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Abstract
In this paper we prove certain generalized local versions of the Banach’s contraction

mapping principle. We give a comparison amongst these results and discuss their

relationships with certain existing results. We present two illustrative examples.

Through these examples we establish a hierarchy amongst some of these results.
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1 Introduction and preliminaries

There have been several generalizations of the celebrated Banach’s contraction

mapping principle [4, 13] in different directions. Even after a century of its

introduction, its generalizations and extensions are being actively pursued. A few

instances of these works are [2, 5, 9–11, 14–17, 19]. We consider two of these

generalizations, one due to Boyd and Wong [5] and the other due to Meir and Keeler

[14]. Eventually, the former is contained in the latter.
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Definition 1.1 (Boyd–Wong contraction) [5] Let (X, d) be a metric space and T :
X ! X be a function. The map T is called a Boyd–Wong contraction if for every

x; y 2 X,

dðTx; TyÞ�/ðdðx; yÞÞ ð1Þ

where / : ½0;1Þ ! ½0;1Þ is upper semicontinuous from right and satisfies /ðtÞ\t
for t[ 0.

Theorem 1.1 (Boyd–Wong) [5] If (X, d) is a complete metric space and T satisfies
relation (1), then T has a unique fixed point �x. Moreover, for any x 2 X, the
sequence of Picard iterates fTnxg of x, converges to �x.

There are several works, reference [3] for instance, where the / function

mentioned above has been used.

Definition 1.2 (Meir–Keeler contraction) [14] Let (X, d) be a metric space and

T : X ! X be a self-map. T is called a Meir–Keeler contraction if for a given e[ 0,

there exists d[ 0 such that for every x; y 2 X,

e� dðx; yÞ\eþ d)d Tx; Tyð Þ\e: ð2Þ

Theorem 1.2 (Meir–Keeler) [14] If (X, d) is a complete metric space and T satisfies
relation (2), then T has a unique fixed point �x. Moreover, for any x 2 X, the
sequence of Picard iterates fTnxg of x, converges to �x.

In 1961, a local contraction was introduced by Edelstein [10]. In this work ðg; kÞ-
contraction condition was introduced in the following way.

Definition 1.3 (Local contraction) [6, 10] Let (X, d)) be a metric space. A self map

T : X ! X is called locally (Banach) contractive if for each x 2 X, there exist two

real numbers g; k with g[ 0, and 0� k\1, such that

8a; b 2 Bðx; gÞ; dðTa; TbÞ\kdða; bÞ:

T is called an ðg; kÞ-uniformly locally contractive map if T is locally contractive and

both k and g do not depend on the point x.

Remark 1.1 As it can be seen from the above that a Banach’s contraction is trivially

an ðg; kÞ-contraction for all g[ 0.

In [10], Edelstein established a fixed point theorem for the above local contraction

which is derivable as a corollary to our result. We will discuss it in the next section.

In this paper, our primary aim is to introduce two local contractions of the types

of Boyd–Wong and Meir–Keeler and obtain fixed point results for them. Further we

will show that the local Boyd–Wong type result is effectively contained in local

Meir–Keeler result, while both of them effectively contain the theorem of Edelstein,

creating a hierarchy of local contractions.

In the following, we define a local notion of Boyd–Wong contraction .
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Definition 1.4 (Uniform local Boyd–Wong contraction) Let (X, d) be a metric

space, T : X ! X be a function and g[ 0 be a real number. T is called an g-uniform

local Boyd–Wong contraction if for all x; y 2 X with dðx; yÞ\g, we have

dðTx; TyÞ�/ðdðx; yÞÞ; ð3Þ

where / : ½0;1Þ ! ½0;1Þ is an upper semicontinuous function from right and

satisfies, /ðtÞ\t for t[ 0.

Remark 1.2 If T is an g-uniform local Boyd–Wong contraction then for each x; y 2
X with 0\dðx; yÞ\g, we have

d Tx; Tyð Þ\dðx; yÞ: ð4Þ

Therefore, T is a strict local contraction and so continuous.

Remark 1.3 It is clear that every Boyd–Wong contraction map is an g-uniform local

Boyd–Wong contraction for all g[ 0.

Next we define the notion of local Meir–Keeler contraction.

