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Abstract

In this paper, we present a novel integral transform known as the 2-D Hyper-complex
(quaternion) Gabor quadratic-phase Fourier transform (Q-GQPFT), which is
embodiment of several well known signal processing tools. We first define the 2-D
Hyper-complex(quaternion) quadratic-phase Fourier transform (Q-QPFT) and then
we propose the definition of novel Q-GQPFT, which is a modified version of the
classical windowed quadratic-phase Fourier transform to quaternion-valued signals
and we study various properties of the proposed Q-GQPFT, including Moyal’s for-
mula, reconstruction formula, isometry and reproducing kernel formula. We also
establish the Heisenberg and logarithmic uncertainty inequalities for the Q-GQPFT.
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1 Introduction

In time-frequency analysis transformations like Fourier transform, fractional Fourier
transform and linear canonical transform have been studied as various types of the
well known integral transforms. Recently Castro et al. [10] have defined the
quadratic-phase Fourier transform (QPFT) as a generalization of the classical integral
transform by taking the kernel in the conventional exponential form. With a slight
modification in [10], the authors in [7, 22] have defined QPFT with five parameters
A, B, C, D, E of a function which are indeed real parameters as

%WWZAMMNWW, (1)

where A,(x,w) is a quadratic-phase kernel and is given by

B .
AM (x7 W) — 2_me—z(Ax2+wa+CWZ+Dx+Ew) (1 2)

and the corresponding inversion formula is given by

f@zﬁamwwmmm, (1.3)

where 4,B,C,D,E € R, B 0. I It is here worth to mention that if we take all
parameters equal to zero except B = —1, the QPFT boils down to the classical
Fourier transform. If we take D = F =0, we will end up with linear canonical
transform. On taking 4 = C = cotf, B = —csc ) and D = E = 0 the conventional
fractional Fourier transform is obtained. Moreover we can obtain Fresnel transform
withA:—B:C:%andDzEzO.

Talking again about these real arbitrary parameters, an appropriate selection of
them is important. Due to this a sense of rotation as well as shift can be inculcated in
both the axes of time and frequency domain. Hence can be used in the better analysis
of chirp-like signals which are employed in radar and other communications systems.
Due to the freedom of degrees, the QPFT has arrived an efficient tool in solving the
problems harmonic analysis, image processing, sampling and so on. The general-
ization of integral transforms from real and complex numbers to the quaternion
setting is popular nowadays for the study of higher dimension viz: the quaternion
Fourier transform (QFT) [14], the quaternion linear canonical transform (QLCT)
[19], the fractional quaternion Fourier transform (Fr-QFT) [28], the quaternion offset
linear canonical transform (QOLCT) [5, 6]. In past decades, quaternion algebra has
become a leading area of research with its applications in color image processing,
image filtering, watermarking, edge detection and pattern recognition (see [23, 26]).
The Fourier transform (FT) in quaternion setting i.e.the quaternion Fourier transform
(QFT) [8] plays a significant role in the representation of hyper-complex signals in
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signal processing which is believed to be the substitute of the commonly used two-
dimensional Complex Fourier Transform (CFT). The QFT has wide range of
applications see ([2]). On the other hand the uncertainty principle (UP) plays a vital
role in various scientific fields such as mathematics, quantum physics, signal
processing and information theory [11]. The uncertainty principles associated with
QFT are given in [17, 18] and the extension of UPs in the domains of QLCT,QOLCT
are given in [1, 20]. These UPs have many applications in the analysis of optical
systems, signal recovery and so on see ([27]). Therefore modern era of information
processing is in dire need of quaternionic valued signals and therefore is a very hot
area of research. Since the QPFT is a five parameter class of linear integral transform
and has more degrees of freedom and is more flexible than the FT, the FRFT, the
LCT but with similar computation cost as the conventional FT. Due to the mentioned
advantages, it is natural to generalize the classical QPFT to the quaternionic algebra.

