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Abstract
In this paper, we deal with an approximation problem for matrix-valued positive

linear operators via statistical convergence with respect to the power series method

which is a new statistical type convergence. Then, we present an application that

shows our theorem is more applicable than the classical one. We also compute the

rates of P-statistical convergence of these operators.

Keywords Matrix-valued functions � P-statistical convergence � Korovkin
theorem � Rate of approximation

Mathematics Subject Classification 40A35 � 41A36 � 47A56 � 65F35

1 Introduction and preliminaries

In approximation theory, the classical Korovkin theorem has a significant place

because it allows us to check convergence with minimal computation [16]. This

theorem mainly provides an approximation to scalar-valued function by way of

linear positive operators. In addition, this theorem, which has been discussed by

many authors, has made a significant contribution to the literature. However, from a

different perspective, Serra-Capizzano established a new Korovkin-type result for
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matrix-valued functions [18]. After this work, Duman and Erkuş-Duman [9] studied

the Korovkin type theorem for matrix-valued functions via the notion of A-statistical
convergence.

Statistical convergence was first introduced by Fast [13] and Steinhaus [22],

independently. Afterwards, it has been the subject of different fields and have been

examined. One of these areas is the Korovkin type approximation theory. The

classical Korovkin theorem has recently been improved by Gadjiev and Orhan [15]

with respect to the notion of statistical convergence (see, for examples

[1, 2, 11, 12, 19]). More recently, Orhan and Ünver introduced the concept of

statistical convergence with respect to the power series method which is a new type

of statistical convergence [23]. The importance of this convergence is to obtain

meaningful results since it cannot be compared with statistical convergence and

also, there are many studies (see [3, 4, 6, 20]).

The purpose of this paper is to study P-statistical Korovkin theorem for matrix-

valued functions. We compare this new theorem with the classical sense, hence we

will get a more general result. We also calculate the rates of P-statistical
convergence.

Now, we begin recalling the statistical convergence and the convergence in the

sense of power series method of a sequence fxng :
Let S be a subset of N0; the set of natural numbers, then the natural density of S,

denoted by dðSÞ; is given by:

dðSÞ :¼ lim
n

1

nþ 1
k� n : k 2 Sf gj j

whenever the limit exists, where :j j denotes the cardinality of the set [17].

A sequence fxng of numbers is statistically convergent to L provided that, for

every e[ 0;

lim
n

1

nþ 1
k� n : xk � Lj j � ef gj j ¼ 0

that is,

S :¼ Sn eð Þ :¼ k� n : xk � Lj j � ef g

has natural density zero. This is denoted by st � limn xn ¼ L [13, 22]. It is worth

noting that, every convergent sequence (in the usual sense) is statistically conver-

gent to the same number and unlike a convergent sequence, a statistically conver-

gent sequence need not be convergent.

Let pnf g be a non-negative real sequence such that p0 [ 0 and the corresponding

power series

p uð Þ :¼
X1

n¼0

pnu
n

has radius of convergence R with 0\R�1: If the limit
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lim
0\u!R�

1

p uð Þ
X1

n¼0

pnu
nxn ¼ L

exists then we say that fxng is convergent in the sense of power series method

[14, 21]. Note that the method is regular iff lim
0\u!R�

pnu
n

p uð Þ ¼ 0 for every n (see, e.g.

[5]).

We remark that in case of R ¼ 1; the power series methods coincide with the

Abel summability method and logarithmic summability method when pn ¼ 1 and

pn ¼ 1
nþ1

; respectively. In the event of R ¼ 1 and pn ¼ 1
n! ; the power series method

coincides with the Borel summability method.

Here and in the sequel, the power series method is always assumed to be regular.

Many researchers are interested in summability methods which are defined by

power series. They are in general non-matrix methods. The best-known examples of

power series methods are the Abel method and the Borel method. It is worthwhile to

point out that, Ünver and Orhan [23] have recently introduced P-statistical
convergence, which cannot be compared with statistical convergence:

Definition 1 [23] Let S � N0: If the limit

dP Sð Þ :¼ lim
0\u!R�

1

p uð Þ
X

n2S
pnu

n

exists, then dP Sð Þ is called the P-density of S. It is worthwhile to point out that from

the definition of a power series method and P-density it is obvious that

0� dP Sð Þ� 1 whenever it exists.

