
ORIGINAL RESEARCH PAPER

(p, q)-fuzzy aggregation operators and their applications
to decision-making

Aparna Sivadas1 · Sunil Jacob John1 · T. M Athira1

Received: 17 March 2023 / Accepted: 10 November 2023
© The Author(s), under exclusive licence to The Forum D’Analystes 2024

Abstract
A (p, q)-fuzzy set is the resulting structure when the fuzzy membership and non-
membership values are bounded by a general nonlinear relation. This set enhances
the range of depicting uncertain information by making the feasible region larger, and
thereby widening the purview of decision-making. Data aggregation is crucial in
optimal decision-making. This article attempts to formulate aggregation operators for
(p, q)-fuzzy sets using additive generators of strict t-norms and strict t-conorms. The
utility of these operators is showcased by examining a decision-making problem,
where the best decision is obtained by ranking the alternatives based on their score
values. A comparative study is also carried out using some existing aggregation
operators to test the validity and effectiveness of the introduced operators.
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Abbreviations
AO Aggregation operator
FFS Fermatean fuzzy set
IFS Intuitionistic fuzzy set
MADM Multi-attribute decision-making
n,m-ROFS n,m-Rung orthopair fuzzy set
n,m-ROFWPA n,m-Rung orthopair fuzzy weighted power average
PFS Pythagorean fuzzy set
(p, q)-FS (p, q)-Fuzzy set
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(p, q)-FWA (p, q)-Fuzzy weighted averaging
(p, q)-FWG (p, q)-Fuzzy weighted geometric
(p, q)-FEWA (p, q)-Fuzzy Einstein weighted averaging
(p, q)-FEWG (p, q)-Fuzzy Einstein weighted geometric
(p, q)-FHWA (p, q)-Fuzzy Hamacher weighted averaging
(p, q)-FHWG (p, q)-Fuzzy Hamacher weighted geometric
q-ROFS q-Rung orthopair fuzzy set

1 Introduction

Decision-making in real-world situations faces the challenge of addressing uncer-
tainty. Traditional decision-making approaches predominantly rely on crisp sets and
models and tend to overlook factors like vagueness, hesitancy, and uncertainty. To
address uncertainty in real-world problems, researchers have introduced several set-
theoretic models. In 1965, Lotfi A. Zadeh [26] introduced fuzzy set theory as an
extension of crisp sets, offering a means to address uncertainty in decision-making.
However, fuzzy set theory faced limitations in its ability to accurately capture human
judgments regarding dissatisfaction. Hence, Intuitionistic fuzzy set (IFS) [2] was
devised, which depicted both membership and non-membership values, with their
sum in the unit interval. Yager introduced a more generalized model called
Pythagorean fuzzy set (PFS) [22] by relaxing the condition of IFS that only the
square sum of membership and non-membership values is in the unit interval.
Subsequently, Senapati and Yager [17] introduced a broader model compared to PFS,
known as Fermatean fuzzy set (FFS). The key condition for FFS is that the sum of
cubes of membership and non-membership values is in the unit interval. As all these
models involve a pair of values depicting competing concepts, they are termed
orthopair fuzzy sets. To broaden the range of permissible pairs of membership
grades, Yager [24] introduced the concept of q-rung orthopair fuzzy set (q-ROFS),
with q� 1. Lately, Ibrahim et al. [12] familiarized the notion of (3, 2)-fuzzy set.
Recently, Ibrahim and Alshammari [11] presented a novel notion of n,m-rung
orthopair fuzzy set (n,m-ROFS). Al-shami and Mhemdi [1] presented a comprehen-
sive framework for orthopair fuzzy sets known as (m, n)-fuzzy set ((m, n)-FS), which
serves as an effective solution for addressing problems where the relative importance
of membership and non-membership degrees varies and cannot be adequately
handled using existing orthopair fuzzy sets. This set is termed as (p, q)-fuzzy set
((p, q)-FS) throughout this article. The notations p and q in (p, q)-fuzzy set stand for
m and n of (m, n)-FS. The fundamental benefit of using (p, q)-fuzzy sets in various
decision-making situations is their ability to describe uncertainty more precisely
when compared to other orthopair fuzzy sets.

Multi-attribute decision-making (MADM) involves a procedure through which
finite alternatives are ranked based on their attribute values. The initial challenge in
decision-making is to find an efficient and precise way to represent attribute values
when dealing with uncertain decision information. Given the intricacies of human
cognition and the decision-making context, the orthopair fuzzy sets like IFS, PFS,
etc., act as tools for expressing fuzzy information. Numerous approaches have been
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put forth up to this point to deal with MADM in a fuzzy environment. One such
approach involves estimating definite aggregation values for the alternatives. This
involves performing an aggregation of the inputs provided by experts. Typically, this
process is carried out using an aggregation operator (AO), which takes numerous
input values and maps them to a single output value. Both the inputs and outputs
belong to the same domain, with the output representing the input data or, at the very
least, some of its key aspects. The theory of aggregation operations is extensively
studied in [4, 8, 15, 21].

For any type of fuzzy set, fundamental operations play a pivotal role in AOs. To
define operational laws in a generalized way for different orthopair fuzzy sets, the
primary tool employed is a triple (T, S, N), where T represents a t–norm, S signifies a
t-conorm, and N denotes a fuzzy complement. In the context of this triple (T, S, N),
when T and S are dual with respect to N, this triple is referred to as a dual triple.
Based on dual triple, operational rules are formulated and subsequently used to
define AOs. When this t-norm T and t-conorm S are continuous and Archimedean,
they can be expressed using single-variable functions known as additive generators.
The choice of additive generators for both t-norms and t-conorms allows us to
formulate diverse sets of operational rules, generating distinct AOs. Researchers have
applied this approach to formulate generalized operational rules for developing AOs
for various orthopair fuzzy sets. Beliakov et al. [3] introduced this approach for
constructing AOs for IFSs. Xia et al. [20] reviewed the operators introduced in [3] to
prove some of their properties. They illustrated these operators by choosing a few
additive generators and demonstrated that many existing operators can be deduced
using this approach. Using different families of t-norms and t-conorms, along with
the standard complement function specific to a particular fuzzy set, specific AOs are
formulated for that fuzzy set. Huang [10] utilized Hamacher product and Hamacher
sum, Wang et al. [18] used Einstein product and Einstein sum, to develop AOs for
IFSs. Yang et al. [25] proposed operations for Pythagorean fuzzy values using dual
triples consisting of the standard negation function for PFS, continuous Archimedean
t-norms and continuous Archimedean t-conorms. They displayed many existing
Pythagorean fuzzy AOs as specific cases of this new approach. Garg [7] employed
the Einstein product and Einstein sum, while Wu and Wie [19] utilized the Hamacher
product and sum to model operations for developing Pythagorean fuzzy AOs. To
create AOs for FFSs, Hadi et al. [9] formulated Hamacher operational rules, while
Rani and Mishra [16] established Einstein operational laws by utilizing the standard
complement function for FFSs. In the context of q-ROFSs, Darko and Liang [6]
proposed AOs using the Hamacher operations.

