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Abstract
This paper proposes a single projection method with the Bregman distance tech-

nique for solving pseudomonotone variational inequalities in real reflexive Banach

space. The step-sizes, which varies from step to step, are found over each iteration

by cheap computation without any linesearch. We prove strong convergence result

under suitable conditions on the cost operator. We further provide an application of

our main result and also report some numerical experiments to illustrate the per-

formance and efficiency of our proposed method.
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1 Introduction

Numerous problems in science and engineering, optimization theory, nonlinear

analysis, equilibrium theory and differential equations, lead to the study of

variational inequality problem (VIP) in the sense of Stampacchia et al. in [19, 25].

This problem has been intensively investigated and developed after appearing in the

mono graphic book [15, 26]. Let E be a real Banach space with norm k � k and

represent the dual of E by E� with hx�; xi signifying the value of x� 2 E� at x 2 E:
Suppose C is nonempty, closed with C � E and A : C ! E� is a nonlinear

mapping. The VIP is defined as finding u 2 C such that

hAu; v� ui� 0 8v 2 C: ð1:1Þ

We shall denote by SolðC;AÞ; the solution set of VIP (1.1).

The projected gradient method [18] is known to solve VIP (1.1) when A is

strongly monotone and Lipschitz continuous. This method fails to converge to any

solution of VIP (1.1) when A is monotone. The Extragradient Method (EGM) [27]

was introduced to solve VIP (1.1) when A is continuous and Lipschitz continuous:

yn ¼ PCðxn � qAxnÞ;
xnþ1 ¼ PCðxn � qAynÞ; n� 0;

�
ð1:2Þ

where PC is the projection onto C. The weak convergence of EGM (1.2) is achieved

when q 2 ð0; 1=LÞ; with L being the Lipschitz constant of A (see,

[5–8, 10–12, 14, 21, 24, 33, 36, 40–43]). The major weakness in EGM (1.2) is that it

involves two projection onto C per iteration and this requires solving a minimization

problem twice per iteration during implementation, which can slow down the

iterations. This motivated Tseng [37] to propose the following method;

yn ¼ PCðxn � qAxnÞ;
xnþ1 ¼ yn � qðAyn �AxnÞ; n� 0

�
ð1:3Þ

which requires only one computation of PC per iteration. The weak convergence of

(1.3) was obtained in Hilbert spaces when either the step size q 2 ð0; 1=LÞ or

generated by a line search procedure. The requirement that the step size q in EGM

(1.2) and (1.3) dependent on Lipschitz constant of the cost function is inefficient

since the Lipschitz constant are difficult to estimate in most of the applications, and

when they do, they are often too small and this in turn slows down the convergence

of EGM (1.2) and (1.3).

It is very interesting to also study VIP in Banach spaces because several physical

models and applications can be formulated as VIPs in real Banach spaces which are

not Hilbert.

Recently, Jolaoso et al. [22] presented modified Bregman subgradient algorithms

with line search technique for solving VIP with a pseudo-monotone operator

without necessarily satisfying the Lipschitz condition. They introduced the

following two algorithms:
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Under suitable conditions of the given parameters, Jolaoso et al. [22] established

the weak and strong convergence of Algorithm 1.1 and 1.2 respectively in reflexive

Banach spaces. See also the recent paper by Reich et al. [31].

Following this direction, motivated and inspired by the presented results, we

introduce a single projection method with self adaptive step size for solving the VIP

(1.1) in a reflexive Banach space. The proposed algorithm uses variable step size

from step to step which are updated over each iteration by a cheap computation.

This step size allows the algorithm to work more easily without knowing previously

the Lipschitz constant of operator A: Unlike [22], we do not use any linesearch in

our algorithm (a linesearch means that at each outer-iteration we use an inner-loop
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until some finite stopping criterion is satisfied, and this can be time consuming). We

provide an application and some numerical experiment to illustrate the performance

and efficiency of our proposed method.

2 Preliminaries

In this section, we give some definitions and preliminary results which will be used

in our convergence analysis. Let C be a nonempty, closed and convex subset of a

real Banach space E with the norm k � k and dual space E�: We denote the weak and

strong convergence of a sequence fxng � E to a point x� 2 E by xn * x� and

xn ! x� respectively.

Let f : E ! ð�1;þ1� be a function satisfying the following:

(i) int ðdom f Þ � E is a uniformly convex set;

(ii) f is continuously differentiable on int ðdom f Þ;
(iii) f is strongly convex with strongly convexty constant .[ 0; i.e.

f ðxÞ� f ðyÞ � hrf ðyÞ; x� yi

þ .
2
kx� yk2; 8x 2 dom and y 2 int ðdom f Þ:

The subdifferential set of f at a point x denoted by of is defined by

of ðxÞ :¼ fx� 2 E� : f ðxÞ � f ðyÞ� hy� x; x�i; y 2 Eg;

Every element x� 2 of ðxÞ is called a subgradient of f at x. Since f is continuously
differentiable, then of ðxÞ ¼ frf ðxÞg; which is the gradient of f at x. The Fénchel

conjugate of f is the convex functional f � : E� ! ð�1;þ1� defined by f �ðx�Þ ¼
supfhx�; xi � f ðxÞ : x 2 Eg: Let E be a reflexive Banach space, the function f is said
to be Legendre if and only if f satisfy the following conditions:

(R1) int ðdom f Þ 6¼ ; and of is single-valued on its domain;

(R2) int ðdom f Þ 6¼ ; and of � is single-valued on its domain.

