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Abstract
Kantorovich-type results for generalized equations are extended with no additional
conditions using Newton procedures. Iterates are shown to belong in a smaller
domain resulting to tighter Lipschitz constants and a finer convergence analysis than
in earlier works.
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1 Introduction

Let B1;B2 are Banach spaces D � B1 be an open set F : D �! B2 be a continuously
differentiable operator in the Fréchet-sense. Consider the problem of finding a
solution x� 2 D of of the equation

FðxÞ ¼ 0: ð1Þ
Numerous applications from computational sciences reduce to finding the point x�:
The points x� is needed in closed form. But this can be achieved only in special cases.
That is why most solution procedures for (1) involve iterative procedures. The
convergence region for these procedures is small in general, limiting their applica-
bility. The error bounds on the distances involved are also pessimistic (in general).

Motivated by optimization concerns we develop a technique that addresses all
these problems. In particular, we determine a subset of D where the iterates also
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belong. But in this subset the Lipschitz-type constants involved are at least as tight as
the ones in D. This modification leads to a finer convergence analysis with
advantages (A):

(1) Extended convergence domain.
(2) Tighter error bounds on the distances involved.
(3) More precise information for the location of the solution.

The advantages A are obtained with no additional conditions. We apply our
technique on Newton-like procedures [1–18]. But it is so general that it can be used
to extend the applicability of other iterative procedures along the same lines.

In particular, we extend the results by Cibulka et al in [10] which in turn
generalized earlier ones [1–3, 9–18].

2 Convergence

We introduce certain Lipschitz-type conditions to be used in order to compare them.
Let b[ 0 be a given parameter. We use the notation U(x, a), U[x, a] to denote
respectively the open and closed balls in B1 with center x and of radius a[ 0.

Definition 2.1 Operator F 0 is center Lipschitz continuous on D if there exists K0 [ 0
such that

kF 0ðuÞ � F 0ðx0Þk�K0ku� x0k ð2Þ
for all u 2 D:

Set

D0 ¼ U x0;
1

bK0

� �
\ D: ð3Þ

Definition 2.2 Operator F 0 is 1�Restricted Lipschitz continuous on D0 if there
exists K[ 0 such that

kF 0ðuÞ � F 0ðvÞk�Kku� vk ð4Þ

for all u 2 D0; v ¼ u� F 0ðuÞ�1FðuÞ 2 D0:

Definition 2.3 Operator F 0 is 2�Restricted Lipschitz continuous on D0 if there
exists M [ 0 such that

kF 0ðuÞ � F 0ðvÞk�Mku� vk ð5Þ
for all u; v 2 D0:

Definition 2.4 Operator F 0 is Lipschitz continuous on D if there exists K1 [ 0 such
that
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kF 0ðuÞ � F 0ðvÞk�K1ku� vk ð6Þ
for all u; v 2 D:

Remark 2.5 (i) By the definition of D0 in (3), we have

D0 � D; ð7Þ
so by (2), (4)- (7)

K0 �K1; K�M ; M �K1; and K�K1: ð8Þ
We also assume that

K0 �K: ð9Þ
If not, then the results that follow hold with K0 replacing K. Examples where (7)-(9)
are strict can be found in the numerical section and in [4–7]. Hence, the new tech-
nique improves our earlier results too [4–7].

We suppose that there exists x0 2 D such that F 0ðx0Þ�1 2 LðB2;B1Þ and
kF 0ðx0Þ�1k� b: ð10Þ

Notice that using (6) and (10) we obtain by the Banach lemma on invertible
operators [4, 5, 13] that

kF 0ðxÞ�1k� 1

1� bK1kx� x0k ð11Þ

for all x 2 Uðx0; 1
bK1

Þ: But using the weaker and more precise (2) we have

kF 0ðxÞ�1k� 1

1� bK0kx� x0k ð12Þ

for all x 2 Uðx0; 1
bK0

Þ: This modification in the proofs of earlier works [1, 2, 8–18]

leads to advantages A. It is worth noticing that K0 ¼ K0ðF 0;DÞ; K1 ¼ K1ðF 0;DÞ; but
M ¼ MðF 0;D0Þ; and K ¼ KðF 0;D0Þ: Notice also that we require (4) to only hold for
the Newton iterates and not for all elements in D or D0 (see also the numerical
section).

