ORIGINAL RESEARCH PAPER

On Bernstein-type inequalities for polynomials with restricted zeros

Mudassir A. Bhat¹ · Ravinder Kumar² · S. Gulzar^{[3](http://orcid.org/0000-0002-4489-9690)}[®]

Received: 20 March 2022 / Accepted: 27 April 2023 / Published online: 22 May 2023 © The Author(s), under exclusive licence to The Forum D'Analystes 2023

Abstract

For a complex-polynomial $P(z)$ of degree *n* having no zero in $|z|<1$, it is known that $\max_{|z|=1} |P'(z)| \leq \frac{n}{2} \max_{|z|=1} |P(z)|$. Under same hypothesis, V. K. Jain proved that if $\alpha \in \mathbb{C}$ with $|\alpha| \leq \frac{n}{2}$ then for $|z| = 1$,

$$
|zP'(z) - \alpha P(z)| \leq \frac{1}{2} \{|n - \alpha| + |\alpha|\} \max_{|z|=1} |P(z)|.
$$

In this paper, we obtained an extension of this inequality to mth derivative which also contains a refinement of this inequality. Our result not only generalize some wellknown inequalities but also shows that the inequality of Jain holds for wider range of α .

Keywords Polynomials \cdot Bernstein's inequality \cdot Inequalities in the complex domain

Mathematics Subject Classification 30A10 · 30C10 · 41A17

1 Introduction and statement of results

Let $P(z)$ be a polynomial of degree *n* then according to Bernstein's inequality (for details see [\[9](#page-8-0), p. 508]),

Communicated by S. Ponnusamy.

 \boxtimes S. Gulzar sgmattoo@gmail.com

¹ Department of Mathematics, GDC Anantnag, Kashmir, India

² Department of Mathematics, Chandigarh University, Mohali, India

³ Department of Mathematics, GCET, Kashmir, India

$$
\max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|. \tag{1}
$$

The inequality is sharp and equality in ([1\)](#page-0-0) holds if $P(z) = az^n$, $a \neq 0$. Bernsteintype inequalities played a fundamental role in the area of Approximation Theory and Polynomial Approximations [[4,](#page-8-0) [8\]](#page-8-0).

Smirnov [\[10](#page-8-0), p. 356] obtained a generalized version of Bernstein's inequality. For $z \in \mathbb{C}$ with $|z| \geq 1$, by $\Omega_{|z|}$ denote the image of the disc $\{t \in \mathbb{C} : |t| < |z|\}$ under the mapping $\psi(t) = t/(1 + t)$, then the Smirnov's result can be stated as:

If $P(z)$ be a polynomial of degree at most n and $F(z)$ a polynomial of degree n such that $F(z)$ has all its zeros in $|z| \leq 1$ and $|P(z)| \leq |F(z)|$ for $|z| = 1$, then

$$
|zP'(z) - n\alpha P(z)| \le |zF'(z) - n\alpha F(z)|
$$

for all $\alpha \in \Omega_{|z|}$. For $\alpha \in \Omega_{|z|}$, this inequality becomes equality if and only if $P \equiv e^{i\theta}F$, $\theta \in \mathbb{R}$.

The Bernstein's inequality follows from above inequality by taking $\alpha = 0$ and $F(z) = z^n \max_{|z|=1} |P(z)|$.

If the polynomial $P(z)$ has no zero in $|z|<1$, then the inequality [\(1](#page-0-0)) can be improved and the same was conjectured by Erdös [[5\]](#page-8-0) and later Lax [[7\]](#page-8-0) proved that if $P(z)$ does not vanish in $|z|<1$, then inequality [\(1](#page-0-0)) can take the form:

$$
\max_{|z|=1} |P'(z)| \leq \frac{n}{2} \max_{|z|=1} |P(z)|.
$$

The above result is sharp and equality holds if $P(z) = a + bz^n$, where $|a| = |b| \neq 0$.

