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Abstract
Time delay and randomness are the two essential aspects of nonlinear systems,

which precariously affect the control and synchronization of nonlinear systems. This

paper considers the synchronization of a new nine-dimensional stochastic hyper-

chaotic system with time delay. This work advances a feedback control method to

synchronize stochastic time-delay hyperchaotic systems based on the Lyapunov

stability theory and linear matrix inequalities (LMIs) approach. Sufficient conditions

are derived to guarantee the global asymptotical stability in the error system’s mean

square; consequently, the drive system synchronizes with the response system.

Keywords Hyperchaotic system � Lyapunov exponent � Lyapunov–Krasovskii
functional � Linear matrix inequalities � Synchronization

Mathematics Subject Classification 34D06 � 37D45 � 37H05 � 93D20

1 Introduction

1.1 Background and motivation

The concept of a dynamical system is a mathematical formulation for any fixed law

that depicts the time response of a point’s position. The hypothesis of the dynamical

system manages the long-term subjective conduct. It concentrates the idea of the
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movement of a framework that is regularly mechanical or general physical

phenomena, such as electronic circuits, planetary circles, financial aspects, and

somewhere else. Most dynamical systems exhibit chaotic behavior due to

nonlinearity, sensitivity to initial conditions, and non-periodicity. A chaotic system

refers to the random irregular motion in a deterministic model. The behavior of

chaotic systems is characterized by uncertainty, non-repeatable and unpredictable.

Chaos is an intrinsic property of nonlinear dynamic systems and exhibits bifurcation

under specific parameters; for more details, see [5, 19, 20]. In 1963, when designing

a three-dimensional model for atmospheric convection, Lorenz [14] accidentally

discovered the first chaotic system. Rössler [21] discovered a three-dimensional

chaotic system with more simple algebra than the Lorenz system in 1976. There are

also many well-known three-dimensional chaotic systems, such as Sprott systems

[22], Chen system [4], Lü–Chen system [11] and so on. With the wide application of

chaos theory in recent years, people have conducted extensive research on chaos

theory and achieved many new results.

In 1990, Pecora and Carroll [18] first discovered chaos synchronization in

electronic circuits, which increased chaos synchronization control research widely

used in many fields, such as communication encryption, engineering optimization,

and statistical prediction. Synchronization is coupling the motion of a drive and

response system to standard behavior. Synchronization of the chaotic systems,

hyperchaotic systems, and the unified chaotic systems have been reported in many

papers, see [3, 16].

In control systems, the time delay due to sensor and actuator dynamics, signal

transmission, and digital computations is an essential factor influencing stability and

control performance. Time delay estimation in a control system is a challenging

problem. It is even more complicated when the system dynamics are nonlinear and

unknown. Time delays are regularly encountered in various industrial systems that

must be controlled, because states of the system depend on the present time and a

time in the past and frequently used in various fields such as communication,

electronics, hydraulic and nonlinearity, sensitivity to initial conditions, and non-

periodicity for theoretical and practical significance see [8, 12, 13].

In the meantime, stochastic modeling has arisen to strike an essential position in

many branches of science and engineering. Also, in practice, noise perpetually

inevitably exists in various practical systems since it is very difficult to reach an

exact mathematical model of an object or process due to gradually changing

parameters and environmental noise refer [15, 23]. In the stochastic framework,

synchronization analysis for nonlinear chaotic time-delay stochastic systems has

realized important research interests. However, to the best of the authors’

knowledge, the problem of synchronization for the stochastic systems with time

delay and nonlinear disturbances has not been fully investigated, which remains

challenging. The above facts motivate the present study.

1.2 Literature review

Abadneh [1] presented a new 4-D chaotic system and produced two equilibrium

points at the origin. The fundamental characteristics of the system has been
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investigated by using equilibrium points, stability, and bifurcation diagram.

Furthermore, an optimal controller has been established to make the system

trajectories to the zero equilibrium. Vaidyanathan et al. [25] studied a new three-

dimensional chaotic system with two nonlinearities. The quadratic and quartic

nonlinearity have been examined in particular when building the new chaotic model.

Authors estimated the feedback control laws using adaptive control theory to achieve

global synchronization of identical chaotic systems with unknown parameters. In

order to improve the further complexity of chaotic system, Huang et al. [9]

introduced a new four-dimensional chaotic system based on Sprott B chaotic system.

The use of a new sliding mode controller to construct a fractional-order chaotic

system that rapidly enters a predefined motion state and maintains stability was

proposed in [24]. In [27] Yu et al. investigated the circuit implementation of seven-

dimensional hyperchaotic system with five nonlinear terms. Fan et al. [7] analyzed

the stabilization problem of a class of double-wing chaotic system and also

implemented the circuit for the proposed work. The presented work in [10] realized

the four-dimensional chaotic system with multiscroll attractor via passive control

approach. The authors in [17] investigated the PID type terminal sliding mode

control method for machine and grid side converter modified controllers to reinforce

the nonlinear relationship between the state-variable and control input BTB-

converter. This control method reduces the reaction time of the BTB converter

controllers and enhances their robustness to parameter uncertainty and external

disturbances. Recently, Alattas et al. [2] investigated the nonsingular integral-type

controllers to synchronize the N-dimensional hyperchaotic systems. This method

proposed for a broad spectrum of hyper-chaotic systems allows for faster

convergence while avoiding chattering and unstable fluctuations. The authors of

[26] discussed an adaptive terminal sliding mode control for synchronizing chaotic

systems based on a new sliding manifold with fast reaching conditions and

highlighted its application to medical image encryption techniques.