Definition 1.5 (Uniform local Meir–Keeler contraction) Let (X, d) be a metric

space, T : X ! X be a function and g[ 0 be a real number. T is an g-uniform local

Meir–Keeler contraction if for any e[ 0, there exists d[ 0 such that for all x; y 2 X
with dðx; yÞ\g,

e� dðx; yÞ\eþ d)d Tx; Tyð Þ\e: ð5Þ

Remark 1.4 From the above definition it can be seen that if e is chosen to be greater

than or equal to g, then relation-(5) is vacuously satisfied as there exist no x, y in

X with dðx; yÞ\g such that e� dðx; yÞ. In case, e 2 ð0; gÞ, the corresponding choice

of d can be made to fall within ð0; g� e�, because if dþ e[ g then selecting

d
0 ¼ minfd; g� eg we make d

0
to be less than or equal to g� e.

Remark 1.5 If T is an g-uniform local Meir–Keeler contraction then for each x; y 2
X with 0\dðx; yÞ\g, it trivially follows that

d Tx; Tyð Þ\dðx; yÞ: ð6Þ

So, T is a strict local contraction and thus, continuous.

Remark 1.6 It is clear that every Meir–Keeler contraction map is an g-uniform local

Meir–Keeler contraction for all g[ 0.

Definition 1.6 (g-chainable metric space) [6, 10] Let g[ 0 be a real number. A

metric space (X, d) is called g-chainable if for every pair of points x; y 2 X there

exists g-chain from the point x to the point y, that is, there are finite number of points

a0; a1; :::; an in X such that x ¼ a0; y ¼ an and dðai; aiþ1Þ\g for 0� i� n � 1.
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2 Main results

Theorem 2.1 Let g be a positive real number and (X, d) be a complete g-chainable
metric space. If the map T : X ! X is g-uniform local Meir–Keeler contraction then
T has a unique fixed point in X.

Proof First we shall assure the existence of a fixed point and then show its

uniqueness.

Let us select an element x 2 X arbitrarily and construct the sequence fxng as

x0 ¼ x; xn ¼ Tnx; 8n 2 N: If Tx ¼ x, then x is a fixed point and this part of the

theorem is proved. Now assume Tx 6¼ x. Since X is an g-chainable metric space, let

x ¼ a0, a1, ..., an ¼ Tx be an g-chain from x to Tx. Thus,

dðai; aiþ1Þ\g; for 0� i� n � 1: ð7Þ

Therefore, each pair of the consecutive elements from the chain satisfies the rela-

tion-(6). Therefore,

dðTai; Taiþ1Þ\dðai; aiþ1Þ\g:

By repeated application of the above result, we have dðTmai; Tmaiþ1Þ\g; for all

m 2 N. Let us take Ri
m ¼ dðTmai; Tmaiþ1Þ. By using (6), we have

Ri
mþ1 ¼ dðTmþ1ai;T

mþ1aiþ1Þ\dðTmai; Tmaiþ1Þ ¼ Ri
m:

Thus, fRi
mg is a decreasing sequence of non-negative real numbers. Hence, it is

convergent. Let lim
m!1

Ri
m ¼ Ri. We note that 0�Ri �Ri

m\g; 8m 2 N.

We claim that Ri ¼ 0, otherwise, if Ri [ 0 then, since Ri\g, from the

remark 1.4, there exists dðRiÞ 2 ð0; g� RiÞ such that for all x; y 2 X with

dðx; yÞ\g,

Ri � dðx; yÞ\Ri þ d)d Tx; Tyð Þ\Ri: ð8Þ

Now, as fRi
mg decreases to Ri, there exists N 2 N such that

Ri �Ri
N ¼ dðTNai; TNaiþ1Þ\Ri þ d, which, by virtue of the relation (8), implies

that Ri
Nþ1 ¼ dðTNþ1ai; TNþ1aiþ1Þ\Ri. This leads to a contradiction to the fact that

Ri �Ri
m; for all m 2 N. Thus, Ri ¼ 0.

Also,
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lim
m!1

dðxm; xmþ1Þ ¼ lim
m!1

dðTmx; TmðTxÞÞ

� lim
m!1

Xn�1

i¼0

dðTmai; Tmaiþ1Þ

¼ lim
m!1

Xn�1

i¼0

Ri
m

�
Xn�1

i¼0

lim
m!1

Ri
m

¼
Xn�1

i¼0

Ri

¼ 0:

ð9Þ

Hence, dðxm; xmþ1Þ ! 0 as m ! 1.