Aziz and Dawood [\[2](#page-8-0)] refined the above Erdö–Lax theorem by involving minimum of $|P(z)|$ and proved that If the polynomial $P(z)$ has no zero in $|z|<1$, then

$$
\max_{|z|=1} |P'(z)| \le \frac{n}{2} \left(\max_{|z|=1} |P(z)| - \min_{|z|=1} |P(z)| \right).
$$
 (2)

If T is an operator on the space of polynomials, then the Bernstein's inequality gives us the exact constant C_n in the inequality

$$
\max_{|z|=1} |T[P](z)| \leq C_n \max_{|z|=1} |P(z)|
$$

for the operator $T \equiv \frac{d}{dz}$. In this case $C_n = n$.

It is interesting to charaterise C_n for different operators defined on the space of complex-polynomials of degree at most n (for some well-known operators, refer to [\[9](#page-8-0), P. 538]). Jain [[6\]](#page-8-0), studied the operator $T_{\alpha}[P](z) := zP'(z) - \alpha P(z)$ and proved that if $P(z)$ is a not population of degree *n* and $\alpha \in \mathbb{C}$ with $|\alpha| \le n/2$ then if $P(z)$ is a polynomial of degree *n* and $\alpha \in \mathbb{C}$ with $|\alpha| \le n/2$, then

$$
\max_{|z|=1} |zP'(z) - \alpha P(z)| \le |n - \alpha| \max_{|z|=1} |P(z)|.
$$
\n(3)

That is, for this operator $C_n = |n - \alpha|$. One can easily observe that Bernstein's inequality is a special of Jain's result and follows by taking $\alpha = 0$.

Jain improved the inequality ([3](#page-1-0)) and proved that if $P(z)$ is an *n*th-degree polynomial with no zero in the unit disk $|z| < 1$, then for any $\alpha \in \mathbb{C}$ with $|\alpha| \leq n/2$,

$$
\max_{|z|=1} |zP'(z) - \alpha P(z)| \le \frac{1}{2} \{|n - \alpha| + |\alpha|\} \max_{|z|=1} |P(z)|.
$$
 (4)

The result is sharp and equality holds if $P(z) = a + bz^n$, where $|a| = |b| \neq 0$.

In this paper, we first present the following sharp estimate for minimum modulus of a polynomial involving mth and $(m - 1)$ th derivatives of a polynomial $P(z)$ with zeros in closed unit disc.

Theorem 1.1 Let $P(z)$ be a non-constant polynomial of degree n having all zeros in $|z| \leq 1$. Then for every $\alpha \in \mathbb{C}$ and $m \in \mathbb{N}$ with $\Re(\alpha) \leq \frac{n-m+1}{2}$ and $m \leq n$,

$$
\min_{|z|=1} |zP^{(m)}(z) - \alpha P^{(m-1)}(z)| \ge \frac{n!}{(n-m+1)!} |\alpha - (n-m+1)| \min_{|z|=1} |P(z)|. \tag{5}
$$

The inequality is sharp and equality holds if $P(z) = ae^{i\gamma}z^n$, $a > 0$.

By taking $\alpha = 0$ in inequality (5), we obtain the following estimate for minimum modulus of *m*th derivative of $P(z)$.

Corollary 1.1 Let $P(z)$ be a polynomial of degree n having all zeros in $|z| \leq 1$, then

$$
\min_{|z|=1}|P^{(m)}(z)| \geq \frac{n!}{(n-m)!}\min_{|z|=1}|P(z)|.
$$

The inequality is sharp and equality holds if and only if $P(z) = a e^{i\gamma} z^n, a > 0$

The above Corollary reduces to a result due to Aziz and Dawood [\[2](#page-8-0)] for $m = 1$. The next Corollary is obtained by taking $m = 1$ in Theorem 1.1

Corollary 1.2 Let $P(z)$ be a polynomial of degree n having all zeros in $|z| \leq 1$. Then for every $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{\pi}{2}$ for every $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n}{2}$,

$$
\min_{|z|=1} |zP'(z) - \alpha P(z)| \ge |n - \alpha| \min_{|z|=1} |P(z)|.
$$

The inequality is sharp and becomes equality if $P(z) = ae^{iy}z^n, a > 0$

Next, we extend inequality (4) to *m*th-derivative of $P(z)$ which among other things shows that this inequality of Jain also holds for wider range of α .