In order to further emphasize the importance of introducing the center Lipschitz
condition and using it instead of the Lipschitz condition to provide tighter upper

bounds on the norm of kF 0ðxÞ�1k; we present a motivational example.

Example 2.6 Let B1 ¼ B2 ¼ R: Moreover, define the function

uðxÞ ¼ a0t þ a1 þ a2 sin a3t; x0 ¼ 0;

where ai; i ¼ 0; 1; 2; 3 are given real parameters. Then, it follows that for a3 suffi-
ciently large and a2 sufficiently small, K0

K1
can be arbitrarily small, i.e.K0

K1
�! 0:

123

Kantorovich-type results for generalized equations... 1193



Next, we get the following results for D0 ¼ Uðx0; rÞ; r[ 0:

Theorem 2.7 (Extended semi-local Kantorovich Theorem [10, 13]) Suppose:

(i) (2), (4) and (10) hold.

(ii) kF 0ðx0Þ�1Fðx0Þk� c
and

(iii) d ¼ bKcr\ 1
2 for r� r0 ¼ 1�

ffiffiffiffiffiffiffiffi
1�2d

p
bK :

Then, there exists a unique sequence fxng satisfying Newton procedure

FðxnÞ þ F 0ðxnÞðxnþ1 � xnÞ ¼ 0 ð13Þ
initiated at x0 2 D: Moreover, this sequence converges to a unique solution x� 2
Uðx0; r0Þ of equation FðxÞ ¼ 0: Furthermore, the convergence rate is quadratic so
that

kx� � xnk� en :¼ c
d
ð2dÞ2n :

Proof Simply replace K1 by K, (6) by (2) and (3) in the proof of the Kantorovich
theorem in [10]. Notice that M can also replace K1 in this Theorem. But we have
K�M . h

Remark 2.8 If D0 ¼ D; then our Theorem 2.7 reduces to the corresponding one in
[10]. But if K\K1; then

d1 ¼ bK1cr1\
1

2
) d\

1

2
; r0\�r0 and en\�en ¼ c

d1
ð2d1Þ2

n

; ð14Þ

where

r1 � �r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2d1

p
bK1

:

Implications (14) justify the advantages A as stated in the introduction. Hence, the
new results are always at least as good as the ones in [10]. It is worth noticing that in
practice the computation of the constant K1 used before requires that of the rest of the
Lipschitz constants as special cases. Hence, no additional computational effort or
conditions are required to obtain advantages (A). Moreover, in view of (14) our
results can hold consistently in cases the earlier ones cannot (see also the numerical
Section).

Set B1 ¼ B2 ¼ Ri in the next result. Consider Newton-like procedure

FðxnÞ þ Tnðxnþ1 � xnÞ; ð15Þ
where Tn are matrices from �oFðxnÞ the Clarke generalized Jacobian of F [11].
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Theorem 2.9 (Extended local [10]) Suppose (2) and (3) hold for x0 ¼ x�: Moreover,
for every �[ 0 there exists a[ 0 such that for all x 2 Uðx�; aÞ and T 2 �oFðxÞ

kFðxÞ � Fðx�Þ � Tðx� x�Þk� akx� x�k: ð16Þ
Then, There exists a neighborhood U of x� such that for each x0 2 U there exists a
sequence fxng satisfying (15) so that limn�!1 xn ¼ x�: The convergence is
supperlinear.

Proof Simply replace K1 by K in the proof of Theorem 1.3 in [10]. h

Next, we solve the inclusion problem

0 2 FðxÞ þ GðxÞ; ð17Þ
where F is as before and G : B1�B2 is a set-valued operator whose graph is closed
[10]. The Newton-like procedure

0 2 FðxnÞ þ F 0ðxnÞðxnþ1 � xnÞ þ Gðxnþ1Þ ð18Þ
shall be used.

