¼ Enðf Þp;k:
Then by Lemma 5 we have

kf � Zm
n ðf Þkp;k �kf � snðf Þkp;k þ kZm

n ðsnðf ÞÞ � snðf ÞÞkp;kþ
þ kZm

n ðf � snðf ÞÞkp;k �C1Enðf Þp;k þ kZm
n ðsnðf ÞÞ � snðf ÞÞkp;k:

It is easy to see that for tn 2 Tn and even m the equality jtn � Zm
n ðtnÞj ¼ ðnþ

1Þ�mjtðmÞn j holds, while for odd m we have jtn � Zm
n ðtnÞj ¼ ðnþ 1Þ�mjgtðmÞn j. Thus, by

Lemmas 6 (i) and 7 (i)

kf � Zm
n ðf Þkp;k �C2xmðf ; n�1Þp;kþ

þ C2ðnþ 1Þ�mnmxmðsnðf Þ; n�1Þp;k �C3xmðsnðf Þ; n�1Þp;k:
The right-hand side inequality (9) is proved.

Using again the property xmðtn; dÞp;k �ktðmÞn kp;kdm for tn 2 Tn, we obtain

xmðf ; n�1Þp;k �xmðf � Zm
n ðf Þ; n�1Þp;k þ xmðZm

n ðf Þ; n�1Þp;k �
�C4ðkf � Zm

n ðf Þkp;k þ n�mkðZm
n ðf ÞÞðmÞkp;k:

Using above equalities for jtn � Zm
n ðtnÞj we find that

n�mkðZm
n ðf ÞÞðmÞkp;k ¼

nþ 1

n

� �m

kUm
n ðf Þ � Zm

n ðUm
n ðf ÞÞkp;k; ð10Þ

where Um
n ðf Þ ¼ Zm

n ðf Þ for even m and Um
n ðf Þ ¼ fZm

n ðf Þ for odd m. By Proposition 1
and Lemma 5

xmðf ; n�1Þp;k �C4kf � Zm
n ðf Þkp;k þ 2mC4kUm

n ðf � Zm
n ðf ÞÞkp;k �

�C6kf � Zm
n ðf Þkp;k

and the left-hand side inequality (9) is proved. □

We will write g 2 WrLp;k2p;0, where r 2 N, 1� p\1, 0\k� 1, if g; g0; . . .; gðr�1Þ

are absolutely continuous on any period and gðrÞ 2 Lp;k2p;0. Theorem 2 is an analogue

and extension of the result of Bustamante [6, Theorem 1] obtained in the case r ¼ 1
and f 2 Lp2p, 1\p\1.

Theorem 2 Let r 2 N, 1\p\1, 0\k� 1, f ; ef 2 WrLp;k2p;0. Then

kf � Zr
nðf Þkp;k �Cn�rkf ðrÞkp;k; n 2 N: ð11Þ

For r 2 N, p ¼ 1, 0\k� 1 and f ; ef 2 WrLp;k2p;0 we have the inequality
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kf � Zr
nðf Þk1;k �Cn�rkðuðf ÞÞðrÞk1;k; n 2 N;

where uðf Þ ¼ f for even r (r 2 2N) and uðf Þ ¼ ef for odd r (r 2 2N� 1).

Proof Let r 2 N and f ; ef 2 WrLp;k2p;0. Then the Fourier series of f ðrÞ isX1
k¼1

krðakðf Þ cosðkxþ rp=2Þ þ bkðf Þ cosðkxþ rp=2ÞÞ ¼

¼ 
P1
k¼1 k

rAkðf ÞðxÞ; r 2 2N;


P1
k¼1 k

rBkðf ÞðxÞ; r 2 2N� 1:

�
In a similar manner, the Fourier series of ef ðrÞ for odd r has the form


P1
k¼1 k

rAkðf ÞðxÞ. If uðf Þ 2 WrLp;k2p;0, then by Lemma 5 the norms of T ðrÞ
nþ1 ¼Pn

k¼0ð1� kr=ðnþ 1ÞrÞkrAkðf Þ in Lp;k2p are bounded by C1kðuðf ÞÞðrÞkp;k. Thus, by
Lemma 9 Riesz-Zygmund means Zr

nðf Þ converges to Z(f) in Lp;k2p and

kZr
nðf Þ � Zðf Þkp;k �C2

kðuðf ÞÞðrÞkp;k
ðnþ 1Þr ; n 2 N ð12Þ

for all 1� p\1 and 0\k� 1. It is easy to see that Fourier coefficients of Z(f) and f
are the same and Zðf Þ ¼ f . Finally, for 1\p\1 by Proposition 1 (ii) we obtain

kðuðf ÞÞðrÞkp;k �C3kf ðrÞkp;k and (11) is valid. □

Now we obtain an analogue of Theorem 1 in the case p ¼ 1. For f 2 L1;k2p;0, m 2 N

and uðgÞ defined as in Theorem 2 we introduce a K-functionalfKmðf ; tÞ1;k ¼ inffkf � gk1;k þ tmkðuðgÞÞðrÞk1;k : g; eg 2 WmL1;k2p g

Theorem 3 Let p ¼ 1, 0\k� 1, m 2 N, f 2 L1;k2p;0. Then there exist K2 [K1 [ 0

such that

K1fKmðf ; n�1Þ1;k �kf � Zm
n ðf Þk1;k �K2fKmðf ; n�1Þ1;k; n 2 N:

Proof It is clear thatfKmðf ; n�1Þ1;k �kf � Zm
n ðf Þk1;k þ n�mkðuðZm

n ðf ÞÞÞðmÞk1;k:

By the proof of Theorem 1 and Lemma 5 we have ðuðZm
n ðf ÞÞÞðmÞ ¼ 
ðnþ

1ÞmðZm
n ðf Þ � Zm

n ðZm
n ðf ÞÞÞ and
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fKmðf ; n�1Þ1;k �kf � Zm
n ðf Þk1;kþ

þ ððnþ 1Þ=nÞmkZm
n ðf Þ � Zm

n ðZm
n ðf ÞÞk1;k �C1kf � Zm

n ðf Þk1;k:

On the other hand, for every g such that g; eg 2 WmL1;k2p we obtain by Lemma 5 and
(12) from the proof of Theorem 2

kf � Zm
n ðf Þk1;k �kf � g � Zm

n ðf � gÞk1;k þ kg � Zm
n ðgÞk1;k �

�C2kf � gk1;k þ C3
kðuðgÞÞðmÞk1;k

nm
:

Taking the infimum over all such g we find that

kf � Zm
n ðf Þk1;k � maxðC2;C3ÞfKmðf ; n�1Þ1;k:

□

From Theorems 1 and 3 we deduce for Fejér means

Corollary 2 Let 1\p\1, 0\k� 1, f 2 Lp;k2p;0. Then for some C2 [C1 [ 0 we

have

C1x1ðf ; n�1Þp;k �kf � rnðf Þkp;k �C2x1ðf ; n�1Þp;k; n 2 N:

If p ¼ 1, 0\k� 1, f 2 Lp;k2p;0, then for some C4 [C3 [ 0

C3fK1ðf ; n�1Þ1;k �kf � rnðf Þk1;k �K2fK1ðf ; n�1Þ1;k; n 2 N:

Now we consider Bernstein–Rogosinski means

Rn;aðf Þ ¼ 2�1ðSnðf Þð� � anÞ þ Snðf Þð� þ anÞÞ;
where fang1n¼1 satisfies the conditions of Lemma 10. Similar to Riesz–Zygmund
means approximation by this means under some restrictions can be estimated by the
modulus of smoothness of higher order, namely, of order 2. Such estimate was
obtained for continuous functions by Stechkin. In the case an ¼ p=ð2nÞ see Stech-
kin’s result in [11, Ch. 5, Theorem 2.4].

