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Abstract
The primary goal of this research is to find a common solution to the equilibrium
problem for pseudomonotone bi-functions satisfying the Lipschitz-type condition as
well as the fixed point problem for w�strongly quasi-nonexpansive mappings in the
context of real Hilbert space by combining two different approaches. A viscosity-type
extragradient algorithm is presented for solving the problems listed above. Further-
more, with a set of reasonable assumptions, a strong convergence theorem is pre-
sented. The fundamental advantage of the suggested approach is that it does not
require the use of a linesearch procedure or the knowledge of Lipschitz-type con-
stants in advance, which is a significant advantage. Moreover, we give a numerical
example to support and justify our proposed algorithm. In this sense, the findings of
this study generalise and extend certain previously published findings.
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1 Introduction

Throughout the paper, we let H be a real Hilbert space and K be a non-empty subset
of H which is closed and convex.

Recall that in a fixed point problem one needs to find a point z 2 K in such a way
that

Sz ¼ z; ð1:1Þ
where S : K ! H be a mapping. We indicate the solution set of problem (1.1) by
K ¼ fz 2 K : Sz ¼ zg: Many researchers have studied problem (1.1) and have
established various iterative methods to tackle it; see for example [5, 9, 11]. In 2000,
Moudafi [25] considered problem (1.1) and proposed well known viscosity
approximation method for finding a solution of problem (1.1) as follows: Take
u0 2 H; and formulate an iterative sequence fung as follows:

unþ1 ¼ wn/ðunÞ þ ð1� wnÞSun; n� 0; ð1:2Þ
where / : H ! H is a contraction map and sequence fwng 2 ð0; 1Þ: He demon-
strated that the sequence formulated by (1.2) converges strongly to a unique solution
z 2 K:

On the other hand, a problem in which one needs to find an element z 2 K in such
a way that

gðz; vÞ� 0; 8 v 2 K; ð1:3Þ
where g : K�K ! R be a real valued nonlinear bi-function with gðz; zÞ ¼ 0 for all
z 2 K: The problem (1.3), was first suggested by Fan [15] and further established by
Blum and Oettli [2]. Problem (1.3) is now known as equilibrium problem. The
solution set of problem (1.3) is represented by C ¼ fz 2 K : gðz; vÞ� 0; 8 v 2 Kg:
Many problems such as medical imaging problems, transportation problems, and
financial engineering problems can be converted to find solution of problem (1.3),
see, for example [14, 21, 28, 29] and the references therein.

In recent years, many iterative algorithms for solving the problem (1.3) have been
developed, including the proximal point algorithm (TPPA) [12, 13], the normal S-
iteration algorithm [20] the subgradient algorithm (TSA) [3], the extragradient
algorithm (TEA) [17], subgradient extragradient algorithm [10, 19] and the gap
function algorithm (TGFA) [24]. The explicit extragradient algorithm (TEEA) for
solving problem (1.3) for pseudomonotone bi-functions satisfying Lipschitz-type
condition (LTC) in real Hilbert space was introduced by Hieu et al. [30] in 2019
which is defined as following. Choose u0 2 K and s0 [ 0; g 2 ð0; 1Þ; compute the
sequences fwng and funþ1g by
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wn ¼ arg min
v2K

�
gðun; vÞ þ 1

2sn
kun � vk2�;

unþ1 ¼ arg min
v2K

�
gðwn; vÞ þ 1

2sn
kun � vk2�;

ð1:4Þ

where the step size sn is given as

snþ1 ¼ min

(
sn;

gðkun � wnk2 þ kunþ1 � wnk2Þ
2max

�
0; gðun; unþ1Þ � gðun;wnÞ � gðwn; unþ1Þ

�
)
:

They proved the sequence fung generated by (1.4) converges weakly to some point
z 2 C:

In this paper, we consider a problem of approximating a common solution of
equilibrium problem for pseudomonotone bi-function satisfying Lipschitz-type
condition (LTC) and fixed point problem for w�strongly quasi-nonexpansive
mappings in real Hilbert space. i.e., Find z 2 K such that

z 2 X :¼ C \ K: ð1:5Þ
Inspired and motivated by the work in [25] and Hieu et al. [30], the main goal of this
paper is to present a viscosity-type extragradient algorithm which is a combination of
extragradient method and viscosity approximation method with a new step size rule
for solving problem (1.5) and discuss its convergence analysis. The fundamental
advantage of the suggested approach is that it does not require the use of a linesearch
procedure or the knowledge of Lipschitz-type constants in advance, which is a
significant advantage. In this sense, the findings of this study generalise and extend
certain previously published findings.