We now show that fxng is a Cauchy sequence. Let e be any positive real number

such that e\g and set e
0 ¼ minfe; g� eg. Since T is g-uniform local Meir–Keeler

contraction, for the e[ 0 there exists dðeÞ 2 ð0; e0 Þ such that the implication (5)

holds for all x; y 2 X with dðx; yÞ\g.

Again, as lim
m!1

dðxm; xmþ1Þ ¼ 0, 9N0 2 N such that

dðxm; xmþ1Þ\d for all m�N0: ð10Þ

Let k �N0 be an integer. We now prove, by induction, that for all p 2 N,

dðxk; xkþpÞ\eþ d: ð11Þ

Putting m ¼ k in (10) we get dðxk; xkþ1Þ\d\eþ d. Thus, relation (11) is true for

p ¼ 1.

Let as assume that the relation (11) is true for some p ¼ n 2 N. Then

dðxk; xkþnÞ\eþ d. If e� dðxk; xkþnÞ, then from relation (5) we have

dðxkþ1; xkþnþ1Þ ¼ dðTxk; TxkþnÞ\e. On the other hand, if dðxk; xkþnÞ\e then from

relation (6) we have dðxkþ1; xkþnþ1Þ ¼ dðTxk; TxkþnÞ\dðxk; xkþnÞ\e. Thus, in any

case dðxkþ1; xkþnþ1Þ\e.
Now,

dðxk; xkþnþ1Þ� dðxk; xkþ1Þ þ dðxkþ1; xkþnþ1Þ
\eþ d:

ð12Þ

Therefore, (11) is true for p ¼ n þ 1 whenever it is true for p ¼ n, and thus, relation

(11) is true for all p 2 N.

Hence, dðxk; xkþpÞ\eþ d\2e; 8k�N0, and 8p 2 N. Therefore, the sequence

fxmg is Cauchy. The space X being complete, there exists �x 2 X such that

lim
n!1

xn ¼ �x. The continuity of T (see remark 1.5) then implies

�x ¼ lim
n!1

xnþ1 ¼ lim
n!1

Txn ¼ T �x, showing �x is a fixed point of T.
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We claim that �x is the unique fixed point for T. If not, and if possible suppose that

there exists another fixed point �y 2 X. Thus, dð�x; �yÞ[ 0: For the g-chain �x ¼
b0; b1; :::; bp ¼ �y from �x to �y, we have dðbi; biþ1Þ\g, for 0� i� p � 1. Now, fol-

lowing the similar argument, as we have obtained relation (9), we conclude that

dð�x; �yÞ ¼ dðTm �x; Tm �yÞ�
Xp�1

i¼0

dðTmbi; Tmbiþ1Þ: ð13Þ

Passing to the limit as m �! 1 in the above relation we get the contradiction that

dð�x; �yÞ ¼ 0.

Thus, the fixed point of T is unique. h

Lemma 2.1 Let (X, d) be a metric space. If T : X ! X is an g-uniform local Boyd–
Wong contraction then it is an g-uniform local Meir–Keeler contraction.

Proof Since T is an g-uniform local Boyd–Wong contraction, for all x; y 2 X with

dðx; yÞ\g condition (3) holds. Without loss of any generality first fix e[ 0 such

that e\g and then let e
0 ¼ e� /ðeÞ. Clearly, e

0
[ 0 as /ðeÞ\e. The function /

being upper semicontinuous from right at e, for the e
0
[ 0 there exists 0\d\g� e

such that

t 2 ½e; eþ dÞ)/ðtÞ\/ðeÞ þ e
0 ¼ e: ð14Þ

Thus, from (14) we have for all x; y 2 X with dðx; yÞ\g

dðx; yÞ 2 ½e; eþ dÞ)/ðdðx; yÞÞ\e: ð15Þ

Therefore, for any e[ 0 there exists d[ 0 such that dðTx; TyÞ�/ðdðx; yÞÞ\e,
whenever e� dðx; yÞ\eþ d with dðx; yÞ\g. Hence, T is an g-uniform local Meir–

Keeler contraction. h

Theorem 2.2 Let (X, d) be a complete, g-chainable metric space for some real
number g[ 0. If T : X ! X is g-uniform local Boyd–Wong contraction, then T has
a unique fixed point in X.