So motivated and inspired by this, we shall propose the novel quaternion quadratic
phase Fourier transform. Furthermore, keeping in mind that the Q-QPFT takes
quaternion signals from time domain to the frequency domain but is unable to
perform time frequency localization simultaneously due to its global kernel. So to
overcome this drawback we used Q-QPFT to generate a new transform coned as the
2-D Hyper-complex (quaternion) Gabor quadratic-phase Fourier transform (Q-
GQPFT). It is embodiment of several well known signal processing tools. Keeping in
view the contemporary trends in the time-frequency analysis, it is both theoretically
interesting and practically useful to propose a generalized quaternion Gabor
quadratic phase Fourier transform that can efficiently localize the quadratic-phase
spectrum of a non-transient quaternion signal in the time-frequency plane.The main
purpose of this paper is to rigorously study the 2-D Hyper-complex (quaternion)
Gabor quadratic phase Fourier transform.

The highlights of this study are itemized below:

« To propose the definition of the novel 2-D Hyper-complex (Quaternion) Qudratic-
phase Fourier Transform (Q-QPFT).

« To propose the definition of novel integral transform coined as the 2-D Hyper-
complex (quaternion) quadratic-phase Fourier transform (Q-QPFT).

o To study various important properties of the proposed transform, including the
Moyal’s formula, reconstruction formula, isometry and reproducing kernel
formula.

o To establish the Heisenberg and logarithmic uncertainty inequalities associated

with the 2-D Hyper-complex(quaternion) quadratic-phase Fourier transform (Q-
QPFT).

The rest of the paper is organised as. In Sect. 2, we introduced the definition of the
novel 2-D Hyper-complex(Quaternion) Qudratic-phase Fourier Transform (Q-QPFT)
and some basic results which are used in subsequent sections. In Sect. 3, we formally
introduced the notion of novel 2-D Hyper-complex (Quaternion) Gabor Quadratic-
Phase Fourier transforms (Q-GQPFTs).
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The relationship between Quaternion Gabor Quadratic-Phase Fourier Transforms
and Quaternion Quadratic-Phase Fourier Transforms is established here and several
basic properties are investigated. In Sect. 4, we established an analogue of the well-
known Heisenberg’s uncertainty inequality and the corresponding logarithmic
uncertainty principle for the Q-GQPFT. Finally, a conclusion is extracted in Sect. 4.

2 2-D Hyper-complex Fourier transform and 2-D Hyper-complex
Quadratic-phase Fourier transform

There are many possible definitions of hyper-complex Fourier transforms dictated by
the choice of the algebra of imaginary units {ej,e,...,e,}, . In this paper, the
dominant role plays the hyper-complex FT with imaginary units satisfying the
multiplication rules of the Cayley-Dickson algebra.

2.1 2-D Hyper-complex Qudratic-phase Fourier Transform

In this subsection we will introduce the definition of the novel 2-D Hyper-complex
(Quaternion) Qudratic-phase Fourier Transform (Q-QPFT) which is a generalization
of the classical Qudratic-phase Fourier transform [9]. Because of non-commutative
property of quaternion multiplication, there are three different types of the Q-QPFT:
the left-sided Q-QPFT, the right-sided Q-QPFT, and the two-sided Q-QPFT. In this
paper, we mainly focus on the two-sided Q-QPFT.

Definition 2.1 (Q-QPFT). Let p, = (A4, By, Cy, Dy, E) for s = 1,2 then the two-
sided Q-QPFT of any signal f € L?>(R?, H) is defined by

0L 11w = 3= [ Al (6 WO (2, wa)a 1)

where w = (wy,w) € R? t = (f,,) € R* and ALI (t1,w) and A’;lz(tz,wz) are
kernel signals given by

ALI (tl,Wl) = exp{i(Altf + Biyywy + Cywy + D1y +E1W1)}. (22)
/\Lz (lz, Wz) = exp{j(Aztg + Botow, + Cowy + Doty + E2W2)}. (23)
Where 4, By, Cy, Dy, Es € RyBg #0 and s = 1, 2.