1.3 Contribution

Through the above discussions, we find that most of the chaotic systems studied in

the existing literature are deterministic and do not consider the influence of stochastic

factors and time delay on the system. In addition, when introducing the stochastic

factor, it is natural to consider the expected value of the solution of the system, which

is crucial to prove the synchronization of the system and will bring analytical

difficulties. The main contributions of this paper are summarized as follows

1. High-dimensional hyperchaotic systems have more complex dynamic behav-

iors, better randomness, and unpredictability to the best of the authors’

knowledge. The high-dimensional hyperchaotic system is used in secure

communication, image encryption, text encryption, and voice encryption for

larger keyspace and higher security. Due to the facts, a novel nine-dimensional

hyperchaotic system is developed by introducing new system parameters with

eleven nonlinear terms. The nonlinearity could increase the essence of the

unpredictability of the future from the past.
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2. Different from the existing literature, this paper addresses the globally

asymptotic synchronization in the mean square sense of the proposed nine-

dimensional hyperchaotic system with stochastic and time delay via LMIs

framework.

3. Based on the state feedback controller and time delay, a suitable new Lyapunov

functional is constructed by superimposing the triple and quadruple integral

terms to show the delay information and attain the faster feasibility.

4. The derived sufficient conditions guarantee the globally asymptotic synchro-

nization in terms of solvable LMIs by employing the Lyapunov stability theory.

1.4 Paper organization

The rest of this paper is summarized as follows: Sect. 2 presents the model

description and problem formulation of a nine-dimension stochastic time-delayed

hyperchaotic system. In Sect. 3, some sufficient conditions are demonstrated for the

proposed hyperchaotic system via the LMI approach. Also, numerical simulation is

given in Sect. 3.1 to show the effectiveness of this paper. Finally, Sect. 4 states the

conclusion and future direction of the proposed work followed the conclusion

section.

2 Model description and problem formulation

Yu et al. [27] proposed a 7-D hyperchaotic system given as follows:

dx1
dt

¼ aðx2ðtÞ � x1ðtÞÞ þ x4ðtÞ � x5ðtÞ � x7ðtÞ
dx2
dt

¼ cx1ðtÞ � x2ðtÞ � x1ðtÞx3ðtÞ � x6ðtÞ
dx3
dt

¼ � bx3ðtÞ þ x1ðtÞx2ðtÞ
dx4
dt

¼ dx4ðtÞ � x2ðtÞx3ðtÞ
dx5
dt

¼ ex7ðtÞ þ x2ðtÞx3ðtÞ
dx6
dt

¼ fx1ðtÞ þ x2ðtÞx3ðtÞ
dx7
dt

¼ rx1ðtÞ;

ð1Þ

where x1ðtÞ; x2ðtÞ; . . .; x7ðtÞ refer state vectors of (1), (a, b, c, d, e, f, r) denote

system parameters. For a ¼ 10, b ¼ 8=3, c ¼ 28, d ¼ �1, e ¼ 8, f ¼ 1, and r ¼ 5,

system (1) exhibits hyperchaotic behavior. Based on this work, we include six non-

linear terms and two state vectors to the above system (1). The novel 9-D hyper-

chaotic system is given as follows:
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dx1
dt

¼ aðx2ðtÞ � x1ðtÞÞ þ x4ðtÞ � ðx5ðtÞ þ x7ðtÞ þ x8ðtÞÞ þ x9ðtÞ
dx2
dt

¼ cx1ðtÞ � x2ðtÞ � x1ðtÞx3ðtÞ � x6ðtÞ
dx3
dt

¼ � bx3ðtÞ þ x1ðtÞx2ðtÞ
dx4
dt

¼ dx4ðtÞ � x2ðtÞx3ðtÞ
dx5
dt

¼ ex7ðtÞ þ x2ðtÞx3ðtÞ þ x1ðtÞx3ðtÞ � x1ðtÞx2ðtÞ
dx6
dt

¼ fx1ðtÞ þ x2ðtÞx3ðtÞ
dx7
dt

¼ r1x1ðtÞ þ x1ðtÞx3ðtÞ
dx8
dt

¼ r2x2ðtÞ þ x2ðtÞx3ðtÞ þ x1ðtÞx3ðtÞ � x1ðtÞx2ðtÞ
dx9
dt

¼ r3x1ðtÞ;

ð2Þ

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . .; x9ðtÞ�T 2 R9 refer to the state vectors of (2), a, b, c, d,
e, f, r1, r2, and r3 denote system parameters. For a ¼ 100, b ¼ 8=3, c ¼ 28,

d ¼ �10, e ¼ 80, f ¼ 100, and ðr1; r2; r3Þ ¼ ð5; 15; 30Þ, system (2) exhibits

hyperchaotic behavior. The following Figs. 1, 2, 3 and 4 depict the chaotic attractor

for system (2). Figure 5 denotes the time response of the state vectors

x1ðtÞ; x2ðtÞ; . . .; x9ðtÞ for system (2). Figure 6 clearly depicts that the system (2) has

three positive Lyapunov exponents and six negative Lyapunov exponents. The

fractal dimension is also a typical characteristic of chaos and is calculated by

utilizing Lyapunov exponents in the following Kaplan–Yorke dimension formula

[6]. K ¼ lþ
Pl

i¼1
ki

jklþ1j ; where each ki denote Lyapunov exponent, l refers to the

first l Lyapunov exponent is non-negative.

In this manuscript, by observing the values of nine Lyapunov exponents, one can

determine the value of l is 3. Now the Kaplan–Yorke dimension can be expressed

as follows:

K ¼ 3þ ð0:0232þ 0:0134þ 0:0161Þ
j0:0796j � 3:6621:

In view of Kaplan–Yorke dimension, the value of fractal dimension takes the

fractional value. Hence, system (2) rush into hyperchaotic in nature.

