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Abstract
We consider the space C nð Þ Xð Þ; the Banach space of continuous functions with n
derivatives and the n th derivative continuous in X; where X � C is a starlike region
with respect to a 2 X: We use the so-called a-Duhamel product

f~
a
g

� �
ðzÞ :¼ d

dz

Z z

a
f ðzþ a� tÞgðtÞdt ¼ d

dz
f �
a
g

� �
zð Þ

to describe usual �
a
-generators of the Banach algebra C nð Þ Xð Þ; �

a

� �
; to estimate

I � Vað Þmk k and to estimate below the norm dmA
�� ��; where Va is the Volterra inte-

gration operator defined by Vaf zð Þ ¼ Rz
a
f tð Þdt and dA is the inner derivation operator

defined by dA Xð Þ :¼ X ;A½ �: We give a new proof of Aleman-Korenblum theorem in
one particular case. Namely, we describe V-invariant subspaces in the Hardy space
Hp by using Duhamel product.

Keywords a-Duhamel product · Starlike region · Generator · Inner
derivation operator · Invariant subspace · Hardy space · Volterra integration
operator

Mathematics Subject Classification Primary 46E10; Secondary 46J15

1 Introduction

Let a 2 C be a number. Let X � C be a simply connected bounded region containing
the point a; which is a star-like region with respect to the point z ¼ a; i.e., kzþ
1� kð Þa 2 X for every z 2 X and k; 0� k� 1: We define on X the Banach space
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C nð Þ Xð Þ of all continuous functions on X with the n th derivative continuous on X:
The space C nð Þ :¼ C nð Þ Xð Þ is a Banach space equipped with the norm

fk kn:¼ max max
z2X

f ið Þ zð Þ�� �� : i ¼ 1; 2; :::; n

� 	
:

The a-convolution and a-Duhamel product are defined in C nð Þ; respectively, by

f �
a
g

� �
zð Þ :¼ Rz

a
f zþ a� tð ÞgðtÞdt ð1:1Þ

and

f~
a
g

� �
zð Þ :¼ d

dz

Rz
a
f zþ a� tð ÞgðtÞdt ¼ Rz

a
f 0 zþ a� tð ÞgðtÞdt þ f að Þg zð Þ; ð1:2Þ

where the integral is taken over the segment joining the points a and z z 2 Xð Þ: The
a-integration operator Va is defined on C nð Þ by Vaf zð Þ :¼ R za f tð Þdt; where the inte-
gration is performed as above over straight-line segments connecting the points a and
z. Our investigation is motivated by the papers [2, 12, 18, 26, 31], where some

properties of Banach algebra C nð Þ 0; 1½ �;~
a

� �
and Volterra integration operator Va are

studied. In the present paper, we describe �
a
-generators of the Banach algebra

C nð Þ Xð Þ; �
a

� �
in terms of a-Duhamel product (Sect. 2). In Sect. 3, we characterize V-

invariant subspaces of Hp by involving the Duhamel product method, and hence we
give a new proof of a result of Aleman and Korenblum in their paper [2]. In Sect. 4,
we calculate norm of orbits of operator I � Va on the Hardy space H2 ¼ H2 Dð Þ over
the unit disc D ¼ z 2 C : zj j\1f g; which is related Esterle-Katznelson-Tzafriri
theorem for Cesàro bounded operators with single-point spectrum in Hilbert spaces
(more detailly, see [44]). In Sect. 4, we also estimate in terms of a-Duhamel products
the norm of orbits of inner-derivation dA on B C nð Þ Xð Þ
 �

defined by dA Xð Þ :¼ X ;A½ �:

2 The *a-generators of algebra CðnÞðX)

Recall that for a Banach algebra B the radical R of B is the intersection of the kernel
of all (strictly) irreducible representations of B: IfR ¼ 0f g, then B is said to be semi-
simple and if R ¼ B, then B is called a radical algebra. Equivalently, B is a radical
Banach algebra, if for every element b 2 B the associated multiplication operator
Mba :¼ ba a 2 Bð Þ; is quasinilpotent on B, i.e., r Mbð Þ ¼ 0f g:

It is classical that lim
k!1

f
�
a
k

��� ���1=k¼ 0; and so, the space C nð Þ Xð Þ; �
a

� �
is a radical

Banach algebra with respect to the convolution �
a
defined by formula 1ð Þ; here

123

1558 M. Gürdal et al.



f
�
a
k
:¼ f �

a
:::�

a
f|fflfflffl{zfflfflffl}

k

is the kth iterated convolution of the function f in C nð Þ Xð Þ: Clearly,

f �
a
f

� �
að Þ ¼ 0 for any f 2 C nð Þ Xð Þ. Also,

f �
a
f �
a
f

� �
að Þ ¼ f �

a
f �
a
f

� �
¼ Rz

a
f zþ a� tð ÞRt

a
f t þ a� sð Þf sð Þds

� �
að Þ ¼ 0;

thus, it is easy to verify that f
�
a
k

� �
að Þ ¼ 0 for all k ¼ 1; 2; :::. Therefore, we see that

a necessary condition for f 2 C nð Þ Xð Þ to generate C nð Þ Xð Þ; �
a

� �
; that is, to yield

span f ; f �
a
f ; f �

a
f �
a
f ; :::

n o
¼ C nð Þ Xð Þ

is that f að Þ 6¼ 0: However, it is not yet known whether this condition is sufficient,
even for a ¼ 0 (see, for instance, Ginsberg and Newman [14] and Karaev [25]). For
more detail, see [12].

In the present section, we study the above stated question for the Banach algebra

C nð Þ Xð Þ; �
a

� �
by proving the following theorem, which reduces this question to the

case of the subalgebra

C nð Þ
a Xð Þ :¼ f 2 C nð Þ Xð Þ : f að Þ ¼ 0

n o
:

Before stating our result, let us formulate two auxiliary lemmas, the proofs of which
are quite similar to the proofs of Lemmas 2.1 and 2.2 of the paper [12], and therefore
we omit it.

Lemma 1 C nð Þ Xð Þ;~
a

� �
is a commutative Banach algebra with the unit element

f ¼ 1:

Lemma 2 The function f 2 C nð Þ Xð Þ is ~
a
-invertible if and only if f að Þ 6¼ 0:

Theorem 1 Let f 2 C nð Þ Xð Þ be a function such that f að Þ 6¼ 0: Let F zð Þ ¼ Rz
a
f tð Þdt:

Then f is a �
a
-generator of the algebra C nð Þ Xð Þ; �

a

� �
if and only if F is a ~

a
-generator

of the subalgebra C nð Þ
a Xð Þ;~

a

� �
:

Proof In fact, since F zð Þ ¼ Rz
a
f tð Þdt; we obtain for all g 2 C nð Þ Xð Þ that
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Da;Fg

 �

zð Þ ¼ d

dz

Rz
a
F zþ a� tð ÞgðtÞdt ¼ Rz

a
f zþ a� tð ÞgðtÞdt;

hence Da;F ¼ Ca;f : Therefore F~
a
f ¼ f �

a
f ; so we have

F~
a
F

� �
~
a
f ¼ D2

a;Ff ¼ Da;F Da;Ff

 � ¼ Da;F Ca;f f


 � ¼ C2
a;f f :

Thus, by induction we get Ck
a;f f ¼ Dk

a;Ff for all k� 0; which show that

span f ; f �
a
f ; f �

a
f �
a
f ; :::

n o
¼ span f ;F~

a
f ;F~

a
F~

a
f ; :::

� 	
¼ span Da;f F

~
a
k

� �
: k� 0

n o
¼ Da;f span F

~
a
k

� �
: k� 0

n o
¼ Da;f span 1;F;F~

a
F;F~

a
F~

a
F; :::

� 	
:

Hence, by using the fact that

span 1;F;F~
a
F;F~

a
F~

a
F; :::

� 	
¼ span k1 : k 2Cf g � span F;F~

a
F;F~

a
F~

a
F; :::

� 	
;

where � stands for the direct sum of subspaces, we see that

span f ; f �
a
f ; :::

n o
¼ clos Da;f span k1 : k 2 Cf g � span F;F~

a
F; :::

� 	� �� 	
:

ð2:1Þ

Since f að Þ 6¼ 0; by Lemma 2 the a-Duhamel operator Da;f is invertible on the space

C nð Þ Xð Þ: On the other hand, by using that

C nð Þ Xð Þ ¼ span k1 : k 2 Cf g � C nð Þ
a Xð Þ; ð2:2Þ

the assertions of the theorem follow from the invertibility of the operator Da;f and the
representations (2.1) and (2.2). The theorem is proved. h

