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Abstract

This paper aims to prove fixed point results for interpolative y-Hardy-Rogers type
contraction mappings in quasi-partial »-metric spaces. We also provide an illustrative
example to support our results. The results proved here will be utilized to show the
existence of the solution of a nonlinear matrix equation as an application.
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1 Introduction and preliminaries

In 1989, Bakhtin [5] introduced the concept of h-metric space. Later, Czerwik [9]
proved the results on b-metric spaces by weakening the triangle inequality coefficient
and generalized Banach’s contraction principle [6] to these spaces. Since then,
several researchers have published their work in fixed point theory for various classes
of the single and multivalued maps in b-metric space. For more literature on it, one
can see [8, 22, 31, 43] and the references therein. In 2004, Ran and Reurings [40]
followed by Nieto and Rodriguez-Lopez [37] in 2006 introduced the study of fixed
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point theorems for partially ordered sets along with the application in the matrix and
ordinary differential equations. For more applications, we refer the reader to
[7, 19, 32, 42] and the references therein.

Matthew [34] introduced non-zero self-distance, which is applied in computer
networking, data structure, and computer programming languages. The non-self
distance generalizes the metric to partial metric axioms, accommodating both metric
and topological properties of abstract spaces. Some of these properties are complete
spaces, Cauchy sequences and contraction fixed point theorem, which generalizes the
Banach contraction principle. Motivated by the work of Matthew [34], Karapinar
et al. [22] initiated the concept of quasi-partial metric space and proved results for the
existence of fixed points of self-mapping for this space. Later, Gupta and Gautam
[16, 17] further generalized the quasi-partial metric space concept to the class of
quasi-partial b-metric spaces. Furthermore, Gautam and Verma [12] discussed fixed
point results via implicit mapping in quasi-partial b-metric space.

Recently, Karapinar [24] modified the classical Kannan [20, 21] contraction
phenomena to an interpolative Kannan contraction one to maximize the rate of
convergence of an operator to a unique fixed point. However, Karapinar and Agarwal
[25] found a little gap in their work [24] about the assumption of the fixed point
being unique. They provided a counter example to verify that the fixed point need not
be unique and invalidate the assumption of a unique fixed point. Since then, several
results for variants of interpolative mapping proved for single and multivalued in
various abstract spaces. Aydi et al. [3] proved an interpolative Cirié-Reich-Rus type
contractions via the Branciari distance. Karapinal et al. [26] proved an interpolative
Ciri¢-Reich-Rus type contractions fixed point result on partial metric space. In 2019,
Karapinar [23] proved the results for interpolative Hardy-Rogers type contractions in
metric space. More information can be found in [2, 11] and the references therein.
Thereafter, Muhammad et al. [36] proved the results on the fixed point theorem of the
rational interpolative-type operator by using Dass-Gupta contraction mapping in
metric space. In 2021, Gautam et al. [15] proved an Interpolative Chatterjea and
cyclic Chatterjea contraction on quasi-partial »-metric space.

Furthermore, Errai et al. [10] gave some new results of interpolative Hardy-Rogers
and Ciri¢-Reich-Rus type contraction. Mishra et al. [35] proved the common fixed
point theorems for interpolative Hardy-Rogers and Cirié-Reich-Rus and Hardy-
Rogers type contraction on quasi partial b-metric space. Aydi et al. [4] proved w-
interpolative Ciri¢-Reich-Rus-type contractions. For more literature, we refer the
reader to [1, 38, 46] and the references therein. Finally, Karapinar et al. [27] proved
the fixed point theory in the setting of (a, [,V ¢)-interpolative contractions.
Karapinar [28] gave the results for interpolative Kannan-Meir-Keeler type contrac-
tion. Khan et al. [30] proved the result on the interpolative (¢, y)-type Z-contraction.
Karapinar et al. [29] proved new results on Perov-interpolative contractions of
Suzuki type mappings, Pant and Shukla [39] proved new fixed point results for
Proinov-Suzuki type contractions in metric spaces. Recently, Gautam et al. [13, 14]
extended some results to interpolative type contractions.

We describe some definitions and theorems, which will help to develop our main
results.