The following is how this paper is organised: In Sect. 2, we review some of the
fundamental definitions and auxiliary results that were used throughout the paper.
Our suggested algorithm and its convergence are presented in Sect. 3, and some
consequences of our primary findings are discussed in Sect. 4. Moreover, we give a
numerical example to support and justify our proposed algorithm in the last section.

2 Preliminaries

Let the inner product and induced norm equipped in Hilbert space H are denoted by
h�; �i and k � k; respectively. These convergences are represented by * and !
symbols, respectively, when the sequence fung � H converges weakly and strongly.
We start with some definitions about the monotonicity of bi-function
g : K�K ! R :

Definition 2.1 [2, 16, 26] The bi-function g is said to be

(i) c�strongly monotone on K if there exists c[ 0 such that

gðu; vÞ þ gðv; uÞ� � cku� vk2; 8 u; v 2 K;

(ii) monotone if
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gðu; vÞ þ gðv; uÞ� 0; 8 u; v 2 K;

(iii) c�strongly pseudomonotone on K if there exists c[ 0 such that

gðu; vÞ� 0)gðv; uÞ� � cku� vk2; 8 u; v 2 K;

(iv) pseudomonotone if

gðu; vÞ� 0)gðv; uÞ� 0; 8 u; v 2 K;

(v) satisfying the Lipschitz-type condition (LTC) on K if there exists two
positive real numbers k1; k2 such that

gðu;wÞ� gðu; vÞ þ gðv;wÞ þ k1ku� vk2 þ k2kv� wk2; 8 u; v;w 2 K:

Definition 2.2 [18] The metric projection PKðuÞ of u onto a closed, convex subset K
of H is defined as follows:

PKðuÞ ¼ arg min
v2K

�kv� uk�:

Lemma 2.1 [22] Let PKðuÞ : H ! K be the metric projection from H onto K: Then

(i) ku� PKðvÞk2 þ kPKðvÞ � vk2 �ku� vk2; 8u 2 K; v 2 H;
(ii) w ¼ PKðuÞ () hu� w; v� wi� 0; 8 v 2 K:

Lemma 2.2 [18] Suppose that S : H ! H is a nonlinear mapping. Then I � S is
said to be demiclosed at zero if for any fung 2 H; the following holds:

un * z and ðI � SÞun ! 0)z 2 K:

Definition 2.3 Let S : H ! H be a mapping with K 6¼ [: Then S : H ! H is said
to be

(i) firmly nonexpansive if

kSu� Svk2 �hSu� Sv; u� vi; 8 u; v 2 H;

or comparatively

kSu� Svk2 �ku� vk2 � kðI � SÞu� ðI � SÞvk2; 8 u; v 2 H;

(ii) directed if

hw� Su; u� Sui� 0; 8w 2 K; u 2 H;

or comparatively
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kSu� wk2 �ku� wk2 � ku� Suk2; 8w 2 K; u 2 H;

(iii) w�strongly quasi-nonexpansive with w[ 0 if

kSu� wk2 �ku� wk2 � wku� Suk2; 8w 2 K; u 2 H;

or comparatively

hSu� u; u� wi� �1� w
2

ku� Suk2; 8w 2 K; u 2 H;

(iv) quasi-nonexpansive

kSu� wk�ku� wk; 8w 2 K; u 2 H;

(v) b�demicontractive with b 2 ½0; 1Þ
kSu� wk2 �ku� wk2 þ bku� Suk2; 8w 2 K; u 2 H;

or comparatively

hu� w; Su� ui� b� 1

2
ku� Suk2; 8w 2 K; u 2 H: ð2:1Þ

Recall that the proximal mapping proxsg1 is defined by

proxsg1ðuÞ ¼ arg min
�
g1ðvÞ þ 1

2s
ku� vk2 : v 2 K

�
;

where g1 : K ! R with a parameter s[ 0 is a proper, convex and lower semicon-
tinuous function .