Proposition 2.2 (Moyal’s formula for Q-QPFT). Let f,g € L*(R*,H) be two
quaternion signals, then we have

(@ [11,a", [g]) = @mg» (2.4)

For f = g, we have
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1111 = B B2l1Qy ,, 1. (2:5)

Lemma 2.3 (Reconstruction formula for Q-QPFT). Every signal f € L*(R* H),
can be reconstructed back by the formula:

f() =09, Mo

. 2.6
B | A )@l A (i wa)aw, o

3 2-D Hyper-complex Gabor Qudratic-phase Fourier transform

In this section, we formally introduce the notion of novel 2-D Hyper-complex
(Quaternion) Gabor Quadratic-Phase Fourier transforms (Q-GQPFTs). We shall
establish the relation between Quaternion Gabor Quadratic-Phase Fourier Transforms
and Quaternion Quadratic-Phase Fourier Transforms and then investigate several
basic properties of (Two-sided)Q-GQPFT which are important for signal represen-
tation in signal processing. Let us start with definition of Q-GQPFT.

Definition 3.1 (Q-GQPFT). For s = 1,2 let u, = (4y, Bs, Cs, Ds, Eg),Bs £ 0 be a

given set of real parameters then the two-sided Q-GQPFT of signal / € LZ(IRZ, H) is
denoted and defined by

Q¥ ) x) = o / AL (6 wWOROFE— DA, (w)dt (3.1)

2

where w = (wy,wy),t = (t1,%) € R* and AL1 (t1,w1) and ALz(tg,wz) are kernel
signals given by (2.2) and (2.3), respectively.

By appropriately choosing parameters in u, = (4y, By, Cs, Dy, Es),s = 1,2 the Q-
GQPFT (3.1) gives birth to the following existing time-frequency transforms:

« For u, =(0,1,0,0,0),s = 1,2, the Q-GQPFT (3.1) boils down to the Quater-
nion-Gabor Fourier Transform:

1 . [
Qi) = - [ Emergi—xeneat (32)

« For u, = (45/2B;,—1/By, Cs/2By,0,0),s = 1,2 and multiplying the right side of
(2.2) by 1/+/iB; and right side of (2.3) by 1/+/jBy, the Q-GQPFT (3.1) reduces to
the Quaternion-Gabor Linear Canonical Transform [12].

« For p, = (A,/2B;,—1/By, Cy/2By, ps/By, —(psqs + BCs)/Bps),s = 1,2 and
multiplying the right side of (2.2) by 1/4/iB; and right side of (2.3)by 1/+/jB,
the Q-GQPFT (3.1) reduces to the Quaternion-Gabor Offset Linear Canonical
Transform [3, 32].
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For lucid illustration of the proposed quaternion Gabor- quadratic phase Fourier
transform (Q-GQPFT) we present an example:

Example Given the the rectangular window function

. 1 1
d)(t):{l’ if 4] §7|f2\ 3

0, elsewhere

Consider a 2D Gaussian quaternionic function of the form f(¢;, ) = e~ (A +F25) for
f1, b, € R are positive real constants.
The Q-GQPEFT of fis given by

@ 1, [£1(W,%)
:_/ AL (11, w0 )/ (OB(E— )AL (2, w2) e

x1+1/2 ‘C2+1/2
/ A112+Blt1w1+C]W] +D]t1+E1W1) ﬂlt%
X1— 1/2 X2— 1/2

X e (Azt%+th2W2+C2W2+D2t2+E2wz)7ﬁ2t§dt

1 i(Cyw+E, X]H/Z'A if ) +B C D
__ez( Wi+ 1w1)/ el(( 1 +ify) i +Bitywi +Crwi + lt'dl‘]
X

_27T —1/2

x2+1/2
X / e/((AZ+f/32)l§+32f2W2+C2W2+D2t2dtz % ef(C2w§+E2wz).
Xz*l/z

For simplicity, we choose f§; = i4; and 8, = j4,, we obtain from (3.3)