Theorem 1.2 Let $P(z)$ be a non-constant polynomial of degree n and has no zero in $|z| < 1$. Then for every $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n-m+1}{2}$ and $|z| = 1$,

$$
|zP^{(m)}(z) - \alpha P^{(m-1)}(z)|
$$

\n
$$
\leq \frac{n!}{2(n-m+1)!} \left[\left\{ |\alpha - (n-m+1)| + \delta_{m1} |\alpha| \right\} \max_{|z|=1} |P(z)| - \left\{ |\alpha - (n-m+1)| - \delta_{m1} |\alpha| \right\} \min_{|z|=1} |P(z)| \right]
$$

where δ_{m1} denotes Kroneker delta. The inequality is sharp and equality holds if $P(z) = z^{n} + 1.$

For $m = 1$, we obtain following result from Theorem [1.2.](#page-2-0)

Corollary 1.3 Let $P(z)$ be a polynomial of degree n and has no zero in $|z| < 1$. Then for every $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n}{2}$ and $|z| = 1$,

$$
|zP'(z) - \alpha P(z)| \leq \frac{1}{2} \left[(|n - \alpha| + |\alpha|) \max_{|z| = 1} |P(z)| - (|n - \alpha| - |\alpha|) \min_{|z| = 1} |P(z)| \right].
$$

The inequality is sharp and equality holds if $P(z) = zⁿ + 1$.

If we take $\alpha = 0$ in above inequality, we shall get inequality [\(2](#page-1-0)).

Remark 1.1 Since $\Re(\alpha) \leq \frac{n}{2}$ then $|n - \alpha| \geq |\alpha|$. This implies that

$$
(|n - \alpha| + |\alpha|) \max_{|z|=1} |P(z)| - (|n - \alpha| - |\alpha|) \min_{|z|=1} |P(z)|
$$

\$\leq (|n - \alpha| + |\alpha|) \max_{|z|=1} |P(z)|\$.

This shows that Corollary 1.3 not only gives a refinement of inequality ([4\)](#page-2-0) but also shows that this inequality holds for all α belonging to the half-plane $|n - \alpha| \ge |\alpha|$.

For $m \ge 2$, $\delta_{m1} = 0$. By using this fact in Theorem [1.2](#page-2-0), we obtain the following Corollary.

Corollary 1.4 Let $P(z)$ be a polynomial of degree n and has no zero in $|z|$ < 1. Then for every $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n-m+1}{2}$, $m \geq 2$ and $|z| = 1$,

$$
|zP^{(m)}(z)-\alpha P^{(m-1)}(z)|\leq \frac{n!|\alpha-(n-m+1)|}{2(n-m+1)!}\bigg(\max_{|z|=1}|P(z)|-\min_{|z|=1}|P(z)|\bigg).
$$

The inequality is sharp and equality holds if $P(z) = zⁿ + 1$.

2 Lemmas

For the proof of our theorems, we need the following Lemmas.

The first lemma is a generalized version of Walsh's Coincidence theorem, due to Aziz $[1]$ $[1]$, for the case when the circular region is a circle.

