The Journal of Analysis (2023) 31:821-829
https://doi.org/10.1007/s41478-022-00481-3

ORIGINAL RESEARCH PAPER

™

Check for
updates

On the bounds of eigenvalues of matrix polynomials

W. M. Shah' - Sooraj Singh'

Received: 8 April 2022/ Accepted: 31 July 2022/ Published online: 17 August 2022
© The Author(s), under exclusive licence to The Forum D’Analystes 2022

Abstract
Let M(z) = Apz™ + Ap_12" ' +--- + A1z + Ay be a matrix polynomial, whose
coefficients 4y € C"™",Vk =0, 1,...,m, satisfying the following dominant property

Al > A4ill, V= 0,1,....m —1,
then it is known that all eigenvalues 4 of M(z) locate in the open disk
<1+ || Al 4n "I

In this paper, among other things, we prove some refinements of this result, which in
particular provide refinements of some results concerning the distribution of zeros of
polynomials in the complex plane.
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1 Introduction

Let C"" be the set of all n x n matrices whose entries are in C. By matrix
polynomial, we mean the matrix-valued function of a complex variable of the form
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M(2) = Ap2" + Ap12"' + - + A1z + Ao, (1)

where 4; € C"" for all i =0,1,2,...,m. If 4,, # 0, M(z) is called a matrix poly-
nomial of degree m. A number A is called an eigenvalue of the matrix polynomial M
(2), if there exits a nonzero vector X € C”, such that M(A)X = 0. The vector X is
called an FEigenvector of M(z) associated to the eigenvalue A. It should be noted that
each finite eigenvalue of M(z) is a root of the characteristic polynomial det(M (z)).
The polynomial eigenvalue problem is to find an eigenvalue 4 and a non-zero vector
X € C" such that M(A)X = 0. For m = 1, it is actually the generalized eigenvalue
problem

AX = /BX,
and in addition, if B = I, we have the standard eigenvalue problem
AX =7X.

Computing eigenvalues of a matrix polynomial is a hard problem. There are iterative
methods to compute these eigenvalues (for reference see [5]). Moreover, when
computing pseudospectra of matrix polynomials, which provide information about
the global sensitivity of the eigenvalues, a particular region of the (possibly exten-
ded) complex plane must be identified that contains the eigenvalues of interest, and
bounds clearly help to determine such region (for details see [6]). Therefore, it is
useful to find the location of these eigenvalues. Note that, if 4y is singular, then 0 is
an eigenvalue of M(z), and if 4,, is singular, then 0 is an eigenvalue of the matrix
polynomial z”M(1/z). Therefore, to locate the eigenvalues of these matrix polyno-
mials, we always assume that 4y and 4,, are non-singular.

Notations:

For a matrix 4 € C"”, the notation 4 > 0 means “4 is positive semidefnite”, that
is for every vector X € C" we have X*4X >0. By 4 > 0, we mean “A is positive
definite”, that is X*AX > 0 for every X € C". Also in this paper for any two matrices
A,B € C™", the notation 4>B means A — B>0. Throughout this paper, ||.||
denotes a subordinate matrix norm.

In the theory of distribution of zeros of polynomials with complex coefficients, we
have the following result due to Cauchy [4, p. 123]

Theorem A Let P(z) = ap + a1z + ayz* + -+ + a,z" be a polynomial of degree m

and

As an application of Theorem A, Dehmer [3] proved the following (also see [4,
Theorem 27.2])

am-3
am

Am—1 am—2 aj ao

) ) PR b

M= max{

am am Am| |Am

then all the zeros of P(z) lie in the circle |z] <1+ M.
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Theorem B Let P(z) = ap + a1z + axz*> + -+ + anz", am # 0, m > 1 be a complex
polynomial of degree m, such that |a,,| > |a;| for all i =0,1,...,m — 1, then all the
zeros of P(2) lie in the disk |z| <2.

