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Abstract

This paper proposes a single projection method with the Bregman distance tech-
nique for solving pseudomonotone variational inequalities in real reflexive Banach
space. The step-sizes, which varies from step to step, are found over each iteration
by cheap computation without any linesearch. We prove strong convergence result
under suitable conditions on the cost operator. We further provide an application of
our main result and also report some numerical experiments to illustrate the per-
formance and efficiency of our proposed method.
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1 Introduction

Numerous problems in science and engineering, optimization theory, nonlinear
analysis, equilibrium theory and differential equations, lead to the study of
variational inequality problem (VIP) in the sense of Stampacchia et al. in [19, 25].
This problem has been intensively investigated and developed after appearing in the
mono graphic book [15, 26]. Let E be a real Banach space with norm || - || and
represent the dual of E by E* with (x*,x) signifying the value of x* € E* at x € E.
Suppose C is nonempty, closed with C C E and A:C — E* is a nonlinear
mapping. The VIP is defined as finding u € C such that

(Au,v —u) >0 Vv e C. (1.1)

We shall denote by Sol(C,.A), the solution set of VIP (1.1).

The projected gradient method [18] is known to solve VIP (1.1) when A is
strongly monotone and Lipschitz continuous. This method fails to converge to any
solution of VIP (1.1) when A is monotone. The Extragradient Method (EGM) [27]
was introduced to solve VIP (1.1) when A is continuous and Lipschitz continuous:

{ Yn = PC(xn - prn)»
Xn+1

1.2
:PC(xn_pAyn); ’7207 ( )

where P is the projection onto C. The weak convergence of EGM (1.2) is achieved
when p € (0,1/L), with L being the Lipschitz constant of A (see,
[5-8, 10-12, 14, 21, 24, 33, 36, 40-43]). The major weakness in EGM (1.2) is that it
involves two projection onto C per iteration and this requires solving a minimization
problem twice per iteration during implementation, which can slow down the
iterations. This motivated Tseng [37] to propose the following method;

{ Yn = PC(xn - prn)7

1.3
Xnr1 = yn — p(Ay, — Ax,), n>0 (1.3)

which requires only one computation of P per iteration. The weak convergence of
(1.3) was obtained in Hilbert spaces when either the step size p € (0,1/L) or
generated by a line search procedure. The requirement that the step size p in EGM
(1.2) and (1.3) dependent on Lipschitz constant of the cost function is inefficient
since the Lipschitz constant are difficult to estimate in most of the applications, and
when they do, they are often too small and this in turn slows down the convergence
of EGM (1.2) and (1.3).

It is very interesting to also study VIP in Banach spaces because several physical
models and applications can be formulated as VIPs in real Banach spaces which are
not Hilbert.

Recently, Jolaoso et al. [22] presented modified Bregman subgradient algorithms
with line search technique for solving VIP with a pseudo-monotone operator
without necessarily satisfying the Lipschitz condition. They introduced the
following two algorithms:
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Single projection variational inequalities 967

Algorithm 1.1.

Step 0: Given v >0,1€(0,1) p€ (0,1) Let z1 € E and set n = 1.
Step 1: Compute

(1.4) yn = Ho(V(V(z,) — anAzy)),
where v, = yl* | with k, being the smallest non-negative integer k satisfying
(1.5) YAz = Ayall < pillzn — ynl-

If @y, = ypn or Ay, = 0, stop, y, is a solution to the VIP. Else, do step 2.
Step 2: Compute

(1.6) Tny1 = U (VH(Vf(2n) — anAyn)),
where T™ is the half-space defined by
(1.7) T" ={w € E: (Vf(zy,) — anxn — VI(yn), w — yn) <0}

Set n :=n+1 and return to Step 1,

and

Algorithm 1.2.

Step 0: Giveny>0,1€ (0,1) pe€ (0,1), {0,} € (0,1). Let z1,u € E and set n = 1.
Step 1: Compute

(1.8) yn = a(VI(V(2n) — anAzy)),
where o, = yl¥ | with k, being the smallest non-negative integer k satisfying
(1.9) WAz — Ayal < pllcn = ynl-

If xy = yn or Ay, = 0, stop, yn is a solution to the VIP. Else, do step 2.
Step 2: Compute

(1.10) 2p = Upn (VY f(20) — anAyn)),
where T™ is the half-space defined by
(1.11) T" ={we E: (Vf(zn) — anan — Vf(yn),w —yn) < 0}.
Step 3: Compute
(1.12) Tnp1 = V0V (1) + (1= 00)V f(2n))-

Set n:=n+1 and return to Step 1.

Under suitable conditions of the given parameters, Jolaoso et al. [22] established
the weak and strong convergence of Algorithm 1.1 and 1.2 respectively in reflexive
Banach spaces. See also the recent paper by Reich et al. [31].

