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Abstract
For a complex-polynomial P(z) of degree n having no zero in jzj\1; it is known that
maxjzj¼1jP0ðzÞj � n

2 maxjzj¼1jPðzÞj: Under same hypothesis, V. K. Jain proved that if
a 2 C with jaj � n

2 then for jzj ¼ 1;

zP0ðzÞ � aPðzÞj j � 1

2
n� aj j þ aj jf gmax

jzj¼1
jPðzÞj:

In this paper, we obtained an extension of this inequality to mth derivative which also
contains a refinement of this inequality. Our result not only generalize some well-
known inequalities but also shows that the inequality of Jain holds for wider range of
a:

Keywords Polynomials · Bernstein’s inequality · Inequalities in the
complex domain

Mathematics Subject Classification 30A10 · 30C10 · 41A17

1 Introduction and statement of results

Let P(z) be a polynomial of degree n then according to Bernstein’s inequality (for
details see [9, p. 508]),
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max
jzj¼1

jP0ðzÞj � n max
jzj¼1

jPðzÞj: ð1Þ

The inequality is sharp and equality in (1) holds if PðzÞ ¼ azn; a 6¼ 0: Bernstein-
type inequalities played a fundamental role in the area of Approximation Theory and
Polynomial Approximations [4, 8].

Smirnov [10, p. 356] obtained a generalized version of Bernstein’s inequality. For
z 2 C with jzj � 1; by Xjzj denote the image of the disc ft 2 C : jtj\jzjg under the
mapping wðtÞ ¼ t=ð1þ tÞ; then the Smirnov’s result can be stated as:

If P(z) be a polynomial of degree at most n and F(z) a polynomial of degree n such
that F(z) has all its zeros in jzj � 1 and jPðzÞj � jFðzÞj for jzj ¼ 1; then

jzP0ðzÞ � naPðzÞj � jzF 0ðzÞ � naFðzÞj
for all a 2 Xjzj: For a 2 Xjzj; this inequality becomes equality if and only if P � eihF;
h 2 R:

The Bernstein’s inequality follows from above inequality by taking a ¼ 0 and
FðzÞ ¼ zn maxjzj¼1 jPðzÞj:

If the polynomial P(z) has no zero in jzj\1, then the inequality (1) can be
improved and the same was conjectured by Erdös [5] and later Lax [7] proved that if
P(z) does not vanish in jzj\1; then inequality (1) can take the form:

max
jzj¼1

jP0ðzÞj � n

2
max
jzj¼1

jPðzÞj:

The above result is sharp and equality holds if PðzÞ ¼ aþ bzn; where jaj ¼ jbj 6¼ 0:
Aziz and Dawood [2] refined the above Erdö–Lax theorem by involving minimum

of |P(z)| and proved that If the polynomial P(z) has no zero in jzj\1; then

max
jzj¼1

jP0ðzÞj � n

2
max
jzj¼1

jPðzÞj �min
jzj¼1

jPðzÞj
� �

: ð2Þ

If T is an operator on the space of polynomials, then the Bernstein’s inequality
gives us the exact constant Cn in the inequality

max
jzj¼1

jT ½P�ðzÞj �Cnmax
jzj¼1

jPðzÞj

for the operator T � d

dz
: In this case Cn ¼ n:

It is interesting to charaterise Cn for different operators defined on the space of
complex-polynomials of degree at most n (for some well-known operators, refer to
[9, P. 538]). Jain [6], studied the operator Ta½P�ðzÞ :¼ zP0ðzÞ � aPðzÞ and proved that
if P(z) is a polynomial of degree n and a 2 C with jaj � n=2; then

max
jzj¼1

zP0ðzÞ � aPðzÞj j � n� aj jmax
jzj¼1

jPðzÞj: ð3Þ

That is, for this operator Cn ¼ n� aj j: One can easily observe that Bernstein’s
inequality is a special of Jain’s result and follows by taking a ¼ 0:
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Jain improved the inequality (3) and proved that if P(z) is an nth-degree
polynomial with no zero in the unit disk jzj\1, then for any a 2 C with jaj � n=2;