Recall that a set-valued operator w : B1�B2 is said to be metrically regular at x0
for y0 if y0 2 wðx0Þ and there exist neighborhoods N1 of x0 and N2 of y0 and a
positive parameter l such that the graph of w denoted by gphw is such that gphw \
ðN1 � N2Þ is closed [11] and

distðx;w�1ðyÞÞ� l disðy;wðxÞ 8ðx; yÞ 2 N1 � N2:

The next result using the concept of metric regularity extends Theorem 3.1 in [10]
which generalized Theorem 6C.1 and 6D.2 from [11].

Theorem 2.10 (Semi-local) Suppose:

(i) Let r[ 0; b[ 0; b[ 0; p� 0 and x0 2 B1; y0 2 Fðx0Þ þ Gðx0Þ be such that
bp\1 and ky0k\ð1� bpÞminfrb ; bg:

(ii) Conditions (2) and (4) hold
(iii) For each w 2 Uðx0; rÞ

x �! QwðxÞ :¼ Fðx0Þ þ F 0ðwÞðx� x0Þ þ GðxÞ
is metrically regular at x0 for y0 with constant b and neighborhood Uðx0; rÞ
and Uðy0; bÞ:

(iv) kFðxÞ � FðyÞ � F 0ðxÞðx� yÞk� pkx� yk for each x 2 Uðx0; rÞ;
y 2 FðxÞ þ GðxÞ:

Then, there exists a sequence fxng satisfying (18) and convergent q�superlinearly to
a solution x� if the inclusion problem (17) (if (2) and (4) are not assumed). Moreover,
if (2) and (3) are assumed, then fxng converges Q� quadratically to x�:

The rest of the results in [10] can be extended along the same lines.The details are
left to the motivated reader.
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3 Three Examples

The older convergence criteria are compared with the new ones.

Example 3.1 Let us consider a scalar function h defined on the set
D ¼ ½x0 � ð1� nÞ; x0 þ 1� n	for n 2 ð0; 12Þ by

hðxÞ ¼ x3 � n:

Choose x0 ¼ r ¼ r1 ¼ 1: Then, we obtain the estimates g ¼ 1�n
3 ; b ¼ 1

3

jh0ðxÞ � h0ðx0Þj ¼3jx2 � x20j
� 3jxþ x0jjx� x0j � 3ðjx� x0jj2jx0jÞjx� x0j
¼3ð1� nþ 2Þjx� x0j ¼ 3ð3� nÞjx� x0j;

for all x 2 D; so K0 ¼ 3ð3� nÞ; D0 ¼ Uðx0; 1
bK0

Þ \ D ¼ Uðx0; 1
bK0

Þ;

jh0ðyÞ � h0ðxÞj ¼3jy2 � x2j
� 3jyþ xjjy� xj � 3ðjy� x0 þ x� x0 þ 2x0Þjy� xj
¼3ðjy� x0j þ jx� x0j þ 2jx0jÞjy� xj

� 3
1

bK0
þ 1

bK0
þ 2

� �
jy� xj ¼ 6 1þ 1

bK0

� �
jy� xj;

for all x; y 2 D and so K1 ¼ 6ð2� nÞ: Notice that for all n 2 ð0; 12Þ
K0\M\K1:

Next, set y ¼ x� F 0ðxÞ�1FðxÞ; x 2 D: Then, we have
Define function �h on the interval D ¼ ½n; 2� n	 bt

�hðxÞ ¼ 5x3 þ n
3x2

:

Then, we get by this definition that

�h0ðxÞ ¼ 15x4 � 6xn
9x4

¼ 5ðx� qÞðx2 þ xqþ q2Þ
3x3

;

where q ¼
ffiffiffiffi
2n
5

3

q
is the critical point of function �h: Notice that n\q\2� n: It follows

that this function is decreasing on the interval ðn; qÞ and increasing on the interval
ðq; 2� nÞ; since x2 þ xqþ q2 [ 0 and x3 [ 0: So, we can set
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M1 ¼ 5ð2� nÞ2 þ n

3ð2� nÞ2 :

Thus, we have

M\K0:

But if x 2 D0 ¼ ½1� 1
bK0

; 1þ 1
bK0

	; then

K ¼ 5k3 þ n

3k2
;

where k ¼ 4�n
3�n : Then, we also get K\M1: Hence, K can replace K1 or M in all

previous results [1–18]. Next, we verify existing convergence criteria [1, 2, 9–15].