The property of quasi-partial b-metric space introduced in [16] is as follows:
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Definition 1 [16] A quasi-partial b-metric space on a non empty set .# is a mapping
qpy : M x M — RT such that for some real number s > 1 and all o,¢,{ € 4

(QPB1) gpp(0,¢) = qpi(0,¢) = qps(c,¢) = c =¢;
(QPB2) gpp(0,0) <qps(0,9);

(QPB3) gpp(0,0) <qps(s,0); and

(QPB4)  gps(0,¢) <slgps(a,{) +qps({,¢)] — qps({, 0).

A quasi-partial b-metric space is a pair (.#, gp;) such that .# is a non-empty set and
(M ,qpy) is a quasi partial b-metric on .#. The number s is called the coefficient of

(A , qps).

For a quasi-partial b-metric space (.#,qpy), the function dgy, : M x M — R
defined by dgp,(0,¢) = qps(0,¢) + qps(s,0) — gps(0o,0) — qps(c, <) is a b-metric
on /.

We defined R a set of all positive real number.

Lemma 1 [16] Every quasi-partial metric space is a quasi-partial b-metric space,
but the converse need not be true.

The following are fundamental convergence properties of quasi- partial b- metric
spaces.

Definition 2 [16] Let (.#, gpp) be a quasi partial - metric space, then:
(1) asequence {o;} C .# converges to a point o € ./ if and only if

qpp(9,0) = lim gpy(a;,0) = lim gpy(a,7i),

(i) asequence {a;} of elements of ./ is called a Cauchy sequence if and only if
1im gpy (07, 05) and lim qpy(a;, 0;)
ij—00 ‘ ij—00

exists and is finite,

(ili) the quasi-partial b-metric space (.#,qpy) is said to be complete if every
Cauchy sequence {g;} C .# converges with respect 1,,,, to a point ¢ € .#
such that

lim gpy (i, 0;) = qps (0, 7).

ij—00

Lemma 2 [16] Let (.#,qpy) be a quasi-partial b-metric space and (M ,d,,) be the
corresponding b-metric space. Then (.M ,dgy,) is complete if (M, qpy) is complete.

Lemma 3 [16] Let (#,qpy) be a quasi-partial b-metric space. Then the following
hold:

(1) ifgpy(a,¢) =0, then ¢ = ¢.
(i) if 0 # ¢, then gpy(0,¢) > 0 and gpp(c,0) >0
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Examples of quasi-partial b-metric space are given in [16] and [12] as follows:
Example 1 [12, 16] Following are the examples on quasi-partial b-metric space:

(i) Let .# =10,1]. Define gpy : M x M — R as gpy(0,¢) =| 6 —¢ | +o. It
is easy to show that (.#, qp) is a quasi-partial b-metric space.

(i) Let.# =[0,00). Define qpy, : M x M — R as gpp(0,5) = In(o,c). Then
(M ,qpy) is a quasi-partial b-metric space.

(iii) Let .# =[0,%]. Define gp; : M x M — R" as gpy(0,¢) =sino + sinc.
Then (A, qpy) is a quasi-partial b-metric space.

(iv) Let .4 =[0,1]. Define gpy : M x M — R as gpy(0,¢) = (6 —¢)* + 0.
(A ,qpy) is a quasi-partial b-metric space.

(v) Let.# =[0,00). Define gpy, : M x M — R" as qpy(5,5) = € + ¢°. Then
(A ,qpy) is a quasi-partial b-metric space.

The notion of an almost altering distance function introduced by Popa [44].
Definition 3 [44] A function ¥ : [0,00) — [0, 00) is almost altering distance if

(Y1) ) is continuous;
(P2) Y(¢) =0 if and only if t = 0.

Example 2 Following function satisfies the conditions imposed in Definition 3 on
the function :

t for ¢ = [0, 1];
y(t) =

for t € (1 .
g o € (1,00)

Now, we introduce some preliminary results:
The following results for interpolative Kannan contraction has been proved in [24]
as follows:

Definition 4 [24] Let (.#, 0) be a metric space, the mapping k : .# — ./ is said to
be interpolative Kannan contraction mappings if

o(ra, x5) < Afo(a, x0)]" [o(s, ke)] %, (1)
for all o,¢ € # with ¢ # kg, where 2 € [0,1) and a € (0, 1).

Theorem 1 [24] Let (.4, ) be a complete metric space and k be an interpolative
Kannan type contraction. Then x has a unique fixed point in M.