Lemma 2.1 Let $G(z_1, z_2, \ldots, z_n)$ be a symmetric n-linear form of total degree m, $m \leq n$, in z_1, z_2, \ldots, z_n and let $C : |z| \leq r$ be a closed circular disc containing the n
points w_1, w_2, \ldots, w_n . Then in C there exists atleast one point B such that points w_1, w_2, \ldots, w_n . Then in C there exists atleast one point β such that

$$
G(\beta,\beta,\ldots,\beta)=G(w_1,w_2,\ldots,w_n).
$$

Lemma 2.2 Let $P \in \mathcal{P}_n$ and have all zeros in $|z| \le r$ where $r > 0$, if $\alpha \in \mathbb{C}$ with $\mathcal{P}(\alpha) < n-m+1$ then all the zeros of T , $[\mathcal{P}](\alpha) = \alpha \mathcal{P}(m)(\alpha)$, $\alpha \mathcal{P}(m-1)(\alpha)$ are also in $\Re(\alpha) \leq \frac{n-m+1}{2}$, then all the zeros of $T_{m,\alpha}[P](z) = zP^{(m)}(z) - \alpha P^{(m-1)}(z)$ are also in $|z| \leq r$

Proof Let w be any zero of the polynomial $T_{m,q}[P](z)$, then

$$
wP^{(m)}(w) - \alpha P^{(m-1)}(w) = 0.
$$
 (6)

This expression is linear and symmetric in the zeros of $P(z)$. By Lemma 2.1, w will also satisfy the equation obtained by replacing $P(z)$ in (6) by $(z - \beta)^n$, where β is a suitable complex number with $|\beta| < r$. This implies suitable complex number with $|\beta| \le r$. This implies

$$
n(n-1)...(n-m+1)(w-\beta)^{n-m}w
$$

- $\alpha n(n-1)...(n-m+2)(w-\beta)^{n-m+1} = 0$

or

$$
n(n-1)...(n-m+2)(w-\beta)^{n-m}\{(n-m+1)w-\alpha(w-\beta)\}=0
$$
 (7)

Since
$$
\Re(\alpha) \le \frac{n-m+1}{2}
$$
, then $\Re\left(\frac{\alpha}{n-m+1}\right) \le \frac{1}{2}$. This implies that
$$
\left|\frac{\alpha}{n-m+1}\right| \le \left|\frac{\alpha}{n-m+1} - 1\right|
$$

or

$$
|\alpha| \le |\alpha - (n - m + 1)| \tag{8}
$$

Equation (7) implies that
\n
$$
(w - \beta) = 0 \text{ or } (n - m + 1)w - \alpha(w - \beta) = 0.
$$

Equivalently,

$$
w = \beta \text{ or } w = \frac{\alpha \beta}{\alpha - (n - m + 1)}.
$$

This further implies by using (8) that,

$$
|w| = |\beta|
$$
 or $|w| = \frac{|\alpha||\beta|}{|\alpha - (n - m + 1)|} \le \frac{|\alpha||\beta|}{|\alpha|}.$

Thus,

$$
\Rightarrow |w| \le |\beta| \le r
$$

Hence, it follows that all the zeros of $T_{m,x}[P](z)$ also lie in $|z| \leq r$. This completes the moof proof. \Box

A proof of Lemma [2.2](#page-4-0) also follows from a result due to [[3\]](#page-8-0).

A linear operator T on the space of complex-polynomials of degree at most n is called a B_n -operator (see [[9,](#page-8-0) p. 538]) if for every polynomial $P(z)$, of degree at most *n*, having all its zeros in $|z| \le 1$, then the polynomial $T[P](z)$ also has all its zeros in $|z| < 1$ $|z| \leq 1.$
The

The next two lemmas can be found in [\[9](#page-8-0), p. 538, 539].

Lemma 2.3 Let $h(z)$ be an nth-degree polynomial with all zeros in $|z| \le 1$ and g a
polynomial of degree at most n, such that $|g(z)| \le |h(z)|$ for $|z| = 1$, then for any R polynomial of degree at most n, such that $|g(z)| \leq |h(z)|$ for $|z| = 1$, then for any B_n
operator T, we have operator T, we have

$$
|T[g](z)| \le |T[h](z)| \text{ for } |z| \ge 1
$$

Moreover, $|T[g](z)| = |T[h](z)|$ at some point z outside the closed unit disc if and only if $g(z) = e^{i\theta}h(z), \theta \in \mathbb{R}$.

