ORIGINAL RESEARCH PAPER

Inequalities for the derivative of a polynomial with restricted zeros

Uzma Mubeen Ahanger¹ (b) · W. M. Shah¹

Received: 5 November 2020 / Accepted: 21 March 2021 / Published online: 8 April 2021 © Forum D'Analystes, Chennai 2021

Abstract

For a polynomial p(z) of degree n, it is known that

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k} \max_{|z|=1} |p(z)|,$$

if $p(z) \neq 0$ in $|z| < k, k \ge 1$ and

$$\max_{|z|=1} |p'(z)| \ge \frac{n}{1+k} \max_{|z|=1} |p(z)|,$$

if $p(z) \neq 0$ for $|z| > k, k \leq 1$. In this paper, we assume that there is a zero of multiplicity s, s < n at a point inside |z| = 1 and prove some generalizations and improvements of these inequalities.

Keywords Inequalities · Restricted zeros · Polynomials

Mathematics Subject Classification 30A10 · 30C10 · 30C15

1 Introduction

Let \mathscr{P}_n be the class of polynomials $p(z) := \sum_{j=0}^n a_j z^j$ of degree at most n. For $p \in \mathscr{P}_n$ and a positive real number k, we write:

Communicated by Samy Ponnusamy.

☑ Uzma Mubeen Ahanger uzmanoor@cukashmir.ac.in

> W. M. Shah wmshah@rediffmail.com

Department of Mathematics, Central University of Kashmir, Ganderbal, J&K 191201, India

$$\mathcal{D}_k := \{z : |z| = k\}, \ \mathcal{D}_k^+ := \{z : |z| > k\}, \ \mathcal{D}_k^- := \{z : |z| < k\},$$

$$M(p,k) := \max_{z \in \mathcal{D}_k} |p(z)| \text{ and } m(p,k) := \min_{z \in \mathcal{D}_k} |p(z)|.$$

If $p \in \mathscr{P}_n$ and p' is the derivative of p, then

$$M(p',1) \le nM(p,1). \tag{1}$$

(1) is a famous sharp inequality due to Bernstein [2] (see also [6]). If we restrict ourselves to the class of polynomials $p \in \mathcal{P}_n$, such that $p(z) \neq 0$ for $z \in \mathcal{D}_1^-$, then inequality (1) can be sharpened. Infact, it was conjectured by Erdös and latter proved by Lax [3], that if p(z) does not vanish in \mathcal{D}_1^- , then

$$M(p',1) \le \frac{n}{2}M(p,1).$$
 (2)

In case p(z) is a polynomial of degree n and does not vanish in \mathcal{D}_1^+ , then it was shown by Turán [7] that

$$M(p',1) \ge \frac{n}{2}M(p,1).$$
 (3)

For the polynomials $p \in \mathcal{P}_n$, with $p(z) \neq 0$, $z \in \mathcal{D}_k^-$, $k \geq 1$, Malik [4] proved

$$M(p',1) \le \frac{n}{1+k}M(p,1),$$
 (4)

where for the n^{th} degree polynomial $p(z) \neq 0$, for $z \in \mathcal{D}_k^+$, $k \leq 1$, he obtained

$$M(p',1) \ge \frac{n}{1+k}M(p,1).$$
 (5)

Aziz and Shah [1] generalized (5) and proved that if p(z), the polynomial of degree n has all its zeros in $\mathcal{D}_k \cup \mathcal{D}_k^-$, $k \le 1$, with s-fold zeros at the origin, then

$$M(p',1) \ge \frac{n+sk}{1+k}M(p,1).$$
 (6)

Nakprasit and Somsuwan [5] investigated M(p', 1) in terms of M(p, 1) for a polynomial $p \in \mathcal{P}_n$, having a zero of order s at some point z_0 , where $z_0 \in \mathcal{D}_1^-$ and proved:

Theorem A If $p(z) := (z - z_0)^s (a_0 + \sum_{v=\mu}^{n-s} a_v z^v)$, $1 \le \mu \le n - s$, $0 \le s \le n - 1$, is a polynomial of degree n, having a zero of order s at z_0 , where $z_0 \in \mathcal{D}_1^-$ and the remaining n - s zeros are outside \mathcal{D}_k^- , $k \ge 1$, then

$$M(p',1) \le \left\{ \frac{s}{(1-|z_0|)} + \frac{A}{(1-|z_0|)^s} \right\} M(p,1) - \frac{A}{(k+|z_0|)^s} m(p,k), \tag{7}$$

where

$$A = \frac{(1+|z_0|)^{s+1}(n-s)}{(1+k^{\mu})(1-|z_0|)}.$$

Observation In Theorem A, if we put s = 0, that is, if we assume, there is no zero inside \mathcal{D}_k^- , then

$$M(p',1) \le \frac{n(1+|z_0|)}{(1+k^{\mu})(1-|z_0|)}M(p,1) - \frac{n(1+|z_0|)}{(1+k^{\mu})(1-|z_0|)}m(p,k). \tag{8}$$

The presence of z_0 in the R.H.S of (8) as well as $\left(\frac{1+|z_0|}{1-|z_0|}\right) \ge 1$, shows that their attempt of obtaining the desired result is not only incomplete but incorrect.