Dy 45 %)

1 X|+1/2
_ _ei(Clw%JﬁE]w]) / ei(BIWI +Dy)t dt]
2n x1—1/2

xn+1/2 .
X / e’(BZW’z+thz)tzdt2 % (Cowy+Eawa)
xzfl/z
ei(B]W]XI +G W%JFDXI +E1W') Biwi+Dy Bywi+Dy
= ( S, )
2n(Bywy + Dy)
Bywaxy+Cowi+Dxy+Eywy)
(Bawy + D»)
_l ei(Blwlxl+C1Wf+Dx1+E1w1)Sl-nc M
V21 2
« sinc (M) T Bt v D B

2 V2

Before studying some vital properties of Q-GQPFT, we first establish the relation
between Q-GQPFT and Q-QPFT. Let us begin by revisiting the Definition (3.1):

X

Bywy+Dy BywyiDy\ € (
(2 )
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Qi 1 (W, %) = QL (OBt —x)](W). (3:3)
Applying inverse Q-QPFT on both sides of (3.3), we have
F@)(t —x)

= Qul uz[@(b e 19, )1 ()
= @)@#1 2[@§ll1 2 V] (W X)Kt)

_ (3.4)
BB -
_B 2'/ (W)@l WA, (£, wa)dw

B B
e RS AR I AT

Now we will study some fundamental properties of Q-GQPFT (3.1)

3.1 Some properties of Q-GQPFT

In this subsection, we establish some fundamental properties of the Q-GQPFT. These
properties are vital in signal processing.

Theorem 3.2 Let ¢,y € L*(R*,H) be a non zero window function and f,g €
L*(R*, M), then Q-GQPFT defined by (3.1) satisfies the following properties

1. (Linearity)
Qiﬂﬁﬂlvﬂz [“f + ﬁg] (w? X) = OC@E#H]H“Z [f] (w) X) + ﬁﬁyaﬂl-ﬂz [g] (W7 X) (3'5)
2. (Translation)

RACERNILRY
i(A,k? w i
- e(Alk,+Blk1 1+D1k1)@y7ul#2 [eZAlkltlf(t) (36)

2iArky tz] ( k)ei(A2k§+sz2W2+D2kz) .

X e W, X —

3. (Modulation)
Q1 [€7 1 (852 (W, x)

B;z'()’|+2”>’131 wi+y, E1B1)
— & (3.7)
y —’(y2+2nBsz+,2Esz)

8 @E’#uuz L/ (t)] (w + §7X)e 2

4. (Conjugation)

@H

(NN

[FO1w,x) = Qp_,, _, F(O](W, ). (3-8)
5. (Anti-Linearity)
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Qi g (D1 (W, ) = 2D, [F(O](W, %) + BQy, L [F(O)(W,x). (3.9)

6. (Parity)
®E¢‘;Ll,yz [Pf(t)]( ) Q(]S 5k ’[ ( )](—W, —X), (310)
where P¢(t) = ¢(—t), and u, = (4s, By, Cy, =Dy, —E;),s = 1,2.

Proof We avoid the proof of Theorem 3.3 as it is straightforward. Ul

Lemma 33 Let f € IP(R* H), ¢ € LY(R*,H), and p,q € [1,00) with 1§+§ =1,
we have

1
| Qg (O] (W, )] < 22 e o) 1@ lla w2 o) (3.11)

Proof We have from Definition (3.1) and Holder inequality
\%l W O1w,%)]

tl,Wl )¢(t— X)AJ;JZ(IQ,WZ)dt
) |
< (L

(2

< (frora ([ o)
= ﬂ\V||U<R2,H>ll¢”m<w,H>

This completes the proof. O

H (t1,w1) Hf o(t—x HA tz,wz)‘dt) (3.12)

Note for p = g =2 (3.11) gives the following important result.

