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Abstract
Motivated by an interconnection between the probabilistic Stirling numbers of the
second kind and the Bell polynomials studied by Adell and Lekuona (in J Number
Theory 194:335–355, 2019), we present a probabilistic generalization of the Bell
polynomials associated with a random variable Y satisfying suitable moment con-
ditions. We call it probabilistic Bell polynomials. These polynomials are closely
related to the probabilistic Stirling numbers of the second kind and generalize the
classical Bell polynomials which have various applications in the different disci-
plines of applied sciences. The exponential generating function and the recurrence
relations are obtained. Several convolution identities and some probabilistic exten-
sions of combinatorial sums are also discussed. Interconnections of Poisson, geo-
metric and exponential variates with the probabilistic Bell polynomials and the
Stirling numbers of the second kind are studied. A connection to Bernoulli random
variate and its application to sum of powers is also obtained. Some specific repre-
sentations of the probabilistic Stirling numbers of the second kind using discrete
exponential and geometric random variates are also derived. Finally, applications to
cumulants and Appell polynomials are presented.
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1 Introduction

The classical Stirling numbers of the second kind denoted by S(n, k) are the number
of ways a set of n objects is partitioned into k non-empty disjoint subsets. It has wide
applications in various fields of mathematics, physics, and probability to establish
various results, identities and in computing diverse quantities. These are elementary
tools for treatment of various combinatorial problems. Several equivalent definitions
for Stirling numbers of the second kind appear in literature (for example see
Quaintance and Gould [26, Chap. 9] and Comtet [12, Chap. 5]). The Euler’s formula
for the Stirling numbers of the second kind is defined by (see [26, p. 118])

Sðn; kÞ ¼ 1

k!

Xk
j¼0

ð�1Þk�j k

j

� �
jn: ð1:1Þ

In terms of the exponential generating function, it is expressed as (see [2])

ðez � 1Þk
k!

¼
X1
n¼k

Sðn; kÞ z
n

n!
; z 2 C;

where C denotes the set of all complex numbers.
In past few decades, the works on defining different generalizations of the Stirling

numbers have been carried out. Recently, the multi-parameter non-central Stirling
numbers and the r-Stirling numbers of the second kind have been studied in the
literature. For more details on these generalizations one can refer [8, 9, 20] and the
references therein. Let ðYjÞj� 1 be a sequence of mutually independent copies of a

random variable Y with finite moment generating function. Consider Sj ¼ Y1 þ Y2 þ
� � � þ Yj for j ¼ 1; 2; . . . with S0 ¼ 0. Then, the probabilistic Stirling numbers of the
second kind for a random variable Y is defined by (see [4, p. 3])

SY ðn; kÞ ¼ 1

k!

Xk
j¼0

k

j

� �
ð�1Þk�j

ESnj ; n ¼ 0; 1; . . .; k ¼ 0; 1; . . .; n: ð1:2Þ

Clearly, from (1.2) one may easily obtain the Euler’s formula (1.1) for the Stirling
numbers of the second kind when Yj’s are degenerate at 1. Probabilistic approach for
defining Stirling numbers of the second kind provides a motivation for extensions of
various classical formula which involves sum of powers on arithmetic progression.
The higher order convolutions of the Appell polynomials can be obtained in a
explicit form using proposed definition. Adell [2] also extended definition (1.2) for
complex random variables and demonstrated its applications to the various topics of
probability theory. They derived some well known combinatorial identities.

In terms of the exponential generating function, the probabilistic Stirling numbers
of the second kind may be expressed as (see [4, p. 8])
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EezY � 1ð Þk
k!

¼
X1
n¼k

SY ðn; kÞ z
n

n!
; z 2 C: ð1:3Þ

The Bell polynomials are closely related with the Bell and Stirling numbers with
applications to Faà di Bruno’s formula and in deriving several convolution identities
related to it. For non-negative integers n and k with n� k, the partial exponential Bell
polynomials denoted by Bn;k are defined by (see [13, p. 96] and [14, p.1])

Bn;kðx1; x2; . . .; xn�kþ1Þ ¼ n!
X
Xk

n

Yn�kþ1

j¼1

1

kj!

�
xj
j!

�kj

; ð1:4Þ

where

Xk
n ¼

�
ðk1; k2; . . .; kn�kþ1Þ :

Xn�kþ1

j¼1

kj ¼ k;
Xn�kþ1

j¼1

jkj ¼ n; kj 2 N0

�
;

and N0 ¼ N [ f0g; where N stands for the set of natural numbers.
Using this definition, one can easily get the following identity (see [25] and [12, p.

135])

Bn;kðpqx1; pq2x2; . . .; pqn�kþ1xn�kþ1Þ ¼ pkqnBn;kðx1; x2; . . .; xn�kþ1Þ; ð1:5Þ
for n� k� 0 and p; q 2 C.

The partial exponential Bell polynomials can also be expressed in the form of
formal power series as (see [14, p. 1])

1

k!

�X1
j¼1

xj
zj

j!

