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Abstract
We investigate the complexity of minimum total outer-connected domination in split
graphs. Given a connected graph G, a minimum total outer-connected dominating set
asks for a set D � V ðGÞ such that it is a total dominating set and the graph induced
on V ðGÞ n D is connected. It is known that the Total Outer-Connected Domination
problem (TOCD) in general graphs is NP-complete. A split graph is a graph in which
the vertex set can be partitioned into a clique and an independent set. Panda et al.,
have established that the TOCD is NP-complete in split graphs. In this paper, we
strengthen this NP-completeness result by presenting an interesting dichotomy: we
show that TOCD is NP-complete in split graphs with DI ¼ 3 (K1;5-free split graphs)

and present a polynomial-time algorithm for TOCD in split graphs with DI ¼ 2 (K1;4-
free split graphs). We revisit the complexity of domination in split graphs, and prove
that in DI ¼ 3 split graphs the domination problem is NP-complete whereas in
DI ¼ 2 split graphs the domination problem is polynomial-time solvable.
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1 Introduction

The study of domination and its variants has attracted many researchers due its
applications in theory and computing [6, 19]. Further, the domination satisfying some
specific property has intersting connection to other combinatorial problems, for
example, if the property is connected, then the study of connected domination is
equivalent to the study of maximum leaf spanning tree problem in graphs [8]. Also, if
the input is restricted, then the study of connected (total) domination in split graphs is
same as the study of the Steiner tree problem in split graphs [17]. The focus of this
paper is two fold; (1) the study of domination in split graphs when the specific
property is outer connectedness and total-outer connectedness, (2) identify the hard
vs easy instances of domination in split graphs and discover a dichotomy.

A set D is dominating set of V(G), if each vertex in V ðGÞ n D is adjacent to at least
one vertex in D [10, 11]. A dominating set D is a total dominating set, if each vertex
in D is adjacent to at least one vertex in D, and it is an outer-connected dominating
set if the graph induced on V ðGÞ n D is connected. A dominating set D is called a
total outer-connected dominating set if D is a total dominating set and an outer-
connected dominating set. The study on these variants was initiated by Cyman [4, 5]
as it has applications in computer networks and facility location problems [10].

On the computational complexity front, domination and its variants are NP-
complete in general graphs. In particular, the Total Outer-Connected Domination
problem (TOCD) in split graphs [14] and the Outer-Connected Domination (OCD)
problem in split graphs [15] are NP-complete. The aim of this paper is to take a closer
look at these reductions in split graphs and identify NP-complete vs polynomial-time
solvable input instances. This line of study has been reported in the literature for
Steiner tree [17] and Hamiltonicity [16] in split graphs.

It is important to highlight that TOCD is NP-complete in bipartite graphs [9] and
polynomial-time solvable in bounded tree-width graphs and trees [14]. OCD is NP-
complete in bipartite graphs [4], chordal graphs [12] and polynomial-time solvable in
interval graphs and trees [14].On the parameterized complexity front, the domination
problem is W[2]-hard on general graphs [2] whereas the complexities of OCD and
TOCD on general graphs are open. For these problems, some progress on
approximation algorithms is reported in [14].

Our contribution We investigate the NP-complete instances of split graphs
[12, 14] and obtain an interesting dichotomy for TOCD and OCD: NP-complete for
split graphs with DI ¼ 3 (K1;5-free split graphs) and polynomial-time solvable for

split graphs with DI ¼ 2 (K1;4-free split graphs).
Graph preliminaries Unless explicitly stated we work with simple, undirected

and connected graphs. We follow the notations as in [18]. For a graph G, let V(G)
denote the vertex set and E(G) denote the edge set. The edge set EðGÞ ¼ ffu; vg j u
is adjacent to v in G}. The open neighborhood of a vertex v is NGðvÞ ¼ fu 2
V ðGÞ j fu; vg 2 EðGÞg and the closed neighborhood of a vertex v is
NG½v� ¼ NðvÞ [ fvg. For a graph G and a set H � V ðGÞ, G[H] represents the
subgraph of G induced on the vertex set H. A split graph G is a graph in which V(G)
can be partitioned into two sets; a clique K and an independent set I. A split graph is
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represented as GðK [ I ;EÞ and K is a maximal clique. In a split graph, for each
vertex u in K, NI