It is worth mentioning that the Bregman distance is not a metric in the usual sense

because it does not satisfy the symmetric and triangular inequality properties.

However, It posses the following interesting property called the three point identity:

for x 2 dom f and y; z 2 int ðdom f Þ; we have Let f : E ! R be strictly convex

and Gâteaux differentiable function. The Bregman distance /f : dom f 	
int ðdom f Þ ! R with respect to f is defined by

/f ðx; yÞ ¼ f ðxÞ � f ðyÞ � hx� y;rf ðyÞi; 8 x 2 dom f ; y 2 int ðdom f Þ:
/f ðx; yÞ þ /f ðy; zÞ � /f ðx; zÞ� hrf ðzÞ � rf ðyÞ; x� yi:

ð2:1Þ

The Bregman function has been widely used by many authors for solving many

optimization problems in the literature (see [30] and the references therein).
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Remark 2.1 Practical important examples of the Bregman distance function can be

found in [3]. If f ðxÞ ¼ 1
2
kxk; we have /f ðx; yÞ ¼ 1

2
kx� yk2 which is the Euclidean

norm distance. Also, if f ðxÞ ¼ �
Pm

j¼1 xj logðxjÞ which is Shannon’s entropy for

non-negative orthant Rm
þþ :¼ fx 2 Rm : xj [ 0g; we obtain the Kullback-Leibler

cross entropy defined by

/f ðx; yÞ ¼
Xm
j¼1

xj log
xj
yj

� �
� 1

� �
þ
Xm
j¼1

yi: ð2:2Þ

Also, if f is .-strongly convex, then

/f ðx; yÞ�
.
2
kx� yk2; 8x 2 dom f ; y 2 int ðdom f Þ: ð2:3Þ

Definition 2.2 The Bregman projection (see e.g. [32]) with respect to f of x 2
int ðdom f Þ onto a nonempty closed convex set C � int ðdom f Þ is the unique

vector ProjfCðxÞ 2 C satisfying

ProjfCðxÞ :¼ inff/f ðx; yÞ : x 2 Cg:

The Bregman projection is characterized by the inequality

z ¼ ProjfCðxÞ () hrf ðxÞ � rf ðzÞ; y� zi� 0; 8y 2 C: ð2:4Þ

Also

/f ðy;Proj
f
CðxÞÞ þ /f ðProj

f
CðxÞ; xÞ�/f ðy; xÞ; 8y 2 C; x 2 int ðdom f Þ: ð2:5Þ

Following [1, 13], we define the function Vf : E 	 E ! ½0;1Þ associated with f by

Vf ðx; yÞ ¼ f ðxÞ � hx; yi þ f �ðyÞ; 8x; y 2 E ð2:6Þ

Vf is non-negative and Vf ðx; yÞ ¼ /f ðx;rf ðyÞÞ for all x; y 2 E: Moreover, by the

subdifferential inequality, it is easy to see that

Vf ðx; yÞ þ hz;rf �ðyÞ � xi�Vf ðx; zþ yÞ ð2:7Þ

for all x; y; z 2 E: In addition, If f : E ! R [ fþ1g is proper lower semicontinous,

then f � : E ! R [ fþ1g is proper weak lower lower semicontinuous and convex.

Hence, Vf is convex in second variable, i.e.,

/f z;rf �
XN
i¼1

tirf ðxiÞ
 ! !

�
XN
i¼1

ti/f ðz; xiÞ; ð2:8Þ

where fxig � E and ftig � ð0; 1Þ with
PN

i¼1 ti ¼ 1:
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Definition 2.3 Let f : E ! R [ fþ1g be a Gâteaux differentiable function. The

function /f : dom f 	 int ðdom f Þ ! ½0;þ1Þ defined by

/f ðy; xÞ :¼ f ðyÞ � f ðxÞ � hrf ðxÞ; y� xi ð2:9Þ

is the Bregman distance with respect to f. The Bregman distance does not satisfy the

well-known properties of a metric, but it has the following important properties (see

[28]): For any w; x; y; z 2 E;

(i) three point identity:

/f ðy; zÞ þ /f ðz; xÞ � /f ðy; xÞ ¼ hrf ðzÞ � rf ðxÞ; z� yi; ð2:10Þ

(ii) four point identity: for

/f ðz;wÞ þ /f ðy; xÞ � /f ðz; xÞ � /f ðy;wÞ ¼ hrf ðxÞ � rf ðwÞ; z� yi:
ð2:11Þ

Definition 2.4 [28, 29] The Minty Variational Inequality Problem (MVIP) is

defined as finding a point �x 2 C such that

hAy; y� �xi� 0; 8y 2 C: ð2:12Þ

We denote by MðC;AÞ; the set of solution of (2). Some existence results for the

MVIP has been presented in [28]. Also, the assumption that MðC;AÞ 6¼ ; has

already been used for solving VIðC;AÞ in finite dimensional spaces (see e.g [36]). It

is not difficult to prove that pseudomonotonicity implies property MðC;AÞ 6¼ ;; but
the converse is not true. Indeed, let A : R ! R be defined by AðxÞ ¼ cos x with

C ¼ ½0; p
2
�: We have that VIðC;AÞ ¼ f0; p

2
g and MðC;AÞ ¼ f0g: But if we take

x ¼ 0 and y ¼ p
2
in the definition of pseudomonotone (Assumption 3.1, (A1)), we

see that A is not pseudomonotone.