Theorem 4 Let 1� p\1, 0\k� 1, f 2 Lp;k2p;0. If

an ¼ pkðnÞ
2nþ 1

þ O
1

n lnðnþ 1Þ
� �

; n 2 N;

fkðnÞg1n¼1 is a bounded sequence of even natural numbers, then

kf � Rn;aðf Þkp;k �C2x2ðf ; n�1Þp;k; n 2 N:

123

S. S. Volosivets



Proof Let snðf Þ 2 Tn be such that kf � snðf Þkp;k ¼ Enðf Þp;k. Then Snðsnðf ÞÞ ¼
snðf Þ and we have by virtue of Corollary 1, Lemmas 6 and 10

kf � Rn;aðf Þkp;k
¼ kf � ðSnðf � snðf ÞÞð� � anÞ þ Snðf � snðf ÞÞð� þ anÞÞ=2�
� ðsnðf Þð� � anÞ þ snðf Þð� þ anÞÞ=2kp;k �kf � ðf ð� � anÞ þ f ð� þ anÞÞ=2kp;kþ
þ 2�1kRn;aðf � snðf ÞÞkp;k þ 2�1kf ð� � anÞ � snðf Þð� � anÞkp;kþ

þ 2�1kðf � snðf ÞÞð� þ anÞkp;k �
1

2
x2ðf ; anÞp;k þ C1kf � snðf Þkp;kþ

þ kf � snðf Þkp;k �C2ðx2ðf ; anÞp;k þ x2ðf ; n�1Þp;kÞ:

Finally, it is known that for t2 [ t1 [ 0 one has x2ðf ; t2Þp;k �ð2t2=t1Þ2x2ðf ; t1Þp;k
(see, e.g., [11, Ch. 3, (4.18)] for continuous functions). Thus,
x2ðf ; anÞp;k �C3x2ðf ; n�1Þp;k and the inequality of Theorem 4 holds. □

Corollary 3 Let an ¼ p=ð2nÞ, n 2 N, 1� p\1, 0\k� 1, f 2 Lp;k2p;0. Then

kf � Rn;aðf Þkp;k �Cx2ðf ; n�1Þp;k; n 2 N:

Proof Let us consider bn ¼ p=n, n 2 N. Then

p
n
� 2p
2nþ 1

¼ 2p
2nð2nþ 1Þ ¼ O

1

n lnðnþ 1Þ
� �

and fbng1n¼1 satisfies the conditions of Theorem 4. But an ¼ b2n and

kf � Rn;aðf Þkp;k ¼kf � R2n;bðf Þkp;k �C1xðf ; ð2nÞ�1Þp;k
�C1xðf ; n�1Þp;k:

□

4 Inverse and equivalence theorems of Sunouchi and Zhuk–
Natanson type

The counterpart of Theorem 6 was proved in [29] for variable exponent Lebesgue

spaces Lpð�Þ2p . In [29] a general class of exponents pð�Þ was considered and an analogue
of Proposition 1 is not valid in all such spaces Lpð�Þ2p . Here we give a more simple
proof of such result than in [29] in the case 1\p\1.

The content of Theorem 5 is close to one of Proposition 3. Since Sn are linear
operators and SnðSmÞ ¼ Sminðm;nÞ, the proof is simpler than for polynomials of best
approximation.

Theorem 5 Let m 2 N, 1\p\1, 0\k� 1, f 2 Lp;k2p;0. Then
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xmðf ; 1=nÞp;k �C
X1
k¼nþ1

k�m�1kSðmÞn ðf Þkp;k; n 2 N:

Proof Using again the property xmðSnðf Þ; dÞp;k �kSðmÞn ðf Þkp;kdm, d 2 ½0; 2p�, we
have

xmðf ; 1=nÞp;k �xmðf � Snðf Þ; 1=nÞp;k þ xmðSnðf Þ; 1=nÞp;k �
� 2mkf � Snðf Þkp;k þ n�mkSðmÞn ðf Þkp;k:

ð13Þ

Due to Lemma 8 and Proposition 1 (iii) we write for k 2 Zþ

kf � S2knðf Þkp;k � kf � S2kþ1nðf Þkp;k
�kS2kþ1nðf Þ � S2knðf Þkp;k ¼
¼ kS2kþ1nðf Þ � S2knðS2kþ1nðf ÞÞkp;k �C1E2knðS2kþ1nðf ÞÞp;k �
�C2ð2knÞ�mkSðmÞ2kþ1nðf Þkp;k:

We note that for f 2 Lp;k2p and m; n 2 N, m\n, by Proposition 1 (i)

kSmðf Þkp;k ¼ kSmðSnðf ÞÞkp;k �C3kSnðf Þkp;k:
Therefore,

kf � S2knðf Þkp;k � kf � S2kþ1nðf Þkp;k �C4

X2kþ2n

j¼2kþ1nþ1

kSðmÞj ðf Þkp;k
jmþ1

:

Summing up these inequalities over k ¼ 0; 1; . . ., we obtain

kf � Snðf Þkp;k �C5

X1
j¼2nþ1

j�m�1kSðmÞj ðf Þkp;k: ð14Þ

If we substitute (14) into (13), then we find that

xmðf ; 1=nÞp;k �C4

X1
j¼2nþ1

j�m�1kSðmÞj ðf Þkp;kþ

þ 2mþ1C3

X2n
j¼nþ1

j�m�1kSðmÞj ðf Þkp;k �C6

X1
j¼nþ1

j�m�1kSðmÞj ðf Þkp;k:

□

By virtue of Lemma 6 (i) Theorem 6 sharpens the result of Theorem ??.

Theorem 6 Let r;m 2 N, 1\p\1, 0\k� 1, f 2 Lp;k2p;0. Then
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xmðf ; 1=nÞp;k �C
X1
j¼nþ1

j�m�1kðZr
j ðf ÞÞðmÞkp;k:

Proof Let us put lðnÞk ¼ ð2nþ 1Þr=ðð2nþ 1Þr � krÞ, k ¼ 0; 1; . . .; n, and lðnÞk ¼ 0

for k[ n. Then lðnÞk increases for k ¼ 0; 1; . . .; n and

jlðnÞk j ¼ ð2nþ 1Þr
ð2nþ 1Þr � nr

� ð3nÞr
ð2nÞr � nr

¼ 3r

2r � 1
:

On the other hand,

X1
k¼0

jlðnÞk � lðnÞkþ1j ¼
Xn�1

k¼0

ðlðnÞkþ1 � lðnÞk Þ þ lðnÞn � 0� 2lðnÞn ¼ 2
3r

2r � 1
:

For the operator Fnðf Þ ¼
P1

k¼0 l
ðnÞ
k Akðf Þ we have the equality FnðZr

2nðf ÞÞ ¼ Snðf Þ.
We obtain kSnðf Þkp;k �C1kZr

2nðf Þkp;k, n 2 N, where C1 does not depend on n by

Lemma 3. By Theorem 5 we have for n 2 N

xmðf ; 1=nÞp;k �C2

X1
j¼nþ1

j�m�1kSðmÞj ðf Þkp;k �

�C2C1

X1
j¼nþ1

kðZr
2jðf ÞÞðmÞkp;k
jmþ1

� 2mþ1C1C2

X1
j¼nþ1

kðZr
j ðf ÞÞðmÞkp;k
jmþ1

:

□

From Theorem 6 and Lemma 5 (i) we deduce

Corollary 4 Under conditions of Theorem 6 we have the inequality

Enðf Þp;k �C
X1
j¼nþ1

j�m�1kðZr
j ðf ÞÞðmÞkp;k; n 2 N:

Theorem 7 is a counterpart of Proposition 2.

Theorem 7 Suppose that m 2 N, 1\p\1, 0\k� 1, f 2 Lp;k2p;0 and x 2 B \ D2.

Then the conditions f 2 Hm;x
p;k and

kðZm
n ðf ÞÞðmÞkp;k ¼ Oðnmxðn�1ÞÞ; n 2 N; ð15Þ

are equivalent.