GðuÞ ¼ NGðuÞ \ I , dIG ¼ jNI
GðuÞj and for each vertex v in I,

NK
G ðvÞ ¼ NðvÞ \ K, dKG ¼ jNK

G ðvÞj. For a split graph G, DI
G ¼ max fdIGðuÞg; u 2 K

and DK
G ¼ max fdKGðvÞg; v 2 I . A matching in a graph is a set of edges with no

shared end points. A maximum matching is a matching of maximum size. An edge
cover Ec is a set of edges of G such that each vertex of G is incident to some edge of
Ec. A subgraph is a graph in which each vertex has degree at most three.

2 The total outer-connected domination in split graphs

2.1 Hardness result: TOCD in DI = 3 split graphs

In this section we show that TOCD in DI ¼ 3 split graphs is NP-complete. Using the
result of [14], we show that TOCD in DI ¼ 3 split graphs is NP-complete. For the
sake of completeness, we present the reduction along with the proof of correctness.
We consider EXACT-3-COVER [13] problem, which is a candidate NP-complete
problem for our investigation.

EXACT-3-COVER (X3C)
Instance A finite set X with jX j ¼ 3q and a collection C of 3-element subsets of X.
QuestionDoes C contain an exact cover of X, that is, a subcollection C0 � C such

that every element in X belongs to exactly one member of C0?
Decision version of the Total Outer-Connected Domination problem (TOCD)

in Split graphs
Instance A split graph.
QuestionDoes there exist a total dominating set D of size at most k such that

G½V n D� is connected?
Theorem 1 TOCD is NP-complete for DI ¼ 3 split graphs.

Proof TOCD is in NP Given a certificate D, we can verify in deterministic
polynomial-time that whether D is a total dominating set and G½V n D� is connected.
Thus, the total outer-connected domination problem is in NP.

TOCD is NP-Hard Any arbitrary instance of X3C is reduced to TOCD as
follows: Let X ¼ fx1; x2; . . .; x3qg and C ¼ fC1;C2; . . .;Cmg be an arbitrary instance
of X3C. Each Ci in C is an arbitrary 3-element subset of X. Construct a split graph
GðK [ I ;EÞ where I ¼ W [ X ;W ¼ fw1;w2; . . .;w3qg;X ¼ fx1; x2; . . .; x3qg and
K ¼ C [ Y [ Z;C ¼ fc1; c2; . . .; cmg; Y ¼ fy1; y2; . . .; y3qg;Z ¼ fz1; z2; . . .; z3qg
and edge set of G as EðGÞ ¼ ffxi; cjg jxi 2 Cj; 1� i� 3q; 1� j�mg [ ffxi; yig
j1� i � 3qg; ffzi;wig j1� i� 3qg [ffcj; yig1� i� 3q; 1� j�mg; ffcj; zig1� i�
3q; 1� j�mg; ffyi; zig j1� i� 3qg [ ffxi; xjg j 1� i\j� 3qg [ ffyi; yjg j 1� i\
j� 3qg [ffzi; zjg j 1� i\j� 3qg [ ffci; cjg j 1� i\j�mg. We now show that the

instances created by this reduction are DI ¼ 3 split graphs. If on the contrary, G is a
graph with DI ¼ 4. Then, there exists a vertex u 2 K such that degI ðuÞ ¼ 4. Observe
that for each vertex v 2 Z [ Y , degI ðvÞ ¼ 1. Hence, u 62 Z [ Y . It follows that u 2 C.
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Further, note that the element corresponding to u 2 C is a 4-element subset of X,
which is a contradiction to the definition of collection C. Therefore, it follows that the
reduced instances are DI ¼ 3 split graph.

Claim 1 C has an exact-3-cover of size q if and only if G has a total outer-connected
dominating set of size at most 7q.