Karapinar et al. [25] gave a counterexample to Theorem 1, showing that the fixed
point may not be unique. Then prove the following Theorem.
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Theorem 2 [24] Let (M, 0) be a complete metric space. k : M — M be a mapping
such that

p(ka, ke) < 2p(a, ka)]" [p(s, ke)]' 7, (2)

for all ¢, ¢ € .#\Fix(x) where Fix(k) = {0 € .#,xo = c}. Then k has a fixed point
in /.

Further, Karapinar et al. [23] introduced the concept of interpolative Hardy-
Rogers type contractions as follows:

Definition 5 [24] Let (.#,0) be a metric space. We say that the self mapping
K: ./ — A is an interpolative Hardy-Rogers type contraction if there exists A €
[0,1) and o, B,y € (0,1) with o 4+ f + y<1, such that

| ———
Y (p(07 KQ) + p(g7 KO')) )

plo,5) < Ap(a, ) p(o, ko) o . )V |3
()

for all g,¢ € 4 \Fix(x).
Using Definition 5, Karapinar et al. [23] proved the following theorem:

Theorem 3 Let (4, p) be a complete metric space and x be an interpolative Hardy-
Rogers type contraction. Then k has a fixed point in M.

In this paper, motivated by the results of Gupta and Gautam [16, 17], Karapinar
et al. [23], Muhammad et al. [36], Gautam et al. [15] and Mishra et al. [35], we prove
a fixed point theorem for interpolative yy-Hardy-Rogers type contraction mappings in
quasi-partial h-metric space and obtain a fixed point results of such mappings. Some
examples are provided to demonstrate our results. Finally, some applications to non-
linear matrix equations are given to validate the usefulness of the result.

2 Main results

We commence this section by introducing the concept of interpolative Hardy-Rogers
type contractions in quasi partial b-metric space.

The following definition is the extended version of Definition 5 from metric space
to quasi partial b-metric space setting.

Definition 6 Let (.#, gpy,s) be a quasi partial b- metric space. We say that the self
mapping k : .4/ — ./ is an interpolative }y-Hardy-Rogers type contraction if there
exists s> 1, 6 € [0,1) and o, B,y € (0,1) with o + f + 7 <1, such that

Y (gps (Ko, ke)) < 5[qph( )] [qpb(a Ka)r-[qpb(gmg]y-
}lﬂfﬁf"/

|—|

= (gps (0, ,¢) + gps (s, K0))

for all o,¢ € #\Fix(x).
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We prove the following theorem.

Theorem 4 Let (M, qps,s) be a complete quasi partial b-metric space and k be an
interpolative Hardy-Rogers type contraction. Then K posses a fixed point in M.

Proof Let oy be an arbitrary point in .#. Define {g;} C .# by o; = g;_1 for all
i>1, if there exists iy € N with g; = 0,11, then o; is a fixed point of .#. This
complete the proof. Suppose now that ¢; # g;y1, for all i€ N. Then
qpi(0i,0i+1) > 0 for i € N. By taking ¢ = ¢;,_1, ¢ = g; and , using (4) we get

qpp(0i,0i1) =V (gps(koi_1, K0;) <qpp(Koi_1, K0;),

<o {qpb((fﬂ, ‘71‘)} ﬁ~ [qpb(a,-,l, ’WH)}

o

.[qpb(ahlcaﬂ}v

{siz |:qpb(0'i—1, Kxa;) + qpy (i, KUi—l)H 1—1—[3_77
<9é |:qpb(:un—l , .Ui)} ﬁ. {qpb(aiq ) O'i)] i [(]pb(ai7 O‘i+1)j| "/7
[slz |:qpb(0i—1,0'l-+1) + qpb(G,—, Gi)” l—o—p—y (5)

By (QOPSb4) and (5) we get

7

<9 [QPb(Gi—l ; Gi)} g [qpb(ai_l ; 0:’)} " [l]Pb(Gi, 0’i+1)]
{s% {S(qpb(ﬂi—la ;) + qps(ai, 0’f+1)>