Following this direction, motivated and inspired by the presented results, we
introduce a single projection method with self adaptive step size for solving the VIP
(1.1) in a reflexive Banach space. The proposed algorithm uses variable step size
from step to step which are updated over each iteration by a cheap computation.
This step size allows the algorithm to work more easily without knowing previously
the Lipschitz constant of operator A. Unlike [22], we do not use any linesearch in
our algorithm (a linesearch means that at each outer-iteration we use an inner-loop
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968 C. C. Okeke et al.

until some finite stopping criterion is satisfied, and this can be time consuming). We
provide an application and some numerical experiment to illustrate the performance
and efficiency of our proposed method.

2 Preliminaries

In this section, we give some definitions and preliminary results which will be used
in our convergence analysis. Let C be a nonempty, closed and convex subset of a
real Banach space E with the norm || - || and dual space E*. We denote the weak and
strong convergence of a sequence {x,} C E to a point x* € E by x, — x* and
X, — X" respectively.

Let f : E — (—00,40o0] be a function satisfying the following:

(i) int (dom f) C E is a uniformly convex set;
(ii)  fis continuously differentiable on int (dom f);
(iii) f1is strongly convex with strongly convexty constant ¢ > 0, i.e.

) 2f ) = (V). x =y
+§||x —y|*, Vxedom and ye€ int (dom f).

The subdifferential set of f at a point x denoted by of is defined by
af('x) = {‘x* €L :f('x) _f(y) < <y —X,.X*>7 ye E}7

Every element x* € Of (x) is called a subgradient of f at x. Since f is continuously
differentiable, then 0f (x) = {Vf(x)}, which is the gradient of f at x. The Fénchel
conjugate of f is the convex functional f* : E* — (—o00, +0o0] defined by f*(x*) =
sup{(x*,x) —f(x) : x € E}. Let E be a reflexive Banach space, the function fis said
to be Legendre if and only if f satisfy the following conditions:

(R1) int (dom f) # () and Of is single-valued on its domain;
(R2) int (dom f) # () and Of* is single-valued on its domain.

It is worth mentioning that the Bregman distance is not a metric in the usual sense
because it does not satisfy the symmetric and triangular inequality properties.
However, It posses the following interesting property called the three point identity:
for x € dom f and y,z € int (dom f), we have Let f : E — R be strictly convex
and Gateaux differentiable function. The Bregman distance ¢, :dom f X
int (dom f) — R with respect to f is defined by

$p(x,y) =f(x) =f(y) = (x =y, Vf(y)), Vxedomf, y€ int (dom f).
br(x,5) + Op(v,2) — Pplx,2) <(Vf(2) — VI (y),x — ).
(2.1)

The Bregman function has been widely used by many authors for solving many
optimization problems in the literature (see [30] and the references therein).
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Remark 2.1 Practical important examples of the Bregman distance function can be
found in [3]. If f(x) = % [|x||, we have ¢;(x,y) =3 |x — y||* which is the Euclidean
norm distance. Also, if f(x) = —> " x;log(x;) which is Shannon’s entropy for
non-negative orthant R, := {x € R" :x; > 0}, we obtain the Kullback-Leibler
cross entropy defined by

y) =Zm:(x/10g< > - 1) +Zy, (2.2)

J=1

Also, if fis o-strongly convex, then

br(x,y) > ng —y|?, Vxedomf, ye int (dom f). (2.3)

Definition 2.2 The Bregman projection (see e.g. [32]) with respect to f of x €
int (dom f) onto a nonempty closed convex set C C int (dom f) is the unique

vector Projl.(x) € C satisfying

ijfc(x) = inf{¢,(x,y) : x € C}.

The Bregman projection is characterized by the inequality

2 = Projfl-(x) <= (Vf(x) — Vf(z),y —2) <0, VyeC. (2.4)

Also
&7 (3, Projp(x)) + ¢y (Proji(x),x) < ¢y (y,x),  Vy € C, x € int (dom f). (2.5)
Following [1, 13], we define the function V; : E X E — [0, 00) associated with f by
Vi, y) =f(x) = (50) +7(v), Vx,y€E (2.6)

Vy is non-negative and Vy(x,y) = ¢,(x, Vf(y)) for all x,y € E. Moreover, by the
subdifferential inequality, it is easy to see that

Vi(xy) + (2 VfF(v) =) < Vi(x, 2 +y) (2.7)

for all x,y,z € E. In addition, If f : E — R U {400} is proper lower semicontinous,
then f* : E — R U {400} is proper weak lower lower semicontinuous and convex.
Hence, V; is convex in second variable, i.e.,

N N
(»bf (Za Vf* (Z tivf Xi )) Z Z -xl (28)
i=1

where {x;} C E and {#;} C (0,1) with 3% r; = 1.