�k

¼
X1
n¼k

Bn;kðx1; x2; . . .; xn�kþ1Þ z
n

n!
; k ¼ 0; 1; 2; :::: ð1:6Þ

The nth complete exponential Bell polynomial through the partial exponential Bell
polynomials is defined by (see [14, pp. 1–2])

Bnðx1; x2; . . .; xnÞ ¼
Xn
k¼0

Bn;kðx1; x2; . . .; xn�kþ1Þ; ð1:7Þ

with B0;0 ¼ 1;Bn;0 ¼ 0 for all n� 1 and B0;k ¼ 0 for all k� 1. Also,
Bn;1ðx1; x2; . . .; xnÞ ¼ xn and Bn;nðx1Þ ¼ xn1 for all n� 1:

A formal power series expansion for the complete exponential Bell polynomial is
given by

exp

�X1
j¼1

xj
zj

j!

�
¼
X1
n¼0

Bnðx1; x2; . . .; xnÞ z
n

n!
: ð1:8Þ

Bell polynomials may also be expressed in terms of the nth order moments of
Poisson random variables. This representation is well known as Dobinski’s formula
and is given by (see [4, p. 15] and [14])
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BnðxÞ ¼ e�x
X1
k¼0

kn
xk

k!
: ð1:9Þ

In terms of the exponential generating function, it may also be expressed as (see [24,
Eq. 2])

eðe
z�1Þx ¼

X1
k¼0

BkðxÞ z
k

k!
:

Also, the Stirling numbers of the second kind and the Bell polynomial are inter-
connected via the relation (see [4, p. 15])

BnðxÞ ¼
Xn
k¼0

xkSðn; kÞ: ð1:10Þ

For any random variable Y with finite moments and using (1.6) with xi ¼ EY i, we
have

1

k!

�X1
j¼1

EY j z
j

j!

�k

¼
X1
n¼k

Bn;k EY ; EY 2; . . .; EY ðn�kþ1Þ
� � zn

n!
:

That is,

EezY � 1ð Þk
k!

¼
X1
n¼k

Bn;k EY ;EY 2; . . .; EY ðn�kþ1Þ
� � zn

n!
: ð1:11Þ

On comparing (1.11) with (1.3), we deduce a new connection between probabilistic
generalizations of the Stirling numbers of the second kind and the partial exponential
Bell polynomials as follows

SY ðn; kÞ ¼ Bn;k EY ; EY 2; . . .; EY ðn�kþ1Þ
� �

; ð1:12Þ

which may be viewed as an alternate representation of SY ðn; kÞ defined in (1.2).
Laskin [19] proposed a fractional generalization of the Bell polynomials which

include the probability mass function (pmf) of the time fractional Poisson process.
Several generalizations of the Bell polynomial and the partial exponential Bell
polynomial have been studied in literature with wide applications in the various areas
of applied sciences. For more details on these polynomials one may refer [5, 6, 12].
Recently, Kataria et al. [14] established a probabilistic interconnection between the
partial exponential Bell polynomial and the weighted sums of independent Poisson
random variables. They also derived some new identities. Kataria and Vellaisamy
[15] showed that Adomian polynomial can be written in the finite sum of the partial
exponential Bell polynomials.
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Under some appropriate moment conditions on random variable Y, Adell and
Lakuona [4] studied a probabilistic version of the Stirling numbers of the second
kind, which opens avenue for various generalizations of polynomials and numbers
associated with the Stirling numbers of the second kind. The primary aim of this
article is to present a probabilistic generalization of the Bell polynomials and we call
it probabilistic Bell polynomials. We also address its various important properties and
applications. The organization of the article is as follows:

In Sect. 2, we define the probabilistic Bell polynomials and derive its exponential
generating function. Some alternative representations of the probabilistic Bell
polynomials and several combinatorial identities are discussed. A generalization of
the power sums formula linked with the probabilistic Stirling numbers of the second
kind is also presented here. In Sect. 3, we consider interconnection of Bernoulli,
Poisson, Geometric, and discrete exponential variates with the probabilistic Bell
polynomials and the Stirling numbers of the second kind. The formula for the sum of
powers of natural numbers is also obtained in case of Bernoulli random variable.
Finally, connections of probabilistic Bell polynomials with cumulants and Appell
polynomials are established in Sect. 4.

2 Probabilistic Bell polynomials

Adell and Lakuona [2, 4] introduced the probabilistic Stirling numbers of the second
kind and discussed its relation with the Bell polynomials (see [4, Theorem 4.9]).
Here, we explore a full connection between the probabilistic Stirling numbers of the
second kind and the Bell polynomials by defining a probabilistic version of the Bell
polynomials. LetH be the set of random variables Y satisfying the following moment
conditions

EjY jn\1; n 2 N0 and lim
n!1

jtjnEjY jn
n!

; jtj\r; ð2:1Þ

for some r[ 0. It ensures the existence of moment generating function of the ran-
dom variable Y (see [7, p. 344]).