1-a-f
—qpi(0i,0:) + qpi(0i, 0’:‘)”

o

S5[61Pb(0i—1,0i)]ﬁ~[QPb(Uz‘—hUz‘)} -[QPb(Gi,Gm)y

1 1-a—p—
{; Kfipb(ai—l ,0:) + qpy(0i, Gi+l)>)“ . (6)
Suppose that
qpb(ai—laUi)<qpb(aiaai+l)7
for some i > 1. Thus
1
5 (qpb(o-ifla 0i) + qpi (i, 0i+1)> <qpy(0i,0it1). (7)

Consequently, using (7) in (6), we obtain
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1B

) ,
qpy(0i-1,0:)

o
o -{qpb(ﬂi—lafff)} '{QPb(O-i;UHl)]
1—o—p—
|:qpb(o—i7 O—i+l):| )
- 1 B+u
0|qpp(0i-1,09) '[qpb(aiaGHI)

o+ r qo+p
} <0d|gpp(oi-1,0))| .

qpp (i, 0iy1) <
<

)

:| 1—o—f

{qpb(ai»ﬂiﬂ)
Since gpp (0,1, 0:) <qpp(0i,0i11) is a contradiction. Equation 8 is equivalently to

qpi(0i,0i11) < 0qpy(0i_y, 7). )

By induction in (9), we get

qpp (01, 0141) < 0qpp(0i-1, 01),
<qps(0i1,07),

< &'qpy(00,01).

Therefore, lim;_oo gpp (07, 0i11) = 0.
Now, we prove that gp,(o;,0;+1) is a Cauchy sequence. Let i,j € N, for any
positive integers such that j > i, using (QPSh4) we have

apy(0:,0;7) <slqpp(0i,0i11) + qpp(0iy1, 6;)] — qpu(Gis1, Oiy1),
= sqpp(0i, 0iv1) +5qpp(Gis1,05) — qpu(0it1, it1),
<sqpp(0i,0it1) +S2qpb(0i+1,6i+z) + - +Si7j71qpb(6j71,0j)
<[s8" + 576 + 5202 + -+ I Ngpy (00, 01),

<81 + 50+ 528 + -+ 570 gpy (00, 01),

U

s
< mqpb(aoaﬂl)- (10)

Since & € [0,1), we conclude that lsjs;& gpp(00,01) — 0 as i — oo. Therefore, {0;} is
a Cauchy sequence in .#. Thus gp,(0;,0;) — 0 as i,j — oc.

Similarly, suppose that ¢ = g; and ¢ = ¢, in (4), we have
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qpp(0is1,0;) =(gps(K0i, K0,-1)) <qpp(Koi, KGi—1),

1-a—p—

)
o 'y
Sﬁ[qpb 0, 0i-1 } {q Gz,m} -{qpb(ai—lﬂcai—l)]
1
[S [qpb(ama, 1) +api(oi- mca,)” ,

2
7

5[611917(01701 1)}13-[qpb(oi,am)]a-[qpb(ai—l,ai)] :
[1 [(]pb(ffnffi)+(IPb(0i71,Gi+1)”1 e (11)

By (QPSbh4), Lemma 3, Definition 2 and (11) we get

b

<o [qpb(Uh 0’:‘71)} ﬁ~ [Clpb(ﬂn O'i+1>} " [Clpb(0H, Gi)]
{é {S(Clpb(GH, o:) + qpi (i, 0’[+1))

l—a—f—y
— qpy(0i,0;) + qps (0, 0:’)”

<é [qpb(mfl, oi)} ' [qpb(ai, am)} . [qpb(offl, U[)} ’

E qub(aﬂ"’z‘) + gpp(0i, 6[+1))” o (12)

Suppose that,

qpb(ai*h Gi) <qpb(aia Gi+l)7

for some i > 1. Therefore,

1
3 <QPb(O'i71a i) + qps (0, 0i+1)) <qpp(0i-1,0). (13)

Consequently, using (13) in (12), we obtain

9

o 7

aps(0iv1,0;) Sﬁ[qpb(ai,l,a,,)}ﬂ.{qpb(ai,aiﬂ)} -{qpb(ﬂi—l,az‘)}

l—a—f—y

[CIPb(Gt—la 0’:‘)} ;
o l—a (14)

Sé[qpb(aivaiﬂ)] o[qpb(aiflaai)} )
1—o o+p
{qph(ﬂm ; Ui)] <o [qpb(ai—l ) 0;‘)}
Since gpp (0,1, 0:) <qpp(0i,0:+1) is a contradiction. Equation 14 implies that

qpi(0iy1,0:) < 0qpy(0i, 0i-1). (15)

There exists & € [0,1) such that
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qpy(0it1,0:) < 0qpy(0i, 0i1).