2bK1 � 1;

for n 2 ð0:5; 1Þ
Ours in [4–7]:

2bMg� 1:

But this criterion does not hold for all n 2 ð0; 12Þ: Hence, there is no guarantee that
Newton’s method converges. In particular, the results in [10] cannot apply.

2bKg� 1

and those of Theorem 2.6 for n 2 ð0; 1Þ:
Clearly, the new results extend the range of values n for which Newton’s pro-

cedure (13) converges.

Next, we present an example to show that our conditions can be used to solve
equations in cases where the ones in [1, 2, 9–17] cannot.

Example 3.2 Consider B1 ¼ B2 ¼ C½0; 1	 with the norm-max. Set D ¼ Uðx0; 3Þ:
Define operator G on D by

GðzÞðwÞ ¼ zðwÞ � yðwÞ �
Z 1

0
Qðw; tÞv3ðtÞdt; ð19Þ

w 2 ½0; 1	; z 2 C½0; 1	; where y 2 C½0; 1	 is fixed and Q is a Green’s Kernel defined
by

Qðw; uÞ ¼ ð1� wÞu; if u�w

wð1� uÞ; if w� u:

�
ð20Þ

Then, the derivative G0 according to Fréchet is defined by
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½G0ðvÞðzÞ	ðwÞ ¼ zðwÞ � 3

Z 1

0
Qðw; uÞv2ðtÞyðtÞdt; ð21Þ

w 2 ½0; 1	; z 2 C½0; 1	: Let yðwÞ ¼ x0ðwÞ ¼ 1: Then, using (2)-(21), we obtain

G0ðx0Þ�1 2 LðB2;B1Þ; kI � G0ðx0Þk\ 3
8 ; kG0ðx0Þ�1k� 8

5 :¼ b; c ¼ 1
5 ; K0 ¼

12
5 ; K1 ¼ 18

5 ; and D0 ¼ Uð1; 3Þ \ Uð1; 5
12Þ ¼ Uð1; 5

12Þ; so M ¼ 3
2 ; and

K0\K1; M\K1: Set M ¼ K: Then, the old sufficient convergence criterion is not
satisfied, since cbK1 ¼ 1

5
8
5
18
5 ¼ 144

125 [
1
2 holds. Therefore, there is no guarantee that

Newton’s method (14) converges to x� under the conditions of the aforementioned
references. But our condition hold, since cbK ¼ 1

5
8
5
3
2 ¼ 24

50\
1
2 : Hence, the conclu-

sions of Theorem 2.7 follow.

Example 3.3 Consider B1 ¼ B2 ¼ C½0; 1	 and D ¼ U ½0; 1	: Then the boundary
value problem (BVP) [4]

sð0Þ ¼ 0; sð1Þ ¼ 1;

s00 ¼ �s� rs2

can be also given as

sðt2Þ ¼ t2 þ
Z 1

0
Pðt2; t1Þðs3ðt1Þ þ rs2ðt1ÞÞdt1

where r is a constant and Pðt2; t1Þ is the Green’s function

Pðt2; t1Þ ¼
t1ð1� t2Þ; t1 � t2
t2ð1� t1Þ; t2\t1:

�

Consider F : D �! B2 as

½FðxÞ	ðt2Þ ¼ xðt2Þ � t2 �
Z 1

0
Pðt2; t1Þðx3ðt1Þ þ rx2ðt1ÞÞdt1:

Let us set s0ðt2Þ ¼ t2 and D ¼ Uðs0; q0Þ: Then, clearly Uðs0; q0Þ � Uð0; q0 þ 1Þ;
since ks0k ¼ 1: If 2r\5: Then,

K0 ¼ 2rþ 3q0 þ 6

8
and K1 ¼ rþ 6q0 þ 3

4
:

Hence, K0\K1:

4 Conclusions

A technique is introduced by which the convergence analysis of Newton methods (13
and (18) is consistently extended under weaker conditions. Researchers and
practitioners will always prefer to use these results over the earlier ones, since
they are at least as applicable. The same idea can be used on other methods in order
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to extend their applicability along the same lines. This will be the focus of our future
research.
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