Proof Let T satisfies the relation (3) for all x; y 2 X with dðx; yÞ\g. Then by

lemma 2.1, the map T satisfies all the conditions of Theorem 2.1. Thus, T has a

unique fixed point in X. h

In the following we describe two corollaries which are derived from the above

theorems.

Corollary 2.1 (Edelstein) [10] Let (X, d) be a complete g-chainable metric space
for some real number g[ 0 and T : X ! X be ðg; kÞ-uniformly locally contractive
for some real number k 2 ½0; 1Þ, i.e. for each x; y 2 X if dðx; yÞ\g then

dðTx; TyÞ� kðdðx; yÞÞ: ð16Þ

Then T has a unique fixed point in X.
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Proof Let for all x; y 2 X with dðx; yÞ\g, the map T satisfy relation (16). By taking

/ðtÞ ¼ kt in (3) we see that the function T is an g-uniform local Boyd–Wong

contraction. The result then follows from Theorem 2.2. h

Corollary 2.2 [6] Let (X, d) be a complete, g-chainable metric space for some real
number g[ 0 and w : ½0;1Þ ! ½0;1Þ be a prior given nondecreasing continuous
function such that for t[ 0, wðtÞ[ 0 and wð0Þ ¼ 0. If T : X ! X is such that for
all x; y 2 X, with dðx; yÞ\g, dðTx; TyÞ� dðx; yÞ � wðdðx; yÞÞ then T has a unique
fixed point in X.

Proof Choosing /ðtÞ ¼ t � wðtÞ we observe that all the conditions of Theorem 2.2

are satisfied. The corollary then follows as an application of Theorem 2.2. h

3 Illustrative examples

Example 3.1 Let A ¼ fðcos h; sin hÞj0� h� 3p
2
g, B ¼ N� f0g and consider the

metric space (X, d) where X ¼ A [ B and d is the usual distance on R2. Clearly X is

complete and g-chainable for g ¼ 1:1. Define T : X ! X by

Tx ¼

ðcos
h
2
; sin

h
2
Þ if x ¼ ðcos h; sin hÞ 2 A;

ð1; 0Þ if x ¼ ð2n; 0Þ; n 2 N;

ðcosðp
3
� 1

2n þ 1
Þ; sinðp

3
� 1

2n þ 1
ÞÞ if x ¼ ð2n þ 1; 0Þ; n 2 N:

8
>>>><

>>>>:

We note that, for the above g and for k ¼ 1
2 cos5p

48

, the map T is an ðg; kÞ uniform local

Banach contraction if applied on the pair of points x, y where both x; y 2 A. Thus, T
is an g-uniform local Meir–Keeler contraction, when restricted to A.

Now, without loss of generality fix e[ 0 such that e\g and consider the fol-

lowing two cases.

Case I: If 0\e\1, then we choose dðeÞ ¼ 1 � e. In this case the inequality

e� dðx; yÞ\eþ d is satisfied only if x; y 2 A. Hence, T being an ðg; kÞ-uniform

local Banach contraction on A, and thus, being g-uniform local Meir–Keeler con-

traction on A, T satisfies the relation (5) in this case for all x; y 2 X with dðx; yÞ\g.

Case II: If 1� e\g, then we choose dðeÞ ¼ g� e, and consider the points x; y 2
X such that e� dðx; yÞ\eþ d. Here consider the following three subcases.

Subcase II(a): If both x; y 2 A and e� dðx; yÞ\eþ d, then relation (5) is satisfied.

Subcase II(b): If x ¼ ð2n; 0Þ, y ¼ ð2n þ 1; 0Þ for some n 2 N, then

dðTx; TyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos
p
3
� 1

2n þ 1

� �
� 1

� �2

þ sin
p
3
� 1

2n þ 1

� �
� 0

� �2
s

\1� e:

Thus, (5) is satisfied also in this case.