Through repeating the above procedure and (15) i-times, we conclude that

qpp(0iy1, 0;) < 0qpy(0i, 0i-1),
S 52qpb(0i7 i1 )a

< &'qpy(o1,00). (16)

Therefore, lim;_, gpp(0i11,0;) = 0, for i > 1.
Now, we show that gp,(0i11,0;) is a Cauchy sequence. Let i,j € N, for any
positive integers such that i > j, using (QPSb4) we have

qaps(0i,0:) < slgpy(01,0i-1) + qpp(0i-1, ;)] — qps(0i-1, 0i-1),
= sqpy(0i,0i1) +5qpp(0i-1,0;) — qps(0i-1,0i-1),
<sqpy(0i,0:-1) + 5*qpy(0i-1,0i2) + -+ 5 qpy(0ii1, 07)
<[s6 + 254 5F 44§ 5 gpy(01, 00),
<501 450" 452072+ + 920 gpy (a1, 00),
5!
< mqpb(m,ag). (17)

RSince 6 € [0,%), we conclude that lsf;],, gpr(01,00) — 0 as i — oco. Therefore,

{g;} is a Cauchy sequence in .#. Thus, gps(o;, 0;) — 0 as i,j — oco. O

Since (#,qpy) is complete, {0;} converges to some point { € .# with
qp»(¢,{) = 0. By Lemma 3 and Definition 2, we have

qpe($,0) = Jim gpy(0;, ) = lim gps(0;, 0;)-
Suppose that ; # xa; for each i > 1 and the increasing property of y we have

aps(0iv1, KC) = Y(gps(rai, k0)) <qps(Kai, k().
By taking ¢ = ¢; and ¢ = { in inequality (4), one gets
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o y

qpp(K0;, k() <0 [qp,,(a,-, C)} g [qp,,(a,-, Kffi)] [qph(é, KC)]
[siz [S(qpb(ffi—l,ffi) + gps(ai, 6i+1))

1—a—f—y
~ apb(01,01) + api(0. )|

o Y

§5{qpb(6i,l)r-{qpb(UhKUz‘)] [qpb(C’KC)}
[1 [(qpb(ai, K{) + gps (L, m))“ o (18)

s
Suppose that,
qps (0, KC) <qps((, ka1),

for some i > 1. Therefore,

~ (apolaps(o10) + aps(¢, w01)) < apilC, ). (19)

Consequently, using (19) in (18) as i — oo we get
B z y
qps(Koi, k() < 5[qpb(6u C)} ~[qpb(6i, Kai)] [qpb(C, KC)}

- 1—a—f—y
qps (¢, Kai)]

)

o

qpb(C,KC)Sé[qpb(i,é)]ﬁ-[qpb(C,KC)} -[qpb(C,KC)r
:qpb(C, KC)] re

§5[qpb(é, KC)] Hﬂ,

i

:qpb(C, KC)} < 5[qpb(é, KC)] Hj, (20)

we find that gp,({, k() = 0, which is a contradiction. Hence, k{ = (.
By using the condition imposed in Definition 6, we formulate the following
corollaries:

Corollary 1 Let (.4, qpy) be a complete quasi partial b-metric space. Assume that
K : M — M satisfy the conditions of Theorem 4 if any of the following contractions
is applied:

(i) The following contraction is called Reich-Rus-Ciri¢ type contraction
mapping

B I—o—f

lﬁ(qph(KG,Kc))Sf[qpb(a,c)} {qpb(a, Ka)r-[qpb(;,xs] , (21

for all 6,¢ € ./ \Fix(x), where 4" € [0,1) and oo+ f<1.
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(i)  The following results for Chatterjea type contraction mappings
I—o

Y(gpy(ro, kg)) <P {qpb(o, Kc)} B [siqub(c, m} , (22)

for all ¢,¢ € .#\Fix(x), where 2 € [0,1) and « € (0, 1).

We demonstrate our results with an example below.