This article addresses the need for aggregating information represented as (p, q)-
fuzzy numbers in decision-making. The challenge lies in developing AOs that yield
consistent results on aggregation. The goal is to ensure that aggregation operations
for (p, q)-fuzzy sets align with those of IFSs, PFSs, and FFSs when p and q are equal.
To achieve this, the article presents an approach for creating AOs for (p, q)-fuzzy
sets, utilizing additive generators for strict t-norms and t-conorms.

Following are the sections of this article. It provides an overview of (p, q)-fuzzy sets
in the Sect. 2. Section 3 provides the definitions fundamental to studying aggregation
functions on (p, q)-fuzzy sets and develops a few (p, q)-fuzzy aggregation operators.
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Additionally, it enlists some properties satisfied by these AOs. Section 4 analyses the
suitability of applying the constructed AOs in MADM problems. The article’s
conclusion outlines the potential future applications of (p, q)-fuzzy sets.

2 Preliminaries

This section outlines the concept and results related to the newly defined (p, q)-fuzzy
set, the most generalized orthopair fuzzy set.

Definition 1 [1] Let X be a universal set. For p; q� 1, a (p, q)-fuzzy set S is defined as :

S ¼ x; aSðxÞ; bSðxÞð Þ : x 2 Xf g;
with the condition:

0� aSðxÞð Þpþ bSðxÞð Þq � 1:

where aS : X ! ½0; 1� is the membership function, and bS : X ! ½0; 1� is the non-
membership function.

For each x 2 X, x; aSðxÞ; bSðxÞð Þ is called a (p, q)-fuzzy number. The uncertainty

index of x 2 X with respect to S, defined as pSðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aSðxÞð Þpþ bSðxÞð Þq½ �ðpþqÞ

2

p
,

lies in the interval [0, 1]. When pSðxÞ is high, less information is known about x, and
vice versa.

Remark 1 IFSs, PFSs and FFSs are subtypes of (p, q)-fuzzy sets for p ¼ q ¼ 1; 2 and
3, respectively. Additionally, when p ¼ 3 and q ¼ 2, the (p, q)-fuzzy set becomes a
(3, 2)-fuzzy set [12].

To establish an ordering for (p, q)-fuzzy numbers, the authors of [1] introduced the
concepts of score value and accuracy value for a (p, q)-fuzzy number.

Definition 2 [1]

1. The score value of a (p, q)-fuzzy number, F ¼ a; bð Þ, is defined as scoreðFÞ ¼
ap � bq.

2. The accuracy value of a (p, q)-fuzzy number,F ¼ a; bð Þ, is defined as accuracyðFÞ ¼
ap þ bq.

Definition 3 [1] For (p, q)-fuzzy numbers Fk ¼ ak ; bkð Þ, where k ¼ 1; 2, the ordering
is as follows:

1. If score F1ð Þ\ score F2ð Þ, then F1\F2.
2. If score F1ð Þ[ score F2ð Þ, then F1 [F2.
3. If score F1ð Þ ¼ score F2ð Þ, then

(a) If accuracy F1ð Þ\ accuracy F2ð Þ, then F1\F2.
(b) If accuracy F1ð Þ[ accuracy F2ð Þ, then F1 [F2.
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(c) If accuracy F1ð Þ ¼ accuracy F2ð Þ, then F1 ¼ F2.

3 (p, q)-fuzzy aggregation operators

Aggregation constitutes a process in which arbitrarily but countably many inputs
map to a single output value. It is natural to require all inputs and outputs from the
same domain. Comparing aggregation operators is possible through the conventional
comparison of functions with n variables. Aggregation operators are mathematical
objects that aim to condense a set of numbers into a meaningful representative
number.

Definition 4 [4] A function f : ½0; 1�m ! ½0; 1� is called an aggregation function if

1. f ð0; . . .; 0Þ ¼ 0 and f ð1; . . .; 1Þ ¼ 1.
2. f t1; . . .; tmð Þ� f t01; . . .; t0mð Þ if tk � t0k for all k ¼ 1; 2; . . .m.

Proposition 1 [15] Let u : ½0; 1� ! ½0; 1� be a strictly monotone bijection. For an
aggregation function f, the function

fuðt1; t2; . . .; tmÞ ¼ u�1 f u t1ð Þ;u t2ð Þ; . . .;u tmð Þð Þð Þ
is also an aggregation function on [0, 1], referred to as the the u-transform of f.

Definition 5 [13]

1. A function n : ½0; 1� ! ½0; 1� that is non-increasing is referred to as a negation
function if nð0Þ ¼ 1 and nð1Þ ¼ 0.

2. A negation function n is called a strict negation function if it is continuous and
strictly decreasing.

3. A strict negation function n is called a strong negation function if nðnðtÞÞ ¼ t for
all t 2 ½0; 1�.

The negation function considered in the context of (p, q)-fuzzy sets is a strict

negation function, nðtÞ ¼ ð1� tqÞ1p. The n-transform of an aggregation function f,

denoted as bf is obtained by using u mentioned in Proposition 1 as nðtÞ, resulting in

the expression bf t1; . . .; tmð Þ ¼ n�1 f n t1ð Þ; . . .; n tmð Þð Þð Þ.
Definition 6 Let Fk ¼ ðak ; bkÞ, k ¼ 1. . .;m be a collection of (p, q)-fuzzy numbers,
the aggregate of this collection, denoted as F ¼ agg F1; . . .;Fmð Þ, is defined as F ¼
ðFM ;FNM Þ with FM ¼ f ða1; a2; . . .; amÞ and FNM ¼ bf ðb1; b2; . . .; bmÞ, where f is an
aggregation function.

Theorem 1 Let Fk ¼ ðak ; bkÞ, k ¼ 1. . .;m be a collection of (p, q)-fuzzy numbers
and F ¼ agg F1; . . .;Fmð Þ ¼ ðFM ;FNM Þ for an aggregation function f. Then F is a
(p, q)-fuzzy number, that is FM and FNM satisfy FMð Þpþ FNMð Þq � 1.
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Proof Each Fk is of the form ðak ; bkÞ and satisfies akð Þpþ bkð Þq � 1. Hence

ak � 1� bqk
� �1

p for each k. Now consider FM :

FM ¼f ða1; a2; . . .; amÞ
� f ð1� bq1Þ

1
p; ð1� bq2Þ

1
p; . . .; ð1� bqmÞ

1
p

� �
ð by monotonicity of f Þ:

By Definition 6, FNM can be expressed as:

FNM ¼ bf ðb1; b2; . . .; bmÞ ¼ 1� ½f ðð1� bq1Þ
1
p; ð1� bq2Þ

1
p; . . .; ð1� bqmÞ

1
pÞ�p

� �1
q

Fp
M þ Fq

NM � f ðð1� bq1Þ
1
p; ð1� bq2Þ

1
p; . . .; ð1� bqmÞ

1
pÞ

� �p
þ

1� ½f ðð1� bq1Þ
1
p; ð1� bq2Þ

1
p; . . .; ð1� bqmÞ

1
pÞ�p

� �
¼ 1:

h

Hence, aggregating the membership and non-membership values of (p, q)-fuzzy
numbers using an aggregation function and its n-transform ensures that the output is
a (p, q)-fuzzy number.