@ Springer



970 C. C. Okeke et al.

Definition 2.3 Let f : E — RU {400} be a Gdteaux differentiable function. The
function ¢, : dom f x int (dom f) — [0, +00) defined by

b (v, x) :=f(y) = f(x) = (Vf(x),y —x) (2.9)

is the Bregman distance with respect to f. The Bregman distance does not satisfy the
well-known properties of a metric, but it has the following important properties (see
[28]): For any w,x,y,z € E,

(i) three point identity:
br(v:2) + ¢p(z,%) — dp(y,x) = (Vf(2) = Vf(x), 2 —y); (2.10)
(i)  four point identity: for

Gr(z,w) + (v, %) — ¢p(z,x) — (v, w) = (VF(x) = Vf(w),z = y).
(2.11)

Definition 2.4 [28, 29] The Minty Variational Inequality Problem (MVIP) is
defined as finding a point x € C such that

(Ay,y —x)>0, VyeC. (2.12)

We denote by M(C, A), the set of solution of (2). Some existence results for the
MVIP has been presented in [28]. Also, the assumption that M(C,.A) # () has
already been used for solving VI(C, A) in finite dimensional spaces (see e.g [36]). It
is not difficult to prove that pseudomonotonicity implies property M(C,.A) # (), but
the converse is not true. Indeed, let A: R — R be defined by A(x) = cosx with
C =[0,3]. We have that VI(C, A) = {0,5} and M(C, A) = {0}. But if we take
x=0 and y =7 in the definition of pseudomonotone (Assumption 3.1, (Al)), we
see that A is not pseudomonotone.

Lemma 2.5 [29] Consider the VIP (1.1). If the mapping h : [0, 1] — E* defined as
h(t) = A(tx + (1 — t)y) is continuous for all x,y € C (i.e. h is hemicontinuous),
then M(C, A) C VI(C,.A). Moreover, if A is pseudomonotone then VI(C,A) is
closed, convex and VI(C, A) = M(C, A).

Lemma 2.6 [39] Let {a,} be a sequence of nonnegative real numbers satisfying the
following relation:

a1 < (l - O‘n)an + ooy + 7y, n21

where (i) {o,} C[0,1], Y o, =00; (i) limsupo, <0; (i) 7,>0; (n>1)

>y, <oo.
Then a, — 0, as n — oo.
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3 Main result

In this section, we give concise statement of our algorithm, discuss some of its
elementary properties and its convergence analysis. In the sequel, we assume that
the following hold.

Assumption 3.1 Let C be a nonempty closed convex subset of a real reflexive
Banach space E. The operator A : C — E* satisfies the following:

(A1) A is pseudomonotone on C, i.e, for all x,y € E, (Ax,y — z) >0 implies
(Ay,y —x) > 0;

(A2) A is L-Lipschitz continuous, i.e. there exists L >0 such that | .Ax —
Ayl <L|x —y||, for all x,y € C. However, the information of L need not to
be known;

(A3) Ais weakly sequentially continuous, i.e. for any {x,} C E, we have x,, — x
implies Ax, — Ax;

(A4)  Sol(C, A) # 0

(A5) In addition, the function f : E — [—00, +00] is proper, uniformly Fréchet
differentiable on bounded subsets of E, strongly convex with constant
¢ > 0, strongly coercive and Legendre.

We now present our algorithm as follows.

Algorithm 3.2.
Initialization: Chose 1 € E Ay >0, {d,,} C (0,1), {a,} C (0,1) and 6 € (0,9). Set n = 1.

Step 1: Given nth iterates: x,, and p,, compute

(3.1) Yn = Projl(V*(Vf(xn) = pnAzn)).
If &y, —yn = 0: STOP. Else, do Step 2.
Step 2:
(32) 20 = VI (V(Yn) = pu(A(yn) — A(zn)),

and update

(3.3) Pl = {mm{p"” M} i Awn 7 Aya,
Prs if Az, = Ay,.

Step 3: Compute the (n+ 1) — th iterate via
(3.4) Tng1 = V0,V f(z) + (1= 68,)(anVFf(u) + (1 —an)VF(zn)], Vn>1

Step 4: Setn=n+1 and GOTO Step 1.

Remark 3.3

(1) The stepsize p, in Algorithm 3.2 varies from step to step. This stepsize is
updated at each iteration by a cheap computation. This stepsize rule allows
Algorithm 3.2 to be implemented more easily where firstly the Lipschitz
constant of A must not be the input parameter of the algorithm, i.e., this
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constant is not necessary to be known, and secondly the stepsize is found
without any line-search which can be time-consuming.

(2) The VIP is studied in a reflexive real Banach space which is more general
than 2-uniformly convex real Banach space and real Hilbert space. This
extends all the results in [9, 17, 33-35, 38] to mention but a few.

Lemma 3.4 Assume that A is Lipschitz continuous on E. Then the sequence
generated by (3.3) is nonincreasing and

. . 0
lim Pn = pz min p07z .

Proof 1t is easy to prove this Lemma, hence we omit it. U

If at some iteration we have x, =y, or Ay, = 0 then Algorithm 3.2 terminates
and y, € Sol(C,.A). From now on, we assume that x, # y, and Ay, # 0 for all n so
that the algorithm does not terminate finitely.