One can observe the following property of the proximal mapping proxsg1 :

Lemma 2.3 [1] For all u 2 H; v 2 K and s[ 0; the following implication holds:

s
�
g1ðvÞ � g1ðproxsg1ðuÞÞ

��hu� proxsg1ðuÞ; v� proxsg1ðuÞi:

Remark 2.1 If u ¼ proxsg1ðuÞ then
u 2 arg min

�
g1ðvÞ : v 2 K

�
:¼ �

u 2 K : g1ðuÞ ¼ min
v2K

g1ðvÞ
�
:

Lemma 2.4 [23] Let a sequence fbng � R such that there exists a subsequence fnig
of fng such that bni � bniþ1 for all i 2 N. Then there exists an increasing sequence
fmlg � N such that ml ! 1 and the following properties are satisfied by all
sufficiently large numbers l 2 N :
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bml � bmlþ1 and bl � bmlþ1:

In fact, ml :¼ maxfj� l : bj � bjþ1g:
Lemma 2.5 [27, 31] Let fbng be a sequence of non negative real numbers such that

bnþ1 �ð1� wnÞbn þ wndn; 8 n� 0;

where wn 2 ð0; 1Þ and dn � R satisfies the following conditions:

(i)
P1

n¼0 wn ¼ 1;
(ii) lim

n!1 supdn � 0: Then lim
n!1 bn ¼ 0:

Lemma 2.6 [1] For every u; v 2 H and w 2 R; the following relations are true:

(i) kwuþ ð1� wÞvk2 ¼ wkuk2 þ ð1� wÞkvk2 � wð1� wÞku� vk2;
(ii) kuþ vk2 �kuk2 þ 2hv; uþ vi:

Assumption 2.1 [30] Let a bi-function g : K�K ! R satisfies the following
conditions:

G1: g is pseudomontone on a feasible set K and for all u 2 K; gðu; uÞ ¼ 0;
G2: g satisfy the Lipschitz-type condition (LTC) on H with positive constants k1

and k2;
G3: lim

n!1 sup gðun; vÞ� gðz; vÞ for every v 2 K and fung � K satisfy un * z;

G4: g(u,�) is convex and subdifferentiable on K for every u 2 K.

3 Main result

In this section, we provide our main algorithm and discuss its convergence analysis
under some mild assumptions. Let S : K ! H be a w�strongly quasi-nonexpansive
operator such that I � S is demiclosed at zero. Suppose that g : K�K ! R be a bi-
function satisfying Assumptions 2.1 and / : H ! H be a contraction mapping with
constant n 2 ½0; 1Þ: The following is the main algorithm that has been presented:

Algorithm 1 (A Viscosity-type Extragradient Algorithm)
Initialization: Choose u0 2 K and s0 [ 0; g 2 ð0; 1Þ: Let sequence fwng 2

ð0; 1Þ satisfies the following conditions:

lim
n!1wn ¼ 0 and

X1
n¼0

wn ¼ 1: ð3:1Þ

Iterative steps: Given un and sn are known for n� 0:
Step 1: Compute
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wn ¼ arg min
v2K

fgðun; vÞ þ 1

2sn
kun � vk2g:

If un ¼ wn; STOP. Otherwise go to step 2.
Step 2: Compute

vn ¼ arg min
v2K

fgðwn; vÞ þ 1

2sn
kun � vk2g and

unþ1 ¼ wn/ðunÞ þ ð1� wnÞSvn:
and set

snþ1 ¼ min

(
sn;

gðkun � wnk2 þ kvn � wnk2Þ
2max

�
0; gðun; vnÞ � gðun;wnÞ � gðwn; vnÞ

�
)
: ð3:2Þ

Set n :¼ nþ 1 and return back to Iterative steps.

Remark 3.1 Under the Assumption 2.1 (G2), there exist positive constants k1 & k2
such that

gðun; vnÞ � gðun;wnÞ � gðwn; vnÞ� k1kun � wnk2 þ k2kvn � wnk2

�maxfk1; k2gðkun � wnk2 þ kvn � wnk2Þ:
Thus, from the definition of the sequence fsng; this sequence is bounded from below

by
n
s0;

g
2maxfk1; k2g

o
: Moreover, the sequence fsng is non-increasing monotone.