Trinh et al. [2] extended this result to the matrix polynomials and proved the
following:

Theorem C Let M(z) = Ao+ A1z + -+ + AnZ™ be a matrix polynomial, whose
coefficients A; € C™" satisfying the following dominant property

[4mll > |4 Vi=0,1,2,...,m — 1.
Then each eigenvalue /. of M(z) locate in the open disk

21<1+ A4, - (2)

In the same paper, they proved the direct extension of Theorem A to matrix
polynomial in the form of the following result:

Theorem D Let M(z) = Ay + A1z + - - - + Anz™ be a matrix polynomial of degree
m, whose coefficients Ay € C"*".
Then each eigenvalue J. of M(z) satisfies

A <1+ M, (3)
where

M= max | 4lll4,"].
<m-—1

0<k

In this paper, we obtain an annulus containing all the eigenvalues of the matrix
polynomial M(z) and use it to obtain a refinement of Theorem D. In this direction, we
have the following:

Theorem 1.1 Let M(z) = Apz™ + Ay 12" ' + -+« + A1z + Ay be a matrix polyno-
mial of degree m, where Ay, € C"*" and Ay, A,, are invertible. If 1,0, . . ., d, are m
non-zero real or complex numbers, such that Y ;" || <1, then each eigenvalue
of M(z) satisfies r1 < |A| <rp, where

1/k
. %k
rp= Mmoo s
1<k <m ||| Akl 45|
and
| 1/k

_ — (At 1145

r lgnka%(m OCk " "
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Remark 1 If we take n = 1 and let A; = [a;],i = 0, 1,...,m, we get a result due to
Aziz and Qayoom [1] for the zeros of a polynomial with real or complex coefficients.

Now as a refinement of Theorem D, we have the following:
Theorem 1.2 Let
M(z2) = ApZ" + Ay + Ap 12+ + A1z + 4o
P
= A4,7" —|—ZAkz", 0<p<m-—1
k=0

be a matrix polynomial of degree m, whose coefficients Ay € C™" (k=
0,1,2,...,p,m) and let

_ -1
M= max 4l
then every eigenvalue A of M(z) satisfies

A< {(1+ MP* = 1y, (4)

For p = m — 1, we have the following:
Corollary 1 Let
M(Z) =A4,,7" +An1,12m_1 + -+ A1z+ Ay

be a matrix polynomial of degree m, whose coefficients A, € C™" (k=
0,1,2,...,m) and let

M= max || 4lll4;" ],

0<k<m—1

then every eigenvalue A of M(z) satisfies

A< {(1+ M)" — 1), (5)

This result is a refinement of Theorem D.

Remark 2 A result of Aziz and Qayoom [1] for the distribution of zeros of
polynomials with real or complex coefficients is a special case of Theorem1.2, when
we take n = 1 and A; = [a;], forall i =0,1,2,...,m.

In particular, if ||4,| > |4, Vi=0,1,2,...,p, then from Theorem 1.2, we get
the following:

Corollary 2 Let
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M(z2) = ApZ" + Ay’ + Ap 1271+ + A1z + 4o
)4
= A"+ A4, 0<p<m—1
k=0

be a matrix polynomial of degree m, whose coefficients Ay € C™" (k=
0,1,2,...,p,m) and let ||An|| > ||4i|l, Vi=0,1,2,...,p, then each eigenvalue 1 of
M(2) satisfies

. ol .
A < {1+ 1 4alll4, 1) = 13" (6)

If in Corollary 2, we choose p = m — 1, we get the following:
Corollary 3 Let
M(z) = ApZ" + Ap12" 4 -+ A1z + 4y

be a matrix polynomial of degree m, whose coefficients Ay € C™" (k=
0,1,2,...,m) and let ||Ap|| > ||4i|, Vi=0,1,2,...,m — 1, then each eigenvalue A
of M(z) satisfies

m 0
1Al <L+ [14nllll4, D™ — 13" (7)
This result is a refinement of Theorem C.