Proof If (15) holds, then by Theorem 5 we obtain
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xmðf ; n�1Þp;k �C1

X1
k¼nþ1

k�m�1kðZm
k ðf ÞÞðmÞkp;k �

�C2

X1
k¼nþ1

k�1xðk�1Þ�C3xðn�1Þ; n 2 N;

due to the condition x 2 B. Since x satisfies the D2-condition xð2tÞ�C4xðtÞ,
t 2 ½0; p�, we have for n 2 N and d 2 ððnþ 1Þ�1; n�1�

xmðf ; dÞp;k �xmðf ; n�1Þp;k �C3xðn�1Þ�
�C3xð2ðnþ 1Þ�1Þ�C3C4xððnþ 1Þ�1Þ�C3C4xðdÞ:

For d 2 ð1; 2p� a similar inequality follows from monotonicity and boundedness of
xmðf ; dÞp;k on ½0; 2p�. Thus, f 2 Hm;x

p;k .

Conversely, let f 2 Hm;x
p;k . By Lemma 7 (ii) and Theorem 1

kðZm
n ðf ÞÞðmÞkp;k �C5n

mxmðZm
n ðf Þ; 1=nÞp;k �

�C6n
mxmðf ; 1=nÞp;k �C7n

mxð1=nÞ
and (15) is proved. □

The statement below sharpens the Proposition 2 in Morrey setting (the case a ¼ m
is included).

Corollary 5 Let m 2 N, 1\p\1, 0\k� 1, f 2 Lp;k2p;0 and 0\a�m. Then the

conditions xmðf ; dÞp;k ¼ OðdaÞ, d 2 ½0; 2p�, and kðZm
n ðf ÞÞðmÞkp;k ¼ Oðnm�aÞ, n 2 N,

are equivalent.
In particular, the conditions x1ðf ; dÞp;k ¼ OðdaÞ, d 2 ½0; 2p�, and

kr0nðf Þkp;k ¼ Oðn1�aÞ, n 2 N, are equivalent for 0\a� 1.

5 Approximation in Hölder type spaces

We give an application of Lemma 7 to problems of approximation in Hölder type
spaces. The following Theorem 8 is an analogue of the result by Telyakovskii [22]
concerning uniform Hölder spaces. Let us remind that Hölder type spaces Hm;x

p;k and

its norms k � kp;k;m;x are defined in (3) and (4).

Theorem 8 Let 1� p\1, 0\k� 1, m 2 N, x;u 2 U and gðtÞ ¼ xðtÞ=uðtÞ be
increasing on ð0; 2p�. If f 2 Hm;x

p;k and tn 2 Tn, n 2 N, are such that the inequality

kf � tnkp;k �Cxmðf ; 1=nÞp;k; n 2 N: ð16Þ
holds, then
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kf � tnkp;k;m;u �Cgð1=nÞ; n 2 N:

Proof By the condition of Theorem 8 we have

kf � tnkp;k �C1xðn�1Þ ¼ C1gðn�1Þuðn�1Þ�C1uð2pÞgðn�1Þ: ð17Þ
Let us estimate xmðf � tn; dÞp;k=uðdÞ. For d� 1=n we have

xmðf � tn; dÞp;k
uðdÞ � C2kf � tnkp;k

uðn�1Þ �C3
xðn�1Þ
uðn�1Þ ¼ C3gðn�1Þ: ð18Þ

For 0\d\1=n by virtue of Lemma 7 (ii) we find that

xmðf � tn; dÞp;k
uðdÞ � xmðf ; dÞp;k þ xmðtn; dÞp;k

uðdÞ �C4
xðdÞ
uðdÞ �C4gðn�1Þ: ð19Þ

From (17), (18) and (19) we deduce the statement of Theorem 8. h

Now we give some applications of Theorem 8 to approximation by famous means
of Fourier series.

Corollary 6 Let 1\p\1, 0\k� 1, m 2 N, x;u 2 U and gðtÞ ¼ xðtÞ=uðtÞ be
increasing on ð0; 2p�. If f 2 Hm;x

p;k , then

kf � Snðf Þkp;k;m;u �Cgð1=nÞ; n 2 N: ð20Þ

Proof By Proposition 1 (iii) and Lemma 6 (i) we have

kf � Snðf Þkp;k �C1xmðf ; 1=nÞp;k; n 2 N:

Using Theorem 8 we obtain (20). □

Now we consider the Vallée-Poussin means

vnðf ÞðxÞ ¼ 2Z1
2n�1ðf ÞðxÞ � Z1

n�1ðf ÞðxÞ ¼ 2r2n�1ðf Þ � rn�1ðf Þ:

Corollary 7 Let 1� p\1, 0\k� 1, m 2 N, x;u 2 U and gðtÞ ¼ xðtÞ=uðtÞ be
increasing on ð0; 2p�. If f 2 Hm;x

p;k , then

kf � vnðf Þkp;k;m;u �Cgð1=nÞ; n 2 N: ð21Þ

Proof Letsnðf Þ 2 Tn be such that kf � snðf Þkp;k ¼ Enðf Þp;k. It is known that

vnðtnÞ ¼ tn for tn 2 Tn, n 2 N, and that Z1
nðf Þ ¼ F1

n � f , where kF1
nk1 ¼ 1 (see [4,

Ch. 1, § 47,(47.10)]). By Corollary 1 we have kvnðf Þkp;k � 3kf kp;k, while by the

previous inequality and Lemma 6 (i) we find that
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kf � vnðf Þkp;k �kf � snðf Þkp;k þ ksnðf Þ � vnðsnðf ÞÞkp;kþ
þ kvnðf � snðf ÞÞkp;k � 4kf � snðf Þkp;k

�C1xmðf ; 1=nÞp;k; n 2 N:

Using Theorem 8 we obtain (21). □

Corollary 8 Let 1\p\1, 0\k� 1, m 2 N, x;u 2 U and gðtÞ ¼ xðtÞ=uðtÞ be
increasing on ð0; 2p�. If f 2 Hm;x

p;k , then

kf � Zm
n ðf Þkp;k;m;u �Ckð1=nÞ; n 2 N: ð22Þ

If p ¼ 1, m is even and other conditions above are valid, then (22) also holds. Finally,
if p ¼ 1, m is odd and x 2 Bm, then (22) is valid.

Proof By Theorem 1 we have for 1\p\1 and m 2 N

kf � Zm
n ðf Þkp;k �C1xmðf ; n�1Þp;k; n 2 N: ð23Þ

In turn, (26) is valid for p ¼ 1 and even m by Theorem 3. Applying Theorem 8 we
prove (22) in these cases.

If p ¼ 1, x 2 Bm and f 2 Hm;x
p;k , the inequality of Lemma 5 together with Lemma

6 (i) gives us

kf � Zr
nðf Þkp;k �

C2

ðnþ 1Þm
Xn
k¼0

ðk þ 1Þr�1xðk�1Þ�C3xðn�1Þ:

Repeating the proof of Theorem 8 we obtain

xmðf � Zm
n ðf Þ; dÞp;k

uðdÞ � C3kf � Zm
n ðf Þkp;k

uðn�1Þ �C3
xðn�1Þ
uðn�1Þ ¼ C3gðn�1Þ ð24Þ

for d� n�1. Since the translation and the convolution commute, we obtain Dm
h ðf �

Fm
n Þ ¼ Dm

h f � Fm
n (the definition of Fm

n see in the proof of Lemma 5) and
xmðZm

n ðf Þ; dÞp;k �C4xmðf ; dÞp;k. Now we have

xmðf � Zm
n ðf Þ; dÞp;k

uðdÞ � xmðf ; dÞp;k þ xmðZm
n ðf Þ; dÞp;k

uðdÞ �

C5
xðdÞ
uðdÞ �C5gðn�1Þ ð25Þ

for 0\d\n�1. From (24), (25) and obvious inequality kf �
Zr
nðf Þkp;k �C3uð1Þgðn�1Þ we deduce (22). □

Corollary 9 Let 1� p\1, 0\k� 1, x;u 2 U and gðtÞ ¼ xðtÞ=uðtÞ be increasing
on ð0; 2p�. If fang1n¼1 satisfies the conditions of Theorem 4, f 2 H2;x

p;k , then
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kf � Bn;aðf Þkp;k;2;u �Ckðn�1Þ; n 2 N: ð26Þ

Proof By Theorem 4 we have the inequality kf � Bn;aðf Þkp;k �C1x2ðf ; n�1Þp;k.
Applying Theorem 8, we obtain (26). □
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