Thus, there exists s 2 R such that lim
n!1 sn ¼ s: In fact, from (3.2), if gðun; vnÞ �

gðun;wnÞ � gðwn; vnÞ� 0 than snþ1 :¼ sn:

Consequently, we have the following outcomes:

Theorem 3.1 Let a bi-function g : K�K ! R satisfying the Assumptions 2.1.
Thus, for each z 2 X :¼ C \ K 6¼ [; we have

kvn � zk2 �kun � zk2 �
�
1� gsn

snþ1

��kun � wnk2 � kvn � wnk2
�
: ð3:3Þ

Proof In view of Lemma 2.3 and the definition of sequence fvng that

hun � vn; vn � vi� sngðwn; vnÞ � sngðwn; vÞ; 8 v 2 K: ð3:4Þ
From the equation (3.2), we obtain

gðun; vnÞ � gðun;wnÞ � gðwn; vnÞ�
g
�kun � wnk2 þ kvn � wnk2

�
2snþ1

;

which after multiplying both sides by sn [ 0; implies that
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sngðwn; vnÞ� sn
�
gðun; vnÞ � gðun;wnÞ

�� gsn
�kun � wnk2 þ kvn � wnk2

�
2snþ1

; ð3:5Þ

combining relations (3.4) and (3.5), we obtain

hun � vn; vn � vi� sn
�
gðun; vnÞ � gðun;wnÞ

�
� gsn
2snþ1

�kun � wnk2 þ kvn � wnk2
�� sngðwn; vÞ: ð3:6Þ

Similarly, from Lemma 2.3 and the definition of the sequence fwng; we also obtain

sn
�
gðun; vnÞ � gðun;wnÞ

��hwn � un;wn � vni: ð3:7Þ
From the relations (3.6) and (3.7), we obtain

hun � vn; vn � vi� hwn � un;wn � vni
� gsn
2snþ1

�kun � wnk2 þ kvn � wnk2
�� sngðwn; vÞ: ð3:8Þ

Thus, by multiplying both sides of relation (3.8) by 2, we obtain

2hun � vn; vn � vi� 2hwn � un;wn � vni
� gsn
snþ1

�kun � wnk2 þ kvn � wnk2
�� 2sngðwn; vÞ: ð3:9Þ

We have the following equalities:

2hun � vn; vn � vi ¼ kun � vk2 � kvn � unk2 � kvn � vk2; ð3:10Þ

2hwn � un;wn � vni ¼ kun � wnk2 þ kvn � wnk2 � kun � vnk2: ð3:11Þ
Combining the relations (3.9), (3.10) and (3.11), we obtain

kvn � vk2 �kun � vk2 �
�
1� gsn

snþ1

��kun � wnk2 þ kvn � wnk2
�

� 2sngðwn; vÞ; 8 v 2 K; 8 n� 0:

ð3:12Þ

For each z 2 C; we have that gðz;wnÞ� 0 and by Assumptions 2.1 (G1) that
gðwn; zÞ� 0: Then using v ¼ z 2 K in relation (3.12), we obtain

kvn � zk2 �kun � zk2 �
�
1� gsn

snþ1

��kun � wnk2 � kvn � wnk2
�
; 8 z 2 K; 8 n� 0:

h

Theorem 3.2 Let a bi-function g : K�K ! R satisfying Assumptions 2.1. Thus,
for each z 2 X :¼ C \ K 6¼ [; the sequence fung generated by Algorithm 1 is
bounded.

Proof It is given that z 2 X: Since lim
n!1 sn ¼ s[ 0;
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lim
n!1

�
1� gsn

snþ1

�
¼ 1� g[ 0:

Thus, there exists n0 � 1 such that

1� gsn
snþ1

[ 0; 8 n� n0: ð3:13Þ

From the Theorem 3.1 and relation (3.13), we obtain

kvn � zk2 �kun � zk2: ð3:14Þ
From the definition of funþ1g and due to the fact that / is a contraction with
n 2 ½0; 1Þ; we have

kunþ1 � zk ¼ kwn/ðunÞ þ ð1� wnÞSvn � zk
¼ kwnð/ðunÞ � zÞ þ ð1� wnÞðSvn � zÞk
�wnk/ðunÞ � zk þ ð1� wnÞkSvn � zk
�wnk/ðunÞ � /ðzÞk þ wnk/ðzÞ � zk þ ð1� wnÞkvn � zk
�wnnkun � zk þ wnk/ðzÞ � zk þ ð1� wnÞkvn � zk:

ð3:15Þ

Combining relations (3.1), (3.13) and (3.15), we obtain

kunþ1 � zk�wnnkun � zk þ wnk/ðzÞ � zk þ ð1� wnÞkun � zk

¼ ð1� wn þ wnnÞkun � zk þ wnð1� nÞ k/ðzÞ � zk
1� n

�max

�
kun � zk; k/ðzÞ � zk

1� n

	
;

continuing in the same way, we obtain

kunþ1 � zk�max

�
ku0 � zk; k/ðzÞ � zk

1� n

	
:

Thus, we conclude that the sequence fung is bounded. h

Theorem 3.3 Let a bi-function g : K�K ! R satisfying Assumptions 2.1. Thus,
for each z 2 X :¼ C \ K 6¼ [; the sequence fung generated by Algorithm 1
converges strongly to z; where z ¼ PX/ðzÞ:
Proof By using Lemma 2.1 (ii), we have

h/ðzÞ � z; v� zi� 0; 8 v 2 C: ð3:16Þ
By Lemma 2.6 (i) and Theorem 3.1, we obtain
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kunþ1 � zk2 ¼ kwn/ðunÞ þ ð1� wnÞSvn � zk2

¼ kwnð/ðunÞ � zÞ þ ð1� wnÞðSvn � zÞk2

¼ wnk/ðunÞ � zk2 þ ð1� wnÞkSvn � zk2 � wnð1� wnÞk/ðunÞ � Svnk2

�wnk/ðunÞ � zk2 þ ð1� wnÞkvn � zk2 � wnð1� wnÞk/ðunÞ � Svnk2

�wnk/ðunÞ � zk2 þ ð1� wnÞ


kun � zk2 �

�
1� gsn

snþ1

��kun � wnk2

þ kvn � wnk2
��� wnð1� wnÞk/ðunÞ � Svnk2

�wnk/ðunÞ � zk2 þ ð1� wnÞkun � zk2 � ð1� wnÞ
�
1� gsn

snþ1

��kun � wnk2

þ kvn � wnk2
�� wnð1� wnÞk/ðunÞ � Svnk2:

ð3:17Þ
The rest of the proof shall be divided into two cases:

Case I: Assume that there is a fixed number N1 2 N such that

kunþ1 � zk�kun � zk; 8 n�N1: ð3:18Þ
Thus, above relation implies that lim

n!1kun � zk exists and let lim
n!1kun � zk ¼ l:

From (3.17), we obtain

ð1� wnÞ
�
1� gsn

snþ1

��kun � wnk2 � kvn � wnk2
�

�wnk/ðunÞ � zk2 þ kun � zk2 � kunþ1 � zk2 � wnkun � zk2 � wnð1� wnÞk/ðunÞ � Svnk2:

Since lim
n!1kun � zk ¼ l and lim

n!1wn ¼ 0; then from (3.13) and the above relation we

obtain

lim
n!1kun � wnk ¼ lim

n!1kvn � wnk ¼ 0: ð3:19Þ

It follows from the above relation that

lim
n!1kun � vnk� lim

n!1kun � wnk þ lim
n!1kwn � vnk ¼ 0: ð3:20Þ

We can also obtain

kunþ1 � vnk2 ¼ wnk/ðunÞ � vnk2 þ ð1� wnÞkSvn � vnk2

� wnð1� wnÞk/ðunÞ � Svnk2:
ð3:21Þ

and
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kunþ1 � zk2 � kvn � zk2 � kunþ1 � vnk2
¼ 2hunþ1 � vn; vn � zi
¼ 2wnh/ðunÞ � vn; vn � zi þ 2ð1� wnÞhSvn � vn; vn � zi
� 2wnh/ðunÞ � vn; vn � zi � ð1þ wÞð1� wnÞkvn � Svnk2:

ð3:22Þ

From relations (3.21) and (3.22), we obtain

kunþ1 � zk2 � kvn � zk2 �wnk/ðunÞ � vnk2 � wnð1� wnÞk/ðunÞ � Svnk2

þ 2wnh/ðunÞ � vn; vn � zi � wð1� wnÞkvn � Svnk2:
Therefore

wð1� wnÞkvn � Svnk2 �wnk/ðunÞ � vnk2 � wnð1� wnÞk/ðunÞ � Svnk2

þ 2wnh/ðunÞ � vn; vn � zi � kunþ1 � zk2 þ kvn � zk2:
Using relation (3.18) and the fact that lim

n!1kun � zk exists, we obtain

lim
n!1kSvn � vnk ¼ 0: ð3:23Þ

Next, we show that lim
n!1kunþ1 � unk ¼ 0: Consider

kunþ1 � unk ¼ kunþ1 � Svn þ Svn � vn þ vn � unk
�kunþ1 � Svnk þ kSvn � vnk þ kvn � unk
�wnk/ðunÞ � Svnk þ kSvn � vnk þ kvn � unk:

By using relations (3.1), (3.20) and (3.23), we obtain

lim
n!1kunþ1 � unk ¼ 0: ð3:24Þ

Since, the sequences fung; fwng and fvng are bounded. Then there exists a subse-
quence funkg of fung such that funkg * ẑ 2 H: Thus, by relation (3.23) and
Lemma 2.2, we can conclude that ẑ 2 FixðTÞ: Next, we need to show that ẑ 2 C:
Since kun � wnk ! 0; we also have that fwnkg * ẑ: Passing to the limit in relation
(3.3) as k ! 1 and using Assumptions 2.1 (G3), the relation (3.19) and the fact that
lim
n!1 sn ¼ s[ 0; we obtain

gðẑ; vÞ� lim
k!1

sup gðwnk ; vÞ

� 1

2sn
lim
k!1

sup
�kvn � vk2 � kun � vk2�; 8 v 2 K:

ð3:25Þ

On the other hand, by the triangle inequality, we have
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����kvn � vk2 � kun � vk2
�����kvn � unk

�kvn � unk þ kun � vk�:
Thus, from the boundedness of the sequence fung and the relation (3.20), we get for
each v 2 K

lim
n!1

����kvn � vk2 � kun � vk2
���� ¼ 0: ð3:26Þ

Combining the relations (3.25) and (3.26), we get gðẑ; vÞ� 0 for all v 2 K so ẑ 2 C:
Therefore ẑ 2 X :¼ C \ K: Next, we consider

lim
n!1 sup h/ðzÞ � z; un � zi ¼ lim

k!1
sup h/ðzÞ � z; unk � zi

¼ h/ðzÞ � z; ẑ� zi� 0:
ð3:27Þ

We have lim
n!1kunþ1 � unk ¼ 0: We can deduce that

lim
n!1 sup h/ðzÞ � z; unþ1 � zi

� lim
n!1 sup h/ðzÞ � z; unþ1 � uni
þ lim

n!1 sup h/ðzÞ � z; un � zi
� 0:

ð3:28Þ

From Lemma 2.6 (ii) and relation (3.3), we have

kunþ1 � zk2

¼ kwn/ðunÞ þ ð1� wnÞSvn � zk2

¼ kwnð/ðunÞ � zÞ þ ð1� wnÞðSvn � zÞk2

�ð1� wnÞ2kSvn � zk2 þ 2wnh/ðunÞ � z; ð1� wnÞðSvn � zÞ þ wnð/ðunÞ � zÞi
¼ ð1� wnÞ2kvn � zk2 þ 2wnh/ðunÞ � /ðzÞ þ /ðzÞ � z; unþ1 � zi
¼ ð1� wnÞ2kvn � zk2 þ 2wnh/ðunÞ � /ðzÞ; unþ1 � zi þ 2wnh/ðzÞ � z; unþ1 � zi
� ð1� wnÞ2kvn � zk2 þ 2wnnhun � z; unþ1 � zi þ 2wnh/ðzÞ � z; unþ1 � zi
� ð1þ wn

2 � 2wnÞkun � zk2 þ 2wnnkun � zk2 þ 2wnh/ðzÞ � z; unþ1 � zi
¼ ð1� 2wnÞkun � zk2 þ wn

2kun � zk2 þ 2wnnkun � zk2 þ 2wnh/ðzÞ � z; unþ1 � zi

¼ 

1� 2wnð1� nÞ�kun � zk2 þ 2wnð1� nÞ



wnkun � zk2
2ð1� nÞ þ h/ðzÞ � z; unþ1 � zi

1� n

�
:

ð3:29Þ
It follows from relations (3.28) and (3.29), that

lim
n!1 sup



wnkun � zk2
2ð1� nÞ þ h/ðzÞ � z; unþ1 � zi

1� n

�
� 0: ð3:30Þ

Choose n�N2 2 N ðN2 �N1Þ large enough such that 2wnð1� nÞ\1: By using
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relations (3.29) and (3.30) and applying Lemma 2.5, we conclude that lim
n!1 un ! z:

Case II: Assume that there is a subsequence fnig of fng such that

kuni � zk�kuniþ1 � zk; 8 i 2 N:

Thus, by Lemma 2.4, there is a sequence fmkg � N as lim
k!1

mk ¼ 1 such that

kumk � zk�kumkþ1 � zk and kuk � zk�kumkþ1 � zk; 8 k 2 N: ð3:31Þ
Similar to Case I, the relation (3.17) provides that

ð1� wmk
Þ
�
1� gsmk

smkþ1

��
kumk � wmkk2 þ kvmk � wmkk2

�
ð3:32Þ

�wmk
k/ðumk Þ � zk2 þ kumk � zk2 � kumkþ1 � zk2 � wmk

kumk � zk2

� wmk
ð1� wmk

Þk/ðumk Þ � Svmkk2:
ð3:33Þ

By the relations (3.1), (3.13) and (3.31), we obtain

lim
k!1

kumk � wmkk ¼ lim
k!1

kvmk � wmkk ¼ 0: ð3:34Þ

Also, we can obtain as similar to Case I

lim
k!1

kSvmk � vmkk ¼ 0 ð3:35Þ

and

lim
k!1

kumkþ1 � umkk ¼ 0: ð3:36Þ

We have to use the same justification as in Case I, such that

lim
k!1

sup h/ðzÞ � z; umkþ1 � zi� 0: ð3:37Þ

By using relations (3.29) and (3.31), we obtain

kumkþ1 � zk2 � 

1� 2wmk

ð1� nÞ�kumk � zk2

þ 2wmk
ð1� nÞ



wmk

kumk � zk2
2ð1� nÞ þ h/ðzÞ � z; umkþ1 � zi

1� n

�

� 

1� 2wmk

ð1� nÞ�kumkþ1 � zk2

þ 2wmk
ð1� nÞ



wmk

kumk � zk2
2ð1� nÞ þ h/ðzÞ � z; umkþ1 � zi

1� n

�
:

ð3:38Þ

It follows that
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kumkþ1 � zk2 � wmk
kumk � zk2
2ð1� nÞ þ h/ðzÞ � z; umkþ1 � zi

1� n
: ð3:39Þ

By the relations (3.1) and (3.31), relations (3.37) and (3.39) implies that

lim
k!1

kumkþ1 � zk2 ¼ 0:

Thus, the above relation implies that

lim
k!1

kuk � zk2 � lim
k!1

kumk � zk2 � 0: ð3:40Þ

Consequently, the sequence fung converges strongly to z 2 X :¼ C \ K: h

4 Applications

Application to pseudomonotone equilibrium problems:
Set S ¼ I in Algorithm 1, then we have the following strong convergence

algorithm for pseudomonotone equilibrium problem:

Corollary 4.1 Assume that g : K�K ! R is satisfying Assumption 2.1. Let the
sequence fung; fwng and fvng be generated in the following manner: Choose u0 2
K; and s0 [ 0; g 2 ð0; 1Þ: Compute

wn ¼ proxsngðunÞðunÞ;
vn ¼ proxsngðwnÞðunÞ;

unþ1 ¼ wn/ðunÞ þ ð1� wnÞvn;
and set

snþ1 ¼ min

(
sn;

gðkun � wnk2 þ kvn � wnk2Þ
2max

�
0; gðun; vnÞ � gðun;wnÞ � gðwn; vnÞ

�
)
:

Then the sequences fung; fwng and fvng converge strongly to the solution z of C:

Application to pseudomonotone variational inequality problems:
Recall that in the problem of classical variational inequality, one needs to find a

point z 2 K such that

hAðzÞ; v� zi� 0; 8 v 2 K;

where A : H ! H is an operator. We denote the solution set of classical variational
inequality by the symbol VIðA;KÞ: Set the bi-function gðu; vÞ :¼ hAðuÞ; v� ui for
all u; v 2 K in Algorithm 1, we have
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wn ¼ argmin
v2K

fgðun; vÞ þ 1

2sn
kun � vk2g

¼ argmin
v2K

fhAðunÞ; v� uni þ 1

2sn
kun � vk2g

¼ argmin
v2K

fhAðunÞ; v� uni þ 1

2sn
kun � vk2g þ s2n

2
kAðunÞk2 � s2n

2
kAðunÞk2

¼ argmin
v2K

f 1

2sn
kv� ðun � snAðunÞÞk2g � sn

2
kAðunÞk2

¼ PKðun � snAðunÞÞ:
Similarly,

vn ¼ PKðun � snAðvnÞÞ:

Assumption 4.1 Assume that A is satisfying the following assumptions:

A1: A is pseudomonotone on K; that is, for all u; v 2 K;

hAðuÞ; v� ui� 0)hAðvÞ; u� vi� 0:

and VIðA;KÞ is non-empty.
A2 : A is Lipschitz continuous on K with L[ 0; that is, for all u; v 2 K;

kAðuÞ �AðvÞk� Lku� vk:

A3 : lim
n!1 sup hAðunÞ; v� uni� hAðzÞ; v� zi for every v 2 K and fung � K sat-

isfying un * z:

Many researchers have studied variational inequality problem [8] and have
established various iterative methods to tackle it; see for example [4, 6, 7, 32]. We
have the following strong convergence theorem about the pseudomonotone
variational inequality problem [8]:

Corollary 4.2 Assume that A : K ! H is satisfying Assumptions 4.1. Let the
sequences fung; fwng and fvng be generated in the following manner: Choose u0 2
H and s0 [ 0; g 2 ð0; 1Þ: Compute

wn ¼ PK

�
un � snAðunÞ

�
;

vn ¼ PK

�
un � snAðwnÞ

�
;

unþ1 ¼ wn/ðunÞ þ ð1� wnÞvn;
and set
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snþ1 ¼ min

(
sn;

gðkun � wnk2 þ kvn � wnk2Þ
2max

�
0; hAðunÞ; vn � wni � hAðwnÞ; vn � wni

�
)
:

Then the sequences fung:fwng and fvng strongly converge to the solution z of
VIðA;KÞ:

5 Numerical illustrations

In this section, we provide a numerical example to support and justify our proposed
algorithm. All codes are written in Matlab (2021a).

Example 5.1 Suppose that H ¼ R with the inner product hu; vi :¼ u � v; 8 u; v 2
H: and the induced norm kuk :¼ juj; 8 u 2 H: Let K :¼ fu 2 H : juj � 1g be the
unit ball and defined an operator A : K ! H by

AðuÞ :¼ ðuþ jujÞ=2:
Clearly, A is 1�Lipschitz continuous and pseudomonotone operator on K: We
consider a contraction mapping gðuÞ ¼ u=2 for all u 2 H with n ¼ 1=2: The solution
set of variational inequality problem (VI) is given by VIðA;KÞ ¼ f0g 6¼ [: More-

over, with respect to corollary 4.2, we take wn ¼
1

1þ n
; g ¼ 0:33; u0 ¼ 0:3:

Numerical results of the sequence fung generated by Corollary 4.2 for initial value
u0 ¼ 0:3 and different choices of step size s0:

02100108060402

Number of iterations

0.05

0.1

0.15

0.2

0.25

0.3
u n

Fig. 1 Graphical representation of the sequence fung for initial value u0 ¼ 0:3 and different choices of
step size s0:
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Numerical results for initial value u0 ¼ 0:3:

Number of iterations s0 ¼ 0:1 s0 ¼ 0:2 s0 ¼ 0:5

1 0.300000 0.300000 0.300000

15 0.026389 0.009698 0.002684

30 0.004712 0.000538 0.000033

45 0.000955 0.000033 0.000000

69 0.000082 0.000000 0.000000

75 0.000045 0.000000 0.000000

90 0.000010 0.000000 0.000000

121 0.000000 0.000000 0.000000

Remark 5.1 In view of the above graphical representation (Fig. 1) of the sequence
fung , we see that the proposed algorithm work better when the value of the step size
s0 is larger.
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