Theorem 3.4 Letf, ¢ € L*>(R*, H), where ¢ is a non zero window function then Q-
GQPFT defined by (3.1) is bounded and uniformly continuous on the time—frequency
plane R* x R? and satisfies

1
194,10 ONW ) < Ml o | Dllacen - (3.13)

In the remaining part of this section we are going to prove main properties of Q-
GQPFT viz: Moyal’s formula, reconstruction formula , isometry and reproducing
kernel. Before investigating them we shall introduce two quaternion valued constants
as:

For nonzero pair {¢, }/} of window functions in L?(R*, M), we define quaternion
valued constants Cg , and Cy with 0<Cy y,Cy <00 by
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Cop = <¢7W>L2(R2,H) and  Cy = ||¢Hi2(R2,H)- (3.14)

Theorem 3.5 (Moyal’s formula). Let f,g € L*(R*>,H) and ¢,\y are non-zero
quaternion valued window functions. Then we have

[<®y,m-uz 1, anﬂnﬂz [g]>]0= ﬁ [Cou (S 2)], (3.15)

Proof We have

[<®$>#1«,H2V] w 1,1 [g]>}
- ‘/Rz/ @zb,u.,uz[/f}(W,X)W] dwdx

/ / I:( [N WX/ A“ t]7“’1 l//(t*X)A (tz,Wz)dt:| )deX
2 Jre 14 1 123 0

= ﬂ/IRZ /D@Z {/{RZ @f‘”wz [f1(w, x)A;li(tl,wl)@d/(t - X)AE(tz,Wz):| dtdwdx

[ L Ga [ e, s nons0a owsjaw Jite - x)a(0] ava.

(3.16)
Applying (3.4) in (3.16), we obtain
|:<®E-bﬂﬂl M V]’ @yﬂl N [g}>:| 0

lBlel /R /R ()t —x)y(t — X)g(t)] dtdx
S — _ (3.17)

|B]Bz| URZ 4G )<i>(t—X)dX/[Rz f(t)g(t)dtL

1
= BB [Cou(fr8)]o

Which completes the proof. -

As an easy consequences of the previous theorem, we immediately obtain the
following important results:

1. Iff =g, then

(@1 0] = gy oW ], G18)

2. If ¢ = Y.then
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(10 l2)] = 7 g o) (3.19)

3. Iff =g and ¢ =y then

(@1 Q)] = g eV ], G20

Note (3.20) is known as the energy preserving relation for the proposed Q-GQPFT.
And for Cy = 1 the proposed Q-GQPFT (3.1) becomes an isometry from L?(R*, H)

into L2(R?,H). In other words, up to the factor |B;B,|”', the total energy of a
quaternion-valued signal computed in the quaternion Gabor quadratic-phase Fourier
domain is equal to the total energy computed in the spatial domain.

The up comming theorem guarantees the reconstruction of the input signal from
the corresponding Q-GQPFT(3.1).

Theorem 3.6 (Reconstruction formula). Every 2-D quaternion signal f € L*(R*, H)
can be fully reconstructed by the formula

_ |BiBy]
= s [ A )@ 1A (6w )] awa
(3.21)
where Cy  is given by (3.14)

Proof By employing Moyal’s formula(3.15), we have for any arbitrary
g € LX(R* H)

—_—

|Bl | [C¢‘l//<fvg>]o
[<@E/->Du1 Hz[f] @W Histty [g]>}0

®¢ Hy Hz W X)Q:}/—/ﬂ,ul‘uz [g] (W7 X):| OdeX

\

R? JR?
1 .
=5 . {@aﬁ o 1 (W, X (/ A (b, w)g(O)y(t— x)ALz(tz,Wz)dt)Ldex
1 .
=0 [ A )@, L v A (6, W)t — x)g(6]| awdxdt