In the light of Theorem A followed by the observation, we are in a position to prove the following results.

2 Main results

Theorem 1 If p(z) is a polynomial of degree n having no zeros in \mathcal{D}_k^- , k > 1, except a zero of multiplicity s, $0 \le s < n$ at z_0 , where $|z_0| \le 1 - \frac{2s(k+1)}{n(k-1) + 2s}$ then for $n > \frac{2sk}{k-1}$,

$$M(p',1) \leq \frac{1}{2} \left[n + \frac{2s(k+|z_0|)}{(k+1)(1-|z_0|)} - \frac{n(k-1)}{(k+1)} \frac{|p(z)|^2}{(M(p,1))^2} \right] M(p,1).$$

The result is best possible for $z_0 = 0$ and equality holds for $p(z) := z^s (z + k)^{n-s}$, $0 \le s < n$, evaluated at z = 1.

In particular if $z_0 = 0$, then we have the following sharp result.

Corollary 1 If p(z) is a polynomial of degree n having all zeros outside \mathcal{D}_k^- , k > 1, except a zero of multiplicity s, $0 \le s < n$ at origin, then

$$M(p',1) \le \frac{1}{2} \left[n + \frac{2sk}{k+1} - \frac{n(k-1)}{k+1} \frac{|p(z)|^2}{(M(p,1))^2} \right] M(p,1),$$

where $n > \frac{2sk}{k-1}$.

Theorem 1 reduces to the following result, by taking s = 0.

Corollary 2 If p(z) is a polynomial of degree n having no zeros in \mathcal{D}_k^- , k > 1, then

$$M(p',1) \le \frac{1}{2} \left[n - \frac{n(k-1)}{k+1} \frac{|p(z)|^2}{(M(p,1))^2} \right] M(p,1).$$

Equality sign holds for the polynomial $p(z) := (z + k)^n$, evaluated at z = 1.

Theorem 2 If p(z) is a polynomial of degree n having no zeros in \mathcal{D}_k^+ , $k \le 1$, except a zero of multiplicity s, $0 \le s < n$ at z_0 , where $z_0 \in \mathcal{D}_1^-$, then for $z \in \mathcal{D}_1$

$$|p'(z)| \ge \frac{1}{1+k} \left\{ n + s \left(\frac{k - |z_0|}{1 + |z_0|} \right) \right\} |p(z)|.$$

The result is best possible for $z_0 = 0$ and equality holds for $p(z) := z^s (z + k)^{n-s}$, $0 \le s < n$, evaluated at z = 1.

For k = 1, we have the following result from Theorem 2.

Corollary 3 If p(z) is a polynomial of degree n having no zeros in \mathcal{D}_1^+ , except a zero of multiplicity s, $0 \le s < n$ at z_0 , where $z_0 \in \mathcal{D}_1^-$, then for $z \in \mathcal{D}_1$

$$|p'(z)| \ge \frac{1}{2} \left\{ n + s \left(\frac{1 - |z_0|}{1 + |z_0|} \right) \right\} |p(z)|.$$

Remark 1 In particular if $z_0 = 0$, then Theorem 2 reduces to inequality (6) due to Aziz and Shah [1].

3 Lemmas

For the proof of Theorem 1, we need the following Lemma due to Malik [4].

Lemma 1 If p(z) is a polynomial of degree at most n and $p^*(z) = z^n \overline{p\left(\frac{1}{\overline{z}}\right)}$, then for |z|=1

$$|(p^{*'}(z)| + |p'(z)| \le nM(p, 1).$$
 (9)

The result is best possible and equality is attained at $p(z) = \alpha z^n$, α being a complex number.