3 On the lattice of V-invariant subspaces in Hp

Let D denote the open unit disc in the complex plane C: The Hardy space Hp ¼
Hp Dð Þ; 1� p\1; consist of all analytic functions on D such that
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fk kpHp :¼ sup
0\r\1

R2p
0

f reih

 ��� ��pdh

2p
\þ1:

With this norm Hp is a Banach space when 1� p\1; while for 0\p\1 it is a
topological vector space with the translation invariant metric d f ; gð Þ ¼ f � gk kpHp ;
f ; g 2 Hp; which is not locally convex. For p ¼ þ1; H1 ¼ H1 Dð Þ is a Banach
algebra with the norm fk kH1 :¼ sup f zð Þj j : z 2 Df g:

In this section, we will consider the Volterra integration operator V on the Hardy
space Hp 1� p\þ1 and describe its closed nontrivial invariant subspaces. Also,
we calculate the norm of orbits I � Vað Þn; n ¼ 1; 2; :::; on H2:

Note that the lattice of all Va-invariant subspaces of Hp was described by
Donoghue [7] in the case when p ¼ 2 and a ¼ 0: Donoghue’s method is pure
operator theory, and hardly adapted to other values of p and especially if aj j ¼ 1:
Aleman and Korenblum [2] filled this gap. Their approach is based on classical Borel
transforms of complex conjugates of Hp-functions on the unit circle T ¼ oD; which
is the entire function defined by eh kð Þ :¼ R

T

ekhdm;

where ek zð Þ :¼ ekz and dm ¼ dzj j
2p is the normalized Lebesgue measure on T: Fol-

lowing [2], note that in contrast to the meagerness of results on invariant subspaces of
Volterra operators in complex domains, the study of their real-variable analogs has a
long history and an extensive literature (see, for instance, the survey paper of
Nikolski [33]). The description of the invariant subspaces for the classical Volterra
integration operator V : L2 0; 1½ � ! L2 0; 1½ �;

Vf xð Þ ¼ Rx
0
f tð Þdt;

is essentially the problem posed in 1938 by Gelfand [13] and first solved by Agmon
[1] who showed that all V-invariant subspaces of L2 0; 1½ � have the form

Mt ¼ X t;1ð ÞL2 0; 1½ �; 0\t\1;

and hence form a linearly ordered lattice, which means unicellularity of operator V. In
the sequel, this result has been extended to a larger class of convolution operators by
Kalish [19], Sakhnovich [37], Brodski [5] and Sarason [38] (see also [39, 40] and
references therein).

In the following theorem, we give another proof of Aleman-Korenblum theorem
[2] in the case when a ¼ 0: Our approach is based on the Duhamel product, which
was used early by Nagnibida [32], Wigley [46], Tkachenko [42, 43], Dimovski [6],
Raychinov [34] and Karaev [20]. The method of Duhamel products is also used in
recent works of Ivanova and Melikhov [8–10]. For other applications of Duhamel
products method, we refer to the works [4, 6, 11, 15–17, 21–25, 28–
30, 35, 36, 41, 47].
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Theorem 2 Let V : Hp ! Hp be an integration operator on the Hardy space Hp

1� p\1ð Þ: Then

Lat Vð Þ ¼ E nð Þ : n ¼ 0; 1; 2::
n o

;

where

E nð Þ ¼ f 2 Hp : f 0ð Þ ¼ f 0 0ð Þ ¼ :::f nð Þ 0ð Þ ¼ 0
n o

:

Proof It is easy to see that Lat Vð Þ 	 E nð Þ : n� 0

 �

; i.e., VE nð Þ � E nð Þ for all n� 0:

Therefore, it remains only to show that Lat Vð Þ � E nð Þ : n� 0

 �

; that is any V-

invariant subspace E has the form E nð Þ for some n� 0: For this aim, we will need the
following lemmas. h

Lemma 3 ([47]). For any two functions f ; g 2 Hp we have

f~gk k1 �C fk k1 gk k1 (for p ¼ þ1),

where C[ 0 is an absolute constant and

f~gk kp �Cp fk kp gk kp (for 1� p\þ1) ð3:1Þ
for some constant Cp [ 0; i.e., Hp;~ð Þ 1� p� þ1ð Þ is a Banach algebra.