Example 3 Let # = {¢,¢,0,(}. Deﬁne complete quasi partial b-metric as
qps(0,¢) = (6 — ¢)* + o with (1) = st and s = 2, that is

The geometrical representation of .# defined by gpy : M4 X M — # given in
Table 2 below.
We define self mapping 7 on .# as

<C € & 6)
K: ,
€ & € ¢

shown in Tables 1 and 2. Thus, € and ¢ are two fixed points of «. To see this, consider
the following cases

Case 1

For (0,¢) = (€, €) we have

aps(0,¢) = gpple€) = (e—€)’ +e=0+e=¢,

apy (K0, K) = qpy (e, k€) = qpp(e,€) = (€ — €)* + € = ¢,
aps(0,k0) = qpy(e,e) = qpy(e,€) = (e—€)’ +e=¢,
apb(c,15) = qpy(e, ke) = qpy(e,€) = (e —€)* +e=¢,
apy(0,k2) = qpy(e, ke) = qpple,€) = (e — ) + €= ¢,
qpv (<, k0) = qpy (e, k€) = gpy(e,€) = (e —€)’ + e =€

Using all of the above inequalities in (4) and the property of s, we obtain

Table 1 The partial quasi partial b-metric for an element in .#

aps(0,5) ¢ € € 0
¢ ¢ (L= +¢ (L—o’+¢ (=07 +¢
€ (e—0)7 +e € (e—e) +¢ (e—0) +¢
& (e—0*+e (e—e)i +¢ & (e—0)7 +¢
0 0—-0+0 0—e?+0 (0—e) +z 0
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Table 2 The geometrical/

cartesian product form for an Py M XM ¢ ¢ € 0

clementin ¢ (S I S B (G B ()
e ©0) (6,) (6,2) (5.0)
: ©0) (2.6) (&,9) (5.0)
0 (0,9 (0,€) (0,¢) (0,0)

Btoty 1—o—f—
<[] [2_26} e (23)
s
1 Btoty 12eq1-2—f—
< = .
26+1_5|:€:| [SZ}

Case 2
For (o,¢) = (¢,¢) we have

app(0,9) = qpy(e.8) = (e—2e)’ +e=0+e = ¢,

qpy(ko, kS) = qpy(Ke, Ke) = qpy(e,e) = (6 — &)’ +e=2¢,

qps(0,10) = qps(e,ke) = qpy(e,e) = (e — &)’ + &=,

apo(c. k) = qps(e,ie) = qpyle.e) = (e — &)’ +2 = &,

aps(0,15) = qps(e, k) = qpy(e,8) = (6— )’ +e=¢,

aps(c, k0) = qps(e, ke) = qpy(e.e) = (e — )’ +e==¢.

Using all of the above inequalities in (4) and the property of , we obtain

Y(y) <o M g [y] " M g [Slz (e+ 8)} 1_0(_,;_;,’

< |:8:| /3+oc+"/. [%} 1—o—p—y

52 ’

1 ptot+y r2g71-o—p—y
< 5[ } [7} . 24
2e+1— ¢ 52 (24)

By choosing the appropriate values of €, ¢, d, o, § and y in .#, using (23) and (24), we
conclude that all assumptions of Theorem 4 are satisfied. It is observed that a self-
mapping k has more than one fixed point in .#. Thus, x posses a fixed point.

3 An application to non linear matrix equations

In this section, we prove the existence of the solution for the non-linear matrix
equation. We use one application to utilize the results obtained in Theorem 4 where a
fixed point solution is applied in quasi partial b-metric space setting. In literature, the
non-linear matrix equation initiated by Ran and Reurings [40, 41] proved a fixed
point theorem in partially ordered sets and some applications to matrix equations.
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The Hermitian solution of the equation X = O + A" X~!.4* is the matrix equation
arising from the Gaussian process. The equation admits both positive definite
solution and negative definite solution if and only if /" is non-singular. If 4" is
singular, no negative definite solution exists. Non-linear matrix equations play an
important role in several problems that arise in the analysis of control theory [45, 47]
and system theory [48-50].

The main concern of this section is to apply Theorem 4 to study the following
non-linear matrix equations which are motivated by Jain et al. [18], Lim et al.
[32, 33], Ran and Reurings [40, 41] and several others.

c=0+ z”: N ()N, (25)
=1
0 =0—Nk(@) N — ... — N K(0) Ny, (26)

where & (n) is a set of n x n Hermitian matrices, p(n) is a set of n x n positive
definite matrices and p(n) C #(n), Q € p(n), A" is n X n matrices and x; p(n) —
p(n) is a continuous order preserving map such that x(0) = 0.