Let Y 2 H be a random variable. We define the probabilistic Bell polynomials as

BY
n ðxÞ ¼

Xn
k¼0

SY ðn; kÞxk ; ð2:2Þ

where the probabilistic Stirling numbers of the second kind SY ðn; kÞ are defined in
terms of the powers of sum of independent and identically distributed (i.i.d.) copies
of the random variable Y via the relation (1.2). This definition may be viewed as a
probabilistic generalization of the Bell polynomials (or Touchard polynomials) with
respect to the random variable Y satisfying some appropriate moments conditions. It

123

A probabilistic generalization... 715



also allows us to bridge interconnections with some well-known polynomials for a
different choices of the random variable Y.

One can easily verify that for degenerate random variable Y at 1, we get the Bell
polynomials. When x ¼ 1, (2.2) reduces to BY

n ð1Þ ¼ BY
n , and we call it the

probabilistic Bell numbers.
Next, we have the following proposition.

Proposition 2.1 The exponential generating function for the probabilistic Bell
polynomial is given by

exðEe
zY�1Þ ¼

X1
n¼0

BY
n ðxÞ

zn

n!
: ð2:3Þ

Proof Multiplying both sides of (1.3) by xk and summing over k between 0 to 1,
we get

X1
k¼0

xðEezY � 1Þ½ �k
k!

¼
X1
k¼0

X1
n¼k

SY ðn; kÞxk z
n

n!

exðEe
zY�1Þ ¼

X1
n¼0

Xn
k¼0

SY ðn; kÞxk
 !

zn

n!
:

In view of (2.2), we get the desired proposition. h

Consider ðYjÞj� 1 be a sequence of independent copies of a random variable

Y 2 H. Then by Jensen’s inequality, we have

EjSk jn � k1=nEjY jn; k 2 N;

where Sk ¼ Y1 þ Y2 þ � � � þ Yk ; k ¼ 1; 2; ::: with S0 ¼ 0 (see [4, p. 3]).
Next, the following proposition is an alternative representation of the probabilistic

Bell polynomials in terms of the moments of sums of i.i.d. random variables in H.

Proposition 2.2 Let Y 2 H. Then

BY
n ðxÞ ¼ e�x

X1
k¼0

xk

k!
ESnk : ð2:4Þ

Proof Simplifying (2.3) for i.i.d. random variables, we get
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X1
n¼0

BY
n ðxÞ

zn

n!
¼
X1
k¼0

e�xxk
ðEezY Þk

k!
¼
X1
k¼0

e�xxk

k!
ðEezY ÞðEezY Þ � � � ðEezY Þ

¼
X1
k¼0

e�xxk

k!
ðEezY1ÞðEezY2Þ � � � ðEezYk Þ

¼
X1
k¼0

e�xxk

k!
EezY1þzY2þ���þzYk

¼
X1
k¼0

e�xxk

k!
EezSk

¼
X1
n¼0

X1
k¼0

e�xxk

k!

zn

n!
ESnk ¼

X1
n¼0

X1
k¼0

e�xxk

k!
ESnk

 !
zn

n!
:

Comparing the coefficients of zn on both sides, we get an alternate representation for
the probabilistic Bell polynomials. h

The definition in (2.4) may be seen as Dobinski’s type formula for the
probabilistic Bell polynomials. Also, we have following observations:

(i) When Y is degenerate at 1, (2.4) coincide with the Dobinski’s formula as in
(1.9).

(ii) For Y follows standard exponential distribution with ESnk ¼ hkin, (2.4) yields
the following

BY
n ðxÞ ¼ BL

nðxÞ ¼ e�x
X1
k¼0

hkin
xk

k!
;

which is the Lah-Bell polynomials and hkin ¼ kðk þ 1Þ � � � ðk þ n� 1Þ are
the rising factorials (see [16, p. 4]).

Next, we derive a result for the probabilistic Bell polynomials in terms of the
complete exponential Bell polynomials.

Lemma 2.1 For a random variable Y in H, we have

BY
n ðxÞ ¼ BnðxEY ; xEY 2; :::; xEYnÞ:

Proof With the help of (1.12) and (2.2), we get
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BY
n ðxÞ ¼

Xn
k¼0

Bn;kðEY ; EY 2; :::; EY ðn�kþ1ÞÞxk

¼
Xn
k¼0

Bn;kðxEY ; xEY 2; :::; xEY ðn�kþ1ÞÞ:

The last step is obtained using property (1.5). Hence, by the virtue of (1.7), we get
desired connection. h

Aliter, the Lemma 2.1 can also be obtained from (1.8) by using xi ¼ xEY i, 8i ¼
1; 2; . . .; n and comparing with (2.3).

It may be noticed that for x ¼ 1, Lemma 2.1 reduces to a new representation of
probabilistic Bell numbers of the form

BY
n ¼ BnðEY ; EY 2; :::;EYnÞ: ð2:5Þ

In case of degeneracy of random variable Y at 1, it reduces to the classical Bell
numbers.

In the next proposition, we have a recurrence relation for the probabilistic Bell
polynomials.