Lemma 3.5 Let {x,}, {y.} and {z,} be defined Algorithm 3.2, then for every
x* € Sol(C, A) the following inequalities holds for all n> 1.

qsf(X*aZn) S (f)f(x*,xn) - <1 - pn(s >¢f(zn7yn) - <1 - :0115) ¢f(ynaxn)~

pn+lQ pn+lQ

Proof Let x* € Sol(C, A), then

¢f(X*7Zn)
= ¢ (", NV (Vf () = pu(Ayn — Ax,))
=f(x") = & = 20, VF(n) = pu( Ay — Axa)) — f(zn)
=f(x) + (@ = X", V() + (&7 = 20y 0 (Ayn — Axn)) — £(20)
FO) = & =3, VE ) = f ) + X7 = Y Y (90)) +f (9n)
+ <Zn —x", Vf(y,,)}
+ (" = 2y P (Ayn — AX)) — f(2a)
= ¢r (", 30) + (@ = Y, V) +F n) = f(z0) + (& = 20, p, (Ayn — Ax))
= ¢f(x*a)’n) - ¢f(Zn7YH) + (X" = 20y pu (Ayn — Ax,))

(3.5)
Note that from (2.11), we get
Gr(X"3yn) = p(zn, yn) = Pr(x" %) — Dp(zn, Xn) + (Vf(xn) = VI (), X — 20)-
(3.6)
Hence from (3.5) and (3.6), we have
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Single projection variational inequalities 973

qsf(X*aZn) = ¢f(x*7xn) - d)f(znaxn) + (" = 2ny pu(Ayn — Axn))
+ <vf(xn) - Vf(yn)aX* - Zn>-
Also from (2.10), we have

¢f(znaxn) :¢f(znayn) + ¢f(ynax11) - <vf(xn) - vf()’n)azn - yn>~ (3'8)

Substituting (3.8) into (3.7), we obtain

bp(x",20) = p (X", Xn) — Dp(2ns n) — Dp (Vs Xu) + (Vf (%) — Vf )y 20 = )

+ 0 = 2, P (A — Axa)) + (Vf () = Vf ), X* — 2a)

= (6", 2) = ¢>f(zn,yn) by (Y Xn) + (VF (%) = VF (), X* = y)
+ X" = 20, 0 (Ayn — Axa))

= (2" 00) — ¢f<zmyn) — s n) + (VF (1) = VF ), X" = ya)
+ (20— Yu+ Yn — 2, pa(Ayn — Axy)

= hp(x*,%0) = Pp(2nsYn) = B (s Xn) + (Vf (6n) = VF (), X — yu)
+ = (20 = Yns Pu(Ayn — Axn)) — (00 — X7, 0, (Ayn — Axy))

= (X" 20) = D (205 Yn) = B (Vs Xn) = (20 = Vs P (Ayn — Ax))
— n =X, 0, (Ayn — Axy) = (Vf(9n) = V(x0)))-

(3.7)

(3.9)
Since y, = Prof.(Vf*(Vf(x,) — pnAx,)), it follows from (2.4) that
(Vf(xn) = ppAxy = Vf (), X" = ya) <O. (3.10)

Also, since x* € Sol(C, A) then (Ax*,y, —x*)>0. From the pseudomonotonon-
icity of A, we obtain

<-Aynayn_x*>20- (311)
Combining (3.10) and (3.11), we get

(Pn(Ayn — Ax,) — (Vf () = Vf(x0)), 90 — x7) > 0. (3.12)
Hence from (3.9), we obtain
Dp(x*,20) < Pp(x", %0) — Dp(2ns Yn) = (2n = Vs Pu(Ayn — Ax)). (3.13)

Now using (3.3) and Cauchy-Schwatz inequality, we have
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974 C. C. Okeke et al.

¢f(x*azn) < d)f(X*?xn) - ¢f(zn7yn) - (rbf(ynaxn) + <yn - Znapn(Ayn - -A-xn»

« Pn
< (/»')f(x s Xn) — ¢f(zn>)’n) - ¢f()’naxn) + p—PnH”yn = Zn[[[Ayn — Ax, |
n+1

* p’l
< ¢f’(x ,X,,) - d?f(zna)’n) - d)f(ynvxn) + p—5||yn - ZnHHyn _xn”

n+1
< ¢f(X*’xn) - d)f(zna)’n) - d)f())naxn)
Pn 0 2 2
+ == xSz = yall” + lyn — 2l
Pn+1 2

Then from (2.3), we obtain

bp (X" 20) < bp (X %0) = Dp(zns ) = By (Y, Xn)

+ ﬂ X g(¢f(zn7yn) + ¢f(yn7xn))

Pn+1

. Pnd Pud
=¢(x",x —(1— >¢ z,y,—<1— >¢ Yins Xn).-
f( ) Pni10Q f( ) Pn+1Q f( )
(3.14)
O
Lemma 3.6 The sequence {x,} generated by Algorithm 3.2, is bounded.
Proof Note that since J € (0, ¢) and ¢ > 0, we have
lim <1—p"5> -2
=00 Pn+1Q 9
Then, there exists N > 0 such that
PO
anrlQ

>0 Vn>N.