Subcase II(c): If x 2 A and y 2 B then dðx; yÞ\g only when y ¼ ð2; 0Þ. Then for

x ¼ ðcos h; sin hÞ 2 A and y ¼ ð2; 0Þ, with e� dðx; yÞ\eþ d we have
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dðTx; TyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos
h
2
� 1

� �2

þ sin
h
2
� 0

� �2
s

\1� e:

Thus, (5) is satisfied also in this case.

Hence, in any case, for the above e and the corersponding d, the map T satisfy the

relation (5) for all x; y 2 X with dðx; yÞ\g.

Thus, all the criteria of Theorem 2.1 are met, and thus, by application of The-

orem 2.1 we have a unique fixed point for T.

It is observed that (1, 0) is the unique fixed point of T in X.

Remark 3.1 In the Example 3.1, let x ¼ ð1; 0Þ and y ¼ ð0;�1Þ. Then, dðx; yÞ ¼
ffiffiffi
2

p

and dðTx; TyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 þ

ffiffiffi
2

pp
. Therefore, dðTx; TyÞ[ dðx; yÞ. So, the map T is not

even a contraction and consequently not a Meir–Keeler map.

Thus, the Meir–Keeler theorem is not applicable in Example 3.1. On the other

hand from remark 1.6 it is seen that every Meir–Keeler contraction map is an g-

uniform local Meir–Keeler contraction for all g[ 0. This shows that Theorem 2.1

effectively generalizes the result due to Meir and Keeler[14] ( Theorem 1.2) in the

context of g-chainable metric spaces.

Remark 3.2 In the Example 3.1, the map T is not an g-uniform local Boyd–Wong

map for any g[ 1. If not, let there exist a function / such that T satisfies the

relation (3) for all x; y 2 X with dðx; yÞ\g for g[ 1; where / : ½0;1Þ ! ½0;1Þ is

an upper semicontinuous function from right and satisfies, /ðtÞ\t for t[ 0. Let

x ¼ ð2n; 0Þ and y ¼ ð2n þ 1; 0Þ. Then, from (3) we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos
p
3
� 1

2n þ 1

� �
� 1

� �2

þ sin
p
3
� 1

2n þ 1

� �
� 0

� �2
s

¼ dðTx; TyÞ

�/ðdðx; yÞÞ ¼ /ð1Þ:

Taking limit n ! 1 on both sides, we get 1�/ð1Þ, which contradicts the prop-

erties of /. So, the map T is not a local Boyd–Wong contraction.

This shows that an g-uniform local Meir–Keeler contraction may not be an g-

uniform local Boyd–Wong contraction. But in lemma 2.1 we have proved that every

g-uniform local Boyd–Wong contraction is an g-uniform local Meir–Keeler con-

traction. Thus, Theorem 2.2 is effectively contained in Theorem 2.1.

Example 3.2 Suppose X ¼ A [ B where

A ¼
��

xðtÞ; yðtÞ
�
: xðtÞ ¼ t; yðtÞ ¼ 0; 0� t� 1

2

�
, and

B ¼
��

xðsÞ; yðsÞ
�
: xðsÞ ¼ 1

2
; yðsÞ ¼ s � 1

2
; 3

4
� s� 1

�
. Then (X, d) is a complete

metric space with respect to the metric d induced by usual Euclidean distance on R2.

Let the map T : X ! X be defined by

T
�
xðtÞ; yðtÞ

�
¼ t � 1

2
t2; 0

� �
; 0� t � 1:

Let us choose g ¼ 0:36. With this value of g, (X, d) is an g-chainable metric space.
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(In fact this is true for all g[ 1
4
). We next prove that the map T is an g-uniform local

Boyd–Wong contraction.

Let / : ½0;1Þ ! ½0;1Þ be the function, defined as

/ðxÞ ¼
x � 1

2
x2; when 0� x\1;

x

2
; when x[ 1:

8
><

>:

Clearly / is continuous and for x[ 0, 0�/ðxÞ\x.

Now we consider the following cases.

Case I: Let us consider the pair of points ~p
�
xðtÞ; yðtÞ

�
2 A, 0� t � 1

2
and

~q
�
ðxðsÞ; yðsÞ

�
2 B, 3

4
� s� 1.

Then dð~p; ~qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
� t

� �2þ s � 1
2

� �2
q

.

So, / dð~p; ~qÞð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
� t

� �2þ s � 1
2

� �2
q

� 1

2

1

2
� t

� �2

þ s � 1

2

� �2
 !