Proposition 2.3 For n� 0; we have

BY
nþ1ðxÞ ¼ x

Xn
k¼0

n

k

� �
EYkþ1BY

n�kðxÞ:

Proof A recurrence relation for the partial exponential Bell polynomials is of the
following form (see [12])

Bnþ1ðx1; x2; . . .; xnþ1Þ ¼
Xn
k¼0

n

k

� �
xkþ1Bn�kðx1; x2; . . .; xn�kÞ: ð2:6Þ

Consider Y 2 H. Let xi ¼ xEY i, i ¼ 1; 2; . . . in (2.6). With the help of Lemma 2.1,
we get the desired recurrence relation. h

Motivated by some binomial type results for special polynomials like Lah-Bell
polynomials, Laguerre polynomials (see [31, Eg. 4.2]), the generalized binomial
identity for the probabilistic Bell polynomials may also be obtained.

Proposition 2.4 Let BY
n ðxÞ be a probabilistic Bell polynomials. Then, we have

BY
n ðxþ yÞ ¼

Xn
k¼0

n

k

� �
BY
k ðxÞBY

n�kðyÞ: ð2:7Þ
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Proof We may observe that (2.7) is an immediate consequence of Proposition 2.1.
Alternatively, it can also be obtained using Lemma 2.1 with the help of the following
relation (see [11])

Bnðx1 þ y1; x2 þ y2; . . .; xn þ ynÞ ¼
Xn
k¼0

n

k

� �
Bkðx1; x2; . . .; xkÞBn�kðy1; y2; . . .; yn�kÞ:

h

It is evident that the sequence fBY
n ðxÞgn� 1 is of the binomial type with initial

condition BY
0 ðxÞ ¼ 1. Now, we present some identities for the probabilistic Bell

polynomials, which generalizes several well-known identities reported in recent
literature. These identites can be derived in similar fashion as the classical ones
reported in [30, 32].

Theorem 2.1 Let ðBY
n ðxÞÞn be a sequence of the probabilistic Bell polynomials

defined on I ; I � R; with BY
0 ðxÞ 6¼ 0. Then, we have

ðiÞ Bn;kðBY
0 ð1Þ;BY

1 ð2Þ;BY
2 ð3Þ; :::Þ ¼

n� 1

k � 1

� �Xn�k

j¼0

SY ðn� k; jÞn j: ð2:8Þ

ðiiÞ Bn;kðBY
0 ðxÞ; 2BY

1 ðxÞ; 3BY
2 ðxÞ; :::Þ ¼

n

k

� �Xn�k

j¼0

x jSY ðn� k; jÞk j: ð2:9Þ

ðiiiÞ Bn;kðBY
1 ðxÞ;BY

2 ðxÞ;BY
3 ðxÞ; :::Þ ¼

Xn
j¼0

SY ðn; jÞxjSðj; kÞ; n� k: ð2:10Þ

ðivÞ BY
n ðxÞ ¼

Xn
k¼0

x

k

� �
k!Bn;kðBY

1 ;B
Y
2 ; :::;B

Y
n�kþ1Þ: ð2:11Þ

In particular, when Y ¼ 1 and x ¼ 1, the part (ii) of the Theorem 2.1 gives

Bn;kðB0; 2B1; 3B2; . . .Þ ¼
n

k

� �Xn�k

j¼0

Sðn� k; jÞk j;

which has been studied in [1]. Also, when Y follows exponential with unit mean, then
part (iii) of the Theorem 2.1 provides a new connection between the Lah-Bell
polynomials and the partial exponential Bell polynomials of the form

Bn;kðBL
1ðxÞ;BL

2ðxÞ;BL
3ðxÞ; :::Þ ¼

Xn
j¼0

Lðn; jÞxjSðj; kÞ; for n� k;

where L(n, j) denotes the Lah numbers.
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The next theorem is a convolution result in terms of derivatives of the probabilistic
Bell polynomials and the probabilistic Stirling numbers of the second kind.

Theorem 2.2 For k� n; we have

dk

dxk
BY
n ðxÞ ¼ k!

Xn�k

j¼0

n

j

� �
BY
j ðxÞSY ðn� j; kÞ; ð2:12Þ

where
dk

dxk
BY
n ðxÞ denotes the kth order derivative of BY

n ðxÞ.

Proof On k-times successive differentiation of (2.3) with respect to x yields to

X1
n¼k

dk

dxk
BY
n ðxÞ

zn

n!
¼ k! exðEe

zY�1Þ
h i ðEezY � 1Þk

k!

" #
ð2:13Þ

¼ k!
X1
j¼0

BY
j ðxÞ

z j

j!

X1
i¼k

SY ði; kÞ z
i

i!

¼ k!
X1
n¼k

Xn�k

j¼0

n

j

� �
BY
j ðxÞSY ðn� j; kÞ z

n

n!

¼
X1
n¼k

k!
Xn�k

j¼0

n

j

� �
BY
j ðxÞSY ðn� j; kÞ

" #
zn

n!
:

ð2:14Þ

Comparing the coefficients of zn on both sides, we get the result. h

For k ¼ 1, the first order derivative for the probabilistic Bell polynomials is

d

dx
BY
n ðxÞ ¼

Xn�1

j¼0

n

j

� �
EYn�jBY

j ðxÞ:

For a special choices of the random variable Y and for different values of k, we may
get several new convolution results. In a particular case, we have the following
example.