The equation of stability for system (2) is given as follows:

123

Synchronization of a 9-D hyperchaotic system 1513



Fig. 1 Chaotic attractors for the system (2): x1ðtÞ � x2ðtÞ, x1ðtÞ � x3ðtÞ, x1ðtÞ � x4ðtÞ, x1ðtÞ � x5ðtÞ,
x1ðtÞ � x6ðtÞ, x1ðtÞ � x7ðtÞ, x1ðtÞ � x8ðtÞ, x1ðtÞ � x9ðtÞ, x2ðtÞ � x3ðtÞ

Fig. 2 Chaotic attractors for the system (2): x2ðtÞ � x4ðtÞ, x2ðtÞ � x5ðtÞ, x2ðtÞ � x6ðtÞ, x2ðtÞ � x7ðtÞ,
x2ðtÞ � x8ðtÞ, x2ðtÞ � x9ðtÞ, x3ðtÞ � x4ðtÞ, x3ðtÞ � x5ðtÞ, x3ðtÞ � x6ðtÞ
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Fig. 3 Chaotic attractors for the system (2): x3ðtÞ � x7ðtÞ, x3ðtÞ � x8ðtÞ, x3ðtÞ � x9ðtÞ, x4ðtÞ � x5ðtÞ,
x4ðtÞ � x6ðtÞ, x4ðtÞ � x7ðtÞ, x4ðtÞ � x8ðtÞ, x4ðtÞ � x9ðtÞ, x5ðtÞ � x6ðtÞ

Fig. 4 Chaotic attractors for the system (2): x5ðtÞ � x7ðtÞ, x5ðtÞ � x8ðtÞ, x5ðtÞ � x9ðtÞ, x6ðtÞ � x7ðtÞ,
x6ðtÞ � x8ðtÞ, x6ðtÞ � x9ðtÞ, x7ðtÞ � x8ðtÞ, x7ðtÞ � x9ðtÞ, x8ðtÞ � x9ðtÞ
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Fig. 5 Time response for the nine-dimensional hyperchaotic system (2)

Fig. 6 Trajectory for Lyapunov exponent of the proposed nine-dimensional hyperchaotic system (2)
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aðx2ðtÞ � x1ðtÞÞ þ x4ðtÞ � ðx5ðtÞ þ x7ðtÞ þ x8ðtÞÞ þ x9ðtÞ ¼ 0

cx1ðtÞ � x2ðtÞ � x1ðtÞx3ðtÞ � x6ðtÞ ¼ 0

� bx3ðtÞ þ x1ðtÞx2ðtÞ ¼ 0

dx4ðtÞ � x2ðtÞx3ðtÞ ¼ 0

ex7ðtÞ þ x2ðtÞx3ðtÞ þ x1ðtÞx3ðtÞ � x1ðtÞx2ðtÞ ¼ 0

fx1ðtÞ þ x2ðtÞx3ðtÞ ¼ 0

r1x1ðtÞ þ x1ðtÞx3ðtÞ ¼ 0

r2x2ðtÞ þ x2ðtÞx3ðtÞ þ x1ðtÞx3ðtÞ � x1ðtÞx2ðtÞ ¼ 0

r3x1ðtÞ ¼ 0

ð3Þ

Solving the above equations described in (3), one can have the equilibrium point

Oð0; x�; 0; 0; ax�;�x�; 0; 0; 0Þ, x� 2 R9 which is independent of the system param-

eters except a. The Jacobian matrix at O is given by

J ¼

�a a 0 1 � 1 0 � 1 � 1 1

c � 1 0 0 0 � 1 0 0 0

x� 0 � b 0 0 0 0 0 0

0 0 � x� d 0 0 0 0 0

�x� 0 x� 0 0 0 e 0 0

f 0 x� 0 0 0 0 0 0

r1 0 0 0 0 0 0 0 0

�x� r2 x� 0 0 0 0 0 0

r3 0 0 0 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

For the proposed system parameters, the characteristic polynomial of jJ� kIj is
�1

3
k3ð9ðx�Þ2k3þ369ðx�Þ2k2 þ3015ðx�Þ2k�450ðx�Þ2�6x�k4�82x�k3�236x�k2�

160x�kþ3k6þ341k5�4257k4�63085k3þ188910k2þ821800k�88000Þ: When

x� ¼0, the characteristic equation can be rewritten as:

�k9� 341

3
k8 þ 1419k7 þ 63085

3
k6 � 62970k5 � 821800

3
k4 þ 88000

3
k3 ¼ 0: ð4Þ

Solving the above Eq. (4), one can obtain the following nine eigenvalues:

k1 ¼ 17:871; k2 ¼ 4:753; k3 ¼ 0:105;

k4 ¼ 0; k5 ¼ 0; k6 ¼ 0;

k7 ¼ �8=3; k8 ¼ �10; k9 ¼ �123:730:

From the above eigenvalues, one can conclude that Eq. (4) has three positive and

three negative eigenvalues. The remaining three eigenvalues are zero. Hence, it can

be shown as O is an unstable saddle point when x� ¼ 0. Assume that W is the

domain in the smooth surface R9 and VðtÞ is the volume of WðtÞ.
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dVðtÞ
dt

¼
Z

WðtÞ

ðr �VÞdx1dx2dx3dx4dx5dx6dx7dx8dx9: ð5Þ

From Eq. (5), one can calculate the dissipation of hyperchaotic system.