The proof of the following lemma is contained, for instance, in Wigley’s paper
[47].

Lemma 4 Let f 2 Hp 1� p�1ð Þ be a nonzero function. Then f is ~-invertible if
and only if f 0ð Þ 6¼ 0:

The extreme case p ¼ 1 included in Wigley’s theorem [47]. So, we prove only
the case 1� p\þ1: If f 2 Hp is ~-invertible, then there is a function g 2 Hp such
that

f~g ¼ g~f ¼ 1:

From this it is easy to see that f~gð Þ 0ð Þ ¼ f 0ð Þg 0ð Þ ¼ 1; whence f 0ð Þ 6¼ 0: Con-
versely, if f 0ð Þ 6¼ 0; then we put F zð Þ :¼ f zð Þ � f 0ð Þ; and consider the Duhamel
operator DF : Hp ! Hp defined by

DFg ¼ F~gð Þ zð Þ ¼ Rz
0
F 0 z� tð ÞgðtÞdt ¼ Rz

0
f 0 z� tð ÞgðtÞdt g 2 Hpð Þ:

According to inequality (3.1), it is a bounded operator on Hp: We will show that DF

is even compact. Indeed, since F is an analytic function on the unit disc D; we have
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F zð Þ ¼ P1
n¼0

bF nð Þzn;

where bF nð Þ ¼ F nð Þ 0ð Þ
n! ; n� 0: We consider the partial sum:

FN :¼ PN
n¼0

bF nð Þzn ¼ PN
n¼1

bf nð Þzn:

Then

DFN g zð Þ ¼ Rz
0
F 0
N z� tð ÞgðtÞdt

¼ PN
n¼1

n!bf nð ÞRz
0

z� tð Þn�1

n� 1ð Þ! g tð Þdt

¼ PN
n¼1

n!bf nð ÞVng zð Þ

for all g 2 Hp: Hence

DFN ¼ PN
n¼1

n!bf nð ÞVn:

Since, V is compact, we conclude that DFN is compact on Hp for any N [ 0: So, by
(3.1), we have that

DF � DFNk k ¼ DF�FNk k�Cp F � FNk kp ð3:2Þ
for 1� p\þ1: Passing to the limit in (3.2) as N ! 1; we have that DF is a
compact operator.

Now consider operator Df (with symbol f), and assume that g 2 ker DFð Þ; that is

Df g zð Þ ¼ Rz
0
f 0 z� tð ÞgðtÞdt þ f 0ð Þg zð Þ ¼ 0; 8z 2 D:

Whence f 0ð Þg 0ð Þ ¼ 0; and hence g 0ð Þ ¼ 0; because f að Þ 6¼ 0: Similarly, we get

0 ¼ d

dz
Df g

 �

zð Þ ¼ Rz
0
f 00 z� tð ÞgðtÞdt þ f 0 0ð Þg zð Þ þ f 0ð Þg0 zð Þ

for all z 2 D; and evaluation at 0 gives g0 0ð Þ ¼ 0: By induction, we obtain that
g nð Þ 0ð Þ ¼ 0; n� 1; and hence g 
 0: This shows that ker Df


 � ¼ 0f g: Since Df ¼
f 0ð ÞI þ DF ; thus we deduce by Fredholm alternative that Df is invertible in Hp: The
lemma is proved.

Recall that the function f 2 Hp is a cyclic vector for V if

span Vnf : n ¼ 0; 1; 2; :::f g ¼ Hp:

The set of all cyclic vectors of V is denoted by Cyc Vð Þ:
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Lemma 5 Let f 2 Hp. Then f 2 Cyc V j E nð Þ
 �
n� 0ð Þ if and only if f 2 E nð Þ nE nþ1ð Þ

n� 0ð Þ.
Proof The proof of the lemma uses some arguments of the paper [39]. Let us
introduce the following Duhamel product in the subspace E nð Þ :

g~
n
h

� �
zð Þ :¼ d

dz

Zz
0

g z� tð Þ
z� tð Þn h tð Þdt g; h 2 E nð Þ

� �
; n ¼ 0; 1; :::: ð3:3Þ

Clearly, for n ¼ 0, the product ~
0
coincides with the usual Duhamel product (1.2).