Proof Let C0 � C be the solution of X3C. Then fcjjcj 2 C ^ Cj 2 C0g [W [ Z is a
total outer-connected dominating set of cardinality 7q. Conversely suppose that G
has a total outer-connected dominating set, say D of cardinality at most 7q. Since all
W vertices are pendant, W [ Z � D. Let D0 ¼ D n ðW [ ZÞ. Then jD0j � q and D0

has to totally dominate all the 3q vertices of X. Suppose that D0 contains d1 vertices
of set Y and d2 vertices of set C, to totally dominate 3q vertices in X. Also these
d1 þ d2 vertices can totally dominate d1 þ 3d2 vertices of the set X. Hence

3q� d1 þ 3d2 � qþ 2d2
3q� qþ 2d2
q� d2
d1 þ 3d2 � qþ 2d2
d1 þ d2 � q
q� d1 þ d2
d2 ¼ q and d1 ¼ 0
This implies that D0 contains exactly q vertices of the set C to totally dominate all

the vertices of the set X. This implies that C0 ¼ fCjjcj 2 D0g is an exact cover of C.
Hence C has an exact cover if and only if G has a total outer-connected dominating
set of cardinality at most 7q.

Theorem 2 The Total Outer-Connected Domination in DI ¼ k split graph, k� 3 is
NP-complete.

Proof Follows from Theorem 1.

2.2 Polynomial result: TOCD in DI = 2 split graphs

In this section, we shall present the other part of the dichotomy; we show that TOCD
in DI ¼ 2 split graphs is polynomial-time solvable. Toward this end, we transform a
split graph G with DI ¼ 2 into a corresponding graph H which is defined as follows;
V ðHÞ ¼ I , EðHÞ ¼ ffu; vg j u; v 2 V ðHÞ and 9w 2 K; fu;wg; fv;wg 2 EðGÞg.
That is, the vertex set of H is the set I of G and two vertices in H is adjacent if
there is a clique vertex adjacent to both of them. Further, the minimum edge cover
solution of H can be used to find a minimum TOCD of G, which we shall establish in
this section.

123

356 A. Mohanapriya et al.



Algorithm 1 Computing Minimum Edge cover
1: Input: A connected graph Gs.
2: Output: A minimum edge cover Ec such that on removal of clique vertices corresponding to edge cover edges, we

obtain the least number r of isolated vertices in I
3: Find a maximum matching M and extend it to edge cover in Gs. For each edge e = {u, v} in matching, label u

and v as saturated (matched).
4: Let u ∈ V (G) be an unsaturated (unmatched) vertex in Gs

5: Initially all vertices are unvisited
6: for Each unmatched vertex u in Gs and u is unvisited or it has an unvisited neighbor do
7: Using u as the root, explore all paths Pi in Depth First Search fashion. With respect to M , find the edge cover

solution for the vertices in Pi, including the closed neighborhood
8: Compute the number r, the number of isolated vertices in I if clique vertices corresponding to the edge cover

edges to be included in TOCD.
9: For Pi, find a new maximum matching M ′ (while performing DFS, edges can be flipped) and extend it the

edge cover
10: Find the edge cover for Pi by considering the subgraph G[Pi] including the closed neighbor of vertices in Pi.

Further, compute the number r′ of isolated vertices in I if clique vertices corresponding to edge cover edges to be
included in TOCD

11: If the number r′ due to M ′ is smaller than the r, then retain M ′ for Pi and the corresponding edge cover
12: Once a path is explored as part of DFS, then all its vertices are marked visited
13: if all paths obtained has same number of isolated vertices as before then retain the original edge cover solution.
14: end for

Algorithm 2 MTOCD for ΔI
G = 2

1: Input: A ΔI
G = 2 split graph .

2: Output: a total outer-connected dominating set D.
3: By our transformation we obtained a subcubic graph Gs

4: for each connected component in Gs do
5: For each connected component in Gs, Find the edge cover by using Algorithm 1
6: Each edge corresponds to a clique vertex in K, choose those clique vertices say U that corresponds to

Edge cover solution
7: D = D ∪ U
8: Remove the edge cover solution of Gs, Let the isolated vertices be I ′

9: D = D ∪ I ′

10: end for

Claim 2 Let K 0 be the set of clique vertices corresponding to edges in Ec as per
Algorithm 1. Let r be the number of isolated vertices in V ðGÞ n K 0 as per Algorithm
1. Then, r obtained from Algorithm 1 is minimum.