r �V ¼ o _x1
ox1

þ o _x2
ox2

þ o _x3
ox3

þ o _x4
ox4

þ o _x5
ox5

þ o _x6
ox6

þ o _x7
ox7

þ o _x8
ox8

þ o _x9
ox9

¼� a� 1� bþ d ¼ d:
ð6Þ

We have, a ¼ 100, b ¼ 8=3, and d ¼ �10 which implies that d ¼ � 341
3
\0. Sub-

stitute (6) into (5), one can have

dVðtÞ
dt

¼ � 341

3
VðtÞ; ð7Þ

where VðtÞ is the 9-D hyperchaotic system. Solving (7), VðtÞ ¼ e�
341
3 Vð0Þ; if

r �V\0 then system (2) is dissipative. Hence, system (2) satisfies the principle of

hyperchaotic state. For our convenience, system (2) can be rewritten as:

_xðtÞ ¼ AxðtÞ þ f̂ ðt; xðtÞÞ; ð8Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; . . .; x9ðtÞÞT is the state variable, A 2 R9�9 is the linear

parameter matrix, and f̂ ðt; xðtÞÞ is the non-linear term. Since every real-time

dynamical model will be affected by the environmental noise. In nature, the

deterministic model (8) may affect by the external noise that could be captured by

incorporating the model into stochastic differential systems involving Brownian

motion. Hence, studying the hyperchaotic system involving Brownian motion for

real-time phenomena is necessary. In this proposed work, the following stochastic

delay differential equation is considered to analyze the synchronization of the

hyperchaotic system. Let s[ 0 be the delay term. Let Cð½�s; 0�;RnÞ be the family

of continuous functions / from ½�s; 0� to Rn. Let L2F0
ð½�s; 0�;RnÞ be the family of

all F0-measurable Cð½�s; 0�;RnÞ-valued random variables v ¼ fvðhÞj � s� h� 0g
such that sup

h2½�s;0�
EjvðhÞj2\1.

dxðtÞ ¼½AxðtÞ þ Bxðt � sÞ þ f̂ ðt; xðtÞ; xðt � sÞÞ�dt þ ĝðt; xðtÞ; xðt � sÞÞdWðtÞ;
x0 ¼v; v 2 L2F0

ð½�s; 0�;RnÞ; �s� t� 0;
ð9Þ

where x(t) is the state of the system, A;B 2 R9�9 are the linear parameter matrices,

WðtÞ ¼ ðw1ðtÞ;w2ðtÞ; . . .;w9ðtÞÞT is the 9-D Brownian motion defined on the

complete probability space ðX;F;PÞ which satisfies E½dWðtÞ� ¼ 0;
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E½dW2ðtÞ� ¼ dt. f̂ ðt; �; �Þ and ĝðt; �; �Þ are Lipschitz functions satisfy respectively

f̂ ðt; 0; 0Þ ¼ 0 and ĝðt; 0; 0Þ ¼ 0. To illustrate the concept of synchronization, we

consider system (9) as a drive system. The response system is defined by

dyðtÞ ¼ ½AyðtÞ þ Byðt � sÞ þ f̂ ðt; yðtÞ; yðt � sÞÞ þ uðtÞ�dt þ ĝðt; yðtÞ; yðt � sÞÞdWðtÞ;
y0 ¼ v; v 2 L2F0

ð½�s; 0�;RnÞ; �s� t� 0;

ð10Þ

where yðtÞ ¼ ðy1ðtÞ; y2ðtÞ; . . .; y9ðtÞÞT is the state variable of response system,

A;B 2 R9�9 are the linear parameter matrices, f̂ ðt; yðtÞ; yðt � sÞÞ and ĝðt; yðtÞ; yðt �
sÞÞ are two non-linear functions and u(t) is the control input. s is the delay term.

Define the synchronization error vector of the drive and response system as

eðtÞ ¼ yðtÞ � xðtÞ, where eðtÞ ¼ ðe1ðtÞ; e2ðtÞ; . . .; e9ðtÞÞT . One can obtain the fol-

lowing error dynamics of proposed hyperchaotic system:

deðtÞ ¼ ½AeðtÞ þ Beðt � sÞ þ f ðt; eðtÞ; eðt � sÞÞ þ uðtÞ�dt þ gðt; eðtÞ; eðt � sÞÞdWðtÞ;
ð11Þ

where f ðt; eðtÞ; eðt � sÞÞ ¼ f̂ ðt; yðtÞ; yðt � sÞÞ � f̂ ðt; xðtÞ; xðt � sÞÞ, and gðt; eðtÞ;
eðt � sÞÞ ¼ ĝðt; yðtÞ; yðt � sÞÞ � ĝðt; xðtÞ; xðt � sÞÞ represent nonlinear functions.

For simplicity, Eq. (11) can be rewritten as

deðtÞ ¼ ~f ðtÞdt þ ~gðtÞdWðtÞ; ð12Þ

where ~f ðtÞ ¼ AeðtÞ þ Beðt � sÞ þ f ðt; eðtÞ; eðt � sÞÞ þ uðtÞ is the drift term and

~gðtÞ ¼ gðt; eðtÞ; eðt � sÞÞ is the diffusion term. In this work, we endorse the state

feedback controller as uðtÞ ¼ �KeðtÞ; where K 2 Rn�n is the control gain to be

designed.

Figure 7 clearly depicts the unsynchronized response for the drive and response

systems (9) and (10) respectively.

Fig. 7 Time response for the error dynamics (11)
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To facilitate the following discussions, we restate the following definitions and

assumptions.

Definition 1 [28] The error system (11) is said to be globally asymptotically

stable in mean square if for any given initial condition such that

lim
t!1

EkeðtÞk2 ! 0; ð13Þ

where Eð�Þ is the mathematical expectation.