Definition 7 [1] Let F1 ¼ ða1; b1Þ and F2 ¼ ða2; b2Þ be two (p, q)-fuzzy numbers.
Then

1. F1 [ F2 ¼ ðmaxfa1; a2g;minfb1; b2gÞ.
2. F1 \ F2 ¼ ðminfa1; a2g;maxfb1; b2gÞ.
3. Fc

1 ¼ ðb
q
p

1; a
p
q

1Þ.

Remark 2 If f ðt1; t2Þ ¼ maxðt1; t2Þ, then bf ðt1; t2Þ ¼ minðt1; t2Þ, and if

f ðt1; t2Þ ¼ minðt1; t2Þ, then bf ðt1; t2Þ ¼ maxðt1; t2Þ. Thus, union and intersection
are aggregation operations for (p, q)-fuzzy numbers.

Definition 8 [13] A t-norm is a bivariate aggregation function T : ½0; 1�2 ! ½0; 1�
satisfying:

1. Tð1; tÞ ¼ t, for all t.
2. Tðt1; t2Þ ¼ Tðt2; t1Þ, for all t1 and t2.
3. Tðt1;Tðt2; t3ÞÞ ¼ TðTðt1; t2Þ; t3Þ, for all t1; t2 and t3.

Definition 9 [13] A t-conorm is a bivariate aggregation function S : ½0; 1�2 ! ½0; 1�
satisfying:

1. Sð0; tÞ ¼ t, for all t.
2. Sðt1; t2Þ ¼ Sðt2; t1Þ, for all t1 and t2.
3. Sðt1;Sðt2; t3ÞÞ ¼ SðSðt1; t2Þ; t3Þ, for all t1; t2 and t3.
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Remark 3 Let u : ½0; 1� ! ½0; 1� be a strictly decreasing bijection. For any t-norm
T on [0, 1], Tuðt1; t2Þ ¼ u�1ðTðuðt1Þ;uðt2ÞÞÞ is t-conorm on [0, 1], and vice versa.
Hence the n-transform of a t-norm for a strict negation function n is a t-conorm, and
vice versa.

Definition 10 [4] A t-norm T is referred to as a strict t-norm if it is continuous and

strictly increasing on ð0; 1�2.
Definition 11 [4] A t-conorm S is referred to as a strict t-conorm if it is continuous

and strictly increasing on ½0; 1Þ2.
Proposition 2 [4] Given any continuous strictly decreasing function
g : ½0; 1� ! ½0;1�, with gð1Þ ¼ 0 and gð0Þ ¼ 1, the function Tgðt1; t2Þ ¼
g�1ðgðt1Þ þ gðt2ÞÞ is a strict t-norm. Conversely, any strict t-norm T can be expressed
as Tðt1; t2Þ ¼ g�1ðgðt1Þ þ gðt2ÞÞ, where g is a continuous strictly decreasing function
g : ½0; 1� ! ½0;1� with gð1Þ ¼ 0 and gð0Þ ¼ 1.

Proposition 3 [4] Given any continuous strictly increasing function
h : ½0; 1� ! ½0;1�, with hð0Þ ¼ 0 and hð1Þ ¼ 1, the function Shðt1; t2Þ ¼
h�1ðhðt1Þþhðt2ÞÞ is a strict t-conorm. Conversely, any strict t-conorm S can be
expressed as Sðt1; t2Þ ¼ h�1ðhðt1Þ þ hðt2ÞÞ, where h is a continuous strictly
increasing function h : ½0; 1� ! ½0;1� with hð0Þ ¼ 0 and hð1Þ ¼ 1.

This article defines aggregation operations for (p, q)-fuzzy sets using the additive
generators of strict t-norms and t-conorms, as well as the negation function n
employed in the context of (p, q)-fuzzy sets. The n-transform of any strict t-norm is a
strict t-conorm, and vice versa. If we choose a continuous additive generator gðtÞ that
generates a t-norm, then gðnðtÞÞ serves as an additive generator for the n-transform of
the generated t-norm. Similarly, if we choose a continuous additive generator hðtÞ
that generates a t-conorm, then hðnðtÞÞ generates the n-transform of the generated t-
conorm.

Definition 12 For (p, q)-fuzzy numbers F1 ¼ ða1; b1Þ and F2 ¼ ða2; b2Þ, along with
a continuous additive generator hðtÞ that generates a strict t-conorm S, a continuous
additive generator gðtÞ that generates a strict t-norm T, and a positive real number
a[ 0, the following operations are defined:

1.
F1�F2 ¼ Sða1; a2Þ;Snðb1; b2Þð Þ

¼ ðh�1ðhða1Þ þ hða2ÞÞ; h�1
n ðhnðb1Þ þ hnðb2ÞÞÞ

2.
F1�F2 ¼ Tða1; a2Þ;Tnðb1; b2Þð Þ

¼ ðg�1ðgða1Þ þ gða2ÞÞ; g�1
n ðgnðb1Þ þ gnðb2ÞÞÞ

3. a:F1 ¼ ðh�1ðahðaÞÞ; h�1
n ðahnðbÞÞÞ

4. Fa
1 ¼ ðg�1ðagðaÞÞ; g�1

n ðagnðbÞÞÞ

where hnðtÞ ¼ hðnðtÞÞ and gnðtÞ ¼ gðnðtÞÞ, which turn out to be the additive
generators of Sn and Tn respectively.
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Remark 4 When hðtÞ ¼ �logð1� tpÞ, gðtÞ ¼ �logtp, and a is a positive real
number, we obtain the following operations on (p, q)-fuzzy numbers as defined in
[1].

1. F1�F2 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ap1 þ ap2 � ap1a

p
2

p
p

; b1b2Þ .
2. F1�F2 ¼ ða1a2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bq1 þ bq2 � bq1b

q
2

q
p

Þ.
3. a:F1 ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� ð1� ap1ÞaÞp

p
; ba1Þ.