In order to properly state P-density, one can give some properties for it:

i dPðN0Þ ¼ 1;
ii if S � G then dPðSÞ� dPðGÞ;
iii if S has P-density then dPðN0=SÞ ¼ 1� dPðSÞ:

Definition 2 [23] Let fxng be a sequence. Then fxng is said to be statistically

convergent with respect to power series method (P-statistically convergent) to L if

for any e[ 0

lim
0\u!R�

1

p uð Þ
X

n2Se
pnu

n ¼ 0

where Se ¼ n 2 N0 : xn � Lj j � ef g; that is dP Seð Þ ¼ 0 for any e[ 0: This is

denoted by stP � lim xn ¼ L:

Now let’s state that statistical convergence and P-statistical convergence do not

contain each other with the example below.

Example 1 Let pnf g be defined as follows
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pn ¼
1; n ¼ m2;

0; otherwise,

�
m 2 N0;

and take the sequence xnf g defined by

xn ¼
0; n ¼ m2;

n; otherwise,

�
m 2 N0:

We compute that, since for any e[ 0; lim0\u!R� 1
p uð Þ
P

n: xn�Lj j[ e pnu
n ¼ 0; xnf g is

P-statistically convergent to 0. We can easily see that xnf g is not statistically

convergent to 0. On the other hand, let ynf g be a sequence defined by

yn ¼
n; n ¼ m2

0; otherwise

�
m 2 N0:

It is not difficult to observe that ynf g is statistically convergent to 0 however it is not
P-statistically convergent to 0.

2 P-statistical approximation for matrix-valued functions

This section aims to prove a new Korovkin type approximation theorem and to

present an application that shows our theorem is more applicable than the classical

one.

The symbol C a; b½ �;Cs�tð Þ stands for the space of all continuous functions H

acting on a; b½ � and having values in the space Cs�t where s; t 2 N0: C
s�t be a space

s� t complex matrices such that

H xð Þ :¼ hjk xð Þ
� �

s�t
; x 2 a; b½ �; 1� j� s; 1� k� tð Þ; ð1Þ

where ajk
� �

s�t
stands for the s� t matrix defined as follows

a11 a12 � � � a1t

a21 a22 � � � a2t
:

:

:

:

:

:

:

:

:

:

:

:
as1 as2 � � � ast

2

66666664

3

77777775

:

Considering the continuity of H we refer that all scalar valued functions hjk are

continuous on a; b½ �: Furthermore, the norm :k ks�t on the space C a; b½ �;Cs�tð Þ is

defined as follows

Hk ks�t:¼ max
1� j� s; 1� k� t

hjk
�� �� ð2Þ

where hjk
�� �� stands for the usual supremum norm of hjk on the interval a; b½ �: Then,

the definition (2) may be written as below:
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Hk ks�t:¼ max
1� j� s; 1� k� t

sup
x2 a;b½ �

hjk xð Þ
�� ��

 !
: ð3Þ

We consider the following test functions here and in the sequel the article

Eijk xð Þ :¼ xiEjk x 2 a; b½ �; i ¼ 0; 1; 2; 1� j� s; 1� k� tð Þ ð4Þ

where Ejk denotes the matrix of the canonical basis of Cs�t being 1 in the position

j; kð Þ and zero otherwise.

Let H : C a; b½ �;Cs�tð Þ ! C a; b½ �;Cs�tð Þ be an operator, and let us assume that

(i) H aH þ bGð Þ ¼ aH Hð Þ þ bH Gð Þ for any a; b 2 C and H;G 2 C a; b½ �;Cs�tð Þ;
(ii) H Hð Þj j �KH Hj jð Þ for any function H 2 C a; b½ �;Cs�tð Þ and for fixed positive

constant K.
Under the above-mentioned assumptions, the operator H is said to be a matrix

linear positive operator, or simply, mLPO. The inequality appearing in (ii) is

understood to be componentwise, i.e., holding for any component ðj; kÞ 2
1; 2; . . .; sf g � 1; 2; . . .; tf g (see also [9, 18]).