4 Proofs of theorems

Proof of Theorem 1 Since p(z) has all its zeros in $\mathcal{D}_k \cup \mathcal{D}_k^+$, except a zero of multiplicity s at $z_0, z_0 \in \mathcal{D}_1^-, 0 \le s < n$, therefore

$$p(z) = (z - z_0)^s u(z),$$

where u(z) is a polynomial of degree n-s having all zeros in $\mathcal{D}_k \cup \mathcal{D}_k^+$. Therefore, if $z_1, z_2, \ldots, z_{n-s}$ be the zeros of u(z), then $|z_j| \ge k, k > 1, j = 1, 2, \ldots, n-s$. Hence, we have

$$\frac{zp'(z)}{p(z)} = \frac{sz}{z - z_0} + \sum_{i=1}^{n-s} \frac{z}{z - z_i}.$$

This, in particular, gives

$$\operatorname{Re}\left(\frac{zp^{'}(z)}{p(z)}\right) = \operatorname{Re}\left(\frac{sz}{z - z_0}\right) + \operatorname{Re}\left(\sum_{j=1}^{n-s} \frac{z}{z - z_j}\right).$$

For the points $e^{i\theta}$, $0 \le \theta < 2\pi$ which are not the zeros of p(z), we have

$$\operatorname{Re}\left(\frac{e^{i\theta}p'(e^{i\theta})}{p(e^{i\theta})}\right) = \operatorname{Re}\left(\frac{se^{i\theta}}{e^{i\theta} - z_0}\right) + \operatorname{Re}\left(\sum_{j=1}^{n-s} \frac{e^{i\theta}}{e^{i\theta} - z_j}\right)$$
$$= \operatorname{Re}\left(\frac{se^{i\theta}}{e^{i\theta} - z_0}\right) + \operatorname{Re}\left(\sum_{j=1}^{n-s} \frac{1}{1 - e^{-i\theta}z_j}\right).$$

Using the fact that for $|w| \ge k > 1$,

$$\operatorname{Re}\left(\frac{1}{1-w}\right) \le \frac{1}{1+k}$$

and

$$\operatorname{Re}\left(\frac{se^{i\theta}}{e^{i\theta}-z_0}\right) \le \left|\frac{se^{i\theta}}{e^{i\theta}-z_0}\right| \le \frac{s}{1-|z_0|}$$

we get, for $0 \le \theta < 2\pi$,

$$\operatorname{Re}\left(\frac{e^{i\theta}p'(e^{i\theta})}{p(e^{i\theta})}\right) \le \frac{s}{1-|z_0|} + \frac{n-s}{1+k},$$

Now, for $p^*(z) = z^n \overline{p\left(\frac{1}{\overline{z}}\right)}$, it can be easily verified that

$$|(p^*(z))'| = |np(z) - zp'(z)|, \quad z \in \mathcal{D}_1$$

This gives, for $z \in \mathcal{D}_1$

$$\left| \frac{\left| \frac{\left(p^*(z) \right)'}{p(z)} \right|^2}{p(z)} \right|^2 = \left| n - \frac{zp'(z)}{p(z)} \right|^2$$

$$= n^2 + \left| \frac{zp'(z)}{p(z)} \right|^2 - 2n\operatorname{Re}\left(\frac{zp'(z)}{p(z)}\right)$$

$$\geq n^2 + \left| \frac{zp'(z)}{p(z)} \right|^2 - 2n\left(\frac{s}{1 - |z_0|} + \frac{n - s}{1 + k}\right).$$

That is

$$|(p^*(z))'|^2 \ge |zp'(z)|^2 + \left\{n^2 - 2n\left(\frac{s}{1-|z_0|} + \frac{n-s}{1+k}\right)\right\}|p(z)|^2.$$

Since

$$|z_0| \le 1 - \frac{2s(k+1)}{n(k-1) + 2s}$$
 and $n > \frac{2sk}{k-1}$,

it can be easily verified that

$$n^2 - 2n\left(\frac{s}{1 - |z_0|} + \frac{n - s}{1 + k}\right) \ge 0. \tag{10}$$

From this we get, for $z \in \mathcal{D}_1$

$$|(p^*(z))'| \ge \left[|p'(z)|^2 + \left\{n^2 - 2n\left(\frac{s}{1-|z_0|} + \frac{n-s}{1+k}\right)\right\}|p(z)|^2\right]^{\frac{1}{2}}.$$
 (11)

Inequality (11) together with Lemma 1, gives

$$|p'(z)| + \left[|p'(z)|^2 + \left\{n^2 - 2n\left(\frac{s}{1-|z_0|} + \frac{n-s}{1+k}\right)\right\}|p(z)|^2\right]^{\frac{1}{2}} \le nM(p,1).$$

This gives, for $z \in \mathcal{D}_1$

$$|p'(z)|^2 + \left\{n^2 - 2n\left(\frac{s}{1-|z_0|} + \frac{n-s}{1+k}\right)\right\}|p(z)|^2 \le \left(nM(p,1) - |p'(z)|\right)^2.$$

On simplifying we get, for $z \in \mathcal{D}_1$

$$|p'(z)| \le \frac{1}{2} \left[n - \left\{ \frac{n(k-1)}{(k+1)} - \frac{2s(k+|z_0|)}{(k+1)(1-|z_0|)} \right\} \frac{|p(z)|^2}{(M(p,1))^2} \right] M(p,1)$$

$$\le \frac{1}{2} \left[n + \frac{2s(k+|z_0|)}{(k+1)(1-|z_0|)} - \frac{n(k-1)}{(k+1)} \frac{|p(z)|^2}{(M(p,1))^2} \right] M(p,1).$$

From which the result follows.