Example 2.1 Let Y follows standard exponential distribution. Then

d

dx
BL
nðxÞ ¼

Xn�1

j¼0

n

j

� �
ðn� jÞ!BL

j ðxÞ;

where BL
nðxÞ be the Lah-Bell polynomials. This result is aforementioned in Theo-

rem 10 of [18].

The probabilistic Bell polynomials are closely associated with the probabilistic
version of the Stirling numbers of the second kind. To establish few connections with
well-known families of distributions, we first generalize power sums formula and
will express it in terms of the probabilistic version of the Stirling numbers of the
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second kind. These sums formula will extend some known popular identity reported
in Spivey [28]. Also, for a different choice of random variable Y, we may obtain
several new summation formulas which may be useful in combinatorics.

For any arbitrary real-valued function g(x), the first order forward difference
formula is (see [22])

41
ygðxÞ ¼ gðxþ yÞ � gðxÞ:

In a similar manner, its iterates are given by

4j
y1;y2;...;yj

gðxÞ ¼ 41
y1
� 41

y2
� � � � � 41

yj

� �
gðxÞ; ðy1; y2; . . .; yjÞ 2 Rj; j 2 N:

In particular, for y1 ¼ y2 ¼ � � � ¼ yj ¼ 1, we get

4j
1;1;...;1gðxÞ ¼ 4jgðxÞ ¼

Xj

i¼0

j

i

� �
ð�1Þj�igðxþ iÞ;

where 4j gðxÞ be the jth order forward difference operator of function g(x).
Let qnðxÞ be a polynomial of exact degree n. Let Y 2 H and

Sk ¼ Y1 þ Y2 þ � � � þ Yk . In terms of forward difference operator, we have the
following formulas (see [4, pp. 9–10])

Eqnðxþ SkÞ ¼
Xk
j¼0

k

j

� �
E4j

Y1;:::;Yj
qnðxÞ: ð2:15Þ

Also,

Xm
k¼0

Eqnðxþ SkÞ ¼
Xn^m
j¼0

mþ 1

jþ 1

� �
E4j

Y1;:::;Yj
qnðxÞ; ð2:16Þ

where n;m 2 N0 and n ^ m ¼ minðn;mÞ.
When qnðxÞ is a monomial of degree n, that is, qnðxÞ ¼ InðxÞ ¼ xn, (2.16) reduces

to

Xm
k¼0

EInðxþ SkÞ ¼
Xn^m
j¼0

mþ 1

jþ 1

� �
j!SY ðn; j; xÞ; ð2:17Þ

where

SY ðn; j; xÞ ¼ 1

j!
E4j

Y1;:::;Yj
InðxÞ;

with SY ðn; j; 0Þ ¼ SY ðn; jÞ. For a detailed discussion about these results one can
consult [4, Theorem 3.3].

Hence, motivated by the applications of SY ðn; jÞ reported in Adell [4], we present
a probabilistic generalization of a combinatorial identity in the next theorem.

Theorem 2.3 For any n;m 2 N0, we have
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Xm
k¼0

m

k

� �
EInðxþ SkÞ ¼

Xn^m
j¼0

m

j

� �
j!SY ðn; j; xÞ2m�j: ð2:18Þ

Proof Choosing qnðxÞ ¼ InðxÞ in (2.15), we get

Xm
k¼0

m

k

� �
EInðxþ SkÞ ¼

Xm
k¼0

m

k

� �Xk
j¼0

k

j

� �
j!SY ðn; j; xÞ

¼
Xm
j¼0

j!SY ðn; j; xÞ
Xm
k¼0

m

k

� �
k

j

� �
:

With the help of well-known combinatorial identity
Pm

k¼0
m
k

� �
k
j

� �
¼ m

j

� �
2m�j,

we get the result. h

Remark 2.1 When Y is degenerate at 1, (2.18) leads to the well-known combinatorial
identity

Xm
k¼0

m

k

� �
Inðxþ kÞ ¼

Xn^m
j¼0

m

j

� �
2m�j 4j InðxÞ;

which has been studied in [28].

It is important to note that the Theorem 2.3 can be extended for any polynomial
qnðxÞ of the exact degree n and is given by

Xm
k¼0

m

k

� �
Eqnðxþ SkÞ ¼

Xn^m
j¼0

m

j

� �
4j

Y1;:::;Yj
qnðxÞ2m�j:

Corollary 2.1 For j, m and k 2 N0 with j� k�m, we have

Xm
k¼0

m

k

� �
EIm�kðxþ SkÞ ¼

Xm
j¼0

j!
m

j

� �Xm�j

k¼j

m� j

m� k

� �
SY ðm� k; j; xÞ: ð2:19Þ

Proof Consider InðxÞ be a monomial in the left hand side of (2.19). An application
of (2.15) yields
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Xm
k¼0

m

k

� �
EIm�kðxþ SkÞ ¼

Xm
k¼0

m

k

� �Xk
j¼0

k

j

� �
j!SY ðm� k; j; xÞ

¼
Xm
j¼0

j!
Xm
k¼0

m

k

� �
k

j

� �
SY ðm� k; j; xÞ

¼
Xm
j¼0

j!
m

j

� �Xm�j

k¼j

m� j

m� k

� �
SY ðm� k; j; xÞ;

which completes the proof. h

The Stirling numbers of the second kind may be expressed in terms of the
moments of sum of uniform random variables concentrated on [0, 1] (i.e. U[0, 1]) via
the relation (see [3])