Lemma 2.5 [29] Consider the VIP (1.1). If the mapping h : ½0; 1� ! E� defined as
hðtÞ ¼ Aðtxþ ð1� tÞyÞ is continuous for all x; y 2 C (i.e. h is hemicontinuous),
then MðC;AÞ � VIðC;AÞ: Moreover, if A is pseudomonotone then VIðC;AÞ is
closed, convex and VIðC;AÞ ¼ MðC;AÞ:

Lemma 2.6 [39] Let fang be a sequence of nonnegative real numbers satisfying the
following relation:

anþ1 �ð1� anÞan þ anrn þ cn; n� 1:

where (i) fang � ½0; 1�;
P

an ¼ 1; (ii) lim sup rn � 0; (iii) cn � 0; ðn� 1ÞP
cn\1:
Then an ! 0; as n ! 1:
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3 Main result

In this section, we give concise statement of our algorithm, discuss some of its

elementary properties and its convergence analysis. In the sequel, we assume that

the following hold.

Assumption 3.1 Let C be a nonempty closed convex subset of a real reflexive

Banach space E. The operator A : C ! E� satisfies the following:

(A1) A is pseudomonotone on C, i.e, for all x; y 2 E; hAx; y� zi� 0 implies

hAy; y� xi� 0;
(A2) A is L-Lipschitz continuous, i.e. there exists L[ 0 such that kAx�

Ayk� Lkx� yk; for all x; y 2 C: However, the information of L need not to

be known;

(A3) A is weakly sequentially continuous, i.e. for any fxng � E; we have xn * x
implies Axn * Ax;

(A4) SolðC;AÞ 6¼ ;;
(A5) In addition, the function f : E ! ½�1;þ1� is proper, uniformly Fréchet

differentiable on bounded subsets of E, strongly convex with constant

.[ 0; strongly coercive and Legendre.

We now present our algorithm as follows.

Remark 3.3

(1) The stepsize qn in Algorithm 3.2 varies from step to step. This stepsize is

updated at each iteration by a cheap computation. This stepsize rule allows

Algorithm 3.2 to be implemented more easily where firstly the Lipschitz

constant of A must not be the input parameter of the algorithm, i.e., this
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constant is not necessary to be known, and secondly the stepsize is found

without any line-search which can be time-consuming.

(2) The VIP is studied in a reflexive real Banach space which is more general

than 2-uniformly convex real Banach space and real Hilbert space. This

extends all the results in [9, 17, 33–35, 38] to mention but a few.

Lemma 3.4 Assume that A is Lipschitz continuous on E. Then the sequence
generated by (3.3) is nonincreasing and

lim
n!1

qn ¼ q� min q0;
d
L

� �
:

Proof It is easy to prove this Lemma, hence we omit it. h

If at some iteration we have xn ¼ yn or Ayn ¼ 0 then Algorithm 3.2 terminates

and yn 2 SolðC;AÞ: From now on, we assume that xn 6¼ yn and Ayn 6¼ 0 for all n so

that the algorithm does not terminate finitely.

Lemma 3.5 Let fxng; fyng and fzng be defined Algorithm 3.2, then for every
x� 2 SolðC;AÞ the following inequalities holds for all n� 1:

/f ðx�; znÞ�/f ðx�; xnÞ � 1� qnd
qnþ1.

� �
/f ðzn; ynÞ � 1� qnd

qnþ1.

� �
/f ðyn; xnÞ:

Proof Let x� 2 SolðC;AÞ; then

/f ðx�; znÞ
¼ /f ðx�;rf �ðrf ðynÞ � qnðAyn �AxnÞÞ
¼ f ðx�Þ � hx� � zn;rf ðynÞ � qnðAyn �AxnÞi � f ðznÞ
¼ f ðx�Þ þ hzn � x�;rf ðynÞi þ hx� � zn; qnðAyn �AxnÞi � f ðznÞ
¼ f ðx�Þ � hx� � yn;rf ðynÞi � f ðynÞ þ hx� � yn;rf ðynÞi þ f ðynÞ
þ hzn � x�;rf ðynÞi
þ hx� � zn; qnðAyn �AxnÞi � f ðznÞ

¼ /f ðx�; ynÞ þ hzn � yn;rf ðynÞi þ f ðynÞ � f ðznÞ þ hx� � zn; qnðAyn �AxnÞi
¼ /f ðx�; ynÞ � /f ðzn; ynÞ þ hx� � zn;qnðAyn �AxnÞi

ð3:5Þ

Note that from (2.11), we get

/f ðx�; ynÞ � /f ðzn; ynÞ ¼/f ðx�; xnÞ � /f ðzn; xnÞ þ hrf ðxnÞ � rf ðynÞ; x� � zni:
ð3:6Þ

Hence from (3.5) and (3.6), we have
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/f ðx�; znÞ ¼/f ðx�; xnÞ � /f ðzn; xnÞ þ hx� � zn; qnðAyn �AxnÞi
þ hrf ðxnÞ � rf ðynÞ; x� � zni:

ð3:7Þ

Also from (2.10), we have

/f ðzn; xnÞ ¼/f ðzn; ynÞ þ /f ðyn; xnÞ � hrf ðxnÞ � rf ðynÞ; zn � yni: ð3:8Þ

Substituting (3.8) into (3.7), we obtain

/f ðx�; znÞ ¼/f ðx�; xnÞ � /f ðzn; ynÞ � /f ðyn; xnÞ þ hrf ðxnÞ � rf ðynÞ; zn � yni
þ hx� � zn; qnðAyn �AxnÞi þ hrf ðxnÞ � rf ðynÞ; x� � zni

¼/f ðx�; xnÞ � /f ðzn; ynÞ � /f ðyn; xnÞ þ hrf ðxnÞ � rf ðynÞ; x� � yni
þ hx� � zn; qnðAyn �AxnÞi

¼/f ðz�; xnÞ � /f ðzn; ynÞ � /f ðyn; xnÞ þ hrf ðxnÞ � rf ðynÞ; x� � yni
þ hzn � yn þ yn � z; qnðAyn �AxnÞ

¼/f ðx�; xnÞ � /f ðzn; ynÞ � /f ðyn; xnÞ þ hrf ðxnÞ � rf ðynÞ; x� � yni
þ �hzn � yn; qnðAyn �AxnÞi � hyn � x�; qnðAyn �AxnÞi

¼/f ðx�; xnÞ � /f ðzn; ynÞ � /f ðyn; xnÞ � hzn � yn; qnðAyn �AxnÞi
� hyn � x�; qnðAyn �AxnÞ � ðrf ðynÞ � rf ðxnÞÞi:

ð3:9Þ

Since yn ¼ ProjfCðrf �ðrf ðxnÞ � qnAxnÞÞ; it follows from (2.4) that

hrf ðxnÞ � qnAxn �rf ðynÞ; x� � yni� 0: ð3:10Þ

Also, since x� 2 SolðC;AÞ then hAx�; yn � x�i� 0: From the pseudomonotonon-

icity of A; we obtain

hAyn; yn � x�i� 0: ð3:11Þ

Combining (3.10) and (3.11), we get

hqnðAyn �AxnÞ � ðrf ðynÞ � rf ðxnÞÞ; yn � x�i� 0: ð3:12Þ

Hence from (3.9), we obtain

/f ðx�; znÞ�/f ðx�; xnÞ � /f ðzn; ynÞ � hzn � yn; qnðAyn �AxnÞi: ð3:13Þ

Now using (3.3) and Cauchy-Schwatz inequality, we have
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/f ðx�; znÞ�/f ðx�; xnÞ � /f ðzn; ynÞ � /f ðyn; xnÞ þ hyn � zn; qnðAyn �AxnÞi

�/f ðx�; xnÞ � /f ðzn; ynÞ � /f ðyn; xnÞ þ
qn
qnþ1

qnþ1kyn � znkkAyn �Axnk

�/f ðx�; xnÞ � /f ðzn; ynÞ � /f ðyn; xnÞ þ
qn
qnþ1

dkyn � znkkyn � xnk

�/f ðx�; xnÞ � /f ðzn; ynÞ � /f ðyn; xnÞ

þ qn
qnþ1

	 d
2
ðkzn � ynk2 þ kyn � xnk2Þ:

Then from (2.3), we obtain

/f ðx�; znÞ� /f ðx�; xnÞ � /f ðzn; ynÞ � /f ðyn; xnÞ

þ qn
qnþ1

	 d
.
ð/f ðzn; ynÞ þ /f ðyn; xnÞÞ

¼/f ðx�; xnÞ � 1� qnd
qnþ1.

� �
/f ðzn; ynÞ � 1� qnd

qnþ1.

� �
/f ðyn; xnÞ:

ð3:14Þ

h

Lemma 3.6 The sequence fxng generated by Algorithm 3.2, is bounded.

Proof Note that since d 2 ð0; .Þ and .[ 0; we have

lim
n!1

1� qnd
qnþ1.

� �
¼ 1� d

.
[ 0:

Then, there exists N[ 0 such that

1� qnd
qnþ1.

[ 0 8n�N:

Thus, it from (3.14) that

/f ðx�; znÞ�/f ðx�; xnÞ: ð3:15Þ

Furthermore, from (3.4) and (3.15), we have
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/f ðx�; xnþ1Þ ¼/f x�;rf �ðdnrf ðxnÞ þ ð1� dnÞðanrf ðuÞ þ ð1� anÞrf ðznÞÞð Þ
� dn/f ðx�; xnÞ þ ð1� dnÞ/f ðx�; anrf ðuÞ þ ð1� anÞrfznÞ
� dn/f ðx�; xnÞ þ ð1� dnÞ½an/f ðx�; uÞ þ ð1� anÞ/f ðx�; znÞ�
� dn/f ðx�; xnÞ þ ð1� dnÞ½an/f ðx�; uÞ þ ð1� anÞ/f ðx�; xnÞ�
¼ anð1� dnÞ/f ðx�; uÞ þ ð1� anð1� dnÞÞ/f ðx�; xnÞ
� maxf/f ðx�; uÞ;/f ðx�; xnÞg

..

.