Lemma 2.4 Let P(z) be a polynomial of degree n and $O(z) = z^n \overline{P(1/\overline{z})}$ and $\phi_n(z) = z^n$, then for any B_n-operator T

$$
|T[P](z)| + |T[Q](z)| \le (|T[1](z)| + |T[\phi_n](z)|) \max_{|z|=1} |P(z)|, |z| \ge 1
$$

3 Proof of main results

Proof of Theorem 1.1 If $P(z)$ has a zero on $|z|=1$, then the Theorem is trivially true. Therefore, suppose all the zeros of $P(z)$ lie in $|z| < 1$. Let $k = \min_{|z|=1} |P(z)|$, then $k > 0$ and $k \le |P(z)|$ for $|z| = 1$. By Rouche's theorem, the polynomial $g(z) = P(z) - \lambda k z^n$ has all its zeros in $|z| < 1$ for every $\lambda \in \mathbb{C}$ with $|\lambda| < 1$ Invoking Lemma $P(z) - \lambda kz^n$ has all its zeros in $|z| < 1$ for every $\lambda \in \mathbb{C}$ with $|\lambda| < 1$. Invoking Lemma [2.2](#page-4-0), we conclude that, for any $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n-m+1}{2}$, the zeros of the polynomial

$$
z g^{(m)}(z) - \alpha g^{(m-1)}(z) = \left\{ z P^{(m)}(z) - \alpha P^{(m-1)}(z) \right\}
$$

$$
- \lambda k \frac{n!}{(n-m+1)!} \left\{ -\alpha + (n-m+1) \right\} z^{n-m+1}
$$

lie in $|z| < 1$. This implies that for any $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n-m+1}{2}$

$$
|zP^{(m)}(z) - \alpha P^{(m-1)}| \ge k \frac{n!}{(n-m+1)!} |\alpha - (n-m+1)| |z|^{(n-m+1)} \tag{9}
$$

for $|z| \ge 1$. If inequality [\(9\)](#page-5-0) were not true, then there exists a point $z = z_0$ with $|z_0| \ge 1$ such that

$$
|z_0 P^{(m)}(z_0) - \alpha P^{(m-1)}(z_0)| < k \frac{n!}{(n-m+1)!} |\alpha - (n-m+1)| |z_0|^{(n-m+1)}
$$

If we take,

$$
\lambda = \frac{z_0 P^{(m)}(z_0) - \alpha P^{(m-1)}(z_0)}{\frac{kn!}{(n-m+1)!} \{ -\alpha + (n-m+1) \} z_0^{(n-m+1)}},
$$

then $|\lambda| < 1$ and for this choice of λ , $z_0 g^{(m)}(z_0) - \alpha g^{(m-1)}(z_0) = 0$. This contradicts to the foot that all zeros of $z g^{(m)}(z) - \alpha g^{(m-1)}(z)$ lie in $|z| < 1$. Hence, the inequality (0) the fact that all zeros of $zg^{(m)}(z) - \alpha g^{(m-1)}(z)$ lie in $|z| < 1$. Hence, the inequality [\(9](#page-5-0)) is valid is valid.