Sðn; kÞ ¼ n

k

� �
EðY1 þ Y2 þ � � � þ YkÞn�k ¼ n

k

� �
ESn�k

k ; ð2:20Þ

where each ðYjÞj� 1 are i.i.d. U[0, 1]. For Y 	U ½0; 1�, we may provide an alternative

representation of the classical Bell numbers using (2.19) in terms of the probabilistic
Stirling numbers of the second kind through the relation

Bn ¼
Xn
j¼0

j!
n

j

� �Xn�j

k¼j

n� j

n� k

� �
SY ðn� k; jÞ:

3 Probabilistic Bell polynomials and some probability distributions

Let Y 2 H. With the help of (1.4) and (1.12), the probabilistic Stirling numbers of the
second kind SY ðn; kÞ have the following representation

SY ðn; kÞ ¼
X
Xk

n

n!

k1!k2! � � � kn�kþ1!

Yn�kþ1

j¼1

�
EY j

j!

�kj

;

where Xk
n ¼

�
ðk1; k2; . . .; kn�kþ1Þ :

Pn�kþ1
j¼1 kj ¼ k;

Pn�kþ1
j¼1 jkj ¼ n; kj 2 N0

�
:

Example 3.1 Let Y follows standard exponential distribution. Then, we have

Bn;k 1!; 2!; . . .; ðn� k þ 1Þ!ð Þ ¼
X
Xk

n

n!

k1!k2! � � � kj! :

which are the Lah numbers and has been reported in [17, p. 5].

Next, we present some interconnections of the probabilistic Bell polynomials and
the probabilistic Stirling numbers of the second kind for some special probability
distributions. We first start with Poisson random variable.
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3.1 Probabilistic Bell polynomials and poisson distribution

Let Y 	 PoissonðkÞ with pmf

PðY ¼ jÞ ¼ k j

j!
e�k; j 2 N0: ð3:1Þ

One can easily see that

BnðkÞ ¼ EYn; k[ 0:

Theorem 3.1 Let Y 	 PoissonðkÞ. Then

BY
n ðxÞ ¼

Xn
k¼0

kkBkðxÞSðn; kÞ; ð3:2Þ

where S(n, k) is the Stirling numbers of the second kind.
Also, for any m� n, we have

Xm
k¼0

m

k

� �
BnðkkÞ ¼

Xn
j¼0

m

j

� �
j!SY ðn; jÞ2m�j: ð3:3Þ

Proof The moment generating function for a Poisson variate is

EezY ¼ ekðe
z�1Þ:

With the help of Proposition 2.1, we get

X1
n¼0

BY
n ðxÞ

zn

n!
¼ exðe

kðez�1Þ�1Þ ¼
X1
k¼0

BkðxÞkk ½ðe
z � 1Þ�k
k!

¼
X1
k¼0

BkðxÞkk
X1
n¼k

Sðn; kÞ z
n

n!

¼
X1
n¼0

Xn
k¼0

kkBkðxÞSðn; kÞ
 !

zn

n!
:

Comparing the coefficients of zn on the both sides, we get desired result.
As the sum of the independent Poisson variates is also Poisson. Then

Sk 	 PoissonðkkÞ with ESnk ¼ BnðkkÞ. Finally, for x ¼ 0, Theorem 2.3 generates the
proof of (3.3). h

3.2 Probabilistic Bell polynomials and Bernoulli’s distribution

Let Y be a Bernoulli random variable with parameter p 2 ð0; 1�. The nth order
moment of Y is
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EYn ¼ p; 8n: ð3:4Þ
Using this fact in (1.12), we get

SY ðn; kÞ ¼ pkSðn; kÞ; k� n: ð3:5Þ
Also, we have

BY
n ðxÞ ¼ BnðpxÞ:

The next result is an application of the probabilistic Stirling numbers of the second
kind in obtaining sum of powers of natural numbers through Bernoulli random
variable.

Theorem 3.2 Let Y be a Bernoulli random variable with parameter p 2 ð0; 1�. Then

1n þ 2n þ � � � þ kn ¼ ðk þ 1Þ
Z 1

0

Xk
m¼0

k

m

� �
m!SY ðn;mÞdp; ð3:6Þ

where SY ðn;mÞ depends on parameter p as in (3.5).

