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Abstract
For a polynomial p(z) of degree n, it is known that

max
jzj¼1

jp0 ðzÞj � n

1 þ k
max
jzj¼1

jpðzÞj;

if pðzÞ 6¼ 0 in jzj\k; k� 1 and

max
jzj¼1

jp0 ðzÞj � n

1 þ k
max
jzj¼1

jpðzÞj;

if pðzÞ 6¼ 0 for jzj[ k; k� 1: In this paper, we assume that there is a zero of

multiplicity s, s\n at a point inside jzj ¼ 1 and prove some generalizations and

improvements of these inequalities.
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1 Introduction

Let Pn be the class of polynomials pðzÞ :¼
Pn

j¼0ajz
j of degree at most n. For p 2

Pn and a positive real number k, we write:
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Dk :¼ fz : jzj ¼ kg; Dþ
k :¼ fz : jzj[ kg; D�

k :¼ fz : jzj\kg;
Mðp; kÞ :¼ max

z2Dk

jpðzÞj and mðp; kÞ :¼ min
z2Dk

jpðzÞj:

If p 2 Pn and p
0

is the derivative of p, then

Mðp0; 1Þ� nMðp; 1Þ: ð1Þ

(1) is a famous sharp inequality due to Bernstein [2] (see also [6]). If we restrict

ourselves to the class of polynomials p 2 Pn; such that pðzÞ 6¼ 0 for z 2 D�
1 , then

inequality (1) can be sharpened. Infact, it was conjectured by Erdös and latter

proved by Lax [3], that if p(z) does not vanish in D�
1 , then

Mðp0
; 1Þ� n

2
Mðp; 1Þ: ð2Þ

In case p(z) is a polynomial of degree n and does not vanish in Dþ
1 ; then it was

shown by Turán [7] that

Mðp0
; 1Þ� n

2
Mðp; 1Þ: ð3Þ

For the polynomials p 2 Pn; with pðzÞ 6¼ 0, z 2 D�
k ; k� 1, Malik [4] proved

Mðp0
; 1Þ� n

1 þ k
Mðp; 1Þ; ð4Þ

where for the nth degree polynomial pðzÞ 6¼ 0; for z 2 Dþ
k ; k� 1; he obtained

Mðp0
; 1Þ� n

1 þ k
Mðp; 1Þ: ð5Þ

Aziz and Shah [1] generalized (5) and proved that if p(z), the polynomial of degree

n has all its zeros in Dk [ D�
k ; k� 1; with s-fold zeros at the origin, then

Mðp0
; 1Þ� nþ sk

1 þ k
Mðp; 1Þ: ð6Þ

Nakprasit and Somsuwan [5] investigated Mðp0
; 1Þ in terms of M(p, 1) for a poly-

nomial p 2 Pn; having a zero of order s at some point z0; where z0 2 D�
1 and

proved:

Theorem A If pðzÞ :¼ ðz� z0Þsða0 þ
Pn�s

m¼l amz
mÞ, 1� l� n� s; 0� s� n� 1; is

a polynomial of degree n, having a zero of order s at z0; where z0 2 D�
1 and the

remaining n� s zeros are outside D�
k , k� 1, then

Mðp0
; 1Þ�

(
s

ð1 � jz0jÞ
þ A

ð1 � jz0jÞs

)

Mðp; 1Þ � A

ðk þ jz0jÞs
mðp; kÞ; ð7Þ

where
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A ¼ ð1 þ jz0jÞsþ1ðn� sÞ
ð1 þ klÞð1 � jz0jÞ

:

Observation In Theorem A, if we put s ¼ 0; that is, if we assume, there is no zero

inside D�
k ; then

Mðp0
; 1Þ� nð1 þ jz0jÞ

ð1 þ klÞð1 � jz0jÞ
Mðp; 1Þ � nð1 þ jz0jÞ

ð1 þ klÞð1 � jz0jÞ
mðp; kÞ: ð8Þ

The presence of z0 in the R.H.S of (8) as well as
�

1þjz0j
1�jz0j

�
� 1; shows that their

attempt of obtaining the desired result is not only incomplete but incorrect.

In the light of Theorem A followed by the observation, we are in a position to

prove the following results.

2 Main results

Theorem 1 If p(z) is a polynomial of degree n having no zeros in D�
k , k[ 1; except

a zero of multiplicity s, 0� s\n at z0; where jz0j � 1 � 2sðk þ 1Þ
nðk � 1Þ þ 2s

then for

n[
2sk

k � 1
;

Mðp0
; 1Þ� 1

2

"

nþ 2sðk þ jz0jÞ
ðk þ 1Þð1 � jz0jÞ

� nðk � 1Þ
ðk þ 1Þ

jpðzÞj2

ðMðp; 1ÞÞ2

#

Mðp; 1Þ:

The result is best possible for z0 ¼ 0 and equality holds for pðzÞ :¼ zsðzþ kÞn�s
,

0� s\n; evaluated at z ¼ 1:
In particular if z0 ¼ 0, then we have the following sharp result.