That is for any $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n-m+1}{2}$, we have

$$
\min_{|z|=1} |z P^{(m)}(z) - \alpha P^{(m-1)}(z)| \geq \frac{n!}{(n-m+1)!} |\alpha - (n-m+1)| \min_{|z|=1} |P(z)|.
$$

This completes the proof. \Box

Proof of Theorem 1.2 Let $k = \min_{|z|=1} |P(z)|$. If $P(z)$ has no zero on unit circle $|z| = 1$, then by minimum modulus principal, $k \langle P(z)|$ for $|z| \langle 1|$. This implies that for any complex number λ with $|\lambda| \le 1$, the polynomial $g(z) = P(z) - \lambda k$ has no zero
in $|z| < 1$. Now, if $P(z)$ has a zero on $|z| - 1$ then $g(z) - P(z)$. Thus, in any case the in $|z|$ < 1. Now, if $P(z)$ has a zero on $|z| = 1$ then $g(z) = P(z)$. Thus, in any case the polynomial $g(z) = P(z) - \lambda k$ does not vanish in the disc $|z| < 1$.

Let $h(z) = z^n \overline{g(1/\overline{z})} = q(z) - k\overline{\lambda}z^n$, where $q(z) = z^n \overline{P(1/\overline{z})}$, then all the zeros of h lie in $|z| < 1$. Moreover $|g(z)| = |h(z)|$ for $|z| = 1$, then by Lemmas 2.2 and 2.3 (z) lie in $|z| \le 1$. Moreover $|g(z)| = |h(z)|$ for $|z| = 1$, then by Lemmas [2.2](#page-4-0) and [2.3,](#page-5-0) for the *R*-operator *T* we have for the B_n -operator $T_{m,\alpha}$, we have

$$
|T_{m,\alpha}[g](z)| \leq |T_{m,\alpha}[h](z)| \quad \text{for} \quad |z| \geq 1.
$$

This implies,

$$
|z g^{(m)}(z) - \alpha g^{(m-1)}(z)| \le |z h^{(m)}(z) - \alpha h^{(m-1)}(z)| \quad \text{for} \quad |z| \ge 1.
$$

Equivalently, for $|z| \geq 1$, we have

$$
\left| \left\{ zP^{(m)}(z) - \alpha P^{(m-1)}(z) \right\} + \lambda \alpha k \delta_{m1} \right|
$$

\n
$$
\leq \left| \left\{ zq^{(m)}(z) - \alpha q^{(m-1)}(z) \right\} - k\overline{\lambda}n(n-1)\dots(n-m+2)\{(n-m+1) - \alpha\}z^{n-m+1} \right|
$$
\n(10)

Since all the zeros of $q(z)$ lie in $|z| \leq 1$, so by Theorem [1.1](#page-2-0), for any $\alpha \in \mathbb{C}$ with α $\alpha \leq n-m+1$ and $|z| = 1$ $\Re(\alpha) \leq \frac{n-m+1}{2}$ and $|z| = 1$,

$$
|zq^{(m)}(z) - \alpha q^{(m-1)}(z)| \ge \frac{n!}{(n-m+1)!} |\alpha - (n-m+1)| \min_{|z|=1} |q(z)|
$$

=
$$
\frac{n!}{(n-m+1)!} |\alpha - (n-m+1)| \min_{|z|=1} |P(z)|
$$

=
$$
\frac{n!}{(n-m+1)!} |\alpha - (n-m+1)| k
$$

This allows us to choose the argument of λ such that

$$
\left| \left\{ zq^{(m)}(z) - \alpha q^{(m-1)}(z) \right\} - k\overline{\lambda} \frac{n!}{(n-m+1)!} \left\{ (n-m+1) - \alpha \right\} z^{n-m+1} \right|
$$

=
$$
|zq^{(m)}(z) - \alpha q^{(m-1)}(z)| - k|\overline{\lambda}| \frac{n!}{(n-m+1)!} |(n-m+1) - \alpha| |z|^{n-m+1}.
$$