.

Now, d T ~p; T ~qð Þ ¼ s � 1
2

s2
� �

� t � 1
2

t2
� �

.

Consider the function F : R� R ! R, defined by

Fðt; sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� t

� �2

þ s � 1

2

� �2
s

� 1

2

1

2
� t

� �2

þ s � 1

2

� �2
 !8

<

:

9
=

;

� s � 1

2
s2

� �
� t � 1

2
t2

� �	 

:

The function F is continuous at 1
2
; 3

4

� �
and also F 1

2
; 3

4

� �
[ 0. Thus, there exists d[ 0

such that F takes only positive values in the d-neighborhood of 1
2
; 3

4

� �
.

Now,for the parameters t ¼ 1
2
, s ¼ 3

4
the corresponding points ~p0ð1

2
; 0Þ 2 A, and

~q0ð1
2
; 1

4
Þ 2 B satisfies / d ~p0; ~q0ð Þð Þ � dðT ~p0; T ~q0Þ[ 0, as F 1

2
; 3

4

� �
[ 0. Thus, ~p0; ~q0

satisfy relation (3). Therefore, there exists d[ 0 with d\ 1
4
, such that for all pair of

points ~u
�
xðtÞ; yðtÞ

�
2 A, ~v

�
ðxðsÞ; yðsÞ

�
2 BÞ, with t 2 1

2
� d; 1

2

� �
and s 2 3

4
; 3

4
þ d

� �

the relation (3) is satisfied.

Now let us consider a real number a such that 0\a� d. Then, the points cor-

responding to t ¼ 1
2
� a and s ¼ 3

4
þ a are respectively ~p 1

2
� a; 0

� �
and ~qð1

2
; 1

4
þ aÞ.

Thus,

dð~p; ~qÞ ¼ d
1

2
� a; 0

� �
;

1

2
;
1

4
þ a

� �� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1

4
þ a

� �2
s

:

So, / dð~p; ~qÞð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1

4
þ a

� �2
s

� 1

2
a2 þ 1

4
þ a

� �2
( )

¼ DðaÞðsayÞ:

Now, for dð~p; ~qÞ\1 , DðaÞ ¼ dð~p; ~qÞ � 1
2
ðdð~p; ~qÞÞ2

is a strictly increasing function

of dð~p; ~qÞ. Thus, DðaÞ is strictly increasing with respect to a, for 0� a\ 1
4
.
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Therefore, the minimum value of DðaÞ for a 2 ½0; 1
4
Þ is Dð0Þ ¼ 7

32
.

Also, d T ~p; T ~qð Þ ¼ 3
4
þ a

� �
� 1

2
3
4
þ a

� �2
n o

� 1
2
� a

� �
� 1

2
1
2
� a

� �2
n o

¼
3

32
þ 3

4
a ¼ f ðaÞ (say), which is clearly a continuous and increasing function of a.

For a ¼ 0:1, we have d T ~p; T ~qð Þ ¼ 27
160

\ 7
32

, the minimum value of the R.H.S of

(3) in this case.

Hence, we have, f ðaÞ\f ð0:1Þ ¼ 27
160

\ 7
32
¼ Dð0Þ\DðaÞ, that is,

dðT ~p; T ~qÞ\/ðdð~p; ~qÞÞ. Therefore, for a� 0:1, relation (3) is satisfied. Here we take

d ¼ 0:1.

Hence, any pair of points ~p 2 A and ~q 2 B, whose distance is lesser than

g ¼ 0:36, satisfies the inequality (3).

Case II: Let both the points ~p
�
xðs1Þ; yðs1Þ

�
; ~q
�
xðs2Þ; yðs2Þ

�
2 B, where,

3
4
� s1 � s2 � 1. Thus, dð~p; ~qÞ ¼ s2 � s1 and

dðT ~p; T ~qÞ ¼ s2 �
1

2
s2

2

	 

� s1 �

1

2
s1

2

	 


¼ s2 � s1ð Þ � 1

2
s2

2 � s1
2

� �
:

Here, /ðdð~p; ~qÞÞ ¼ dð~p; ~qÞ � 1
2
ðdð~p; ~qÞÞ2 ¼ ðs2 � s1Þ � 1

2
ðs2 � s1Þ2

. Since
3
4
� s1 � s2, we note that

s2
2 � s1

2 ¼ ðs2 þ s1Þðs2 � s1Þ� ðs2 � s1Þðs2 � s1Þ ¼ ðs2 � s1Þ2
. Thus, we have

ðs2 � s1Þ � 1
2

s2
2 � s1

2
� �

�ðs2 � s1Þ � 1
2
ðs2 � s1Þ2

.