max
jzj¼1

zP0ðzÞ � aPðzÞj j � 1

2
n� aj j þ jajf gmax

jzj¼1
jPðzÞj: ð4Þ

The result is sharp and equality holds if PðzÞ ¼ aþ bzn; where jaj ¼ jbj 6¼ 0:
In this paper, we first present the following sharp estimate for minimum modulus

of a polynomial involving mth and ðm� 1Þth derivatives of a polynomial P(z) with
zeros in closed unit disc.

Theorem 1.1 Let P(z) be a non-constant polynomial of degree n having all zeros in
jzj � 1. Then for every a 2 C and m 2 N with <ðaÞ� n�mþ1

2 and m� n;

min
jzj¼1

jzPðmÞðzÞ � aPðm�1ÞðzÞj � n!

ðn� mþ 1Þ! ja� ðn� mþ 1Þjmin
jzj¼1

jPðzÞj: ð5Þ

The inequality is sharp and equality holds if PðzÞ ¼ aeiczn; a[ 0:

By taking a ¼ 0 in inequality (5), we obtain the following estimate for minimum
modulus of mth derivative of P(z).

Corollary 1.1 Let P(z) be a polynomial of degree n having all zeros in jzj � 1; then

min
jzj¼1

jPðmÞðzÞj � n!

ðn� mÞ!min
jzj¼1

jPðzÞj:

The inequality is sharp and equality holds if and only if PðzÞ ¼ aeiczn; a[ 0

The above Corollary reduces to a result due to Aziz and Dawood [2] for m ¼ 1:
The next Corollary is obtained by taking m ¼ 1 in Theorem 1.1

Corollary 1.2 Let P(z) be a polynomial of degree n having all zeros in jzj � 1. Then
for every a 2 C with <ðaÞ� n

2,

min
jzj¼1

jzP0ðzÞ � aPðzÞj � jn� ajmin
jzj¼1

jPðzÞj:

The inequality is sharp and becomes equality if PðzÞ ¼ aeiczn; a[ 0

Next, we extend inequality (4) to mth-derivative of P(z) which among other things
shows that this inequality of Jain also holds for wider range of a:

Theorem 1.2 Let P(z) be a non-constant polynomial of degree n and has no zero in
jzj\1. Then for every a 2 C with <ðaÞ� n�mþ1

2 and jzj ¼ 1;
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jzPðmÞðzÞ � aPðm�1ÞðzÞj

� n!

2ðn� mþ 1Þ!
�n

ja� ðn� mþ 1Þj þ dm1jaj
o
max
jzj¼1

jPðzÞj

�
n
ja� ðn� mþ 1Þj � dm1jaj

o
min
jzj¼1

jPðzÞj
�

where dm1 denotes Kroneker delta. The inequality is sharp and equality holds if
PðzÞ ¼ zn þ 1:

For m ¼ 1; we obtain following result from Theorem 1.2.

Corollary 1.3 Let P(z) be a polynomial of degree n and has no zero in jzj\1. Then
for every a 2 C with <ðaÞ� n

2 and jzj ¼ 1;

jzP0ðzÞ � aPðzÞj � 1

2
jn� aj þ jajð Þmax

jzj¼1
jPðzÞj � jn� aj � jajð Þmin

jzj¼1
jPðzÞj

� �
:

The inequality is sharp and equality holds if PðzÞ ¼ zn þ 1:

If we take a ¼ 0 in above inequality, we shall get inequality (2).