2 Rﬁ
:2L K/R /[R (0, w1) Qg L, 1V, XA, (tz,wZ)w(t—x)dwdx,g(t)>] .

0

Since g was chosen arbitrary element of L?(R? H), it follows that
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_ |BiB,y| S
= st | LA )0, v 08 w6 - )] e

Which completes the proof. Ul

Remark 3.7 By using the relation between Q-GQPFT and Q-QPFT defined in (3.3)
and (3.4), we can derive the alternative form of reconstruction formula as:

On multiplying both sides of (3.4 ) from the right by ¢(t — x) and integrating with
respect to dx, we get

© [ 16— ax

BB | .
| 152 ; RZA z,ll(tl,wl)@¢#l HZV]}(W)A—]M(tz,wz)(]S(t—x)dwdx.
(3.22)
Now using (3.14) in (3.22), we obtain

_|BiBy
2ﬂC¢

/[REZ /[R{Z l'ul thwl Q)d’ y Mz[f]}(w)A_j,uz(tZaWZ)¢(t — X)deX
(3.23)

Which is required alternative form.

In the next theorem, we shall investigate the reproducing kernel property for the
Q-GQPFT(3.1). Firstly we define a family of analyzing quaternion functions
(daughter window functions) depending on parameter p, = (4y, By, Cy, Dy, Es), s =
1,2 as

. L. .
al,)’c“ = %Alm (fl,W1)¢(t - X)A.lyz (tZa WZ) (324)

where Aiy, (t1,w1) and Aj, (t2,w2) are given by (2.2) and (2.3) respectively.
We are now ready to investigate the reproducing kernel property for the Q-GQPFT
3.1).
Theorem 3.8 (Reproducing kernel). Let Cy € H defined in (3.14). If
By B, | ,
s (W, x; W, x —< ffv‘;‘“z,(]ﬁiv',’f?>, 3.25
sb( B ) (27‘[)2 Cy X , ( )

then Ky (w,x; W, x’) is a reproducing kernel, i.e.

@iul‘ﬂz[ﬂ(w’,x’):/ / @E;”‘M.uz[f](w,x)K(b(w,x;w’,x’)dwdx. (3.26)
R? JR? '

Proof By virtue of (3.23), the definition of Q-GQPFT 3.1) becomes
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@EHMQVKWIXU
/ AM l‘l,Wl )(]’)(t—X’)A] (l‘g,W’z)dt

3.27)
i B, Bz\// (
27‘C RZ{AM( (27‘CC¢ R J 2 M tl’wl @47/1 M [f](W X)

x A—j,, (2, w2)p(t — x)dwdx)q’)(t - X )Ajz(tz7 wz)}dt
By using (3.24) in (3.27), we have

Qi 4 W, X)

_ H |B1B2| M] NSNCHE)
~/[Rz Az {®¢¢H1~Hz V]( w,X < / d) d) dt) }dde (328)

/ / (W, X) Ky (W, x5 W', x)dwdx.
[R2

Which completes the proof. O

4 Uncertainty principles for quaternion Q-GQPFT

Heisenberg’s uncertainty principle lies at the heart of any time-frequency transform, as
it enables us to detect the optimal simultaneous resolution in time and frequency
domains.In signal processing an uncertainty principle states that the product of the
variances of the signal in the time and frequency domains has a lower bound.In Refs.
[13, 21] uncertainty principles for the two sided quaternion Fourier transform and the
two sided quaternion Gabor Fourier transform had been studied. The uncertainty
principles for linear canonical transform,windowed linear canonical transform and
their counter parts in quaternion domain had been discussed in Refs. [3, 4, 15, 16, 29—
31]. Recently, the authors established the uncertainty principles associated quadratic-
phase Fourier transform and short time quadratic-phase Fourier transform in Refs.
[24, 25]. In this Section, we shall establish an analogue of the well-known
Heisenberg’s uncertainty inequality and the corresponding logarithmic uncertainty
principle for the Q-GQPFT as defined by (3.1). Prior to establishing the Heisenberg’s
uncertainty principle for the proposed transform, we have the following lemma.