4. Fa
1 ¼ ðaa1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� ð1� bq1ÞaÞq
p Þ.

Definition 13 Consider two (p, q)-fuzzy numbers F1 ¼ ða1; b1Þ and F2 ¼ ða2; b2Þ.
If hðtÞ ¼ logð1þtp

1�tpÞ, gðtÞ ¼ logð2�tp

tp Þ, and a is a positive real number then

1. F1�F2 ¼ ap1 þ ap2
1þ ap1a

p
2

� �1
p

;
bq1b

q
2

1þ ð1� bq1Þð1� bq2Þ
� �1

q

 !

2. F1�F2 ¼ ap1a
p
2

1þ ð1� ap1Þð1� ap2Þ
Þ

� �1
p

;
bq1 þ bq2
1þ bq1b

q
2

� �1
q

 !
3. a:F1 ¼ ð1þap1Þa�ð1�ap1Þa

ð1þap1Þaþð1�ap1Þa
h i1

p
;

2
1
qba1

ðð2�bq1Þaþðbq1ÞaÞ
1
q

� �	 

4. Fa

1 ¼ 2
1
paa1

ðð2�ap1Þaþðap1ÞaÞ
1
p

� �
;

ð1þbq1Þa�ð1�bq1Þa
ð1þbq1Þaþð1�bq1Þa
h i1

q

	 

.

Definition 14 Consider two (p, q)-fuzzy numbers F1 ¼ ða1; b1Þ and F2 ¼ ða2; b2Þ.
If hðtÞ ¼ logðsþð1�sÞð1�tpÞ

ð1�tpÞ Þ, gðtÞ ¼ logðsþð1�sÞtp
tp Þ, where s[ 0, and let a be a positive

real number then

1. F1�F2 ¼

Q2
k¼1

ð1þ ðs� 1ÞapkÞ �
Q2
k¼1

ð1� apkÞQ2
k¼1

ð1þ ðs� 1ÞapkÞ þ ðs� 1Þ Q2
k¼1

ð1� apkÞ

26664
37775

1
p

;

s
Q2
k¼1

bqkQ2
k¼1

ð1þ ðs� 1Þð1� bqkÞÞ þ ðs� 1Þ Q2
k¼1

bqk

26664
37775

1
q

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

2. F1�F2 ¼

s
Q2
k¼1

apkQ2
k¼1

ð1þ ðs� 1Þð1� apkÞÞ þ ðs� 1Þ Q2
k¼1

apk

26664
37775

1
p

;

Q2
k¼1

ð1þ ðs� 1ÞbqkÞ �
Q2
k¼1

ð1� bqkÞQ2
k¼1

ð1þ ðs� 1ÞbqkÞ þ ðs� 1Þ Q2
k¼1

ð1� bqkÞ

26664
37775

1
q

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
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3. a:F1 ¼ ð1þðs�1Þap1Þa�ð1�ap1Þa
ð1þðs�1Þap1Þaþðs�1Þð1�ap1Þa
h i1

p
;

sðbq1Þa
ð1þðs�1Þð1�bq1ÞÞaþðs�1Þðbq1Þa
h i1

q

	 

4. Fa

1 ¼ sðap1Þa
ð1þðs�1Þð1�ap1ÞÞaþðs�1Þðap1Þa

Þ
h i1

p
;

ð1þðs�1Þbq1Þa�ð1�bq1Þa
ð1þðs�1Þbq1Þaþðs�1Þð1�bq1Þa
h i1

q

	 

.

When s ¼ 1, we obtain the operations mentioned in Remark 4 and for s ¼ 2, the
operations in Definition 13.

Definition 15 Suppose Fk ¼ ðak ; bkÞ, k ¼ 1; 2; . . .;m, is a collection of (p, q)-fuzzy

numbers, and K ¼ k1; k2; . . .; kmð ÞT is the weight vector specifying the weights of
Fk , where kk [ 0 and

Pm
k¼1 kk ¼ 1. Then the (p, q)-fuzzy weighted averaging

operator is defined as:

ðp; qÞ � FWA F1;F2; . . .;Fmð Þ ¼ k1F1�k2F2�. . .�kmFm:

Theorem 2 Suppose Fk ¼ ðak ; bkÞ, k ¼ 1; 2; . . .;m, is a collection of (p, q)-fuzzy

numbers, and K ¼ k1; k2; . . .; kmð ÞT is the weight vector specifying the weights of Fk ,
where kk [ 0 and

Pm
k¼1 kk ¼ 1. Then the (p, q)-fuzzy weighted averaging operator

yields a (p, q)-fuzzy number of the form:

ðp; qÞ � FWA F1;F2; . . .;Fmð Þ ¼ h�1
Xm
k¼1

kkhðakÞ
 !

; h�1
n

Xm
k¼1

kkhnðbkÞ
 ! !

:

Proof Proof by mathematical induction on k. h

Definition 16 Suppose Fk ¼ ðak ; bkÞ, k ¼ 1; 2; . . .;m, is a collection of (p, q)-fuzzy

numbers, and K ¼ k1; k2; . . .; kmð ÞT is the weight vector specifying the weights of
Fk , where kk [ 0 and

Pm
k¼1 kk ¼ 1. Then the (p, q)-fuzzy weighted geometric

operator is defined as:

ðp; qÞ � FWG F1;F2; . . .;Fmð Þ ¼ Fk1
1 �Fk2

2 �. . .�Fkm
m :

Theorem 3 Suppose Fk ¼ ðak ;bkÞ; k ¼ 1; 2; . . .;m, is a collection of (p, q)-fuzzy

numbers, and K ¼ k1; k2; . . .; kmð ÞT is the weight vector specifying the weights of Fk ,
where kk [ 0 and

Pm
k¼1 kk ¼ 1. Then the (p, q)-fuzzy weighted geometric operator

yields a (p, q)-fuzzy number of the form:

ðp; qÞ � FWG F1;F2; . . .;Fmð Þ ¼ g�1
Xm
k¼1

kkgðakÞ
 !

; g�1
n

Xm
k¼1

kkgnðbkÞ
 ! !

:
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Proof Proof by mathematical induction on k. h

Property 1 If all Fk , k ¼ 1; 2; . . .;m, are equal, i.e., Fk ¼ F ¼ a; bð Þ, for all k, then
ðp; qÞ � FWA F1;F2; . . .;Fmð Þ ¼ F.

Proof Let Fk ¼ F ¼ ak ; bkð Þ,
ðp; qÞ � FWA F1;F2; . . .;Fmð Þ ¼ ðp; qÞ � FWAðF;F; . . .;FÞ

¼ �m
k¼1kkF

¼ h�1
Xm
k¼1

kkh að Þ
 !

; h�1
n

Xm
k¼1

kkhn bð Þ
 ! !