Remark 1.1 Since <ðaÞ� n
2 then jn� aj � jaj: This implies that

jn� aj þ jajð Þmax
jzj¼1

jPðzÞj � jn� aj � jajð Þmin
jzj¼1

jPðzÞj

� jn� aj þ jajð Þmax
jzj¼1

jPðzÞj:

This shows that Corollary 1.3 not only gives a refinement of inequality (4) but also
shows that this inequality holds for all a belonging to the half-plane jn� aj � jaj:

For m� 2; dm1 ¼ 0. By using this fact in Theorem 1.2, we obtain the following
Corollary.

Corollary 1.4 Let P(z) be a polynomial of degree n and has no zero in jzj\1. Then
for every a 2 C with <ðaÞ� n�mþ1

2 ; m� 2 and jzj ¼ 1;

jzPðmÞðzÞ � aPðm�1ÞðzÞj � n!ja� ðn� mþ 1Þj
2ðn� mþ 1Þ! max

jzj¼1
jPðzÞj �min

jzj¼1
jPðzÞj

� �
:

The inequality is sharp and equality holds if PðzÞ ¼ zn þ 1:

2 Lemmas

For the proof of our theorems, we need the following Lemmas.
The first lemma is a generalized version of Walsh’s Coincidence theorem, due to

Aziz [1], for the case when the circular region is a circle.
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Lemma 2.1 Let Gðz1; z2; . . .; znÞ be a symmetric n-linear form of total degree m,
m� n, in z1; z2; . . .; zn and let C : jzj � r be a closed circular disc containing the n
points w1;w2; . . .;wn. Then in C there exists atleast one point b such that

Gðb; b; . . .; bÞ ¼ Gðw1;w2; . . .;wnÞ:

Lemma 2.2 Let P 2 Pn and have all zeros in jzj � r where r[ 0; if a 2 C with
<ðaÞ� n�mþ1

2 , then all the zeros of Tm;a½P�ðzÞ ¼ zPðmÞðzÞ � aPðm�1ÞðzÞ are also in
jzj � r

Proof Let w be any zero of the polynomial Tm;a½P�ðzÞ; then
wPðmÞðwÞ � aPðm�1ÞðwÞ ¼ 0: ð6Þ

This expression is linear and symmetric in the zeros of P(z). By Lemma 2.1, w will
also satisfy the equation obtained by replacing P(z) in (6) by ðz� bÞn, where b is a
suitable complex number with jbj � r. This implies

nðn� 1Þ. . .ðn� mþ 1Þðw� bÞn�mw

� a nðn� 1Þ. . .:ðn� mþ 2Þðw� bÞn�mþ1 ¼ 0

or

nðn� 1Þ. . .ðn� mþ 2Þðw� bÞn�mfðn� mþ 1Þw� aðw� bÞg ¼ 0 ð7Þ

Since <ðaÞ� n�mþ1
2 , then < a

n�mþ1

� �
� 1

2. This implies that

a
n� mþ 1

����
����� a

n� mþ 1
� 1

����
����

or

jaj � ja� ðn� mþ 1Þj ð8Þ

Equation (7) implies that
ðw� bÞ ¼ 0 or ðn� mþ 1Þw� aðw� bÞ ¼ 0:

Equivalently,

w ¼ b or w ¼ ab
a� ðn� mþ 1Þ :

This further implies by using (8) that,
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jwj ¼ jbj or jwj ¼ jajjbj
ja� ðn� mþ 1Þj �

jajjbj
jaj :

Thus,

) jwj � jbj � r

Hence, it follows that all the zeros of Tm;a½P�ðzÞ also lie in jzj � r. This completes the
proof. h

A proof of Lemma 2.2 also follows from a result due to [3].
A linear operator T on the space of complex-polynomials of degree at most n is

called a Bn-operator (see [9, p. 538]) if for every polynomial P(z), of degree at most
n, having all its zeros in jzj � 1; then the polynomial T[P](z) also has all its zeros in
jzj � 1:

The next two lemmas can be found in [9, p. 538, 539].