Proof Suppose ðYjÞj� 1 be a sequence of i.i.d. copies of random variable Y. The sum

Sk ¼ Y1 þ Y2 þ � � � þ Yk for k ¼ 1; 2; . . . follows the binomial distribution with
parameter k and p. The nth order moment of random variable Sk is given by (see [23])

ESnk ¼
Xn
i¼1

k

i

� �
pii!Sðn; iÞ:

For qnðxÞ ¼ InðxÞ, (2.15) gives
Xn
i¼1

k

i

� �
pii!Sðn; iÞ ¼

Xk
j¼0

k

j

� �
E4j

Y1;:::;Yj
Inð0Þ ¼

Xk
j¼0

k

j

� �
j!SY ðn; jÞ:

Integrating both side with respect to p, we getZ 1

0

Xn
i¼1

k

i

� �
pii!Sðn; iÞdp ¼

Z 1

0

Xk
j¼0

k

j

� �
j!SY ðn; jÞdp

1

k þ 1

Xn
i¼1

k þ 1

iþ 1

� �
i!Sðn; iÞ ¼

Z 1

0

Xk
j¼0

k

j

� �
j!SY ðn; jÞdp:

ð3:7Þ

It is well known that 1n þ 2n þ � � � þ kn ¼Pn
i¼1

k þ 1
iþ 1

� �
i!Sðn; iÞ (see [23]).

Therefore from (3.7), the theorem is proved. h
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3.3 Grunert’s formula and geometric distribution

For expansion of formal power series SnðxÞ ¼
P1

j¼0 j
nxj, the Grunert’s formula in

terms of the Stirling numbers of the second kind is given by

x
d

dx

� �l

SnðxÞ ¼
Xl
j¼0

xjSðl; jÞ dj

dxj
SnðxÞ ¼ SnþlðxÞ: ð3:8Þ

The second equality is obtained in [26, pp. 126–127] such that
SnþlðxÞ ¼

P1
j¼0 j

nþlxj.

Let Y be a random variable following the geometric distribution with parameter p
such that q ¼ 1� p, 0\p\1. Then, its pmf is given by

PðY ¼ jÞ ¼ pqj; j 2 N0: ð3:9Þ
Consider,

SnþlðqÞ ¼ 1

p

X1
j¼0

jnþlpqj ¼ 1

p
EYnþl: ð3:10Þ

We define the multinomial convolutions of the form

S
k
nþlðqÞ ¼

X
n1 þ n2 þ � � � þ nk ¼ n

l1 þ l2 þ � � � þ lk ¼ l

ðnþ lÞ!
ðn1 þ l1Þ!ðn2 þ l2Þ! � � � ðnk þ lkÞ!Sn1þl1ðqÞSn2þl2ðqÞ � � �Snkþlk ðqÞ:

ð3:11Þ
Using (3.10), a probabilistic version of (3.11) is given by

S
k
nþlðqÞ ¼

1

pk
X

n1 þ n2 þ � � � þ nk ¼ n

l1 þ l2 þ � � � þ lk ¼ l

ðnþ lÞ!
ðn1 þ l1Þ!ðn2 þ l2Þ! � � � ðnk þ lkÞ! EY

n1þl1
1 EYn2þl2

2 � � � EYnkþlk
k

¼ 1

pk
EðY1 þ Y2 þ � � � þ YkÞnþl ¼ 1

pk
ESnþl

k :

In light of these constructions, we have the following results.

Theorem 3.3 Let Y follows the geometric distribution with parameter p. Then, we
have

SY ðn; kÞ ¼
Xn
j¼k

j

k

� �
q

p

� �j

hkij�kSðn; jÞ: ð3:12Þ

Also,
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Xm
k¼0

m

k

� �
pkS
k

nþlðqÞ ¼
Xn^m
j¼0

m

j

� �
j!SY ðn; jÞ2m�j: ð3:13Þ

Proof Let jez � 1j\p=q: Then, by (3.9), we have

EezY � 1 ¼ q

p
ðez � 1Þ 1

1� q
p ðez � 1Þ

" #
:

Using (1.3) and by an use of binomial expansion, we get

EezY � 1ð Þk
k!

¼ qkðez � 1Þk
k!pk

1

1� q
p ðez � 1Þ

" #k

¼ 1

k!

qðez � 1Þ
p

� �kX1
i¼0

�k

i

� �
� q

p

� �i

ðez � 1Þi

¼ q

p

� �kX1
i¼0

k þ i

k

� �
hkii

q

p

� �iðez � 1Þkþi

ðk þ iÞ!

¼ q

p

� �kX1
j¼k

j

k

� �
hkij�k

q

p

� �j�kX1
n¼j

Sðn; jÞ z
n

n!

¼
X1
n¼k

Xn
j¼k

j

k

� �
hkij�k

q

p

� � j

Sðn; jÞ z
n

n!
:

Taking into account the form of (1.3), we obtain (3.12).
The proof of (3.13) followed by Theorem 2.3 with x ¼ 0: h

It may be observed that for q ¼ e�1 in (3.12), we may induce the interconnection
between the probabilistic Stirling numbers of the second kind and discrete
exponential distribution. Suppose Y follows discrete exponential distribution whose
distribution function is given by

FðkÞ ¼ 1� e�k ; k ¼ 0; 1; :::: ð3:14Þ
For any z\1, the moment generating function of random variable Y is (see [27])

EezY ¼ 1þ ez � 1

1� e�ð1�zÞ : ð3:15Þ

Then, we have the following corollary in case of discrete exponential distribution.