� maxf/f ðx�; uÞ;/f ðx�; xnÞg:
ð3:16Þ

This implies that f/f ðx�; xnÞg is bounded. Hence, fxng is bounded. Consequently,

we see that frf ðxnÞg; fyng and fzng are bounded. h

Lemma 3.7 The sequence fxng generated by Algorithm 3.2 satisfies the following
estimates:

(i) Snþ1 �ð1� anð1� dnÞÞSn þ anð1� dnÞdn;
(ii) �1� lim supn!1 dn\þ1;

where Sn ¼ /f ðx�; xnÞ and dn ¼ hvn � x�;rf ðuÞ � rf ðx�Þi for any x� 2 SolðC;AÞ:

Proof Now, let vn ¼ rf � anð1� dnÞrf ðuÞ þ ð1� anð1� dnÞÞrf ðunÞ½ �; n� 1

where
un

¼ rf �
dn

1� anð1� dnÞ
rf ðxnÞ þ

ð1� anÞð1� dnÞ
1� anð1� dnÞ

rf ðznÞ
� �

; n� 1

/f ðx�; xnþ1Þ
�/f ðx�;rf �ðanð1� dnÞrf ðuÞ þ dnrf ðxnÞ þ ð1� anÞð1� anÞJpE1

ðznÞÞ
¼ /f ðx�;rf �ðanð1� dnÞrf ðuÞ þ ð1� anÞð1� dnÞÞrf ðunÞÞ
�Vf ðx�; anð1� dnÞrf ðuÞ þ ð1� anð1� dnÞÞrf ðunÞÞ
�Vf ðx�; anð1� dnÞrf ðuÞÞ þ ð1� anð1� dnÞÞrf ðunÞ

� anð1� dnÞðrf ðuÞ � rf ðx�ÞÞ
� hrf �ðanð1� bnÞrf ðuÞÞ þ ð1� anð1� dnÞÞrf ðunÞÞ � x�;

� anð1� dnÞðrf ðuÞ � rf ðx�ÞÞi
¼ /f x

�;rf �ðanð1� dnÞrf ðx�Þ þ ð1� anð1� dnÞÞrf ðunÞÞ½ �
þ anð1� dnÞhvn � x�;rf ðuÞ � rf ðx�Þi

� anð1� dnÞ/f ðx�; x�Þ þ ð1� anð1� dnÞÞ/f ðx�; unÞ
þ anð1� dnÞhvn � x�;rf ðuÞ � rf ðx�Þi

¼ ð1� anð1� dnÞÞ/f ðx�; unÞ
þ anð1� bnÞhvn � x�;rf ðuÞ � rf ðx�Þi

� ð1� anð1� dnÞÞ/f ðx�; xnÞ þ anð1� dnÞhvn � x�;rf ðuÞ � rf ðx�Þi:

ð3:17Þ

This established (i).

Next we show (ii). Since fvng is bounded, then we have
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sup
n� 0

dn � sup
�
jjvn � x�jjjjrf ðuÞ � rf ðx�Þjj

	
\1:

This implies that lim supn!1 dn\1. Next, we show that lim supn!1 dn � � 1:
Assume the contrary, i.e. lim supn!1 dn\� 1. Then there exists n0 2 N such that

dn\� 1, for all n� n0. Then for all n� n0, we get from (i) that

Snþ1 �ð1� anð1� dnÞÞSn þ anð1� dnÞdn
\ð1� anð1� dnÞÞSn � anð1� dnÞ
¼Sn � anð1� dnÞðSn þ 1Þ�Sn � anð1� dnÞ:

Taking lim sup of the last inequality, we have

lim sup
n!1

Sn �Sn0 � lim
n!1

Xn
i¼n0

ai ¼ �1:

This contradicts the fact that fSng is a non-negative real sequence. Therefore

lim supn!1 dn � � 1. h

We now present our main convergence result.

Theorem 3.8 Assume Conditions ðA1Þ � ðA5Þ and suppose fang; and fdng are
sequences in (0, 1) and satisfy the following conditions:

(i) limn!1 an ¼ 0; and
P1

n¼1 an ¼ 1;
(ii) 0\ lim infn!1 dn � lim supn!1 dn\1:

Then the sequence fxng generated by Algorithm 3.2 converges strongly to an

element in SolðC;AÞ:

Proof Let x� 2 SolðC;AÞ and Sn ¼ /f ðx�; xnÞ: we divide the proof into two cases.

Case 1: Suppose that there exists n0 2 N such that fSng1n¼n0
is non-increasing.

Then fSng1n¼1 converges and

lim
n!1

ðSn � Snþ1Þ ¼ 0: ð3:18Þ

Thus, from Lemma 3.5 we have.

1� qnd
qnþ1.

� �
/f ðzn; ynÞ þ 1� qnd

qnþ1.

� �
/f ðyn; xnÞ�/f ðx�; xnÞ � /f ðx�; znÞ:

ð3:19Þ

Also, from (3.16), we get
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/f ðx�; xnÞ � /f ðx�; znÞ

� anð1� dnÞ
ð1� anÞð1� dnÞ

/f ðx�; uÞ þ
ð1� anð1� dnÞÞ
ð1� anÞð1� dnÞ

/f ðx�; xnÞ

� 1

ð1� anÞð1� dnÞ
/f ðx�; xnþ1Þ

¼ anð1� dnÞ
ð1� anÞð1� dnÞ

/f ðx�; uÞ �
anð1� dnÞ

ð1� anÞð1� dnÞ
/f ðx�; xnÞ

þ 1

ð1� anÞð1� dnÞ
½/f ðx�; xnÞ � /f ðx�; xnþ1Þ�

� anð1� dnÞ
ð1� anÞð1� dnÞ

/f ðx�; uÞ þ
1

ð1� anÞð1� dnÞ
½/f ðx�; xnÞ � /f ðx�; xnþ1Þ�

ð3:20Þ

From (3.19) and (3.20), we get

1� qnd
qnþ1.