Lemma 2.3 Let h(z) be an nth-degree polynomial with all zeros in jzj � 1 and g a
polynomial of degree at most n, such that jgðzÞj � jhðzÞj for jzj ¼ 1, then for any Bn

operator T, we have

jT ½g�ðzÞj � jT ½h�ðzÞj for jzj � 1

Moreover, jT ½g�ðzÞj ¼ jT ½h�ðzÞj at some point z outside the closed unit disc if and
only if gðzÞ ¼ eihhðzÞ; h 2 R:

Lemma 2.4 Let P(z) be a polynomial of degree n and QðzÞ ¼ znPð1=zÞ and
/nðzÞ ¼ zn, then for any Bn-operator T

jT ½P�ðzÞj þ jT ½Q�ðzÞj � ðjT ½1�ðzÞj þ jT ½/n�ðzÞjÞ max
jzj¼1

jPðzÞj; jzj � 1

3 Proof of main results

Proof of Theorem 1.1 If P(z) has a zero on jzj ¼ 1; then the Theorem is trivially true.
Therefore, suppose all the zeros of P(z) lie in jzj\1: Let k ¼ minjzj¼1jPðzÞj; then
k[ 0 and k� jPðzÞj for jzj ¼ 1: By Rouche’s theorem, the polynomial gðzÞ ¼
PðzÞ � kkzn has all its zeros in jzj\1 for every k 2 C with jkj\1: Invoking Lemma
2.2, we conclude that, for any a 2 C with <ðaÞ� n�mþ1

2 ; the zeros of the polynomial

zgðmÞðzÞ � agðm�1ÞðzÞ ¼ zPðmÞðzÞ � aPðm�1ÞðzÞ
n o

� kk
n!

ðn� mþ 1Þ! �aþ ðn� mþ 1Þf gzn�mþ1

lie in jzj\1: This implies that for any a 2 C with <ðaÞ� n�mþ1
2
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jzPðmÞðzÞ � aPðm�1Þj � k
n!

ðn� mþ 1Þ! ja� ðn� mþ 1Þjjzjðn�mþ1Þ ð9Þ

for jzj � 1: If inequality (9) were not true, then there exists a point z ¼ z0 with jz0j � 1
such that

jz0PðmÞðz0Þ � aPðm�1Þðz0Þj\k
n!

ðn� mþ 1Þ! ja� ðn� mþ 1Þjjz0jðn�mþ1Þ

If we take,

k ¼ z0PðmÞðz0Þ � aPðm�1Þðz0Þ
kn!

ðn�mþ1Þ! f�aþ ðn� mþ 1Þgz0ðn�mþ1Þ ;

then jkj\1 and for this choice of k, z0gðmÞðz0Þ � agðm�1Þðz0Þ ¼ 0: This contradicts to
the fact that all zeros of zgðmÞðzÞ � agðm�1ÞðzÞ lie in jzj\1: Hence, the inequality (9)
is valid.

That is for any a 2 C with <ðaÞ� n�mþ1
2 , we have

min
jzj¼1

jzPðmÞðzÞ � aPðm�1ÞðzÞj � n!

ðn� mþ 1Þ! ja� ðn� mþ 1Þj min
jzj¼1

jPðzÞj:

This completes the proof. h

Proof of Theorem 1.2 Let k ¼ minjzj¼1jPðzÞj: If P(z) has no zero on unit circle
jzj ¼ 1; then by minimum modulus principal, k\jPðzÞj for jzj\1: This implies that
for any complex number k with jkj � 1; the polynomial gðzÞ ¼ PðzÞ � kk has no zero
in jzj\1: Now, if P(z) has a zero on jzj ¼ 1 then gðzÞ ¼ PðzÞ: Thus, in any case the
polynomial gðzÞ ¼ PðzÞ � kk does not vanish in the disc jzj\1:

Let hðzÞ ¼ zngð1=zÞ ¼ qðzÞ � k�kzn, where qðzÞ ¼ znPð1=zÞ; then all the zeros of h
(z) lie in jzj � 1: Moreover jgðzÞj ¼ jhðzÞj for jzj ¼ 1; then by Lemmas 2.2 and 2.3,
for the Bn-operator Tm;a; we have

jTm;a½g�ðzÞj � jTm;a½h�ðzÞj for jzj � 1:

This implies,
jzgðmÞðzÞ � agðm�1ÞðzÞj� jzhðmÞðzÞ � ahðm�1ÞðzÞj for jzj � 1:

Equivalently, for jzj � 1; we have
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zPðmÞðzÞ � aPðm�1ÞðzÞ
n o

þ kakdm1
��� ���

�
���� zqðmÞðzÞ � aqðm�1ÞðzÞ
n o

� kknðn� 1Þ. . .ðn� mþ 2Þfðn� mþ 1Þ � agzn�mþ1

����
ð10Þ

Since all the zeros of q(z) lie in jzj � 1, so by Theorem 1.1, for any a 2 C with
<ðaÞ� n�mþ1

2 and jzj ¼ 1;

jzqðmÞðzÞ � aqðm�1ÞðzÞj � n!

ðn� mþ 1Þ! ja� ðn� mþ 1Þj min
jzj¼1

jqðzÞj

¼ n!

ðn� mþ 1Þ! ja� ðn� mþ 1Þj min
jzj¼1

jPðzÞj

¼ n!

ðn� mþ 1Þ! ja� ðn� mþ 1Þjk

This allows us to choose the argument of k such that���� zqðmÞðzÞ � aqðm�1ÞðzÞ
n o

� kk
n!

ðn� mþ 1Þ! fðn� mþ 1Þ � agzn�mþ1

����
¼ zqðmÞðzÞ � aqðm�1ÞðzÞ�� ��� kjkj n!

ðn� mþ 1Þ! jðn� mþ 1Þ � ajjzjn�mþ1:

For this argument of k; the inequality (10) reduces to,
jzPðmÞðzÞ � aPðm�1ÞðzÞ þ kkadm1j

� jzqðmÞðzÞ � aqðm�1ÞðzÞj � jkj n!

ðn� mþ 1Þ! ja� ðn� mþ 1Þjk

for jzj ¼ 1: Using triangle inequality in left-hand side of above inequality then letting
jkj ! 1; for jzj ¼ 1; we obtain

jzPðmÞðzÞ � aPðm�1ÞðzÞj � jzqðmÞðzÞ � aqðm�1ÞðzÞj

� dm1jaj � n!

ðn� mþ 1Þ! ja� ðn� mþ 1Þj
� �

k:
ð11Þ

Next, applying Lemma 2.4 to P(z) with T ¼ Tm;a; (as defined in Lemma 2.2), we
get for jzj ¼ 1;

jzPðmÞðzÞ � aPðm�1ÞðzÞj þ jzqðmÞðzÞ � aqðm�1ÞðzÞj
� jTm;a½1�ðzÞj þ jTm;a½/n�ðzÞj
	 


max
jzj¼1

jPðzÞj ð12Þ

It is not difficult to see that Tm;a½1�ðzÞ ¼ �dm1a and if /nðzÞ ¼ zn then
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Tm;a½/n�ðzÞ ¼ n!
ðn�mþ1Þ! fðn� mþ 1Þ � agzðn�mþ1Þ: Using these values in (12), we

have for jzj ¼ 1;
jzPðmÞðzÞ � aPðm�1ÞðzÞj þ jzqðmÞðzÞ � aqðm�1ÞðzÞj

� n!

ðn� mþ 1Þ! jðn� mþ 1Þ � aj þ dm1jaj
� �

max
jzj¼1

jPðzÞj: ð13Þ

Note that dm1 ¼ n!
ðn�mþ1Þ! dm1 as dm1 ¼ 0 for m[ 1: Finally the conclusion of

Theorem 1.2 is obtained by adding inequalities (11) and (13). This completes the
proof. h
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