¼ h�1 h að Þð Þ; h�1
n hn bð Þð Þ� �

¼ ða; bÞ ¼ F

h

Property 2 Let Fk ¼ ak ; bkð Þ; k ¼ 1; 2; . . .;m, be a collection of (p, q)-fuzzy numbers,

and K ¼ k1; k2; . . .; kmð ÞT be the weight vector specifying the weights of Fk , where
kk [ 0 and

Pm
k¼1 kk ¼ 1. If G ¼ a; bð Þ is a (p, q)-fuzzy number, then

ðp; qÞ � FWA F1�G;F2�G; . . .;Fm�Gð Þ ¼ ðp; qÞ � FWA F1;F2; . . .;Fmð Þ�G:

Proof Since Fk�G ¼ h�1 h akð Þ þ h að Þð Þ; h�1
n hn bkð Þ þ hn bð Þð Þ� �

ðp; qÞ�FWA F1�G;F2�G; . . .;Fm�Gð Þ

¼
h�1

Pm
k¼1

kkh h�1 h akð Þ þ h að Þð Þð Þ
	 


;

h�1
n

Pm
k¼1

kkhn h�1
n hn bkð Þ þ hn bð Þð Þ� �	 


0BBB@
1CCCA

¼ h�1
Xm
k¼1

kk h akð Þ þ h að Þð Þ
 !

; h�1
n

Xm
k¼1

kk hn bkð Þ þ hn bð Þð Þ
 ! !
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ðp; qÞ�FWA F1;F2; . . .;Fmð Þ�G

¼ h�1
Xm
k¼1

kkh akð Þ
 !

; h�1
n

Xm
k¼1

kkhn bkð Þ
 ! !

� a; bð Þ

¼
h�1 h h�1

Pm
k¼1

kkh akð Þ
	 
	 


þ h að Þ
	 


;

h�1
n hn h�1

n

Pm
k¼1

kkhn bkð Þ
	 
	 


þ hn bð Þ
	 


0BBB@
1CCCA

¼ h�1
Xm
k¼1

kkh akð Þ þ h að Þ
 !

; h�1
n

Xm
k¼1

kkhn bkð Þ þ hn bð Þ
 ! !

¼ h�1
Xm
k¼1

kk h akð Þ þ h að Þð Þ
 !

; h�1
n

Xm
k¼1

kk hn bkð Þ þ hn bð Þð Þ
 ! !

h

Property 3 Let Fk ¼ ak ; bkð Þ; k ¼ 1; 2; . . .;m be a collection of (p, q)-fuzzy numbers,

and K ¼ k1; k2; . . .; kmð ÞT be the weight vector specifying the weights of Fk , where
kk [ 0 and

Pm
k¼1 kk ¼ 1. If c[ 0, then ðp; qÞ � FWA cF1; cF2; . . .; cFmð Þ ¼

cðp; qÞ � FWA F1;F2; . . .;Fmð Þ.
Proof As stated in Definition 12, for a (p, q)-fuzzy set F ¼ ða; bÞ, and c[ 0, we
have cF ¼ h�1 ch að Þð Þ; h�1

n chn bð Þð Þ� �
.

ðp; qÞ � FWA cF1; cF2; . . .; cFmð Þ

¼ h�1
Xm
k¼1

kkh h�1 ch akð Þð Þ� � !
; h�1

n

Xm
k¼1

kkhn h�1
n chn bkð Þð Þ� � ! !

¼ h�1
Xm
k¼1

kk ch akð Þð Þ
 !

; h�1
n

Xm
k¼1

kk chn bkð Þð Þ
 ! !

¼ h�1 c
Xm
k¼1

kkh akð Þ
 !

; h�1
n c

Xm
k¼1

kkhn bkð Þ
 ! !

c:ðp; qÞ � FWA F1;F2; . . .;Fmð Þ

¼ h�1 ch h�1
Xm
k¼1

kkh akð Þ
 ! ! !

; h�1
n chn h�1

n

Xm
k¼1

kkhn bkð Þ
 ! ! ! !

¼ h�1 c
Xm
k¼1

kkh akð Þ
 !

; h�1
n c

Xm
k¼1

kkhn bkð Þ
 ! !

h
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Property 4 Let Fk ¼ ak ; bkð Þ and Gk ¼ a0k ; b
0
k

� �
; k ¼ 1; 2; . . .;m, be two collections

of (p, q)-fuzzy numbers. Let K ¼ k1; k2; . . .; kmð ÞT be the weight vector specifying
the weights of both Fk and Gk , where kk [ 0 and

Pm
k¼1 kk ¼ 1. Then

ðp; qÞ�FWA F1�G1;F2�G2; . . .;Fm�Gmð Þ
¼ ðp; qÞ � FWA F1;F2; . . .;Fmð Þ�ðp; qÞ � FWA G1;G2; . . .;Gmð Þ:

Proof Fk�Gk ¼ h�1 h akð Þ þ h a0k
� �� �

; h�1
n hn bkð Þ þ hn b0k

� �� �� �
ðp; qÞ�FWA F1�G1;F2�G2; . . .;Fm�Gmð Þ

¼
h�1

Pm
k¼1

kkh h�1 h akð Þ þ h a0k
� �� �� �	 


;

h�1
n

Pm
k¼1

kkhn h�1
n hn bkð Þ þ hn b0k

� �� �� �	 

0BBB@

1CCCA

¼
h�1

Pm
k¼1

kk h akð Þ þ h a0k
� �� �	 


;

h�1
n

Pm
k¼1

kk hn bkð Þ þ hn b0k
� �� �	 


0BBB@
1CCCA

ðp; qÞ�FWA F1;F2; . . .;Fmð Þ�ðp; qÞ � FWA G1;G2; . . .;Gmð Þ

¼ h�1
Xm
k¼1

kkh akð Þ
 !

; h�1
n

Xm
k¼1

kkhn bkð Þ
 ! !

�

h�1
Xm
k¼1

kkh a0k
� � !

; h�1
n

Xm
k¼1

kkhn b0k
� � ! !

¼
h�1 h h�1

Pm
k¼1

kkh akð Þ
	 
	 


þ h h�1
Pm
k¼1

kkh a0k
� �	 
	 
	 


;

h�1
n hn h�1

n

Pm
k¼1

kkhn bkð Þ
	 
	 


þ hn h�1
n

Pm
k¼1

kkhn b0k
� �	 
	 
	 


0BBB@
1CCCA

¼ h�1
Xm
k¼1

kk h akð Þ þ h a0k
� �� � !

; h�1
n

Xm
k¼1

kk hn bkð Þ þ hn b0k
� �� � ! !

h

Property 5 Let Fk ¼ ak ; bkð Þ and Gk ¼ a0k ; b
0
k

� �
; k ¼ 1; 2; . . .;m, be two collections

of (p, q)-fuzzy numbers. If ak � a0k and bk � b0k for all k, then

score ðp; qÞ � FWAðF1;F2; . . .;FmÞð Þ� score ðp; qÞ � FWAðG1;G2; . . .;GmÞð Þ:
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Proof Since h : ½0; 1� ! ½0;1� is a continuous strictly increasing function, its
inverse is also strictly increasing. Thus

h�1
Xm
k¼1

kkhðakÞ
 !