Corollary 3.1 For jez � 1j\e� 1; we have

SY ðn; kÞ ¼ ek
Xn
j¼k

j

k

� �
hkij�k

Sðn; jÞ
ðe� 1Þj : ð3:16Þ
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4 Applications

4.1 Inverse relation

For n� 1, if we have

Bn ¼
Xn
k¼1

Bn;kðx1; x2; :::; xn�kþ1Þ; ð4:1Þ

then inverse relation for the partial exponential Bell polynomials is given by (see
[21])

xn ¼
Xn
k¼1

ð�1Þk�1ðk � 1Þ!Bn;kðB1;B2; :::;Bn�kþ1Þ for 1� k� n: ð4:2Þ

For a random variable Y, the cumulant generating function is defined as

KY ðzÞ ¼ logEezY ¼
X1
i¼1

Ki
zi

i!
;

where K0
is are the ith cumulants of the random variable Y. Also, we have the fol-

lowing relation in terms of the moments

BnðK1;K2; . . .;KnÞ ¼ EYn:

Using the inverse relation for a suitable choice of x0is values and applying (2.5), a
connection between the cumulants and the probabilistic Bell numbers is established
which is given as

BnðK1;K2; :::;KnÞ ¼
Xn
k¼1

ð�1Þk�1ðk � 1Þ!Bn;kðBY
1 ;B

Y
2 ; :::;B

Y
n�kþ1Þ:

Example 4.1 Let Y follows standard exponential distribution with ith cumulant
Ki ¼ ði� 1Þ!. Then, we have

Bnð0!; 1!; 2!; . . .; ðn� 1Þ!Þ ¼
Xn
k¼1

ð�1Þk�1ðk � 1Þ!Bn;kðBL
1 ;B

L
2 ; :::;B

L
n�kþ1Þ:

The well known interconnection between unsigned Stirling numbers of the first kind |
s(n, k)| and the partial exponential Bell polynomials is given by (see [12, p. 135])

jsðn; kÞj ¼ Bn;kð0!; 1!; . . .; ðn� kÞ!Þ:
Hence, using (1.7) another representation of unsigned Stirling numbers of the first
kind in terms of the Lah-Bell numbers is obtained of the following form

jsðn; kÞj ¼ ð�1Þk�1ðk � 1Þ!Bn;kðBL
1 ;B

L
2 ; :::;B

L
n�kþ1Þ:
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4.2 Probabilistic Stirling numbers of the second kind and Appell polynomials

Let AðxÞ ¼ ðAnðxÞÞn� 0 be a sequence of polynomials such that Að0Þ ¼
ðAnð0ÞÞn� 0 2 H; where H contains real sequences. Then, A(x) is an Appell
sequence and its generating function has the following form

HðAðxÞ; zÞ ¼
X1
n¼0

AnðxÞ z
n

n!
¼ HðAð0Þ; zÞexz:

For more details one may refer [4]. The k-fold binomial convolution A(k, x) of Appell
sequence is defined as (see [4, pp. 19–20])

Anðk; xÞ ¼ ðA�� � ��zfflfflffl}|fflfflffl{k�times

AÞðxÞ; k 2 N; Anð0; xÞ ¼ InðxÞ;
which have the probabilistic representation of the form (see [29])

Anðk; xÞ ¼ Eðxþ SkÞn: ð4:3Þ
In terms of the exponential generating function, (4.3) can be expressed as

HðAðk; xÞ; zÞ ¼
X1
n¼0

Anðk; xÞ z
n

n!
¼ EezðxþSkÞ: ð4:4Þ

Theorem 4.1 For Y 2 H; we have

E BY
n ðxþ SkÞ

	 
 ¼Xn
m¼1

Amðk; xÞSY ðn;mÞ; n� 1;

where Amðk; xÞ be a sequence of the Appell polynomials.

Proof Suppose h1ðzÞ and h2ðzÞ are two generating functions of sequences ðxnÞn� 1

and ðynÞn� 1, respectively such that

h1ðzÞ ¼
X1
n¼1

xn
zn

n!
and h2ðzÞ ¼

X1
n¼1

yn
zn

n!
: ð4:5Þ

The composition of h1 and h2 is given by (see [10, Chapter 5])

h2ðh1ðzÞÞ ¼
X1
n¼1

Xn
m¼1

ymBn;mðx1; x2; :::; xn�mþ1Þ z
n

n!
: ð4:6Þ

Consider, xn ¼ EYn and ym ¼ Eðxþ SkÞm as defined in (4.3). Then, from (4.5), the
functions h1 and h2 takes the form

h1ðzÞ ¼ EezY � 1 and h2ðzÞ ¼ EezðxþSkÞ � 1:

Therefore, with the help of (4.6), we obtain
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EeðxþSkÞðEezY�1Þ � 1 ¼
X1
n¼1

Xn
m¼1

Amðk; xÞSY ðn;mÞ z
n

n!
: ð4:7Þ

Using Proposition 2.1, we get the desired result. h

Remark 4.1 From (4.7), one may construct several new identities for some special
random variable Y. If we choose Y ¼ �1=2þ iX ; for a random variable X following
logistic distribution, then (4.3) reduces to the Bernoulli polynomials (see [29] and [4,
p. 19]). For a random variable Y ¼ iU with U following the standard normal
distribution, an interconnection with the Hermite polynomials can also be
established.
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