Thus, it from (3.14) that

bp (X", 20) < (X", X)) (3.15)

Furthermore, from (3.4) and (3.15), we have
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Single projection variational inequalities 975

b (X", Xns1) = bp(x™, VI (8, VS (x) + (1 = 6) (0 VS () 4 (1 = 002) Vf (2)))
< 0np (X, %) + (1 = 00) by (X", 0, Vf () + (1 — 00) Vifzn)
L 0np (X", %) 4 (1 = 0n) [0 Pp (™, ) + (1 — 0,) pp (X", 2)]
< Onpp(x™, x) + (1 = 05)[otn (X", ) 4 (1 — 02 by (x", )]

=oy(1 - 5n)¢f(X*a )+ (1 —on(1 - 5n>)¢f(X*axn)
< max{¢f’(X*7u)7 ¢f(-x xn)}

< max{ ey (x", u), dp(x*, x,)}
(3.16)

This implies that {¢,(x*,x,)} is bounded. Hence, {x,} is bounded. Consequently,
we see that {Vf(x,)}, {y.} and {z,} are bounded. O

Lemma 3.7 The sequence {x,} generated by Algorithm 3.2 satisfies the following
estimates:

(1) Sn+l S (1 - O(n(l - 5n))$n + OC,,(I - 5n)dna
(i) —1<limsup,_ . d,< + o0,

where S, = ¢;(x",x,) and d,, = (v, — x*, Vf(u) — Vf(x*)) for any x* € Sol(C, A).

Proof Now, let v, = Vf*[o,(1—0,)Vf(u)+ (1 —o,(1—=0,))Vf(u,)], n>1
where
u?l

A uﬂ?'; V) L ) %251 . ))Vf(z,,) 01
(f)f(X*verrl)
< ‘f)f(X*vvf.*(an(l = 0,)Vf (u) + 0, Vf (x) + (1 — 0,) (1 — “n)JlE), (z0))
= ¢p(x™, VI (on(1 = 6,) VS (u) + (1 = 00) (1 = 64)) Vf ()
SV, (1 = 64) VI () + (1 — 0a(1 — 64)) Vi (un))
S V(" o (1 = 0,) V(1)) + (1 — o (1 = 0,)) Vf (1)
= o(1 = 6,)(Vf(u) — Vf(x"))
= (V" (o1 = B)Vf () + (1 = 0 (1 = 02)) VS (un)) — &7,
= o1 = 6u)(Vf (1) = VF(x")))
= ¢_/’[X*1 Vf* (0 (1 = 8,)VF(x") + (1 = o, (1 = 6,)) Vf ()]
+ o (1 = 0,) (v — X", Vf (1) — VF(x"))
S (1= 0n) by (6", x7) + (1 — a0 (1 = 00)) by (x7, )
+ o, (1 — 0,) (v — x*, Vf(u) — Vf(x"))
= (1 = ou(1 = 6)) by (x", 1tn)
+ o (1 = B,) (v — X7, Vf () — VF(x"))
<1 =1 = lz))¢f(x 3 Xn) 4 0 (1 = 0,) (v — X%, Vf () — Vf(x")).

This established (i).
Next we show (ii). Since {v,} is bounded, then we have

(3.17)
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976 C. C. Okeke et al.

sup d, < sup (|[v, = °[||[VF (1) = V()] <oc.

n>0

This implies that limsup,_,., d, <oco. Next, we show that limsup,_, d,> — 1.
Assume the contrary, i.e. limsup,,_,., d, < — 1. Then there exists ny € N such that
d,< — 1, for all n > ny. Then for all n > ngy, we get from (i) that

Sni1 < (1 =0, (1 = 6,))Sy + (1 — 8,)dy,
<(1 = oy(1 = 6,))Sy — (1 = 6,)
=8, —o,(1 —=0,)(Sy + 1) <8, — o, (1 — 0p).

Taking lim sup of the last inequality, we have

limsup S, <§,, — lim Zoc,- = —00.

— £
n—00 1=ng

This contradicts the fact that {S,} is a non-negative real sequence. Therefore
limsup,_,d, > — 1. O

We now present our main convergence result.

Theorem 3.8 Assume Conditions (A1) — (AS) and suppose {o,}, and {0,} are
sequences in (0, 1) and satisfy the following conditions:

(i) 1imn~>:x) Oy = 07 and chzl Oy = OQ;
(i) 0< liminf, .., < limsup, _ 8,<1.

Then the sequence {x,} generated by Algorithm 3.2 converges strongly to an
element in Sol(C, A).

Proof Let x* € Sol(C, A) and S, = ¢¢(x*,x,). we divide the proof into two cases.
Case 1: Suppose that there exists ny € N such that {S,}
Then {S,},-, converges and

n=ny 1S non-1mcreasing.

lim (S, — Spy1) = 0. (3.18)

n—oo

Thus, from Lemma 3.5 we have.