Proof Using our construction, it is clear that the edge cover approach identifies the
set of clique vertices that totally dominate V(G). It is also clear that a minimum edge
cover with minimum r is a minimum total dominating set. In our algorithm, Steps 3-
12, fixing a maximum matching, we explore possible maximum matchings followed
by minimum edge cover with minimum r. Observe that, this task is being carried for
each unmatched vertex. Thus, r is minimum.

Time complexity analysis We make use of algorithm given in [16] to find
maximum matching, which incurs Oðn3Þ. Subsequently, we perform DFS to compute
r and update the matching as well the edge cover solution. Therefore, the overall time
complexity for finding MTOCD algorithm is Oðn3Þ.
Theorem 3 The D output by Algorithm 2 is a minimum TOCD.
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Proof For graph G, let U � K be the set of clique vertices in D and I 0 � I be the set
of vertices from I in D. Let Ec be the edge cover solution of Gs

Claim D is a total dominating set.

Proof Since the solution of edge cover corresponds to clique vertices in G and if
there exists any i 2 I vertex in D, then all of its neighbors are in D. For each vertex
u 2 K and u 62 D is dominated by vertices in U (the solution has at least one clique
vertex), and for each i 2 I and i 62 D has a adjacent vertex in D (edge cover ensures
each vertex is covered). For pendant vertices in I, the pendant vertex and its clique
neighbor are in D. Hence, D is a total dominating set.

Claim The graph induced on V ðGÞ n D is connected.

Proof Clearly, the graph induced on K n U is connected. For each vertex
u 2 ðI 0 n IÞ, if u is pendant then u and its clique neighbor are in D. This means,
the degree of u is at least two and there will be two edges incident on u in H. Of the
two, one edge is included in edge cover and hence the corresponding clique vertex in
D. The clique vertex corresponding to the other edge ensures outer connectedness.
Thus, the claim follows.

Claim D is MTOCD.

Proof Suppose if there exists a TOCD D0 such that jD0j\jDj. Then, let U 0 ¼ K \ D0

and J ¼ I \ D0. Case: jU 0j\jU j. Since Ec is a minimum edge cover solution and
hence, the corresponding clique vertex set, U 0 is also minimum. Hence, this case is
not possible. Case: jJ j\jI 0j, by Claim 2 we know that I 0 has the minimum number of
isolated vertices of I. Hence jJ j\jI 0j is not possible. Thus, D is a minimum TOCD of
G.

Remarks
1. If the input split graph has pendant vertices in I, then in any minimum TOCD,

we include the closed neighborhood of pendant vertices in the solution. Therefore,
we pre-process the input graph before invoking edge cover algorithm.

2. If there is a clique vertex v such that dIGðvÞ ¼ 1, then we get a self loop at
w 2 NI

GðvÞ in H. We assume that such a self loop edge is included in our maximum
matching.

3. Let GðK [ I ;EÞ be a split graph with no pendant vertices in G. Then, we
observe that the minimum TOCD in such split graphs is also the minmum OCD.

Interestingly, for an arbitrary split graph, minimum OCD is NP-complete in DI ¼
3 split graphs and polynomial-time solvable in DI ¼ 2 split graphs, which we
establish in the next section.
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3 The Outer-Connected Domination in split graphs

3.1 Outer-Connected Domination in DI = 3 split graphs

We shall now present a polynomial-time reduction from Exact-3-cover problem to
Outer-Connected Domination in DI ¼ 3 split graphs.

EXACT-3-COVER(X3C)
Instance A finite set X with jX j ¼ 3q and a collection C of 3-element subsets of X.
Question Does C contain an exact cover of X, that is, a subcollection C0 � C such

that every element in X belongs to exactly one member of C0?
Decision version of Outer-Connected Domination (OCDD) in split graphs
Instance A split graph.
Question Does there exist a dominating set D of size at most k such that G½V n D�

is connected?

Theorem 4 Outer-Connected Domination in DI ¼ 3 split graph is NP-complete.

Proof The outer-connected domination problem is in NP Given a certificate
OCD, we can verify in deterministic polynomial-time that whether OCD is a total
dominating set and G½V n OCD� is connected. Thus the total outer-connected
domination problem is in NP.