Assumption 1 If there exist positive constant l and positive definite matrix Q[ 0

such that f ðt; eðtÞ; eðt � sÞÞ satisfies the following quadratic inequality:

f Tðt; eðtÞ; eðt � sÞÞQf ðt; eðtÞ; eðt � sÞÞ� l2eTðtÞQeðtÞ: ð14Þ

Assumption 2 There exist positive constants a1, a2 and positive definite matrix

Q[ 0 such that

Traceð~gTðtÞQ~gðtÞÞ� a1e
TðtÞQeðtÞ þ a2e

Tðt � sÞQeðt � sÞ: ð15Þ

3 Main results

This section presents an LMI approach to solve the global asymptotic synchro-

nization in the mean square for nine-dimensional hyperchaotic systems using a

feedback controller. The following theorem shows a synchronization scheme to

ensure that the controlled response system (10) can precisely track the drive system

(9), which is formulated by employing the feasibility of an LMI.

Theorem 1 By considering the Assumptions (1) and (2), the error system (11) is
globally asymptotically stable in mean square, for a given positive scalar s, any
scalar l[ 0, there exist positive definite diagonal matrix
P ¼ diagðp1; p2; . . .; pnÞ[ 0, positive definite matrices
Ri ¼ ðrjkÞn�n [ 0; i ¼ 1; 2; . . .; 13, and control gain matrix K ¼
diagðk1; k2; . . .; knÞ such that

U ¼
½X1�9�9 ½X2�9�1 ½X3�9�9

� � ½X4�1�9

� � ½X5�9�9

2

6
4

3

7
5\0; ð16Þ

where
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X1 ¼

W1 W2 W3 0 0 0 0 0 0

� W4 0 0 0 0 0 0 0

� � W5 0 0 0 0 0 0

� � � W6 0 0 0 0 0

� � � � W7 0 0 0 0

� � � � � W8 0 0 0

� � � � � � W9 0 0

� � � � � � � W10 W11

� � � � � � � � W12

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

X2 ¼ 0 0 0 0 0 0 0 0
12R7

s3

� �T
;

� ¼ �36R7

s4
� 16R10

s3
;X3 ¼ ½0�9�9; X4 ¼

40R10

s4
0 0 0 0 0 0 0 0

� �

;

X5 ¼

W13 0 0 0 0 0 0 0 0

� W14 W15 0 0 0 0 0 0

� � W16 W17 0 0 0 0 0

� � � W18 W19 0 0 0 0

� � � � W20 0 0 0 0

� � � � � W21 W22 0 0

� � � � � � W23 W24 0

� � � � � � � W25 W26

� � � � � � � � W27

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

with

W1 ¼ PðA� KÞ þ ðA� KÞTPþ R1 þ sR4 �
s2

2
R7 þ

s3

6
R10 þ Pþ l2R13;

W2 ¼ PB; W3 ¼ P;W4 ¼ �R1 þ P; W5 ¼ �R13;W6 ¼ R2 þ sR5 �
s2

2
R8 þ

s3

6
R11;

W7 ¼ �R2;W8 ¼ R3 þ sR6 �
s2

2
R9 þ

s3

6
R12;W9 ¼ �R3; W10 ¼ � 4

s
R4;

W11 ¼
6R4

s2
; W12 ¼ � 12R4

s3
� 6R7

s2
;W13 ¼ � 160R10

s5
; W14 ¼ � 4R5

s
;W15 ¼

6R5

s2
;

W16 ¼ � 12R5

s3
� 6R8

s2
;W17 ¼

12R8

s3
; W18 ¼ � 36R8

s4
� 16R11

s3
;

W19 ¼
40R11

s4
; W20 ¼ � 160R11

s5
;

W21 ¼ � 4R6

s
;W22 ¼

6R6

s2
; W23 ¼ � 12R6

s3
� 6R9

s2
;W24 ¼

12R9

s3
;

W25 ¼ � 36R9

s4
� 16R12

s3
;W26 ¼

40R12

s4
; W27 ¼ � 160R12

s5
:
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Proof Consider the Lyapunov–Krasovskii functional as follows:

KðtÞ ¼
X5

i¼1

Ki; ð17Þ

where

K1 ¼ eTðtÞPeðtÞ:

K2 ¼
Z t

t�s

eTðsÞR1eðsÞdsþ
Z t

t�s

~f TðsÞR2
~f ðsÞdsþ

Z t

t�s

~gTðsÞR3 ~gðsÞds:

K3 ¼
Z0

�s

Z t

tþh

eTðsÞR4eðsÞdsdhþ
Z0

�s

Z t

tþh

~f TðsÞR5
~f ðsÞdsdhþ

Z0

�s

Z t

tþh

~gTðsÞR6 ~gðsÞdsdh:

K4 ¼
Z0

�s

Z0

b

Z t

tþh

eTðsÞR7eðsÞdsdhdbþ
Z0

�s

Z0

b

Z t

tþh

~f TðsÞR8
~f ðsÞdsdhdb

þ
Z0

�s

Z0

b

Z t

tþh

~gTðsÞR9 ~gðsÞdsdhdb:

K5 ¼
Z0

�s

Z0

d

Z0

b

Z t

tþh

eTðsÞR10eðsÞdsdhdbddþ
Z0

�s

Z0

d

Z0

b

Z t

tþh

~f TðsÞR11
~f ðsÞdsdhdbdd

þ
Z0

�s

Z0

d

Z0

b

Z t

tþh

~gTðsÞR12 ~gðsÞdsdhdbdd:

Using Ito’s process, we have

dKðtÞ ¼ dK1 þ dK2 þ dK3 þ dK4 þ dK5: ð18Þ

By using Assumption (1), one can have the following inequality:

l2eTðtÞR13eðtÞ � f Tðt; eðtÞ; eðt � sÞÞR13f ðt; eðtÞ; eðt � sÞÞ	 0: ð19Þ

Using the above inequality (19) and Assumption (2) with a1 ¼ a2 ¼ 1, we have

dK1 � ½2eTðtÞPðA� KÞeðtÞ þ 2eTðtÞPBeðt � sÞ þ 2eTðtÞPf ðt; eðtÞ; eðt � sÞÞ
þ eTðtÞPeðtÞ þ eTðt � sÞPeðt � sÞ þ l2eTðtÞR13eðtÞ
� f Tðt; eðtÞ; eðt � sÞÞR13f ðt; eðtÞ; eðt � sÞÞ�dt þ 2eTðtÞP~gðtÞdWðtÞ:

ð20Þ
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dK2 ¼eTðtÞR1eðtÞ þ ~f TðtÞR2
~f ðtÞ þ ~gTðtÞR3 ~gðtÞ � ½eTðt � sÞR1eðt � sÞ

þ ~f Tðt � sÞR2
~f ðt � sÞ þ ~gTðt � sÞR3 ~gðt � sÞ�:

ð21Þ

Using second version of Wirtinger’s inequality [23] for single integral, one can have

the following inequality:

dK3 � sðeTðtÞR4eðtÞ þ ~f TðtÞR5
~f ðtÞ þ ~gTðtÞR6 ~gðtÞÞ �

1

s

� Z t

t�s

eðsÞds
�T

4R4

� Z t

t�s

eðsÞds
�

þ 2

s2

� Z t

t�s

eðsÞds
�T

3R4

� Z t

t�s

Zh

t�s

eðsÞdsdh
�

þ 2

s2

� Z t

t�s

Zh

t�s

eðsÞdsdh
�T

3R4

� Z t

t�s

eðsÞds
�

� 4

s3

� Z t

t�s

Zh

t�s

eðsÞdsdh
�T

3R4

� Z t

t�s

Zh

t�s

eðsÞdsdh
�

� 1

s

� Z t

t�s

~f ðsÞds
�T

4R5

� Z t

t�s

~f ðsÞds
�

þ 2

s2

� Z t

t�s

~f ðsÞds
�T

3R5

� Z t

t�s

Zh

t�s

~f ðsÞdsdh
�

þ 2

s2

� Z t

t�s

Zh

t�s

~f ðsÞdsdh
�T

3R5

� Z t

t�s

~f ðsÞds
�

� 4

s3

� Z t

t�s

Zh

t�s

~f ðsÞdsdh
�T

3R5

� Z t

t�s

Zh

t�s

~f ðsÞdsdh
�

� 1

s

� Z t

t�s

~gðsÞds
�T

4R6

� Z t

t�s

~gðsÞds
�

þ 2

s2

� Z t

t�s

~gðsÞds
�T

3R6

� Z t

t�s

Zh

t�s

~gðsÞdsdh
�

þ 2

s2

� Z t

t�s

Zh

t�s

~gðsÞdsdh
�T

3R6

� Z t

t�s

~gðsÞds
�

� 4

s3

� Z t

t�s

Zh

t�s

~gðsÞdsdh
�T

3R6

� Z t

t�s

Zh

t�s

~gðsÞdsdh
�

:

ð22Þ

Using second version of Wirtinger’s inequality [23] for double integral, one can

obtain the following inequality:
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dK4�
�s2

2
ðeTðtÞR7eðtÞ þ ~f TðtÞR8

~f ðtÞ þ ~gTðtÞR9 ~gðtÞÞ �
1

s2

� Z0

�s

Z t

tþb

eðsÞdsdb
�T

� 6R7

� Z0

�s

Z t

tþb

eðsÞdsdb
�

þ 3

s3

� Z0

�s

Z t

tþb

eðsÞdsdb
�T

4R7

� Z0

�s

Z0

d

Z t

tþb

eðsÞdsdbdd
�

þ 3

s3

� Z0

�s

Z0

d

Z t

tþb

eðsÞdsdbdd
�T

4R7

� Z0

�s

Z t

tþb

eðsÞdsdb
�

� 9

s4

� Z0

�s

Z0

d

Z t

tþb

eðsÞdsdbdd
�T

� 4R7

� Z0

�s

Z0

d

Z t

tþb

eðsÞdsdbdd
�

� 1

s2

� Z0

�s

Z t

tþb

~f ðsÞdsdb
�T

6R8

� Z0

�s

Z t

tþb

~f ðsÞdsdb
�

þ 3

s3

� Z0

�s

Z t

tþb

~f ðsÞdsdb
�T

4R8

� Z0

�s

Z0

d

Z t

tþb

~f ðsÞdsdbdd
�

þ 3

s3

� Z0

�s

Z0

d

Z t

tþb

~f ðsÞdsdbdd
�T

� 4R8

� Z0

�s

Z t

tþb

~f ðsÞdsdb
�

� 9

s4

� Z0

�s

Z0

d

Z t

tþb

~f ðsÞdsdbdd
�T

4R8

� Z0

�s

Z0

d

Z t

tþb

~f ðsÞdsdbdd
�

� 1

s2

� Z0

�s

Z t

tþb

~gðsÞdsdb
�T

6R9

� Z0

�s

Z t

tþb

~gðsÞdsdb
�

þ 3

s3

� Z0

�s

Z t

tþb

~gðsÞdsdb
�T

� 4R9

� Z0

�s

Z0

d

Z t

tþb

~gðsÞdsdbdd
�

þ 3

s3

� Z0

�s

Z0

d

Z t

tþb

~gðsÞdsdbdd
�T

4R9

� Z0

�s

Z t

tþb

~gðsÞdsdb
�

� 9

s4

� Z0

�s

Z0

d

Z t

tþb

~gðsÞdsdbdd
�T

4R9

� Z0

�s

Z0

d

Z t

tþb

~gðsÞdsdbdd
�

:

ð23Þ

Using second version of Wirtinger’s inequality [23] for triple integral, one can

obtain the following inequality:
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dK5 �
s3