Serra-Capizzano introduced the following Korovkin type approximation theo-

rem. We first recall this theorem:

Theorem 1 [18] Let Hnf g be a sequence of mLOPs from C a; b½ �;Cs�tð Þ into itself.
Then, for each ðj; kÞ 2 1; 2; . . .; sf g � 1; 2; . . .; tf g and for each i ¼ 0; 1; 2;

lim
n

Hn Eijk

� �
� Eijk

�� ��
s�t

¼ 0

where Eijk is given by (4), iff, for every H 2 C a; b½ �;Cs�tð Þ as in (1),

lim
n

Hn Hð Þ � Hk ks�t¼ 0:

Now, we can give the P-statistical Korovkin theorem for mLPOs which is the

main result of this paper.

Theorem 2 Let Hnf g be a sequence of mLOPs from C a; b½ �;Cs�tð Þ into itself. Then,
for each ðj; kÞ 2 1; 2; . . .; sf g � 1; 2; . . .; tf g and for each i ¼ 0; 1; 2;

stP � lim Hn Eijk

� �
� Eijk

�� ��
s�t

¼ 0 ð5Þ

where Eijk is given by (4), iff for every H 2 C a; b½ �;Cs�tð Þ as in (1),

stP � lim Hn Hð Þ � Hk ks�t¼ 0: ð6Þ

Proof Because of each function Eijk defined by (4) in C a; b½ �;Cs�tð Þ; the

implication (6) ¼) (5) follows immediately. Therefore, only the necessity part

does really require a proof. Suppose that (5) hold. Let H 2 C a; b½ �;Cs�tð Þ and

x 2 a; b½ � be fixed. We first calculate the expression Hn H; xð Þ � H xð Þj j; the symbol
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Bj j stands for the matrix having entries equal to the absolute value of the entries of

the matrix B. Notice that the function H xð Þ ¼ hjk xð Þ
� �

s�t
; 1� j� s; 1� k� t; can be

written as follows:

H xð Þ ¼
Xs

j¼1

Xt

k¼1

hjk xð ÞEjk ¼
Xs

j¼1

X

k¼1

t

hjk xð ÞE0jk yð Þ;

where Ejk denotes the matrix of the canonical basis of Cs�t being 1 in the position

j; kð Þ and zero otherwise. Then we have

Hn H xð Þ; xð Þ ¼
Xs

j¼1

X

k¼1

t

hjk xð ÞHn E0jk; x
� �

: ð7Þ

In other respects, since each hjk is continuous on a; b½ �; for a given e[ 0; there exists

a positive number d such that, for every y 2 a; b½ �;

hjk yð Þ � hjk xð Þ
�� ��� eþ 2Mjk

d2
y� xð Þ2 for ðj; kÞ 2 1; 2; . . .; sf g � 1; 2; . . .; tf g; ð8Þ

where Mjk :¼ hjk
�� �� ¼ sup

x2 a;b½ �
hjk xð Þ
�� ��: Observe that (8) implies

H yð Þ � H xð Þj j � eE þ 2M

d2
y� xð Þ2E ð9Þ

where E is the s� t matrix with all entries are 1, and

M :¼ max
1� j� s; 1� k� t

Mjk ¼ Hk ks�t:

We remind that it should be understood that the inequality, and the absolute-value in

(9) is componentwise as stated earlier. Then, in view of (7) and (9), by using similar

technique as in the proof of Theorem 2.1 in [9], for a fixed positive constant K, we

get that

Hn H yð Þ; xð Þ � H xð Þj j � eKE þ 2KM

d2
Xs

j¼1

X

k¼1

t

Hn E2jk; x
� �

� E2jk xð Þ
�� ��

þ 4 cj jKM
d2

Xs

j¼1

X

k¼1

t

Hn E1jk; x
� �

� E1jk xð Þ
�� ��

þ eK þM þ 2c2KM

d2

	 
Xs

j¼1

X

k¼1

t

Hn E0jk; x
� �

� E0jk xð Þ
�� ��

where c :¼ max aj j; bj jf g: Also, taking supremum over x 2 a; b½ �; and taking max-

imum of all entries of the corresponding matrices, we get the result
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Hn Hð Þ � Hk ks�t � eK þ B
Xs

j¼1

X

k¼1

t X

i¼0

2

Hn Eijk

� �
� Eijk

�� ��
s�t

; ð10Þ

where

B :¼ max
2KM

d2
;
4 cj jKM

d2
; eK þM þ 2c2KM

d2

� �
:

Now, for a given e0 [ 0; choose an e[ 0 such that e\e0=K: Then, define the

following sets:

D :¼ n 2 N : Hn Hð Þ � Hk ks�t � e0
� 

;

Dijk :¼ n 2 N : Hn Eijk

� �
� Eijk

�� ��
s�t

� e0 � eK
3stB

� �
;

where i ¼ 0; 1; 2 and ðj; kÞ 2 1; 2; . . .; sf g � 1; 2; . . .; tf g: Hence, thanks to (10) that

D 	 [
j¼1

s
[
t

k¼1
[
i¼0

2
Dijk:

So, we get

1

p uð Þ
X

n2D
pnu

n � 1

p uð Þ
X

j¼1

s Xt

k¼1

X

i¼0

2 X

n2Dijk

pnu
n: ð11Þ

Letting 0\u ! R� in (11) and using the hypotheses (5), we have

lim
0\u!R�

1

p uð Þ
X

n2D
pnu

n ¼ 0;

which means

stP � lim Hn Hð Þ � Hk ks�t¼ 0:

The proof is completed. h

We now present an example such that our Korovkin-type approximation result is

more applicable than studied before.

Example 2 We define matrix-valued Bernstein-type polynomials as follows:

Bn H; xð Þ ¼
Xn

l¼0

H aþ l

n
b� að Þ

	 

n

l

	 

x� a

b� a

� �l b� x

b� a

	 
n�l

; ð12Þ

where n 2 N0; x 2 a; b½ � and H 2 C a; b½ �;Cs�tð Þ such that H xð Þ ¼ hjk xð Þ
� �

s�t
;

1� j� s; 1� k� t: Then, notice that the matrix-valued Bernstein-type polynomials

Bn can be also written as follows:
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Bn H; xð Þ ¼
Xn

l¼0

X

j¼1

s Xt

k¼1

hjk aþ l

n
b� að Þ

	 

n

l

	 

x� a

b� a

� �l b� x

b� a

	 
n�l

Ejk; ð13Þ

where Ejk as above. So, by (12) and (13), we get, for each ðj; kÞ 2 1; 2; . . .; sf g �
1; 2; . . .; tf g; that

Bn E0jk; x
� �

¼
Xn

l¼0

n

l

	 

xl 1� xð Þn�lE0jk aþ l

n
b� að Þ

	 


¼ Ejk

Xn

l¼0

n

l

	 

xl 1� xð Þn�l

¼ E0jk xð Þ:

Also, again for each ðj; kÞ 2 1; 2; . . .; sf g � 1; 2; . . .; tf g;

Bn E1jk; x
� �

¼
Xn

l¼0

n

l

	 

xl 1� xð Þn�lE1jk aþ l

n
b� að Þ

	 


¼ Ejk

Xn

l¼0

n

l

	 

xl 1� xð Þn�l aþ l

n
b� að Þ

	 


¼ xEjk

¼ E1jk xð Þ

and

Bn E2jk; x
� �

¼
Xn

l¼0

n

l

	 

xl 1� xð Þn�lE2jk aþ l

n
b� að Þ

	 


¼ Ejk

Xn

l¼0

n

l

	 

xl 1� xð Þn�l aþ l

n
b� að Þ

	 
2

¼ x2 � 1

n
x� að Þ2þ b� að Þ x� að Þ

n

	 

Ejk

¼ E2jk xð Þ þ b� að Þ x� að Þ
n

� 1

n
x� að Þ2

	 

Ejk:

Let pnð Þ be defined as follows

pn ¼
0; n ¼ 2m;

1; n ¼ 2mþ 1;

�
m 2 N0

and take the sequence
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xn ¼
1; n ¼ 2m;

0; n ¼ 2mþ 1;

�
m 2 N0: ð14Þ

In this case we easily see that

stP � lim xn ¼ 0; ð15Þ

while xnf g is not convergent in the usual and statistical sense. Using this sequence

xnf g and considering Bernstein-type polynomials Bn given with (12) or (13), we

define the following mLPOs

Hn H; xð Þ ¼ 1þ xnð ÞBn H; xð Þ ð16Þ

where n 2 N0; x 2 a; b½ � and H 2 C a; b½ �;Cs�tð Þ such that H xð Þ ¼ hjk xð Þ
� �

s�t
;

1� j� s; 1� k� t: Thus, using the properties of matrix-valued Bernstein-type

polynomials, for each ðj; kÞ 2 1; 2; . . .; sf g � 1; 2; . . .; tf g; one can get the following

results at once:

Bn Eijk; x
� �

� Eijk

�� ��
s�t

¼ xn; i ¼ 0; 1;

and

Bn E2jk; x
� �

� E2jk

�� ��
s�t

� 1

n
j� að Þ2þ b� að Þ j� að Þ

n

þ xn
n

j� að Þ2þ b� að Þ j� að Þ
n

xn

where j ¼ max xj j: Then, by (15), we get that

stP � lim Hn Eijk

� �
� Eijk

�� ��
s�t

¼ 0

for each ðj; kÞ 2 1; 2; . . .; sf g � 1; 2; . . .; tf g and for each i ¼ 0; 1; 2: Therefore,

thanks to our Theorem 2, we get, for all H 2 C 0; 1½ �;Cs�tð Þ;

stP � lim Hn Hð Þ � Hk ks�t¼ 0:

However, since Bn Eijk; x
� �

� Eijk

�� ��
s�t

¼ xn; i ¼ 0; 1; and xnf g is not convergent in

the usual and statistical sense, Theorem 1 and statistical Korovkin theorem [9] for

matrix-valued functions do not work for our new operator given by (16).

3 Rates of P-statistical convergence

In this section, we present some estimates of rates of P-statistical convergence for

Korovkin-type theorems of matrix-valued positive linear operators. The notion of

statistical rates of convergence for matrix-valued functions is studied in [9]. It

should be noted that there is no single definition of rates of convergence. Rates of

convergence have been studied with different definitions by many authors (see, for
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example [7–10, 20]). We show that our P-statistical rates are more efficient than the

classical aspects for matrix-valued functions.

Now, we begin with the following definitions:

Definition 3 Let anf g be a nonincreasing sequence of positive real numbers. A

sequence fxng is P-statistically convergent to a number L with the rate of o anð Þ if,
for every e[ 0;

lim
0\u!R�

1

p uð Þ
X

n2Se
pnu

n ¼ 0

where Se ¼ n 2 N0 : xn � Lj j � eanf g: In this case, we write

xn � L ¼ stP � o anð Þ:

Definition 4 Let anf g be a nonincreasing sequence of positive real numbers. A

sequence fxng is P-statistically bounded with the rate of O anð Þ if there is an B[ 0

with

lim
0\u!R�

1

p uð Þ
X

n2Ge

pnu
n ¼ 0

where Ge ¼ n 2 N0 : xnj j �Banf g: In this case, we write

xn � L ¼ stP � O anð Þ:

Using these definitions, let us give the following lemma:

Lemma 1 Let fxng and fyng be sequences. Assume that anf g and bnf g be positive
non-increasing sequences. Let cn :¼ max an; bnf g for each n 2 N0: If xn � L1 ¼
stP � oðanÞ and yn � L2 ¼ stP � oðbnÞ; then we have

(i) ðxn � L1Þ 
 ðyn � L2Þ ¼ stP � oðcnÞ;
(ii) ðxn � L1Þðyn � L2Þ ¼ stP � oðcnÞ;
(iii) kðxn � L1Þ ¼ stP � oðanÞ for any real number k;
(iv)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn � L1j j

p
¼ stP � oðanÞ

Proof (i) Assume that xn � L1 ¼ stP � oðanÞ and yn � L2 ¼ stP � oðbnÞ: Also, for
e[ 0; define
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Se :¼ n 2 N0 : ðxn � L1Þ 
 ðyn � L2Þj j � ecnf g;

S1e :¼ n 2 N0 : xn � L1j j � e
2
an

n o
;

S2e :¼ n 2 N0 : yn � L2j j � e
2
bn

n o
:

Since cn ¼ max an; bnf g; then observe that

Se � S1e [ S2e ;

which gives,

dP Seð Þ�
X2

i¼1

dP Sie
� �

:

Under the hypotheses, we conclude that

dP Seð Þ ¼ 0;

which completes the proof of (i). Since the proofs of (ii), (iii) and (iv) are similar,

we omit them. h

Furthermore, similar conclusions hold with the symbol ‘‘o ’’ replaced by ‘‘O’’.