Let f 2 E nð Þ and f 62 E nþ1ð Þ. Formula (3.3) implies that

Vkg ¼ znþk

k!
~
n
g; g 2 E nð Þ; ð3:4Þ

for each k� 0 and n ¼ 0; 1; :::: Expanding function f 2 E nð Þ into the Maclaurin series
we have that

f zð Þ ¼ f nð Þ 0ð Þ
n!

zn þ f nþ1ð Þ 0ð Þ
nþ 1ð Þ! z

nþ1 þ � � � ¼ f nð Þ 0ð Þ
n!

zn þ R zð Þ; ð3:5Þ

where f nð Þ 0ð Þ 6¼ 0 and

R zð Þ :¼
X1
k¼nþ1

f kð Þ 0ð Þ
k!

zk 2 E nð Þ:

Consider the Duhamel operator Df ;n acting in the subspace E nð Þ by the formula

Df ;ng :¼ f~
n
g; g 2 E nð Þ (see (3.3)). It follows from (3.4) and (3.5) that

Df ;n :¼ f nð Þ 0ð ÞIE nð Þ þ DR;n:

The same arguments, as in the proof of Lemma 4, allow us to deduce that Df ;n is

invertible in E nð Þ, which is omitted. On the other hand, since

span znþk : k� 0

 � ¼ E nð Þ;

according to (3.4), we obtain that
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Ef :¼ span V j E nð Þ
� �k

f : k� 0

� 	
¼ span Vkf : k� 0


 �
¼ span

znþk

k!
~
n
f : k� 0

� 	
¼ span Df ;n

znþk

k!
: k� 0

� 	
¼ Df ;nspan znþk : k� 0f g

¼ Df ;nE nð Þ ¼ E nð Þ (because Df ;n is invertible):

Thus, if E nð Þ n E nþ1ð Þ, then f 2 Cyc V j E nð Þ
 �
.

Conversely, the equality Ef ¼ E nð Þ implies that f nþ1ð Þ 0ð Þ 6¼ 0, and hence

f 62 E nþ1ð Þ. Consequently, if f 2 E nð Þ and f 2 Cyc V j E nð Þ
 �
, then f 62 E nþ1ð Þ, which

proves lemma. Now, we continue the proof of Theorem 2. We will prove that other V-
invariant subspaces different from the chain

0f g � ::: � E nþ1ð Þ � E nð Þ � E n�1ð Þ � ::: � E 0ð Þ ð3:6Þ

do not exist, and hence Lat Vð Þ ¼ E nð Þ : n ¼ 0; 1; 2; :::

 �

.
In fact, suppose in contrary that there is a nontrivial V-invariant subspace E in Hp

which is different from invariant subspaces in (3.6). By virtue of the obvious rep-
resentation E ¼ [g2EEg and Lemmas 4 and 5, we see that there exists a function
f 2 E such that f 0ð Þ 6¼ 0. Therefore, by Lemma 4, we deduce that E ¼ Hp, which
contradicts to our assumption that 0f g 6¼ E 6¼ Hp.

So, according to (3.6), Lat Vð Þ is a linearly ordered set, and hence V is a unicellular
operator. The theorem is proven. h

4 On orbits of I -Va and inner derivation

This section is motivated mostly with the papers [31] by Montes, Sanchez and
Zemanek and [26] by Leka.

4.1 Norm of orbits of I - Va on H2

In this subsection, we calculate the norm of iterates of operator I � Va, where Vaf ¼

Zz
a

f tð Þdt is the Volterra integration operator on H2. Note that the operator V ¼ V0 is

the classical Volterra operator with a long history. Many aspects of the Volterra
operator has been widely studied and has a vast literature. In particular, Montes,
Sanches and Zemanek [31] studied the asymptotic behavior of the powers I � Vð Þn
providing sharp estimates on the norms

123

Some applications of the a-Duhamel... 1565



I � Vð Þnk kLp 0;1½ �� n
1
4� 1

2pj j n� 1ð Þ:
Their result gave a negative answer to the question of whether uniform Kreiss
boundedness, in general, implies power boundedness under minimal spectral
assumption. They also presented sharp estimates on the norms of the differences of
consecutive powers of I � V , namely, they obtained that

I � Vð Þn� I � Vð Þnþ1�� ��
Lp 0;1½ �� n�

1
2þ 1

4� 1
2pj j n� 1ð Þ:

This also showed that Tsedenbayar’s [45] earlier result in L2 0; 1½ � was sharp. The
main goal of the paper [26] is to provide a closer look at the orbits I � Vð Þnf when f
is in the range of Riemann-Liouville fractional integration operator V a defined on
Lp 0; 1½ � by

V afð Þ xð Þ ¼ 1

C að Þ
Zx
0

x� sð Þa�1f sð Þds; 0� x� 1;

where C stands for the standard gamma function. More precisely, Leka proved in
[26] that

I � Vnð ÞV ak kLp 0;1½ �� n�
a
2þ 1

4� 1
2pj j n� 1ð Þ; a[ 0:

The proof of Leka’s result in [26] is based on exploiting the earlier method of
Montes, Sanches and Zemanek in [31] (see also Leka [27]) and Fejer’s asymptotic
formula on the Laguerre polynomials. We also note that recently new results and
estimates on orbits of operators which are commuting with the Volterra operator have
been presented in [3] by Bermudo, Montes and Shkarin. For more details, see [26].

Recall that the Hardy space H2 ¼ H2 Dð Þ is the Hilbert space of analytic functions

f zð Þ ¼
X1
n¼0

anzn such that fk k2:¼
X1
n¼0

anj j2
 !1=2

\þ1:

Proposition 1 Fix an a 2 D. Let Va be the Volterra integration operator on H2

defined by Vaf zð Þ ¼
Zz
a

f tð Þdt. Then

I � Vað Þnk k ¼
Xn
k¼0

Xk
j¼0

�1ð Þ ja j n!

k! n� kð Þ!j! k � jð Þ!

�����
�����
2

24 351
2

:

Proof The a-Duhamel product is defined by
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f1~
a
f2

� �
zð Þ ¼ d

dz

Zz
a

f1 zþ a� tð Þf2 tð Þdt

¼
Zz
a

f 01 zþ a� tð Þf2 tð Þdt þ f1 að Þf2 zð Þ; f1; f2 2 H2:

ð4:1Þ

It is easy to see from (4.1) that 1~
a
f ¼ f~

a
1 ¼ f , for all f 2 H2 and

Vn
a f ¼ z� að Þn

n!
~
a
f ; 8f 2 H2: ð4:2Þ

The methods of the proofs in [46] and [47] show in particular that H2;~
a

� �
is a

Banach algebra (with respect to some equivalent norm of H2). So, it follows from
(4.2) that

Vn
a f

�� ��
2
� z� að Þnk k2

n!
fk k2; 8f 2 H2; 8n� 0; ð4:3Þ

which implies that Vn
a

�� ��� z�að Þnk k2
n! ; 8n� 0. On the other hand,

Vn
a 1

�� ��
2
¼ z�að Þn

n! ~1
��� ���

2
¼ z�að Þnk k2

n! , and hence,

Vn
a

�� �� ¼ 1

n!
z� að Þnk k2; 8n� 0: ð4:4Þ

Similarly, we have

I � Vað Þnk k ¼ 1� z� að Þð Þ~a n
��� ���

2
¼

Xn
k¼0

Ck
n 1

~
a
n�kð Þ~

a
z� að Þ~a k

� ������
�����
2

¼
Xn
k¼0

n!

k! n� kð Þ! z� að Þ~a k
�����

�����
2

¼
Xn
k¼0

n!

k! n� kð Þ!
z� að Þk
k!

�����
�����
2

¼
Xn
k¼0

n!

k!ð Þ2 n� kð Þ!
Xk
j¼0

C j
kz

k�j �1ð Þ ja j

�����
�����
2

¼
Xn
k¼0

n!

k!ð Þ2 n� kð Þ!
Xn
k¼0

k!

j!ð Þ k � jð Þ! �1ð Þ ja jzk�j

�����
�����
2

¼
Xn
k¼0

Xk
j¼0

n! �1ð Þ ja j

k! n� kð Þ!j! k � jð Þ! z
k�j

�����
�����
2

¼
Xn
k¼0

Xk
j¼0

�1ð Þ ja jn!

k! n� kð Þ!j! k � jð Þ!

�����
�����
2

24 351
2

;

as desired. h
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Corollary 1 I � Vð Þnk k ¼
Xn
k¼0

n!
k!ð Þ2 n�kð Þ!

� �2" #1
2

.

The following is immediate from Corollary 1.

Corollary 2 I � Vð Þnk k�
Xn
k¼0

1
k!ð Þ4

 !1
2

.