Lemma 4.1 Let ¢ € L*(R?,H) be a nonzero quaternion window function and let
@EMM [f] € L*(R*, H) be the Q-GOPFT of any signal f, then we have

Cy / 2IF(8) [t = / / 0!, (@),  Mwx}Oddx,  (41)
where s = 1,2

Proof Using the relation between Q-GQPFT and Q-QPFT (3.4), (3.14) and
elementary properties of quaternions, we have
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¢ [ lrwba= [ 2irwbar [ o xrax
= [ [ ArwPio - au
= [ [ eroP@a=s a

= [, [ era= oy

:/ : / 0195, @y, (v )} (0 dtdx.
R* JR

O

We are now in a position to prove the Heisenberg uncertainty principle for the Q-
GQPFT

Theorem 4.2 (Heisenberg for Q-GQPFT). Let ¢ € L>(R?,H) be a nonzero
quaternion window function and let Qy,uwlz [f] € L*(R*,H) be the Q-GOPFT of
any signal f, then the following inequality holds:

1/2
{/[R /IR WS|ED¢H 0 [f](“?xﬂ dibd!(}
2 o2 sH st

1/2 C
2 2 d’ 2
< [ rwpag >R

where s = 1,2.

Proof Let fecL*(R* H) be a quaternion valued signal and
@E;ﬂl ww) € L*(R?,H), then Heisenberg-Pauli-Weyl inequality in the quaternion
QPFT domain is given by

2
[ noben [ aropac gL orad. @

where s = 1,2.
By virtue of the Moyal’s formula (2.5) and reconstruction formula (2.6), (4.3) can
be rewritten as

L1050 1) P / WG, 00l
R?

2
- 4 (/ |®/‘1 M | dW) '

Since @E-,uhuz [f] € L*(R*, M), therefore we can replace @EY#Z [f] by @EMHZ [f] on
the both sides of (4.4) to obtain

(4.4)
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/ t |®N1 Hz{@QZ’ My sty [f](w’ X)}|2dt /[Rz w§|@$ﬂ,u1.uz [f] (Wa X)|2dW

>3 ( / @ W X)lzdw>2.

Taking the square root on both sides of (4.5) and integrating both sides with respect

to dx , we obtain
L 2
2 —1 H
/W{/Rz 61Q, 1@, (1w, x) dt}

X{/ W@ g W, x)|2dw}1/zdx (4.6)

SINAL:

Furthermore, an implication of the well known Cauchy-Schwartz inequality on 4.6

Vlelds
2 2 | M ,uz{ :Dq) 5ty V]( 7X)}| dth /
R R § ’

x{ /R 2 /R 21, . x)zdwdx}l/z (4.7)

2
[f1(w, x)‘ dwdx.

(4.5)

b F1(W x)’ dwdx.

(NN

Z_
ZRZ

Now by applying Lemma4.1 on L.H.S and (3.20) on R.H.S of the above inequality,
we have

e S

1.

Z\B B |
On further simplifying (4.8),we get

(/RZ /[RZ ws| Qg 4, (W, x)|2dwdx> 2 (/Rz 2 V(t)Izdt> 12

(4.9)
VCo
> If11-
2|B1B,|
Which completes the proof. O

Remark 4.3 By changing the parameter p, = (4y,Bs, Cs, Ds, Eg), s=1,2 as in
definition 3.1, the Heisenberg’s uncertainty inequality for Q-GQPFT 4.2 boils down
to Heisenberg inequality pertaining to quaternion-Gabor Fourier transform,
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quaternion-Gabor linear canonical transform, quaternion-Gabor offset linear canon-
ical transform and etc.

Next, we derive the logarithmic uncertainty inequality for the Q-GQPFT (3.1). In
order to prove logarithmic uncertainty inequality, we need to introduce the following
definition.