Proof of Theorem 2 Since p(z) has all its zeros in $\mathcal{D}_k \cup \mathcal{D}_k^-$, except a zero of multiplicity s at $z_0, z_0 \in \mathcal{D}_1^-, 0 \le s < n$, therefore

$$p(z) = (z - z_0)^s u(z),$$

where u(z) is a polynomial of degree n-s having all its zeros in $\mathcal{D}_k \cup \mathcal{D}_k^-$. Therefore, if $z_1, z_2, \ldots, z_{n-s}$ be the zeros of u(z), then $|z_j| \le k$, $k \le 1$, $j = 1, 2, \ldots, n-s$. Hence, we have

$$\frac{zp'(z)}{p(z)} = \frac{sz}{z - z_0} + \sum_{j=1}^{n-s} \frac{z}{z - z_j}.$$

This, in particular, gives

$$\operatorname{Re}\left(\frac{zp'(z)}{p(z)}\right) = \operatorname{Re}\left(\frac{sz}{z - z_0}\right) + \operatorname{Re}\left(\sum_{j=1}^{n-s} \frac{z}{z - z_j}\right).$$

Therefore, for the points $e^{i\theta}$, $0 \le \theta < 2\pi$ which are not the zeros of p(z), we have

$$\operatorname{Re}\left(\frac{e^{i\theta}p'(e^{i\theta})}{p(e^{i\theta})}\right) = \operatorname{Re}\left(\frac{se^{i\theta}}{e^{i\theta} - z_0}\right) + \operatorname{Re}\left(\sum_{j=1}^{n-s} \frac{e^{i\theta}}{e^{i\theta} - z_j}\right)$$

$$= \operatorname{Re}\left(\frac{se^{i\theta}}{e^{i\theta} - z_0}\right) + \operatorname{Re}\left(\sum_{j=1}^{n-s} \frac{1}{1 - e^{-i\theta}z_j}\right). \tag{12}$$

Using the facts that for $|w| \le k \le 1$ we have

$$\operatorname{Re}\left(\frac{1}{1-w}\right) \ge \frac{1}{1+k}$$

and for $z_0 \in \mathcal{D}_1^-$

$$\operatorname{Re}\left(\frac{se^{i\theta}}{e^{i\theta}-z_0}\right) \geq \frac{s}{1+|z_0|}.$$

We get from (12)

$$|p'(z)| \ge \left\{ \frac{s}{1+|z_0|} + \frac{n-s}{1+k} \right\} |p(z)|$$

$$= \frac{1}{1+k} \left\{ n + s \left(\frac{k-|z_0|}{1+|z_0|} \right) \right\} |p(z)|.$$

This proves the desired result.

Acknowledgment The authors are highly grateful to the referee for his/her useful suggestions.

Funding The second author acknowledges the financial support given by the Science and Engineering Research Board, Govt of India under Mathematical Research Impact - Centric Sport (MATRICS) Scheme vide SERB Sanction order No: F: MTR / 2017 / 000508, Dated 28-05-2018.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

- Aziz, A. and Shah, W. M. 2004. Inequalities for a polynomial and its derivative. Mathematical Inequalities & Applications 7: 379–391.
- 2. Bernstein, S.N. 1926. Lecons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques une variable réelle. Paris: Gauthier-Villars.
- 3. Lax, P.D. 1944. Proof of a conjecture of P. Erdös on the derivative of a polynomial. *Bulletin of the American Mathematical Society (NS)* 50: 509–513.
- 4. Malik, M.A. 1969. On the derivative of a polynomial. *Journal of the London Mathematical Society* 1: 57–60.
- Nakprasit, K.M. and Somsuwan, J. 2017. An upper bound of a derivative for some class of polynomials. *Journal of Mathematical Inequalities* 11 (1): 143–150.
- Schaeffer, A.C. 1941. Inequalities of A. Markoff and S. Bernstein for polynomials and related functions. Bulletin of the American Mathematical Society (NS) 47: 565–579.
- 7. Turán, P. 1939. Über die ableitung von polynomen. Compositio Mathematica 7: 89–95.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