Proposition 2 We have :

I � Vað Þn� I � Vað Þnþ1�� �� ¼
Xn
k¼0

Xk
j¼0

�1ð Þ ja j n!

k! n� kð Þ!j! k � jð Þ! z
k�j

�����
�
Xnþ1

k¼0

Xk
j¼0

�1ð Þ ja j nþ 1ð Þ!
k! nþ 1� kð Þ!j! k � jð Þ! z

k�j

�����
2

:

The proof is quite similar to the proof Proposition 1, and therefore it is omitted.

4.2 A lower estimate for the norm of orbits of inner derivation operator

We consider the inner derivation operator on B C mð Þ Xð Þ
 �
and estimate the norm of

its orbit. Let A 2 B C mð Þ Xð Þ
 �
. The inner derivation operator dA is defined on

B C mð Þ Xð Þ
 �
by the formula

dA Xð Þ :¼ X ;A½ � ¼ XA� AX ; X 2 B C mð Þ Xð Þ
� �

:

It is elementary that dAk k� 2 Ak k. Here, we will prove in terms of a-Duhamel
product a lower estimate for the orbits dnA, n ¼ 2; 3; :::; which improve a result in
[18].

Proposition 3 Let A 2 B C mð Þ Xð Þ
 �
be fixed. Suppose that for every n� 1 and X 2

B C mð Þ Xð Þ
 �
there exists fn;X 2 C mð Þ Xð Þ such that

dnA Xð Þfn;X

 �

að Þ 6¼ 0:

Then

sup
Xk k� 1

1

Fn;X

�� ��
m

� dnA
�� ��� 4 Ak kn n� 1ð Þ:

Proof Since dAk k� 2 Ak k, the inequality dAk k� 4 Ak k is trivial. Further, we have
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d2A Xð Þ�� �� ¼ X ;A½ �;A½ �k k ¼ X ;A½ �A� A X ;A½ �k k
¼ XA2 � 2AXAþ A2X
�� ��

� 4 Ak k2 Xk k for all X 2 B C mð Þ Xð Þ
� �

:

Hence d2A
�� ��� 4 Ak k2: Similarly,

d3A Xð Þ ¼ X ;A½ �;A½ �;A½ �
¼ XA3 � 3AXA2 � A2XA� A3X ;

which implies that d3A
�� ��� 4 Ak k3. By induction, we conclude that

dnA
�� ��� 4 Ak kn; for all n� 1;

as desired.
Now we prove the lower inequality. According to condition, for every n� 1 and

X 2 B C mð Þ Xð Þ
 �
there exists fn;X 2 C mð Þ Xð Þ such that

dnA Xð Þfn;X

 �

að Þ 6¼ 0: ð4:5Þ
Denote gn;X :¼ dnA Xð Þfn;X . Since gn;X að Þ 6¼ 0, by Lemma 2, there exists a unique

element Gn;X 2 C mð Þ Xð Þ such that

Gn;X~
a
gn;X ¼ gn;X~

a
Gn;X ¼ 1:

Hence, fn;X~
a
Gn;X~

a
gn;X ¼ fn;X . We set

Fn;X :¼ fn;X~
a
Gn;X :

So, it follows from (4.5) that

Da;Fn;X
dnA Xð Þ

� �
fn;X ¼ fn;X ;

which implies that fn;X is an eigenvector of operator Da;Fn;X
dnA Xð Þ corresponding to

the eigenvalue 1 2 rp Da;Fn;X
dnA Xð Þ

� �
. Then, we obtain that

1� r Da;Fn;X
dnA Xð Þ

� �
� Da;Fn;X

dnA Xð Þ
��� ���

� Da;Fn;X

��� ��� dnA Xð Þ�� �� ¼ Fn;X

�� ��
m

dnA Xð Þ�� ��
B C mð Þ Xð Þð Þ;

where r :ð Þ denotes the spectral radius of operator. Whence
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1

Fn;X

�� ��
m

� dnA Xð Þ�� ��:
By taking supremum over the operators X 2 B C mð Þ Xð Þ
 �

with Xk k� 1, we have
from this inequality that

sup
Xk k� 1

1

Fn;X

�� ��
m

� sup
Xk k� 1

dnA Xð Þ�� �� ¼ dnA
�� ��:

This proves the proposition. h
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