Definition 4.4 For a multi-index o = (a;,0) € RT x R, the Schwartz space in
&?(R?, H) is defined by
gl

LR~V 5]
0, 0F;

S(R* H) = {f € C®(R*,H) : sup(1 + |¢]")

teR?

<oo}7 (4.10)

where C*(R?, H) is the class of smooth functions from R? to H.

Lemma 4.5 For f,¢ € S(R*,H), where ¢ is a nonzero window function. Then we
have

[ ] miieg (@5, v 0y o Paax = ¢, [ mieofa @)

Proof By just changing # to In|t| in (4.1), we get the desired result. O

Theorem 4.6 (Q-GQOPFT Logarithmic Uncertainty Principle). Let ¢ € S(R*, H) be
a nonzero quaternion window function and let @EL”_MM If] be the O-GOPFT of any
signal f € S(R?,H), then the following logarithmic inequality holds:

Cy [ Inlt|f(t)*dt + [B;B;| In|w||@%  [f](w,x)[*dwdx
R? r? Jr2 d)ulh#z

r'(1/4)
= <r<1/4>

(4.12)

i |3132|>c¢|m|iz<Rz,H)-

Proof For any signal f € S(R? H), the logarithmic uncertainty principle for the Q-
QPFT reads

/ In[¢][£(6) Pt + |B1Bo| / In wl|@! | [f](w)Pdw
R? R? '

> (Fr/((ll//j)) —Inm—1In |3132|) /R 2 |7 (t)|dt,
_d

where I' is a gamma function and I"'(¢) = 4.
By invoking of reconstruction formula (2.6) on L.H.S and Moyal’s formula (2.5)
on R.H.S, Lemma (4.5) can be rewritten as

(4.13)
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[0 20 Y} 0P BB [ il 0w P

o (18w [

As both @E:”“#Z [f] and @EMM [f] are in S(R?, H), therefore by replacing @E}Mz [f]
with Q[diﬂ,m w110 (4.14), we get

(4.14)

[0y (@, o) 0t

+ |B1B,| /R In|w|@f, 1w, x)*dw (4.15)

r(1/4)

Integrating both sides of (4.15) with respect to x, we obtain

I'(1/4
2 57y ~ o= i) [ 105, 70n o
R

L R GG CRO T

x /R 2 /R W@}, [](w. ) Pdws
I'(1/4)
r(1/4)

1 2
x /RZ R2 ‘@(b'“lvﬂz [f] (W, X)| dwdx.

Applying Lemma (4.5) into the first term on the left-hand side of (4.16), yields

(4.16)

EB|BQ|( —1n77:—ln|Ble|>

Cs /R 2 In [t]|f(t)*dt + |B;B,| / / In [w||Qj . . [f](W,x)*dwdx

>|BIBZ|<11:/((11//4))—1 n_mBle)/ /\ B v, x) Pdwx.

(4.17)

Now applying the (3.20) in the right hand side of (4.17), we obtain our desired result,

Cyp ln\t|V(t)|2dt+ |B1B;| In |w||®H Py [f](w,x)|2dwdx
R2 r Jre LNDWES

4.18)
'(1/4) 2 (

> (it~ e = BB )l e

Which completes the proof. O
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5 Conclusion

In this paper we presented a novel integral transform designated as the 2-D Hyper-
complex(quaternion) Gabor quadratic- phase Fourier transform (Q-GQPFT), and is
embodiment of several well known signal processing tools. We defined the 2-D
Hyper-complex(quaternion) quadratic-phase Fourier transform (Q-QPFT) and then
proposed the definition of novel Q-GQPFT, which is a modified version of the
classical windowed quadratic-phase Fourier transform to quaternion-valued signals .
we studied various properties of the proposed Q-GQPFT, including Moyal’s formula,
reconstruction formula, isometry and reproducing kernel formula. Further We also
established the Heisenberg and logarithmic uncertainty inequalities for the Q-
GQPFT.

This work can play a vital role in sampling theory, signal synthesis and optics.
Further it can be extended to the domains of complex Clifford valued signals.
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