The outer-connected domination problem is NP-Hard Any arbitrary instance
of X3C is reduced to OCD as follows: Let X ¼ fx1; x2; . . .; x3qg and C ¼
fC1;C2; . . .;Cmg be an arbitrary instance of X3C. Construct vertex set of G as
I ¼ W [ X ;W ¼ fw1;w2; . . .;w3qg;X ¼ fx1; x2; . . .; x3qg and K ¼ C [ Y [ Z;C ¼
fc1; c2; . . .; cmg; Y ¼ fy1; y2; . . .; y3qg; Z ¼ fz1; z2; . . .; z3qg and the edge set of G as
EðGÞ ¼ ffxi; cjgjxi 2 Cj; 1� i� 3q; 1� j�mg [ ffxi; yigj1� i� 3qg; ffzi;wig j1
� i� 3qg [ ffcj; yig j 1� i� 3q; 1� j�mg; ffcj; zig j 1� i� 3q; 1� j�mg; ffyi;
zigj1� i� 3qg. We now show that the instances created by this reduction are DI ¼ 3
split graphs. If on the contrary, G is DI ¼ 4 there exists a vertex u 2 K such that
degI ðuÞ ¼ 4. Observe that for each vertex u 2 Z [ Y , degI ðuÞ ¼ 1. Hence, if
degI ðuÞ ¼ 4 exists it should be in C. This implies that there exists a 4-element subset
in c 2 C corresponding to u 2 C, which is a contradiction as all the subsets are of size
3 in C. Therefore it follows that the reduced split graph is DI ¼ 3 split graph. An
illustration is given in Fig. 1.

Claim 3 C has an exact cover of size q if and only if G has a total outer-connected
dominating set of size at most 4q.

Proof Let C0 be the solution of X3C. Then fcjjC0g [W is a outer-connected
dominating set of cardinality 4q.

Conversely suppose that G has a outer-connected dominating set, say D of
cardinality at most 4q. Since all W vertices are pendant, W � D. Let D0 ¼ D n ðW Þ.
Then D0 � q and D0 has to dominate all the 3q vertices of X. Suppose that D0 contains
d1 vertices of set Y and d2 vertices of set C, to dominate 3q vertices of X. Also these
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d1 þ d2 vertices can dominate d1 þ 3d2 vertices of the set X. Hence
3q� d1 þ 3d2 � qþ 2d2
3q� qþ 2d2
q� d2
d1 þ 3d2 � qþ 2d2
d1 þ d2 � q
q� d1 þ d2
d2 ¼ q and d1 ¼ 0
This implies that D0 contains exactly q vertices of the set C to dominate all the

vertices of the set X. This implies that C0 ¼ fCjjcj 2 D0g is an exact cover of C.
Hence, C has an exact cover if and only if G has a outer-connected dominating set of
cardinality at most 4q.

Theorem 5 Outer-Connected Domination in DI ¼ k split graph, k� 3 is NP-
complete.

Proof Follows from Theorem 4

3.2 Polynomial result: OCD in DI = 2 split graphs

In this section, we present a polynomial-time algorithm for minimum OCD in DI ¼ 2
split graphs. We make use of the transformation presented in Sect. 2.2.

K17
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w6
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z6
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c3
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x1

x2
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x4

x5

x6

y1

y2

y3

y4

y5

y6

Fig. 1 An example reduction for
Outer Connected Domination
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Algorithm 3 MOCD for ΔI
G = 2, ΔK

G = 3

1: Input: A ΔI
G = 2, ΔK

G = 3 split graph .
2: Output: a outer-connected dominating set D.
3: By our transformation; we obtain a subcubic graph Gs

4: for each connected component in Gs do
5: For each connected component in Gs, Find maximum matching M
6: Each edge in M corresponds to a clique vertex in K, let those clique vertices be in U
7: D = D ∪ U
8: Let unmatched vertices in Gs be I ′

9: D = D ∪ I ′

10: end for

Theorem 6 The set D obtained from Algorithm 3 is MOCD.

Proof Clearly, all pendant vertices in I is included in D. For each edge in the
maximum matching, the corresponding clique vertices are also in D. The current
solution which includes pendant vertices and clique vertices corresponding to the
maximum matching cannot dominate any unmatched vertex of G. Therefore, we
include all unmatched vertices in D. Thus, D is MOCD. h

Time complexity analysis Computing maximum matching [16] takes Oðn3Þ and
hence, the time complexity of Algorithm 3 is Oðn3Þ.