6
ðeTðtÞR10eðtÞ þ ~f TðtÞR11

~f ðtÞ þ ~gTðtÞR12 ~gðtÞÞ �
1

s3

� Z0

�s

Z0

d

Z t

tþb

eðsÞdsdbdd
�T

� 16R10

� Z0

�s

Z0

d

Z t

tþb

eðsÞdsdbdd
�

þ 4

s4

� Z0

�s

Z0

d

Z t

tþb

eðsÞdsdbdd
�T

� 10R10

� Z0

�s

Z0

m

Z0

d

Z t

tþb

eðsÞdsdbdddm
�

þ 4

s4

� Z0

�s

Z0

m

Z0

d

Z t

tþb

eðsÞdsdbdddm
�T

� 10R10

� Z0

�s

Z0

d

Z t

tþb

eðsÞdsdbdd
�

� 16

s5

� Z0

�s

Z0

m

Z0

d

Z t

tþb

eðsÞdsdbdddm
�T

� 10R10

� Z0

�s

Z0

m

Z0

d

Z t

tþb

eðsÞdsdbdddm
�

� 1

s3

� Z0

�s

Z0

d

Z t

tþb

~f ðsÞdsdbdd
�T

� 16R11

� Z0

�s

Z0

d

Z t

tþb

~f ðsÞdsdbdd
�

þ 4

s4

� Z0

�s

Z0

d

Z t

tþb

~f ðsÞdsdbdd
�T

� 10R11

� Z0

�s

Z0

m

Z0

d

Z t

tþb

~f ðsÞdsdbdddm
�

þ 4

s4

� Z0

�s

Z0

m

Z0

d

Z t

tþb

~f ðsÞdsdbdddm
�T

� 10R11

� Z0

�s

Z0

d

Z t

tþb

~f ðsÞdsdbdd
�

� 16

s5

� Z0

�s

Z0

m

Z0

d

Z t

tþb

~f ðsÞdsdbdddm
�T

� 10R11

� Z0

�s

Z0

m

Z0

d

Z t

tþb

~f ðsÞdsdbdddm
�

� 1

s3

� Z0

�s

Z0

d

Z t

tþb

~gðsÞdsdbdd
�T

� 16R12

� Z0

�s

Z0

d

Z t

tþb

~gðsÞdsdbdd
�

þ 4

s4

� Z0

�s

Z0

d

Z t

tþb

~gðsÞdsdbdd
�T

� 10R12

� Z0

�s

Z0

m

Z0

d

Z t

tþb

~gðsÞdsdbdddm
�

þ 4

s4

� Z0

�s

Z0

m

Z0

d

Z t

tþb

~gðsÞdsdbdddm
�T

� 10R12

� Z0

�s

Z0

d

Z t

tþb

~gðsÞdsdbdd
�

� 16

s5

� Z0

�s

Z0

m

Z0

d

Z t

tþb

~gðsÞdsdbdddm
�T

� 10R12

� Z0

�s

Z0

m

Z0

d

Z t

tþb

~gðsÞdsdbdddm
�

ð24Þ

Substituting Eqs. (20)–(24) in Eq. (18), we have the following inequality that

dKðtÞ�LKðtÞdt þ 2eTðtÞP~gðtÞdWðtÞ; ð25Þ

where LKðtÞ ¼
P5

i¼1 dKi; and each dKi is defined in Eqs. (20)–(24). Taking

mathematical expectation on both sides of Eq. (25), we have
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E

�
dKðtÞ
dt

�

�E½fTðtÞUfðtÞ�; ð26Þ

where

fðtÞ ¼
�

eTðtÞ eTðt � sÞ f Tðt; eðtÞ; eðt � sÞÞ ~f ðtÞ ~gTðtÞ ~f Tðt � sÞ ~gTðt � sÞ
� Z t

t�s

eðsÞds
�T

� Z t

t�s

~f ðsÞds
�T � Z t

t�s

~gðsÞds
�T � Z0

�s

Z t

tþb

eðsÞdsdb
�T � Z0

�s

Z t

tþb

~f ðsÞdsdb
�T � Z0

�s

Z t

tþb

~gðsÞdsdb
�T

� Z0

�s

Z0

d

Z t

tþb

eðsÞdsdbdd
�T � Z0

�s

Z0

d

Z t

tþb

~f ðsÞdsdbdd
�T � Z0

�s

Z0

d

Z t

tþb

~gðsÞdsdbdd
�T

� Z0

�s

Z0

m

Z0

d

Z t

tþb

eðsÞdsdbdddm
�T � Z0

�s

Z0

m

Z0

d

Z t

tþb

~f ðsÞdsdbdddm
�T

� Z0

�s

Z0

m

Z0

d

Z t

tþb

~gðsÞdsdbdddm
�T�T

:

From Eq. (26), it is clear that LMI (16) holds, then system (11) is asymptotically

stable. Also from Eq. (26) and Ito formula, it is obvious to see that

EKðtÞ � EKðt0Þ ¼ E

Z t

t0

LKðsÞds: ð27Þ

From the definition of Lyapunov functional (17), there exist positive constant k such
that

kEkeðtÞk2 �EKðtÞ�EKðt0Þ þ E

Z t

t0

LKðsÞds

�EKðt0Þ þ kmaxE

Z t

t0

keðsÞk2ds;

ð28Þ

where kmax is the maximum eigenvalue of U\0. Hence, system (11) is globally

asymptotically stable in mean square. This completes the proof. h

Remark 1 Different from the existing literature, the second version of Wirtinger’s

inequality in [23] is introduced in this paper to deal with (22)–(24). Also one can

observe that by introducing some new Lyapunov functional with inclusion of triple

and quadruple integral terms leading the reduction of conservativeness.
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3.1 Numerical simulation