__Pad a0 L )
<1 pn_HQ) ¢f(zn7yn) + (1 pn_HQ) qbf(yn,xn) < ¢f(_x 7xn) ¢f(x ;Zn)-
(3.19)

Also, from (3.16), we get
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¢f(X*’xn) - ¢f(x*7 Zn)

ocn(l -9 ) (1 _“n(l — 571))

- mqﬁf(x*vu) + m(f)f(x*,xn)
1 *
- m@@ s Xnt1)
(1 —=6,) 3 o (1 — ) i
ST =on Y Ty — oy &)
1 . i
+ m[‘f’f(x s Xn) — ¢f(x s Xnt1)]
o (1 = 9y,) . 1 . .
= m‘f’.f(’c ) +m[¢f(x s Xn) = (X7, X p1)]
(3.20)
From (3.19) and (3.20), we get
P 0,0
(1 - Pn+1Q> Oyl ya) + (1 N Pn+1Q> 4 0mxn)
< p (X, x0) — (", 20)
%, (1 — 6p) . (3.21)
>~ m(f)f(x ,M)
1

T TS a oy # 0 = G )

Passing limit as n — oo in (3.21), since lim ¢, (x*, x,,) exists and p”—l — 1, we have
n—oQ

n+

lim (1 - Z) By (zn ) = 0.

Also, since J € (0, ¢), then
nlinolo ¢f(ynazn) =0.

Thus
lim |y, —z,]| = 0. (3.22)
Similarly from, (3.21), we obtain
. 0
lim | 1 _E ¢f(yn7xn) =0.
Then
lim ¢ (yn, %) =0 = lim [ly, — x,[| = 0. (3.23)
n—oo n—oo

Combining (3.22) and (3.23), we have
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lim [lz, — x, | = 0. (3.24)

Since {x,} is bounded, there exists a subsequence {x,,} of {x,} such that x,, — z.
We now show that z € Sol(C, A).

Since y,, = Proj(Vf*(Vf (xn,) — pp Axa,)), from (2.4), we have
<vf(xﬂk) - pnkA-xnk - vf(ynk)vx - y”k> < 0 vxeC.

Hence

<Vf('xnk) - vf(y”k)7'x - ynk> Spnk <Axnk7x _ynk>
:pnk<~’4-xnmxnk _y”k> + pnk<~’4-xnkax _an>'

This implies that
<vf(xnk) - Vf(yﬂk)7x - yﬂk> + Py <A-xn1<aynk - 'xnk> < Py <Ax”k7'x - 'xnk>' (325)
Since ||xy, — yu, || — 0 and fis strongly coercive, then
kli»n;; ”vf(xm) - vf(ynk)” =0. (326)

Next, fix xe€ C, it follows from (3.25) and (3.26) and the fact that
liminf; . p,, > 0, then

0 < liminf(Ax,, ,x —x,) Vxe&C. (3.27)
k—o00

Let {e;} be a sequence of decreasing non-negative numbers such that e, — 0 as
k — oo. For each ¢, we denote by N; the smallest positive integer such that

(Axy,x —Xp) + & >0 ¥V k>N,

where the existence of N; follows from (3.27). Since {¢} is decreasing, then {N;}
is increasing. Also, for some ty, € C assume (Axy,,fy,) = 1, for each k. Therefore,

(Axp,, x + ety — xy,) > 0.
Since A is pseudomonotone, then we have from (3.27) that
(A(x + ektNk),x + €xty, — xNk> >0. (328)

Since {x,, } converges weakly to z as k — oo and A is weakly sequentially con-
tinuous, we have that {A} converges weakly to Az. Suppose Az # 0 (otherwise,
z € Sol(C, .A). Then by the sequentially weakly lower semicontinuous of the norm,
we get

0<|]Az|| = liminf
k—o00
Ay |-

Since {xy,} C {x,,} and ¢ — 0, we get
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. . €k
0 < limsup ||exty, || = lim su <— >
m sup et | = lim sup ¢ |

o) k—00
< ’lir.n SUP;_, oo €k < 0 o,
fiminf o | A, 4]
and this means limy_,« ||€ty, || = 0. Passing the limit kX — oo in (3.28), we get

(Ax,x — z) >0.

Therefore, from Lemma 2.5, we have z € Sol(C,.A). Furthermore, from the defi-
nition of u, and v,, we get

i) =1ty onn) + G2 = g )
:%d)f&nﬂ%) —0, as n— oo,
and
By Oy tn) = 0 (1= 32) by 1t,00) + (1= (1 = 8,)) by (0, 0)
— (1= 8.) by, ) — 0, as 1 — oc.
Thus,

lim ||u, — x| =0 = lim ||v, — u,].
n—oo n—oQo
Hence, we obtain

lim ||v, — x,|| = 0.

n—oo
Since x,, — z and lim,_. ||vy — x,|| = O we have that v,, — z. Hence from (2.4),

we obtain that

lim sup(v, — x*, Vf(u) — Vf(x")) :klim (v, — X", Vf(u) — Vf(x"))

n—oo

= (z —x", Vf(u) — Vf(x")) <0.
Hence

limsupd, = limsup(v, — x*, Vf(u) — Vf(x")) <O0. (3.29)

n—oo n—oQ

Using Lemma 2.6 and Lemma 3.7(i), we obtain

lim S, = lim ¢,(x",x,) = 0.