Thus, relation (3) is satisfied in this case. So, in particular, for dð~p; ~qÞ\g, relation

(3) remains satisfied.

Case III: Let both the points ~p
�
xðt1Þ; yðt1Þ

�
; ~q
�
xðt2Þ; yðt2Þ

�
2 A, where,

0� t1 � t2 � 1
2
. Then dð~p; ~qÞ ¼ t2 � t1 and

dðT ~p; T ~qÞ ¼ t2 � 1
2

t2
2

� �
� t1 � 1

2
t1

2
� �

¼ ðt2 � t1Þ � 1
2

t2
2 � t1

2
� �

.

Now, /ðdð~p; ~qÞÞ ¼ dð~p; ~qÞ � 1
2
ðdð~p; ~qÞÞ2 ¼ ðt2 � t1Þ � 1

2
ðt2 � t1Þ2

.

Since 0� t1 � t2, we note that

t2
2 � t1

2 ¼ ðt2 þ t1Þðt2 � t1Þ� ðt2 � t1Þðt2 � t1Þ ¼ ðt2 � t1Þ2
.

Thus, we have ðt2 � t1Þ � 1
2

t2
2 � t1

2
� �

�ðt2 � t1Þ � 1
2
ðt2 � t1Þ2

.

Therefore, relation (3) is satisfied and thus, in particular, for dð~p; ~qÞ\g, relation

(3) is satisfied.

Thus, by the above three cases, T is g-uniform local Boyd–Wong contraction, for

g ¼ 0:36.

Thus, all the conditions of the Theorem 2.2 are satisfied.

We observe that 0; 0ð Þ is the unique fixed point of T.

Remark 3.3 The map T in the Example 3.2, fails to be uniform local (Banach)

contraction. If not, then there exist constants g; k,such that g[ 0; and 0� k\1,

satisfying
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8~p; ~q 2 X if dð~p; ~qÞ\g then dðT ~p; T ~qÞ\k dð~p; ~qÞ: ð17Þ

Let t ¼ minfg; 1�k
2
g and consider the two points ~pð0; 0Þ and ~qðt; 0Þ. Then, we have,

dð~p; ~qÞ ¼ t, dðT ~p; T ~qÞ ¼ t � 1
2

t2. Since dð~p; ~qÞ ¼ t\g, form relation (17) we get,

t � t2

2
\kt

or; t � t2

2
\ð1 � 2tÞt Since t � 1 � k

2
or, k� 1 � 2t:

 �

or;� t2

2
\� 2t2:

The above is impossible to hold and hence, the map T fails to be uniform local

(Banach) contraction.

This shows that an g-uniform local Boyd–Wong contraction may not be an

uniform local (Banach) contraction. In view of Corollary 2.1 we conclude that

Theorem 2.2 effectively includes the result of Edelstein [10].

4 Discussion and conclusion

In view of Remarks 3.2 and 3.3 we observe that the local Meir–Keeler result

(Theorem 2.1), the local Boyd–Wong result (Theorem 2.2), and the theorem of

Edelstein (Corollary 2.1) form a hierarchy in that the former effectively contains the

successor. In this context we mention the weak contraction mapping principle due to

Rhoades[18]. Although this result is contained in the theorem of Boyd and Wong,

and is published subsequently in 2001, it opened a new avenue of research in which

not only the Banach’s result was generalized but also a new chapter with weak

contraction inequalities was opened in fixed point theory. See [1, 7, 8, 12] and

references therein for instances. In a recent paper [6] the present authors have

established a local version of the weak contraction principle which is derived here

as Corollary 2.2. It is shown in [6] that for a prior given w, the Banach’s contraction

mapping theorem may not be included in that result. Therefore, the local contraction

theorem of Edelstein is also not included in the above result. For this reason

Corollary 2.2 is not a part of the hierarchy of the local fixed point results mentioned

above.
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