4 Domination in DI = 3 Split graphs

In this section, we show that the dominating set in DI ¼ 3 split graphs is NP-
complete. Although dominating set is NP-complete in split graphs [1], the reduction
instances cannot bounded by degree for both K and I. Interestingly, the reduction
presented here generates instances of DI ¼ 3 split graphs. We present a polynomial-
time reduction from Exact-3-cover problem.

Decision version of Domination (DD)
Instance A split graph.
Question Does there exist a dominating set D of size at most k?

Theorem 7 The Domination problem in DI ¼ 3 split graph is NP-complete.

Proof The domination problem is NP-Hard Any arbitrary instance of X3C is
reduced to OCD as follows: Let X ¼ fx1; x2; . . .; x3qg and C ¼ fC1;C2; . . .;Cmg be
an arbitrary instance of X3C. Construct vertex set of G as I ¼ fXg;X ¼
fx1; x2; . . .; x3qg and K ¼ fCg;C ¼ fc1; c2; . . .; cmg and the edge set of G as
EðGÞ ¼ ffxi; cjgjxi 2 Cj; 1� i� 3q; 1� j�mg [ ffci; cjgj1� i; j�mg. We now

show that the instances created by this reduction are DI ¼ 3 split graphs. If on the
contrary, G is DI ¼ 4 there exists a vertex u 2 K such that degI ðuÞ ¼ 4. Observe that
for each vertex u 2 Z, degI ðuÞ ¼ 1. Hence if degI ðuÞ ¼ 4 exists it should be in C.
This implies that there exists a 4-element subset in c 2 C corresponding to u 2 C,
which is a contradiction as all the subsets are of size 3 in C. Therefore, it follows that
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the reduced split graph is DI ¼ 3 split graph. An example reduction is illustrated in
Figure 2.

Claim 4 C has an exact cover of size q if and only if G has an dominating set of size
at most q.

Proof Let C0 be the solution of X3C. Then fcjjCj 2 C0; cj 2 Cg is a dominating set
of cardinality q. Conversely, suppose that G has a dominating set, say D of
cardinality at most q. D has to dominate all the 3q vertices of X. Since jX j has 3q and
q vertices of K should dominate all of I This implies that D0 contains exactly q
vertices of the set C to dominate all the vertices of the set X. This implies that
C0 ¼ fCjjcj 2 D0g is an exact cover of C. Hence C has an exact cover if and only if G
has a dominating set of cardinality at most q. h

Theorem 8 The Domination problem in DI ¼ k split graph, k� 3 is NP-complete.

Proof Follows from Theorem 7

4.1 Domination in DI = 2 split graphs

In this section, we prove that the Steiner tree problem and the dominating set problem
in split graphs are of same complexity.

Theorem 9 Let GðK [ I ;EÞ be a split graph. G with R ¼ I , the terminal set and S is
a minimum Steiner set if and only if S is a minimum dominating set of G.

Proof When the terminal vertices are R ¼ I , then the minimum Steiner set S are
clique vertices, S � K. Clearly, S is a minimum dominating set of G. Suppose if there
exists a dominating set for G whose cardinality is less than S, then it contradicts the

c1

c2

c3

c4

c5

x1

x2

x3

x4

x5

x6

KIFig. 2 An Example reduction
for Domination in Split graphs
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minimality of S. Hence, S is a minimum dominating set of G.
Converse: if D is a dominating set of G with v 2 D \ I , then we obtain another

dominating set D0 ¼ ðD n fvgÞ [ fwg, where w is a clique neighbor of v. This shows
that, there exists a minimum dominating set D � K. Thus, D is a minimum Steiner
set with terminal set R ¼ I .

The Steiner tree problem and its solution for DI ¼ 2 (K1;4-free) split graphs is

reported in [17]. Therefore, the dominating set problem for DI ¼ 2 split graphs is
also polynomial-time solvable.

Observation 1 Let GðK [ I ;EÞ be a split graph. G with R ¼ I , the terminal set and S
is a minimum Steiner set if and only if S is a minimum total dominating set of G.

Observation 2 Let GðK [ I ;EÞ be a split graph. D is total dominating set if and only
if D is the connected dominating set of G.