2 Lemmas

Before proving the main results, let us first prove the following lemma:

Lemma 1 Let M(z) = Apz" + 4,2 +--- + A1z + Ao, 0<p<m —1 be a matrix
polynomial of degree m, where A, € C"" and A, is invertible. If oy, o, . . ., 0py1 are
p+ 1 non-zero real or complex numbers, such that Zi:} log| <1, then each
eigenvalue /. of M(z) lie in the disk

R —
—ptk—1

1 m—p+
| < — (|41 1l1|4,,"
R s [
Proof Let
PR N
B 1 y = mp kT
r= o Elpealia i

This implies

@ Springer



826 W. M. Shah, S. Singh

P> ﬁHAp w145
or
1 1
o) 11, =
therefore, we have
p+l p+1 1
Z|Ofk| > Z ||Ap—k+1HHAr;1Hm

k=1 k=1

1 ]
= [ollll, 1l =+ -« + 114, =

This implies

p+l

Zlkal > ZIIA 114, 1||— (8)

Let 4 be any eigenvalue of M(z) and X be corresponding unit eigenvector. If possible,
suppose that |A| > r, then we have by using (8)

IM(D)X|| = [[(An A" + Ap¥ + -+ A1Z + Ao)X||

> |21, | {I—ZHA el |m,}
P
> 4,17 {1 ZIIAJIIIIA;IIIW}

p+1

> 2", Zm\}

=1
>0.

Therefore ||M(1)X]| > 0 for |1| > r. Hence our supposition is wrong and thus each
eigenvalue 4 of M(z) lies in

m—p-+k+1

4] <r= max
1 <k<ptl

a—IIAp et [[145"

3 Proofs of theorems

Proof of 1.1 We have M (z) = Ap + 41z + - - - + An2™. Let 1 be an eigenvalue of M
(z) and X € C”" be the corresponding eigenvector of M(z). We first show that each
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eigenvalue A of M(2) lie in || <r,.
We have

]

ry = max —IIAm ellll ] - ©)

1<k<m

Applying the case when p = m — 1, we have from Lemma 1 that each eigenvalue A
of M(z) lies in

k

|| <r= max
1<k<

1
— N Api |14
n lAm—k 14, |l

Hence we conclude that |4] <r,.
Now, consider the matrix polynomial

1
M*(z) :zmM<) = A" -I-A]ZWHI 4t Ay
z

Proceeding similarly as above, we have each eigenvalue 1 of M*(z) satisfies

l

- 1
1< max |y
1

= 1

. o k

min |-

<ksm ||| Ag I Al
1
=5

Replacing z by 1/z and noting that M(z) = z"M* (L), we conclude that if 2 is an
eigenvalue of M(z), then

273
m |[|4g 1Akl

|| >r = mm

This completes the proof of theorem. U
Proof of 1.2 We have
M= max |4, pllll4,'ll

1<k<p+l
therefore
||Ap*k+1||||A;1H§M for k = 17273a"';p+1' (10)

Now let us choose
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(1+M)" [4p—ks1 1114, I
* {(1 + M -1 J[;M)’”*pfk—l fork=1,2,3,...m.  (11)
This implies
i LMyt Myt -
a—kIIAp_kHIIIIA; | = 5 M fork=1,2,3,....,m
(12)

Since 4p_j41 =0 fork=p+2,p+3,...

,m, therefore oy =0, fork=p+2,p+

3,...,m. Hence from (11), we have by using (10)

m p+1
D ol =D loud
=1 =1
’i (1+M)" [ 4p—s 14,
- +M p+1 _ (1 +M)Wl7p+k71
(1 +M) L -1 1
My 71;II k1[4, H(1+M)’”*P(1+M)k*1
(14 M)" % M 1
( +M)p+1 (1 +M)m P(l +M)k71
T ( M ”“ 1
\a +M”“ 1) \(1+M)" (1+M)
_ (1+M)" ( M - (MH)P“
( +M Pl —1 1 +M 1-— m
B (14+M)" ( M (14 Myt —
N (1 +MP+1 1 1+ M)" P (1 —I—./\/l)p/\/l

1.

That is

m
Z |0€k| < 1.
k=1

Now by Lemma 1 and with the help of (12), we have that each eigenvalue 1 of M(z)

satisfies
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2| < L 4, e
= o {5l 1}

(1 +M)m—p+k—1 |:(1 +M)p+l 1 m—p+k—1

= max

L<k<p+l (1+Mm)"
B (L4 My 1"
=M, e T A
1 P\
= (1 +M) %

(1+M)"
1
= (+ Myt 1),
This completes the proof of theorem. O
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