The set #(n) equipped with the trace norm ||.||,. is a complete partial b- metric
space [40] and partially ordered with partial ordering <, where ¢ < ¢c=¢ > @.

The following lemmas are inspired by Ran and Reurings [40, 41] will be useful
for development of our results.

Lemma 4 [40] If 0,c = 0 are n X n matrices, then

0<tr(a,¢) < |lclller(o)]. (27)

Lemma 5 [40] If 0,c = I,, then
llo|l < 1. (28)

We prove our results by establishing a fixed point for a self mappings for the
following non-linear matrix equation in quasi-partial b metric space.

=0+ i: Nx(a) Ny, (29)
=1

where Q € p(n), A7 is n x n matrices, 4] stands for conjugate transpose of
N € #(n) and k;p(n) — p(n) is a continuous order preserving map such that
k(0) = 0.

Theorem 5 Consider the class of non-linear matrix Equation 29 and suppose the
following condition holds.

(i) there exists Q € p(n) with
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Q=0+ NiK(Q)N,
i=1
(i) forall o,¢ € p(n),
n n
oc<c¢c=> Z Nx(a) N < Z Nr(S) N,
i=1 i=1
(i) there exists € (0,4) for which Y7, AT A;<6S, and
YL N i(Q) A > 0 such that for all u<v we have
o<¢=
(iv)  there exists 0,¢ € 2(n) and 6 € (0,4) such that
B o Y
I = xell, <c <olle = sll, | [lle = woll, | " [Ils = xsll, | -
1 1o
[ Sl =wsll, +ls—wall,)] " G0)
Then, the non linear matrix equation (29) has a solution in p(n) C #(n).
Proof Define « : p(n) — p(n) by

k(o) =0 + i Nk(a) Ny,
=1

(31)

for all ¢ € p(n). Then the fixed point of the mapping « is a solution of the matrix
equation (29).
We define a quasi partial b-metric gp;, : p(n) — p(n) — Ry by

2
qps(a,¢) =lo —<ll;, +llall,

Let g,¢ € p(n) with ¢ < ¢, then x(g) < k(c). So for gpp(c,¢) > 0 and by using
(i) — (iv) we have

qpp (K0, K¢) =|lKo — g, = [[ka — relf,

= [lxo — rc||* + ||xall,

=Y Niw(o) N =Y N Tr(Q) |
i=1 i=1

0+ N ir(a) A
i=1
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qpb(aa C) = ||O- - g||tr:>HO- - QHL

Using (32, 33, 34, 35, 36, 37) in (30) we obtains

This implies that

(33)
= llo = <II* + ]
aps(0,10) = [ = K0, =0 = xa]],
= ||O- - KO—”2 + ||O-H’ (34)
~ o0~ Zw )N ilP + o]l
apy(s;xk¢) = lls = el =lls — welly,
= llc = xecl* + llsll, (35)
~llo-0- Zm* NP + o]l
qpi(0,xc) = ||o — kel|,=|lo — rcl|;
= Jlo = w5l + [l 56)
~lo—0 Zm* DN + o]l
apo(s, k) = |ls = Kol =l = xol],
= lls = xall” + il -
=lo—0— ZA/* YA+ Il
||Zmzw,~(x<a>—x(s))ll+
IIQ+Z/V* o)1l <6[lo el +lol]
llo—0- Zw* Wil +oll]
lllo—0- Zm* o)W il2+ ol
[Slo—0- Zm* DN+ llol+
- 2 1—o—f—y
lo—0=3 wintor vt +1ch] . (38)
i=1
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Ik —welly <c<oflls —ell] " [lle ol ] " [ie — el ]
[ o el + e = woll)] (39)

Consequently by the property of iy we get

W(aps(a, 1)) <8 [api(o g)} [apse,0)] " [amnte. ]

1 l—a—f—y
[ aplo,c) + amnleko))] (40)
Therefore, from Y ., A Fk(Q)A"; > 0, we have O <«(Q). Thus, by using Theo-
rem 4 we conclude that x posses a fixed point in p(n) and p(n) € 4. ]
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