Now, let H 2 C a; b½ �;Cs�tð Þ with H xð Þ ¼ hjk xð Þ
� �

s�t
; 1� j� s; 1� k� t: Con-

sider the following classical modulus of continuity of each function hjk by

x hjk; d
� �

:¼ sup hjk uð Þ � hjk xð Þ
�� �� : u; x 2 a; b½ �; u� xj j � d
� 

for d[ 0:

Then the matrix modulus of continuity of H as follows:

xs�t H; dð Þ ¼ max
1� j� s; 1� k� t

x hjk; d
� �

:

Observe that a function H 2 C a; b½ �;Cs�tð Þ if and only if lim
d!0þ

xs�t H; dð Þ ¼
xs�t H; 0ð Þ ¼ 0 and

xs�t H; cdð Þ� 1þ c½ �ð Þxs�t H; dð Þ;

for every c; d[ 0; where c½ � denotes the greatest integer less than or equal to c (see
for details [9]).

The following theorem gives simple sufficient conditions for the rate of P-
statistical convergence.

Theorem 3 Let Hnf g and E0jk be as above and for each ðj; kÞ 2 1; 2; . . .; sf g �
1; 2; . . .; tf g; let anjk

� 
and bnf g be two nonincreasing sequences of strictly positive

real numbers, and put cn :¼ max anjk; bn
� 

for each n 2 N0: Let dn :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPs

j¼1

Pt
k¼1 Hn ujk

� ��� ��
s�t

q
with ujkðyÞ ¼ y� xð Þ2Ejk y; x 2 a; b½ �ð Þ where Ejk is

the matrix of the canonical basis of Cs�t: Furthermore
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(i) Hn E0jk

� �
� E0jk

�� ��
s�t

¼ stP � oðanjkÞ;
(ii) xs�t H; dnð Þ ¼ stP � oðbnÞ with H 2 C a; b½ �;Cs�tð Þ: Then, we get

Hn Hð Þ � Hk ks�t¼ stP � oð cnÞ:

Proof Let H 2 C a; b½ �;Cs�tð Þ and M :¼ Hk ks�t: Since Hn is a mLPO, we get

Hn H yð Þ; xð Þ � H xð Þj j �KHn H yð Þ � H xð Þj j; xð Þ þ Hn H xð Þ; xð Þ � H xð Þj j

where K is a positive constant. Also,

H yð Þ � H xð Þj j �xs�t H; y� xj jð ÞE� 1þ y� xð Þ2

d2

 !
xs�t H; dð ÞE ð17Þ

where E is the s� t matrix such that all entires 1. Then, as stated earlier in the proof

of Theorem 2, we can write that

Hn H xð Þ; xð Þ � H xð Þj j �M
X

j¼1

s Xt

k¼1

Hn E0jk xð Þ; x
� �

� E0jk xð Þ
�� �� ð18Þ

for each x 2 a; b½ �: Hence, thanks to (17) and (18), we get

Hn H yð Þ; xð Þ � H xð Þj j

�Kxs�t H; dð ÞHn E; xð Þ þ K

d2
xs�t H; dð Þ

X

j¼1

s Xt

k¼1

Hn ujk yð Þ; x
� �

þM
X

j¼1

s Xt

k¼1

Hn E0jk xð Þ; x
� �

� E0jk xð Þ
�� ��

�Kxs�t H; dð ÞE þ Kxs�t H; dð Þ
X

j¼1

s Xt

k¼1

Hn E0jk xð Þ; x
� �

� E0jk xð Þ
�� ��

þM
X

j¼1

s Xt

k¼1

Hn E0jk xð Þ; x
� �

� E0jk xð Þ
�� ��

þ K

d2
xs�t H; dð Þ

X

j¼1

s Xt

k¼1

Hn ujk yð Þ; x
� �

:

Taking supremum over x 2 a; b½ � and choosing d ¼ dn; we have
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Hn Hð Þ � Hk ks�t � 2Kxs�t H; dnð Þ

þ Kxs�t H; dnð Þ
X

j¼1

s Xt

k¼1

Hn E0jk

� �
� E0jk

�� ��
s�t

þM
X

j¼1

s Xt

k¼1

Hn E0jk

� �
� E0jk

�� ��
s�t

:

Now considering the above inequality, the hypotheses (i), (ii) and Lemma 1, the

proof is completed at once. h

Furthermore, to obtain P-statistical rates quantitatively, one can consider the

symbol ‘‘O’’ instead of ‘‘o’’ and as in the proof Theorem 3, the similar results hold.
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