� �
/f ðzn; ynÞ þ 1� qnd

qnþ1.

� �
/f ðyn; xnÞ

�/f ðx�; xnÞ � /f ðx�; znÞ

� anð1� dnÞ
ð1� anÞð1� dnÞ

/f ðx�; uÞ

þ 1

ð1� anÞð1� dnÞ
½/f ðx�; xnÞ � /f ðx�; xnþ1Þ�

ð3:21Þ

Passing limit as n ! 1 in (3.21), since lim
n!1

/f ðx�; xnÞ exists and qn
qnþ1

! 1; we have

lim
n!1

1� d
.

� �
/f ðzn; ynÞ ¼ 0:

Also, since d 2 ð0; .Þ; then

lim
n!1

/f ðyn; znÞ ¼ 0:

Thus

lim
n!1

kyn � znk ¼ 0: ð3:22Þ

Similarly from, (3.21), we obtain

lim
n!1

1� d
.

� �
/f ðyn; xnÞ ¼ 0:

Then

lim
n!1

/f ðyn; xnÞ ¼ 0 ) lim
n!1

kyn � xnk ¼ 0: ð3:23Þ

Combining (3.22) and (3.23), we have
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lim
n!1

kzn � xnk ¼ 0: ð3:24Þ

Since fxng is bounded, there exists a subsequence fxnkg of fxng such that xnk * z:
We now show that z 2 SolðC;AÞ:

Since ynk ¼ ProjfCðrf �ðrf ðxnkÞ � qnkAxnkÞÞ; from (2.4), we have

hrf ðxnkÞ � qnkAxnk �rf ðynkÞ; x� ynki� 0 8x 2 C:

Hence

hrf ðxnkÞ � rf ðynkÞ; x� ynki� qnkhAxnk ; x� ynki
¼ qnkhAxnk ; xnk � ynki þ qnkhAxnk ; x� xnki:

This implies that

hrf ðxnkÞ � rf ðynkÞ; x� ynki þ qnkhAxnk ; ynk � xnki� qnkhAxnk ; x� xnki: ð3:25Þ

Since kxnk � ynkk ! 0 and f is strongly coercive, then

lim
k!1

krf ðxnkÞ � rf ðynkÞk ¼ 0: ð3:26Þ

Next, fix x 2 C; it follows from (3.25) and (3.26) and the fact that

lim infk!1 qnk [ 0; then

0� lim inf
k!1

hAxnk ; x� xnki 8 x 2 C: ð3:27Þ

Let f�kg be a sequence of decreasing non-negative numbers such that �k ! 0 as

k ! 1: For each �k; we denote by Nk the smallest positive integer such that

hAxnk ; x� xnki þ �k � 0 8 k�Nk;

where the existence of Nk follows from (3.27). Since f�kg is decreasing, then fNkg
is increasing. Also, for some tNk

2 C assume hAxNk
; tNk

i ¼ 1; for each k. Therefore,

hAxNk
; xþ �ktNk

� xNk
i� 0:

Since A is pseudomonotone, then we have from (3.27) that

hAðxþ �ktNk
Þ; xþ �ktNk

� xNk
i� 0: ð3:28Þ

Since fxnkg converges weakly to z as k ! 1 and A is weakly sequentially con-

tinuous, we have that fAg converges weakly to Az: Suppose Az 6¼ 0 (otherwise,

z 2 SolðC;A). Then by the sequentially weakly lower semicontinuous of the norm,

we get

0\kAzk ¼ lim inf
k!1

Axnkk:

Since fxNk
g � fxnkg and �k ! 0; we get
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0� lim sup
k!1

k�ktNk
k ¼ lim sup

k!1

�k
kAxnk

k
� �

� lim supk!1 �k
lim infk!1 kAxnk

� 0

kAzk ¼ 0;

and this means limk!1 k�ktNk
k ¼ 0: Passing the limit k ! 1 in (3.28), we get

hAx; x� zi� 0:

Therefore, from Lemma 2.5, we have z 2 SolðC;AÞ: Furthermore, from the defi-

nition of un and vn; we get

/f ðun; xnÞ ¼
dn

1� anð1� dnÞ
/f ðxn; xnÞ þ

ð1� anÞð1� dnÞ
1� anð1� dnÞ

/f ðzn; xnÞ

¼ ð1� anÞð1� dnÞ
1� anð1� dnÞ

/f ðzn; xnÞ ! 0; as n ! 1;

and

/f ðvn; unÞ ¼ anð1� dnÞ/f ðu; unÞ þ ð1� anð1� dnÞÞ/f ðun; unÞ
¼ anð1� dnÞ/f ðu; unÞ ! 0; as n ! 1:

Thus,

lim
n!1

kun � xnk ¼ 0 ¼ lim
n!1

kvn � unk:

Hence, we obtain

lim
n!1

kvn � xnk ¼ 0:

Since xnk * z and limn!1 kvn � xnk ¼ 0 we have that vnk * z: Hence from (2.4),

we obtain that

lim sup
n!1

hvn � x�;rf ðuÞ � rf ðx�Þi ¼ lim
k!1

hvnk � x�;rf ðuÞ � rf ðx�Þi

¼ hz� x�;rf ðuÞ � rf ðx�Þi� 0:

Hence

lim sup
n!1

dn ¼ lim sup
n!1

hvn � x�;rf ðuÞ � rf ðx�Þi� 0: ð3:29Þ

Using Lemma 2.6 and Lemma 3.7(i), we obtain

lim
n!1

Sn ¼ lim
n!1

/f ðx�; xnÞ ¼ 0:

This implies that kxn � x�k ! 0 as n ! 1: Therefore fxng converges strongly to

x�:
Case 2. Assume that fSng1n¼1 is not a monotonically decreasing sequences. Set
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Cn :¼ Sn; 8n� 1 and let s : N ! N be a mapping for all n� n0 (for some n0 large
enough) by

sðnÞ :¼ maxfk 2 N : k� n; Ck �Ckþ1g:

Clearly, s is a nondecreasing sequence such that sðnÞ ! 1 as n ! 1 and

0�CsðnÞ �CsðnÞþ1; 8n� n0

Following a similar argument as in Case 1 we immediately conclude that

lim
n!1

kvsðnÞ � xsðnÞk ¼ 0 and lim
n!1

kxsðnÞ � ysðnÞk ¼ 0:

Also from (3.29), we get that

lim sup
n!1

dsðnÞ ¼ lim sup
n!1

hvsðnÞ � x�;rf ðuÞ � rf ðx�Þi� 0:

From (3.17) we have that

SsðnÞ � dsðnÞ

which implies

lim
n!1

SsðnÞ ¼ 0

and

lim
n!1

SsðnÞþ1 ¼ 0:

Therefore, for n� n0; it is easy to see that CsðnÞ �CsðnÞþ1 if n 6¼ sðnÞ (that is,

sðnÞ\n), because Cj �Cjþ1 for sðnÞ þ 1� j� n: As a consequence, we obtain for

all n� n0

0�Cn � maxfCsðnÞ;CsðnÞþ1g ¼ CsðnÞþ1:

Hence, limn!1 Cn ¼ 0: This implies that limn!1 /f ðx�; xnÞ ¼ 0; thus kxn � x�k !
0 as n ! 1: Therefore, fxng converges strongly to x�: This completes the proof. h

Remark 3.9 If the operator is monotone and Lipschitz continuous, then we do not

need it to be sequentially weakly continuous. This is because the sequential weakly

continuity assumption was only used after (3.25). From the definition of yn; we have

hrf ðxnkÞ � qnkAxnk �rf ðynk ; x� ynkÞi� 0; 8x 2 C:

Thus from the monotonicity of A,

123

980 C. C. Okeke et al.



0�hrf ðynkÞ � rf ðxnkÞ; x� ynki þ qnkhAxnk ; x� ynki
¼ hrf ðynkÞ � rf ðxnkÞ; x� ynki þ qnkhAxnk ; z� xnki þ qnkhAxnk ; xnk � ynki
� hrf ðynkÞ � rf ðxnkÞ; x� ynki þ qnkhAx; x� xnki þ qnkhAxnk ; xnk � ynki:

Since rf is weakly - weakly continuous, passing to the limit in the last inequality as

k ! 1 and using relation (3.23), we obtain hAx; x� zi� 0 8z 2 C: Thus, from
Lemma 2.5 we get that z 2 SolðC;AÞ: Hence the conclusion of Theorem 3.8 still

hold.

4 Application

4.1 Application to computing dynamic user equilibria

In this section, we apply Algorithm 3.2 to compute dynamic user equilibria (see

[16]). Let P be set of paths in the network.W be set of O-D pairs in the network, Qij

be fixed O-D demand between ði; jÞ 2 W; Pij be subset of paths that connect O-D

(i, j), t be continuous time parameter in a fixed time horizon ½t0; t1�; hpðtÞ be

depature rate along path p at time t, h(t) be complete vector of departure rates

hðtÞ ¼ ðhpðtÞ : p 2 PÞ; Wpðt; hÞ be travel cost along path p with departure time t,

under departure profile h, vijðhÞ be minimum travel cost between O-D pair (i, j) for

all paths and departure times.

Assume that hpð�Þ 2 L2þ½t0; t1� and hð�Þ 2 ðL2þ½t0; t1�Þ
jPj: Define the effective delay

operator W : ðL2þ½t0; t1�Þ
jPj ! ðL2þ½t0; t1�Þ

jPj
as follows:

hð�Þ ¼ fhpð�Þ; p 2 Pg7!WðhÞ ¼ fWpð�; hÞ; p 2 Pg:

The travel demand satisfaction constraint satisfies

Qij ¼
X
p2Pij

Z t1

t0

hpðtÞdt; 8 ði; jÞ 2 W:

Then, the set of feasible path departures vector can be expressed as

K ¼ fh� 0 :
X
p2Pij

Z t1

t0

hpðtÞdt; 8 ði; jÞ 2 Wg � ðL2þ½t0; t1�Þ
jPj:

Recall that a vector of departures h� 2 K is a dynamic user equilibrium with

simultaneous route and departure time choice if

h�pðyÞ[ 0; p 2 Pij ) Wpðt; h�Þ ¼ vijðh�Þ; for almost every t 2 ½t0; t1�: ð4:1Þ

Note that (4.1) is equivalent to the following variational inequality ([16]):

hWðh�Þ; h� h�i� 0; 8 h 2 K: ð4:2Þ

Based on Algorithm 3.2, we have the following algorithm.
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If the delay operator W is Lipschitz continuous and pseudomonotone, then we

can apply Algorithm 4.1 to compute dynamic user equilibria.