For this argument of λ , the inequality [\(10](#page-6-0)) reduces to,

$$
|zP^{(m)}(z) - \alpha P^{(m-1)}(z) + \tilde{k}\lambda\alpha\delta_{m1}|
$$

\n
$$
\leq |zq^{(m)}(z) - \alpha q^{(m-1)}(z)| - |\lambda| \frac{n!}{(n-m+1)!} |\alpha - (n-m+1)|k
$$

for $|z| = 1$. Using triangle inequality in left-hand side of above inequality then letting $|\lambda| \rightarrow 1$, for $|z| = 1$, we obtain

$$
|zP^{(m)}(z) - \alpha P^{(m-1)}(z)| - |zq^{(m)}(z) - \alpha q^{(m-1)}(z)|
$$

\n
$$
\leq \left(\delta_{m1}|\alpha| - \frac{n!}{(n-m+1)!}|\alpha - (n-m+1)|\right)k.
$$
\n(11)

Next, applying Lemma [2.4](#page-5-0) to $P(z)$ with $T = T_{m,x}$, (as defined in Lemma [2.2](#page-4-0)), we get for $|z| = 1$,

$$
|zP^{(m)}(z) - \alpha P^{(m-1)}(z)| + |zq^{(m)}(z) - \alpha q^{(m-1)}(z)|
$$

\n
$$
\leq \{ |T_{m,\alpha}[1](z)| + |T_{m,\alpha}[\phi_n](z)| \} \max_{|z|=1} |P(z)| \tag{12}
$$

It is not difficult to see that $T_{m,x}[1](z) = -\delta_{m1}\alpha$ and if $\phi_n(z) = z^n$ then

 $T_{m,z}[\phi_n](z) = \frac{n!}{(n-m+1)!} \{(n-m+1) - \alpha\} z^{(n-m+1)}$. Using these values in [\(12](#page-7-0)), we have for $|z| = 1$, $|zP^{(m)}(z) - \alpha P^{(m-1)}(z)| + |zq^{(m)}(z) - \alpha q^{(m-1)}(z)|$

$$
\leq \left\{ \frac{n!}{(n-m+1)!} |(n-m+1) - \alpha| + \delta_{m1} |\alpha| \right\} \max_{|z|=1} |P(z)|. \tag{13}
$$

Note that $\delta_{m1} = \frac{n!}{(n-m+1)!} \delta_{m1}$ as $\delta_{m1} = 0$ for $m > 1$. Finally the conclusion of Theorem [1.2](#page-2-0) is obtained by adding inequalities ([11\)](#page-7-0) and (13). This completes the proof. \Box

Acknowledgements Authors are thankful to the referees for their comments and suggestions.

Data availability No data is required.

Declarations

Conflict of interest Authors declare that they have no have conflict of interest.

References

- 1. Aziz, A. 1985. On the location of the zeros of certain composite polynomials. Pacific Journal of Mathematics 118 (1): 17–26.
- 2. Aziz, A., and Q.M. Dawood. 1988. Inequalities for a polynomial and its derivative. Journal of Approximation Theory 54 (3): 306–313.
- 3. Aziz, A., and W.M. Shah. 2002. On the location of the zeros and critical points of a polynomial. Mathematica Balkanica 16: 105–111.
- 4. Bernstein, S.N. 1912. Sur. l'ordre de la meilleure appromation des functions continues par des Polynomes de degree donne. Hayez, imprimeur des académies royales 12 (4): 1–103.
- 5. Erdös, P. 1940. On extremal properties of the derivatives of polynomials. Annals of Mathematics 41: 310–313.
- 6. Jain, V.K. 1997. Generalization of certain well known inequalities for polynomials. Glasnik Matematicki 32: 45–52.
- 7. Lax, P.D. 1944. Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bulletin of the American Mathematical Society 50 (8): 509–513.
- 8. Lorentz, G.G. 1986. Approximation of Functions. New York: Chelsea Publishing Company.
- 9. Rahman, Q.I., and G. Schmeisser. 2002. Analytic Theory of Polynomials. Oxford: Clarendon Press.
- 10. Smirnov, V.I., and N.A. Lebedev. 1968. Functions of a Complex Variable: Constructive Theory. New York: MIT Press.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.