In this section, numerical example is provided to validate the effectiveness of the

synchronization criteria. Consider the 9-D stochastic time-delayed hyperchaotic

error system (11). Let

A ¼

�75 75 0 0:75 � 0:75 0 � 0:75 � 0:75 0:75

21 � 0:75 0 0 0 � 0:75 0 0 0

0 0 � 2 0 0 0 0 0 0

0 0 0 � 7:5 0 0 0 0 0

0 0 0 0 0 0 60 0 0

75 0 0 0 0 0 0 0 0

3:75 0 0 0 0 0 0 0 0

0 11:25 0 0 0 0 0 0 0

22:5 0 0 0 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; and

B ¼

�25 25 0 0:25 � 0:25 0 � 0:25 � 0:25 0:25

7 � 0:25 0 0 0 � 0:25 0 0 0

0 0 � 0:6667 0 0 0 0 0 0

0 0 0 � 2:5 0 0 0 0 0

0 0 0 0 0 0 20 0 0

25 0 0 0 0 0 0 0 0

1:25 0 0 0 0 0 0 0 0

0 3:75 0 0 0 0 0 0 0

7:5 0 0 0 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

be the system parameters matrices. Let s ¼ 0:2 seconds and assume that the Lip-

schitz constant as l ¼ 500 with step size h ¼ 0:001. By using LMI toolbox, one can

obtain feasible control gain matrix K is given as follows:

K ¼

160:3 0 0 0 0 0 0 0 0

0 176:1 0 0 0 0 0 0 0

0 0 144:9 0 0 0 0 0 0

0 0 0 132:9 0 0 0 0 0

0 0 0 0 226:8 0 0 0 0

0 0 0 0 0 246:5 0 0 0

0 0 0 0 0 0 152:4 0 0

0 0 0 0 0 0 0 154:8 0

0 0 0 0 0 0 0 0 162:8

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Figures 8 and 9 depict the synchronized phase portraits for the state variables

ðx1ðtÞ; x3ðtÞÞ and ðy1ðtÞ; y3ðtÞÞ. One can see that the chaotic attractors for the

proposed system (8) are different when the dynamical system includes the Brownian

motion and delay term. Furthermore, the same feedback control gain matrix K will

synchronize the chaotic attractor of the drive and response system with and without
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stochastic and time-delayed nature. Figures 10 and 11 demonstrate the time

responses of the drive and response system with and without stochastic terms,

respectively. Also, Fig. 12 shows the time responses for the proposed hyperchaotic

Fig. 8 Synchronized chaotic attractor for the states ðx1ðtÞ; x3ðtÞÞ and ðy1ðtÞ; y3ðtÞÞ with delay and
stochastic term in system (11)

Fig. 9 Synchronized chaotic attractor for the states ðx1ðtÞ; x3ðtÞÞ and ðy1ðtÞ; y3ðtÞÞ without delay and
stochastic term in system (11)
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system and the stochastic time-delayed hyperchaotic system in comparison.

Figure 13 depicts the time response for the error dynamics of the system (11)

excluding the stochastic time delay. Figure 14 depicts the time response for the error

dynamics of the proposed nine-dimensional stochastic time-delayed hyperchaotic

system (11). Hence, one can easily verify that the rate of convergence for system

(11) without delay and noise is highly faster than the (11).

Fig. 10 Synchronized time response for drive system (9) and response system (10) without delay and
stochastic term

Fig. 11 Synchronized time response for drive system (9) and response system (10) with delay and
stochastic term

123

Synchronization of a 9-D hyperchaotic system 1529



Remark 2 The parameters (b, c, d, e, f) are chosen from the literature [27] for a

fixed time scale. The system (2) exhibits hyperchaotic nature only by fixing the

parameter values r1 ¼ 5, r2 ¼ 15, r3 ¼ 30 and a	 30:2. In this paper, one can

assume the parameter value for a as 100 with initial condition

ð10:1; 10:3; 10:5; 10:7; 10:9;�10:7;�10:5;�10:3;�10:1Þ. For this fixed parame-

ters, the control gain matrix K is estimated by using LMI toolbox. The

aforementioned control gain matrix K will stabilize the error system (11) with

and without stochastic disturbances included in the proposed framework.

Fig. 12 Comparative time response of system (11) including and excluding time delay and stochastic
term

Fig. 13 Time response for error system (11) without delay and stochastic term
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Remark 3 The synchronization of drive and response systems is guaranteed if the

stochastic disturbance is considered in both drive and the response systems.

Figures 13 and 14 depict that the convergence rate of the error system (11) is less

when excluding the stochastic term. Hence, one can conclude that the stabilization

of the error system (11) without stochastic term yields less conservativeness than the

system (11) with stochastic disturbance.

4 Conclusions

A new nine-dimensional hyperchaotic system has been designed and analyzes the

behavior of the proposed method by Lyapunov exponent, fractal dimension,

equilibrium stability, and dissipation. The proposed framework has nine equations

with only one equilibrium point. A new LMIs criterion was employed to

synchronize drive and response systems with stochastic and time delay via the

Lyapunov stability theory and the Linear Matrix Inequality approach. A feedback

controller guarantees the globally asymptotic stability of proposed error dynamics in

the mean square sense. Furthermore, the numerical simulation demonstrates the

effectiveness of the proposed nine-dimensional hyperchaotic system with and

without stochastic and time delay.

5 Future direction

In the future, the proposed synchronization work will be extended into the

fractional-order hyperchaotic neural network with non-instantaneous impulses. Also

implementing the proposed work as a circuit model and study the synchronization to

secure communication will be undertaken.

Fig. 14 Time response for error system (11) with delay and stochastic term
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