� h�1
Xm
k¼1

kkhða0kÞ
 !

ð1Þ

Since hn is a continuous strictly decreasing function from ½0; 1� ! ½0;1�, its inverse
is also strictly decreasing. Hence

h�1
n

Xm
k¼1

kkhnðbkÞ
 !

� h�1
n

Xm
k¼1

kkhnðb0kÞ
 !

ð2Þ

From (1) and (2)
score ðp;qÞ�FWAðF1;F2; . . .;FmÞð Þ� score ðp;qÞ�FWAðG1;G2; . . .;GmÞð Þ: h

All the properties listed above also hold for (p, q)-fuzzy weighted geometric
operators. This article suggests different aggregation operators by applying
various additive generators. Note that the weighted average and weighted
geometric operators for (p, q)-fuzzy set defined in [1] differ entirely from those
defined here.

Remark 5 Suppose Fk ¼ ðak ; bkÞ, k ¼ 1; 2; . . .;m, is a collection of (p, q)-fuzzy

numbers, and K ¼ k1; k2; . . .; kmð ÞT is the weight vector specifying the weights of
Fk , where kk [ 0 and

Pm
k¼1 kk ¼ 1.

1. For hðtÞ ¼ �logð1� tpÞ and gðtÞ ¼ �logtp, we obtain:

ðp; qÞ � FWA F1;F2; . . .;Fmð Þ ¼ 1�
Ym
k¼1

1� apk
� �kk !1=p

;
Ym
k¼1

bkkk

0@ 1A

ðp; qÞ � FWG F1;F2; . . .;Fmð Þ ¼
Ym
k¼1

akkk ; 1�
Ym
k¼1

1� bqk
� �kk !1=q

0@ 1A
2. For hðtÞ ¼ logð1þtp

1�tpÞ, and gðtÞ ¼ logð2�tp

tp Þ, which generate a t-conorm and a t-
norm that are generalizations of the Einstein sum and Einstein product,
respectively, the corresponding weighted aggregation operators are termed as
(p, q)-fuzzy Einstein weighted averaging and (p, q)-fuzzy Einstein weighted
geometric operators.

ðp; qÞ�FEWA F1;F2; . . .;Fmð Þ

¼
Qm
k¼1

ð1þ apkÞkk �
Qm
k¼1

ð1� apkÞkk ÞQm
k¼1

ð1þ apkÞkk þ
Qm
k¼1

ð1� apkÞkk

2664
3775

1
p

;

2
Qm
k¼1

bqkkkQm
k¼1

ð2� bqkÞkk þ
Qm
k¼1

bqkkk

2664
3775

1
q

0BBB@
1CCCA
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ðp; qÞ�FEWG F1;F2; . . .;Fmð Þ

¼
2
Qm
k¼1

apkkkQm
k¼1

ð2� apkÞkk þ
Qm
k¼1

apkkk

2664
3775

1
p

;

Qm
k¼1

ð1þ bqkÞkk �
Qm
k¼1

ð1� bqkÞkkQm
k¼1

ð1þ bqkÞkk þ
Qm
k¼1

ð1� bqkÞkk

2664
3775

1
q

0BBB@
1CCCA

3. For hðtÞ ¼ logðsþð1�sÞð1�tpÞ
ð1�tpÞ Þ, gðtÞ ¼ logðsþð1�sÞtp

tp Þ; s[ 0, which generate a t-

conorm and a t-norm that are generalizations of the Hamacher sum and
Hamacher product, respectively, the corresponding weighted aggregation
operators are termed as (p, q)-fuzzy Hamacher weighted averaging and (p, q)-
fuzzy Hamacher weighted geometric operators.

ðp; qÞ � FHWA F1;F2; . . .;Fmð Þ

¼
Qm
k¼1

ð1þ ðs� 1ÞapkÞkk �
Qm
k¼1

ð1� apkÞkkQm
k¼1

ð1þ ðs� 1ÞapkÞkk þ ðs� 1Þ Qm
k¼1

ð1� apkÞkk

2664
3775

1
p

;

0BBB@
s
Qm
k¼1

bqkkkQm
k¼1

ð1þ ðs� 1Þð1� bqkÞÞkk þ ðs� 1Þ Qm
k¼1

bqkkk

2664
3775

1
q
1CCCA

ðp; qÞ � FHWG F1;F2; . . .;Fmð Þ

¼
s
Qm
k¼1

apkkkQm
k¼1

ð1þ ðs� 1Þð1� apkÞÞkk þ ðs� 1Þ Qm
k¼1

apkkk

2664
3775

1
p

;

0BBB@
Qm
k¼1

ð1þ ðs� 1ÞbqkÞkk �
Qm
k¼1

ð1� bqkÞkkQm
k¼1

ð1þ ðs� 1ÞbqkÞkk þ ðs� 1Þ Qm
k¼1

ð1� bqkÞkk

2664
3775

1
q
1CCCA

4 Decision-making under (p, q)-fuzzy environment

In this section, we utilize the AOs defined in this article to address a specific type of
decision-making problem. We outline the algorithm used in our proposed approach
and provide an illustrative example to demonstrate its implementation.
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Fig. 1 Flowchart listing the steps in MADM approach based on (p, q)-fuzzy aggregation operators
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Multi-attribute decision-making (MADM) offers a swift method for identifying
the optimal choice(s) from a range of alternatives based on multiple criteria. To
elucidate the approach in (p, q)-fuzzy framework, we begin by defining the
alternatives under examination as the set X ¼ fx1; x2; . . .; xmg. The decision-maker
assesses them with specific criteria listed as A ¼ fa1; a2; . . .; ang. Also, each attribute
is assigned with a weight indicating its significance or importance. Since (p, q)-fuzzy
sets offer the advantage of encompassing a wide range of membership grades, the
preferences of decision-maker are effectively represented using (p, q)-fuzzy numbers:
Fij ¼ ðaij; bijÞ where aij; bij 2 ½0; 1� and 0�ðaijÞp þ ðbijÞq � 1 for i ¼ 1; 2; . . .;m and
j ¼ 1; 2; . . .; n with suitable values assigned to p and q. Here, aij indicates the degree
to which the alternative xi meets the attribute aj, while bij indicates the degree to
which xi does not fulfil aj. Hence, this MADM problem is briefly depicted as a (p, q)-
fuzzy decision matrix with each entry as a (p, q)-fuzzy number. This article presents a
method for addressing this MADM problem by adopting an information fusion
approach. The AOs designed for (p, q)-fuzzy sets are employed to merge the fuzzy
information with attribute weights. This approach constitutes the following
sequential steps:

Step 1: Identify the suitable values for p and q to be used in the problem (choose
the least p and q which satisfy the condition for membership and non-membership
across all the assessments).