n—oo n—oo

This implies that ||x, — x*|| — 0 as n — oo. Therefore {x,} converges strongly to

x*.
Case 2. Assume that {S,},-, is not a monotonically decreasing sequences. Set
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I',:=8,, Yvn>1andlett: N — N be a mapping for all n > ny (for some ny large
enough) by

1(n) :=max{k € N: k<n, T} <Ti1}.
Clearly, 7 is a nondecreasing sequence such that t(n) — oo as n — oo and
0<T () STc(y1, Yn2>mng
Following a similar argument as in Case 1 we immediately conclude that
Jim [[veg) = xell =0 and  lHm ) = yeg || = 0.
Also from (3.29), we get that
lim sup d(,y = limsup(v,(,) — x*, Vf(u) — Vf(x*)) <O0.

n—oo n—oo

From (3.17) we have that

S‘c(n) < dr(n)

which implies

lim 31.(”) =0

n—0o0

and

lim Sr(n)+l =0.

n—oQ

Therefore, for n>ny, it is easy to see that I';,) <Ty)4 if n# t(n) (that is,
7(n) <n), because I'; > T';1y for t(n) + 1 <j<n. As a consequence, we obtain for
all n>ny

0<T, <max{l;, Tepyr} = Tegnyrr

Hence, lim,_,o, I, = 0. This implies that lim,_, (j)f(x*’xn) =0, thus |jx, — x*|| —
0 as n — oo. Therefore, {x,} converges strongly to x*. This completes the proof. (]

Remark 3.9 If the operator is monotone and Lipschitz continuous, then we do not
need it to be sequentially weakly continuous. This is because the sequential weakly
continuity assumption was only used after (3.25). From the definition of y,, we have

<Vf(xnk) - pnkAxnk - vf()’nk>x - )’nk)> §07 Vx e C

Thus from the monotonicity of A,
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OS <vf(ynk) - vf(xnk)’x - ynk> + pnk<-’4-xm7x - ynk>
= (vf(y”k) - vf(xﬂk)’x - ynk) + pnk<Ax”k7Z - x"k> + pnk <Ax”k’xnk - ynk>
< <Vf(y”k) - vf(xﬂk)vx - ynk> + Py <.AX,X _xnk> + Py <-Axnmxnk - yﬂk>'
Since Vf is weakly - weakly continuous, passing to the limit in the last inequality as
k — oo and using relation (3.23), we obtain (Ax,x —z) >0 Vz € C. Thus, from

Lemma 2.5 we get that z € Sol(C, A). Hence the conclusion of Theorem 3.8 still
hold.

4 Application
4.1 Application to computing dynamic user equilibria

In this section, we apply Algorithm 3.2 to compute dynamic user equilibria (see
[16]). Let P be set of paths in the network. W be set of O-D pairs in the network, Q;;
be fixed O-D demand between (i,j) € W, P; be subset of paths that connect O-D
(i,7), t be continuous time parameter in a fixed time horizon [fo,#], h,() be
depature rate along path p at time ¢, h(f) be complete vector of departure rates
h(t) = (hy(r) : p € P), W, (¢, h) be travel cost along path p with departure time ¢,
under departure profile z, v;j(h) be minimum travel cost between O-D pair (i, j) for
all paths and departure times.

Assume that /,(-) € L2 [tg, ;] and h(-) € (L2 [to,11])"”". Define the effective delay
operator P : (Li[to,tl})lp‘ — (L2 [to, tl])m as follows:

h(-) = {hp(-),p € Py=>¥(h) = {¥,(-,h),p € P}.
The travel demand satisfaction constraint satisfies
n
=Y / hy(t)dt, ¥ (i,j) € W.
pEP,-j fo
Then, the set of feasible path departures vector can be expressed as
n
A={h20:Y / by (e, ¥ (i) € W) € (L2 10,0)) .
PEP;; fo

Recall that a vector of departures &* € A is a dynamic user equilibrium with
simultaneous route and departure time choice if

h,(y) >0, p € Py = ¥, (t,h") = v(h*), for almost every t € [to,t1]. (4.1)
Note that (4.1) is equivalent to the following variational inequality ([16]):
(W(h*),h—h")>0, VYheA (4.2)

Based on Algorithm 3.2, we have the following algorithm.
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Algorithm 4.1.
Initialization: Chose z1 € E Ay >0, {6,} C (0,1), {a,} C (0,1) and 6 € (0, p). Set n = 1.

Step 1: Given nth iterates: x,, and p,, compute
(4.3) Yo = ProjL (VI (Vf(za) = pu¥an)).
If &y, — yn = 0: STOP. Else, do Step 2.

Step 2:
(44) 2 =V (V(Yn) = pn(¥(yn) — ¥(zn)),
and update
(4.5) s — {min {p,, M} if W, # Uy,
Pns if Wa, = Vy,.
Step 3: Compute the (n+ 1) — th iterate via
(4.6) Tng1 = V0,V f(x,) 4+ (1 —=8,)(anVF(u) + (1 —0an)VF(zn)], Vn>1

Step 4: Setn=n+1 and GOTO Step 1.