5 Numerical examples

In this section, we consider some examples to illustrate the convergence of the

proposed algorithm and compare it with other algorithms. We also compare the

convergence of Algorithm 3.2 for various examples of the Bregman distance.

Example 5.1 Let E ¼ ‘2ðRÞ where ‘2ðRÞ ¼ fx ¼ ðx1; x2; x3; :::; Þ; xi 2 R :
P1

i¼1g

with norm kxk‘2 ¼
P1

i¼1 jxij
2

� 	1
2

and inner product hx; yi ¼
P1

i¼1 xiyi; for all x ¼
ðx1; x2; x3; :::Þ; y ¼ ðy1; y2; y3; :::Þ 2 E: Let C ¼ fx ¼ ðx1; x2; x3; :::Þ 2 ‘2 : kxk� 1g
and A : ‘2 ! ‘2 be defined by

Aðx1; x2; x3; :::Þ ¼ ðx1 expð�x21Þ; 0; 0; :::Þ:

It was shown in Example 2.1 of [4] that A is pseudomonotone, Lipschitz continuous

and sequentially weakly continuous but not monotone in ‘2ðRÞ:
We now list some known Bregman distances. These distances are listed in the

following forms:

(i) The function f ISðxÞ ¼ �
Pm

i¼1 log xi and the Itakura-Saito distance

/IS
f ðx; yÞ ¼

Xm
i¼1

xi
yi
� log

xi
yi

� �
� 1

� �
:

(ii) The function f KLðxÞ ¼
Pm

i¼1 xi log xi and the Kullback-Leibler distance
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/KL
f ðx; yÞ ¼

Xm
i¼1

xi log
xi
yi

� �
þ yi � xi

� �
:

(iii) The function f SEðxÞ ¼ 1
2
kxk2 and the squared Euclidean distance

/SE
f ðx; yÞ ¼ 1

2
kx� yk2:

The valuesrf ðxÞ andrf �ðxÞ ¼ ðrf Þ�1ðxÞ are computed explicitly. More precisely,

(i) rf ISðxÞ ¼ �ð1=x1; :::; 1=xmÞT and ðrf ISÞ�1ðxÞ ¼ �ð1=x1; :::; 1=xmÞT :
(ii) rf KLðxÞ ¼ ð1þ logðx1Þ; :::; 1þ logðxmÞÞT and
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Fig. 1 Example 5.1. Top left: m ¼ 10; Top right: m ¼ 20, Bottom left: m ¼ 50; Bottom right: m ¼ 80
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ðrf KLÞ�1ðxÞ ¼ ðexpðx1 � 1Þ; :::; expðxm � 1ÞÞT :

(iii) rf SEðxÞ ¼ x and ðrf SEÞ�1ðxÞ ¼ x:

The feasibility set of our problem VIP is of the form,

C ¼ fx ¼ ðx1; x2; :::; xmÞT 2 Rm : kxk� 1 and xi � a[ 0; i ¼ 1; 2; :::;mg;

where a\1=
ffiffiffiffi
m

p
(which ensures that C 6¼ ;). For the experiment in Algorithm 3.2,

we choose an ¼ 1
nþ1

; dn ¼ 2n
5nþ4

; u ¼ l ¼ 0:5 and q ¼ 3:5:

Let En ¼ kxnþ1 � xnk2\10�4; we consider this example for various types of

Bregman distance with m ¼ 10; 20; 50; 80: The results of this experiment are

reported in Fig. 1.
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Fig. 2 Performance of Algorithm 3.2 compared with Algorithm 1.2
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Example 5.2 The following example was first considered in [20],

min gðxÞ ¼ xTPxþ aTxþ a0
bTxþ b0

subject to x 2 X ¼ fx 2 R5 : bTxþ b0 [ 0g;

where

P ¼

5 � 1 2 0

�1 5 � 1 3

2 � 1 3 0

0 0 0 1

0
BBB@

1
CCCA; a ¼

1

�2

�2

1

0
BBB@

1
CCCAb ¼

2

1

1

0

0
BBB@

1
CCCA; a0 ¼ �2; b0 ¼ 4:

Since P is symmetric and positive definite, g is pseudoconvex on X. We minimize g

on K ¼ fx 2 R4 : 1� xi � 3g � X:
It is easy to see that

FðxÞ ¼ rgðxÞ ¼ ðbTxþ b0Þð2Pxþ aÞ � bðxTPxþ aTxþ a0Þ
ðbTxþ b0Þ2

: ð5:1Þ

The following choices of parameters are made: an ¼ 1
nþ1

; dn ¼ 2n
5nþ7

; q ¼ 3:5 and

u ¼ l ¼ 0:5:

We terminate the iterations at En ¼ kxnþ1 � xnk2 � � with � ¼ 10�4: The results

are presented in Fig. 2 for various initial values of x1:

Case 1: x1 ¼ ð�10;�10;�10;�10Þ0;
Case 2: x1 ¼ ð1; 2; 3; 4Þ0;
Case 3: x1 ¼ ð4; 4; 4; 4Þ0;
Case 4 x1 ¼ ð5; 0; 0; 10Þ0:

We compare the performance of our Algorithm 3.2 with Algorithm 1.2. For

algorithm 1.2, we let l ¼ 0:001 and c ¼ 0:002:
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