Step 2: Represent the decision-maker’s assessment of each alternative under each
attribute in the form of a (p, q)-fuzzy decision matrix, denoted as M ¼ ðFijÞm�n.

Step 3: Transform the decision matrix into a normalized decision matrix. There
are two types of attributes: benefit type and cost type. Preference values are
normalized by checking their attribute type using the formula

Fij ¼ ðaij; bijÞ if aj is benefit type
ðaij; bijÞc if aj is cost type

�
.

Step 4: Aggregate the (p, q)-fuzzy numbers corresponding to each alternative
using the defined AOs.

Step 5: Compute the score value (if needed, accuracy value) to compare the
aggregated (p, q)-fuzzy number for each alternative.

Step 6: Arrange the aggregated (p, q)-fuzzy numbers in descending order, following
the criteria outlined in Definition 3.

Table 1 (p, q)-fuzzy decision matrix

Winter Coats R1 R2 R3 R4 R5

WC1 (0.60,0.20) (0.83,0.50) (0.20,0.44) (0.30,0.70) (0.45,0.22)

WC2 (0.71,0.40) (0.60,0.60) (0.54,0.63) (0.40,0.76) (0.15,0.70)

WC3 (0.25,0.57) (0.32,0.67) (0.50,0.90) (0.84,0.62) (0.90,0.05)

WC4 (0.47,0.83) (0.80,0.20) (0.85,0.12) (0.04,0.53) (0.20,0.78)

WC5 (0.35,0.83) (0.55,0.33) (0.10,0.75) (0.42,0.62) (0.38,0.89)
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Step 7: Select the alternative(s) corresponding to the highest aggregated (p, q)-
fuzzy number(s) as the optimal choice(s).

The flowchart in Fig. 1 illustrates the steps involved in selecting the optimal
alternative.

Illustration: Alternative selection in Online Shopping using (p, q)-fuzzy aggregation
operators

A buyer needs to purchase a thick winter coat to withstand extremely low
temperatures. He has the option to explore physical stores or use online retailers for
the purchase. When evaluating his options, the buyer takes into consideration several
factors, including his prior experiences with products or brands, both positive and
negative. To gather information about the product, the buyer relies on sources such as
Google and consumer-generated content, including customer reviews, video
testimonials from review websites, authentic blog posts, and social media reviews.
Based on his research, the buyer selects a specific online store to make the purchase.
The customer has specific criteria in mind for the product, such as affordability,
additional product benefits, availability, colour, and style. Consequently, he add five
winter coats to his cart for final selection. Before making the ultimate purchase
decision, the buyer compares these potential selections based on customer reviews
and testimonials, focusing on five key factors: aesthetic appeal, value for money,
material softness, material quality, and fitting. The buyer assigns varying degrees of
importance to these factors. The goal is to choose the best winter coat from the set of
five.

This situation represents a MADM problem, with the five factors serving as
attributes and the five potential selections as alternatives. The buyer represents
customer reviews for each item as a (p, q)-fuzzy set, with membership values
indicating positive comments and non-membership values indicating negative
reviews. Let W ¼ WC1;WC2;WC3;WC4;WC5f g represent the set of alternatives
(winter coats), and R ¼ R1;R2;R3;R4;R5f g denote the five attributes for selection:
R1 for aesthetic appeal, R2 for value for money, R3 for material softness, R4 for
material quality, and R5 for fitting. The data is presented as a decision matrix in
Table 1.

The customer gives varying importance to different attributes and provides

weights for each attribute, denoted as a vector K ¼ ½0:10; 0:22; 0:13; 0:25; 0:30�T.

Table 2 Aggregated (p, q)-fuzzy numbers using (p, q)-FHWA operator

Operators WC1 WC2 WC3 WC4 WC5

(2,3)-FHWA (0.5732,0.3815) (0.4813,0.6442) (0.7627,0.3084) (0.5906,0.4141) (0.4149,0.6348)

(3,2)-FHWA (0.6030,0.3815) (0.5048,0.6442) (0.7797,0.3084) (0.6354,0.4141) (0.4264,0.6348)

(4,5)-FHWA (0.6290,0.3815) (0.5234,0.6422) (0.7931,0.3084) (0.6648,0.4141) (0.4362,0.6348)

( 5,4)-FHWA (0.6511,0.3815) (0.5387,0.6442) (0.8036,0.3084) (0.6869,0.4141) (0.4480,0.6348)

(10,100)-FHWA (0.7193,0.3815) (0.5879,0.6442) (0.8336,0.3084) (0.7442,0.4141) (0.4780,0.6348)

(100,10)-FHWA (0.8175,0.3815) (0.6926,0.6442) (0.8892,0.3084) (0.8329,0.4141) (0.0000,0.6348)
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Fig. 2 Score values of alternatives using (p, q)-FHWA operator
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Fig. 3 Score values of alternatives using (p, q)-FHWA operator
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Fig. 4 Score values of alternatives using (p, q)-FHWG operator
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Fig. 5 Score values of alternatives using (p, q)-FHWG operator
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Each attribute, Rk , is associated with a (p, q)-fuzzy set, and all of them are benefit-
type attributes in this example. Now aggregate these five (p, q)-fuzzy sets using the
proposed (p, q)-FHWA operator for s ¼ 1 (see Table 2). Next, order the (p, q)-fuzzy
numbers of the resulting (p, q)-fuzzy set based on score values within the range of
½�1; 1�. Choose the alternative with the maximum score value as the best option (see
Table 3). While this represents the conventional approach to using AOs in MADM
problems within a fuzzy environment, presenting the problem’s data in the form of
(p, q)-fuzzy sets offers the flexibility to accommodate more orthopairs. Figures 2 and
3 depict the score values obtained for the five different alternatives for various values
of p, q, and s using the (p, q)-FHWA operator.

It is evident from Figures 2, 3, 4 and 5 that the ordering of alternatives changes as
the values of s fluctuate. When different values of s are assigned to a specific (p, q)-
fuzzy aggregation operator, both the score values and the order of alternatives vary.
This suggests that the parameter s represents the decision-maker’s preference. The
AOs suggested in this article equip the decision-maker with the flexibility to assign
values to the parameter s. Therefore, when compared to existing AOs for (p, q)-fuzzy
sets, the suggested operators are more versatile and adaptable.