If the delay operator W is Lipschitz continuous and pseudomonotone, then we
can apply Algorithm 4.1 to compute dynamic user equilibria.

5 Numerical examples

In this section, we consider some examples to illustrate the convergence of the
proposed algorithm and compare it with other algorithms. We also compare the
convergence of Algorithm 3.2 for various examples of the Bregman distance.

Example 5.1 Let E = (,(R) where 6,(R) = {x = (x1,x2,x3,...,), € R: > 7}

1
with norm ||x[|,, = (Zil |x,~|2)2 and inner product (x,y) = >, x;y;, for all x =

(X1,%2,%3,...), ¥y = (y1,¥2,¥3,--) € E. Let C = {x = (x1,x2,%3,...) € fp : [|x]| <1}
and A : ¢, — ¢, be defined by

A(xy,x2,x3,...) = (%1 exp(fx%), 0,0,...).

It was shown in Example 2.1 of [4] that A is pseudomonotone, Lipschitz continuous
and sequentially weakly continuous but not monotone in 4, (R).

We now list some known Bregman distances. These distances are listed in the
following forms:

(i) The function f5(x) = —>_" , logx; and the Itakura-Saito distance

1=3G) 1)

(ii) The function f%*(x) = >"", x;logx; and the Kullback-Leibler distance
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109 -
——1s
—*—KL
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1020k
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1060 b
1080 b
10100 L . L . . : 106 L L . L . )
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of iterations Number of iterations
10% ¢ 10°
—x—Is ——1s
—*—KL —*—KL
oL % SE ¥ SE
10°
M 100
100 F
& 107 & 109
104 F
10710
10°F
10® L . 1015 . . . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of iterations Number of iterations

Fig. 1 Example 5.1. Top left: m = 10, Top right: m = 20, Bottom left: m = 50, Bottom right: m = 80

)= 35 e (2) ).

(iii) The function £ (x) = 1 ||x||* and the squared Euclidean distance

1 2
97769 =5 =™

The values Vf(x) and Vf*(x) = (Vf) ™' (x) are computed explicitly. More precisely,

() V() = —(1/x1,., 1/x0)" and (V)7 (0) = =(1/x1, 0 1/20) "
(i)  VAL(x) = (1 +log(xy), ..., 1 +log(x,))" and
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10%¢ 102
—%— Algorithm 3.2 —— Algorithm 3.2
—%— Algorithm 1.2 —%— Algorithm 1.2
10!
10%
10°
100 b
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i} i}
102
10?
103
104
10
1076 L 1 1 1 1 L 1 1 10—5 L L L 1 L L i
o 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30 35 40
Number of iterations Number of iterations
102
—— Algorithm 3.2 —%— Algorithm 3.2
—%— Algorithm 1.2 —%— Algorithm 1.2
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100 ¢ 10°
107 107
& &
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10° - L 10 .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of iterations Number of iterations

Fig. 2 Performance of Algorithm 3.2 compared with Algorithm 1.2

(VY (x) = (exp(xy — 1), ..., exp(x, — 1))

(i) V% (x) =x and (V) ' (x) = x.
The feasibility set of our problem VIP is of the form,
C={x=(x,x,.,x,) €R":|Ix|<1 and x>a>0, i=12,..m},

where a <1/y/m (which ensures that C # (). For the experiment in Algorithm 3.2,
we choose o, = 45, 0, = s, u = = 0.5 and p = 3.5.

Let E, = |[x,41 — x,]|> <107*, we consider this example for various types of
Bregman distance with m = 10,20,50,80. The results of this experiment are

reported in Fig. 1.
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Example 5.2 The following example was first considered in [20],
X'Px+a’x + ay

bTx + by
subject tox € X = {x € R : b'x + by > 0},

ming(x) =

where
5 -1 2 0 1 2
—1 5 -1 3 -2 1
P = ,a = b= ,610:—2,190:4
2 -1 3 0 -2 1
0 0 0 1 1 0

Since P is symmetric and positive definite, g is pseudoconvex on X. We minimize g
onK={xcR*":1<x<3}CX.

It is easy to see that
(bTx + bo)(2Px + a) — b(x" Px + a’x + ay)

F(x) = Vg(x) = TS

(5.1)

Oy =<2, p=3.5and

The following choices of parameters are made: o, = St )

u=pu=0.5.
We terminate the iterations at E, = ||x,41 — x,||* <€ with € = 107*. The results
are presented in Fig. 2 for various initial values of x;.

1
n+17

Case 1: x; = (—10,-10,—-10,—10)’;
Case 2: = (1,2, 3 4)
Case 3: = (4,4,4 4)

Case 4 x, = (5,0,0,10)".

We compare the performance of our Algorithm 3.2 with Algorithm 1.2. For
algorithm 1.2, we let / = 0.001 and y = 0.002.
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