Conclusions and Directions for further research: In this paper, we have
investigated domination and its variants in split graphs, and presented dichotomy
results for outer connected domination and total outer connected domination
problems. In particular, we have strengthen the results of [14] and identify the
borderline between polynomial-time solvable input instances and NP-complete input
instances. The complexity of these domination problems in other subclasses of
chordal and bipartite graphs are open. This would be an interesting direction for
further research.

Funding This work is partially supported by DST-ECRA Project- ECR/2017/001442.

References

1. Bertossi, A.A. 1984. Dominating sets for split and bipartite graphs. Information Processing Letters 19
(1): 37–40.

2. Cormen, T.H., C.E. Leiserson, R.L. Rivest, and C. Stein. 2009. Introduction to algorithms. Cam-
bridge: MIT Press.

3. Cygan, M., F.V. Fomin, Ł Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S.
Saurabh. 2015. Parameterized algorithms. Cham: Springer.

4. Cyman, J. 2010. Total outer-connected domination in trees. Discussiones Mathematicae Graph Theory
30 (3): 377–83.

5. Cyman, J. 2007. The outer-connected domination number of a graph. Australasian Journal of
Combinatorics 38: 35–46.

6. Du, D.Z., and P.J. Wan. 2012. Connected dominating set: theory and applications. Berlin: Springer
Science and Business Media.

7. David, E. 2021. Lecture notes. https://11011110.github.io/blog/2021/02/19/loops-degrees-matchings.
html.

8. Fomin, F.V., F. Grandoni, and D. Kratsch. 2008. Solving connected dominating set faster than 2 n.
Algorithmica 52 (2): 153–66.

9. Favaron, O., H. Karami, and S.M. Sheikholeslami. 2014. On the total outer-connected domination in
graphs. Journal of Combinatorial Optimization 27 (3): 451–61.

10. Haynes, T.W., Hedetniemi, S., Slater, P. 1998. Fundamentals of domination in graphs. Hoboken: CRC
Press.

11. Haynes, T. 2017. Domination in graphs: volume 2: advanced topics. England: Routledge.
12. Keil, J.M., and D. Pradhan. 2013. Computing a minimum outer-connected dominating set for the class

of chordal graphs. Information Processing Letters 113 (14–16): 552–61.

123

Domination and its variants in split... 363



13. Karp, R.M. 1972. Reducibility among combinatorial problems. Complexity of computer computations
(pp. 85-103).Boston: Springer.

14. Panda, B.S., and A. Pandey. 2016. Complexity of total outer-connected domination problem in graphs.
Discrete Applied Mathematics 30 (199): 110–22.

15. Pradhan, D. 2016. On the complexity of the minimum outer-connected dominating set problem in
graphs. Journal of Combinatorial Optimization 31 (1): 1–2.

16. Renjith, P., Sadagopan, N. 2017. Hamiltonicity in split graphs-a dichotomy. Conference on algorithms
and discrete applied mathematics (pp. 320-331). Heidelberg: Springer, Cham.

17. Renjith, P., and N. Sadagopan. 2020. The Steiner tree in K1, r-free split graphs-A Dichotomy. Discrete
Applied Mathematics 15 (280): 246–55.

18. West, D.B. 2001. Introduction to graph theory. Upper Saddle River: Prentice hall.
19. Wu, J., M. Cardei, F. Dai, and S. Yang. 2006. Extended dominating set and its applications in ad hoc

networks using cooperative communication. IEEE Transactions on Parallel and Distributed Systems.
17 (8): 851–64.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

364 A. Mohanapriya et al.


	Domination and its variants in split graphs -P versus NPC dichotomy
	Abstract
	Introduction
	The total outer-connected domination in split graphs
	Hardness result: TOCD in \Delta ^I\eq 3 split graphs
	Polynomial result: TOCD in \Delta ^I\eq 2 split graphs

	The Outer-Connected Domination in split graphs
	Outer-Connected Domination in \Delta ^I\eq 3 split graphs
	Polynomial result: OCD in \Delta ^I\eq 2 split graphs

	Domination in \Delta ^I\eq 3 Split graphs
	Domination in \Delta ^I\eq 2 split graphs

	Funding
	References