Table 4 (p, q)-fuzzy decision matrix

Journals D1 D2 D3 D4 D5

Jl1 (0.61,0.80) (0.69,0.73) (0.48,0.79) (0.59,0.58) (0.81,0.68)

Jl2 (0.62,0.81) (0.81,0.63) (0.66,0.77) (0.65,0.76) (0.75,0.73)

Jl3 (0.65,0.78) (0.71,0.79) (0.75,0.75) (0.64,0.77) (0.49,0.91)

Jl4 (0.81,0.61) (0.83,0.59) (0.75,0.74) (0.85,0.57) (0.83,0.59)

Jl5 (0.59,0.86) (0.81,0.68) (0.61,0.80) (0.48,0.79) (0.47,0.89)

Table 5 Aggregated (p, q)-fuzzy sets using (p, q)-FHWA operator

Operator Jl1 Jl2 Jl3 Jl4 Jl5

(2,3)-FHWA (0.6787,0.7199) (0.7091,0.7423) (0.6506,0.8088) (0.8140,0.6217) (0.6066,0.8162)

(3,2)-FHWA (0.6858,0.7199) (0.7113,0.7423) (0.6552,0.8088) (0.8144,0.6217) (0.6156,0.8162)

(4,5)-FHWA (0.6928,0.7199) (0.7136,0.7423) (0.6597,0.8088) (0.8148,0.6217) (0.6253,0.8162)

( 5,4)-
FHWA

(0.6998,0.7199) (0.7160,0.7423) (0.6642,0.8088) (0.8152,0.6217) (0.6355,0.8162)

(10,100)-
FHWA

(0.7295,0.7199) (0.7289,0.7423) (0.6829,0.8088) (0.8173,0.6217) (0.6830,0.8162)

(100,10)-
FHWA

(0.8000,0.7199) (0.7948,0.7423) (0.7388,0.8088) (0.8352,0.6217) (0.7948,0.8162)
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Comparison with an aggregation operator of n,m-rung orthopair fuzzy sets
An n,m-rung orthopair fuzzy set [11] is a subtype of (p, q)-fuzzy set [1], where n,

m 2 N and n 6¼ m. Here, we adapt the numerical example from [11] to demonstrate
the validity of the operators defined in this article. The numerical example for
MADM depicted in [11] involves selecting the best journal from a set of five journals
(alternatives) based on factors, including Indexing, Editorial Board, Journal Rank,
Reviewer Report and Impact Factor. We denote this set of attributes as D ¼
D1;D2;D3;D4;D5f g where D1: denotes Indexing, D2: denotes Editorial Board, D3:

denotes Journal Rank, D4: indicates Reviewer Report and D5: denotes Impact
Factor. In [11], the decision-maker represented their evaluations using an n, m-rung
orthopair fuzzy decision matrix (see Table 4), and authors employed the n, m-rung
orthopair fuzzy weighted power average (n, m-ROFWPA) operator with weights
0.21, 0.15, 0.22, 0.13, and 0.29 for each attribute Dj, where j ¼ 1; 2. . .5, respectively.
They explored various values for p and q to interpret their impact on the results of the
MADM problem. This article compares the results obtained in [11] with those
obtained by employing (p, q)-FHWA and (p, q)-FHWG operators with s ¼ 1 for
aggregation. Tables 5 and 7 display the aggregated values using these operators for
each journal Jli, using values of p ¼ 2, 3, 4, 5, 10, 100, and q ¼ 3; 2; 5; 4; 100; 10,
respectively. Tables 6 and 8 list the score values and subsequent rankings for Jli,
i ¼ 1; 2; . . .; 5.

The optimal alternative is Jl4 irrespective of the values of p and q. Similarly, when
utilizing the (p, q)-FHWG operator for s ¼ 1, Jl4 remains the optimal choice. Table 9
presents the rankings of the alternatives, Jli, using the n,m-ROFWPA operator from
[11] for n¼ 2; 3; 4; 5; 10; 100 and m¼ 3; 2; 5; 4; 100; 10 respectively. The AOs for
(p, q)-fuzzy sets defined in this article yield results similar to those obtained using the
existing operators in literature. The n,m-ROFWPA operator defined in [11] is
expressed as

Table 7 Aggregated (p, q)-fuzzy sets using (p, q)-FHWG operator

Operator Jl1 Jl2 Jl3 Jl4 Jl5

(2,3)-
FHWG

(0.6372,0.7371) (0.6957,0.7522) (0.6250,0.8289) (0.8101,0.6352) (0.5681,0.8343)

(3,2)-
FHWG

(0.6372,0.7351) (0.6957,0.7511) (0.6250,0.8272) (0.8101,0.6328) (0.5681,0.8329)

(4,5)-
FHWG

(0.6372,0.7413) (0.6957,0.7546) (0.6250,0.8326) (0.8101,0.6409) (0.5681,0.8371)

( 5,4)-
FHWG

(0.6372,0.7392) (0.6957,0.7534) (0.6250,0.8307) (0.8101,0.6379) (0.5681,0.8357)

(10,100)-
FHWG

(0.6372,0.7897) (0.6957,0.7975) (0.6250,0.8988) (0.8101,0.7289) (0.5681,0.8793)

(100,10)-
FHWG

(0.6372,0.7514) (0.6957,0.7604) (0.6250,0.8426) (0.8101,0.6580) (0.5681,0.8438)
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While this operator pertains to a subtype of (p, q)-fuzzy sets, it differs from the (p, q)-
FHWA and (p, q)-FHWG operators in that it does not take into account the parameter
s, which reflects the decision maker’s preference.

5 Conclusions

A (p, q)-fuzzy set [1] is defined as a structure with its membership and non-membership
values satisfying the nonlinear relationship xp þ yq � 1. It broadens the scope of
representing uncertain information, expanding the feasible region and enhancing the
decision-making process. Due to its variable rungs p and q, it retains more fuzzy
information compared to IFS, PFS, FFS, and q-ROFS for q[ 3. Since data aggregation
plays a pivotal role in decision-making, this study attempted to develop generalized AOs
for (p, q)-fuzzy sets by employing strict t-norms and t-conorms. The AOs discussed in this
article, specifically the (p, q)-fuzzy weighted averaging operator and the (p, q)-fuzzy
weighted geometric operator defined in this article, generalize similar operators defined for
subtypes of (p, q)-fuzzy sets. These generalized definitions of operators allow us to create a
variety of operators for (p, q)-fuzzy sets, as well as for any of its subtypes, using unary
functions known as additive generators. The article enlists and proves specific beneficial
properties of theseoperators andproposes their application in combining fuzzy information
for decision-making. The practicality of this approach is demonstrated through an
examination of an MADM problem where the best decision is determined by ranking
alternatives based on their score values. A comparative analysis with existing operators is
conducted to validate and assess the effectiveness of the generalized operators. Future
studies may explore concepts like (p, q)-fuzzy topology and algebraic structures of (p, q)-
fuzzy sets.
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