Corollary 1 If p(z) is a polynomial of degree n having all zeros outside D�
k , k[ 1;

except a zero of multiplicity s, 0� s\n at origin, then

Mðp0
; 1Þ� 1

2

"

nþ 2sk

k þ 1
� nðk � 1Þ

k þ 1

jpðzÞj2

ðMðp; 1ÞÞ2

#

Mðp; 1Þ;

where n[
2sk

k � 1
:

Theorem 1 reduces to the following result, by taking s ¼ 0:

Corollary 2 If p(z) is a polynomial of degree n having no zeros in D�
k , k[ 1; then

Mðp0
; 1Þ� 1

2

"

n� nðk � 1Þ
k þ 1

jpðzÞj2

ðMðp; 1ÞÞ2

#

Mðp; 1Þ:

Equality sign holds for the polynomial pðzÞ :¼ ðzþ kÞn; evaluated at z ¼ 1:

123

Inequalities for the derivative... 1369



Theorem 2 If p(z) is a polynomial of degree n having no zeros in Dþ
k , k� 1; except

a zero of multiplicity s, 0� s\n at z0; where z0 2 D�
1 , then for z 2 D1

jp0 ðzÞj � 1

1 þ k

(

nþ s

 
k � jz0j
1 þ jz0j

!)

jpðzÞj:

The result is best possible for z0 ¼ 0 and equality holds for pðzÞ :¼ zsðzþ kÞn�s
,

0� s\n; evaluated at z ¼ 1:
For k ¼ 1; we have the following result from Theorem 2.

Corollary 3 If p(z) is a polynomial of degree n having no zeros in Dþ
1 , except a

zero of multiplicity s, 0� s\n at z0; where z0 2 D�
1 , then for z 2 D1

jp0 ðzÞj � 1

2

(

nþ s

 
1 � jz0j
1 þ jz0j

!)

jpðzÞj:

Remark 1 In particular if z0 ¼ 0; then Theorem 2 reduces to inequality (6) due to

Aziz and Shah [1].

3 Lemmas

For the proof of Theorem 1, we need the following Lemma due to Malik [4].

Lemma 1 If p(z) is a polynomial of degree at most n and p�ðzÞ ¼ znp

 
1

z

!

; then for

|z|=1

jðp�0 ðzÞj þ jp0 ðzÞj � nMðp; 1Þ: ð9Þ

The result is best possible and equality is attained at pðzÞ ¼ azn, a being a complex
number.

4 Proofs of theorems

Proof of Theorem 1 Since p(z) has all its zeros in Dk [ Dþ
k ; except a zero of

multiplicity s at z0; z0 2 D�
1 ; 0� s\n; therefore

pðzÞ ¼ ðz� z0ÞsuðzÞ;

where u(z) is a polynomial of degree n� s having all zeros in Dk [ Dþ
k : Therefore,

if z1; z2; . . .; zn�s be the zeros of u(z), then jzjj � k; k[ 1; j ¼ 1; 2; . . .; n� s: Hence,

we have
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zp
0 ðzÞ

pðzÞ ¼ sz

z� z0

þ
Xn�s

j¼1

z

z� zj
:

This, in particular, gives

Re

 
zp

0 ðzÞ
pðzÞ

!

¼ Re

 
sz

z� z0

!

þ Re

 
Xn�s

j¼1

z

z� zj

!

:

For the points eih; 0� h\2p which are not the zeros of p(z), we have

Re

 
eihp

0 ðeihÞ
pðeihÞ

!

¼ Re

 
seih

eih � z0

!

þ Re

 
Xn�s

j¼1

eih

eih � zj

!

¼ Re

 
seih

eih � z0

!

þ Re

 
Xn�s

j¼1

1

1 � e�ihzj

!

:

Using the fact that for jwj � k[ 1;

Re

 
1

1 � w

!

� 1

1 þ k

and

Re

 
seih

eih � z0

!

�
�
�
�
�
�

seih

eih � z0

�
�
�
�
�
� s

1 � jz0j

we get, for 0� h\2p;

Re

 
eihp

0 ðeihÞ
pðeihÞ

!

� s

1 � jz0j
þ n� s

1 þ k
;

Now, for p�ðzÞ ¼ znp

 
1

z

!

; it can be easily verified that

jðp�ðzÞÞ
0
j ¼ jnpðzÞ � zp

0 ðzÞj; z 2 D1

This gives, for z 2 D1
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�
�
�
�
�

ðp�ðzÞÞ
0

pðzÞ

�
�
�
�
�

2

¼
�
�
�
�
�
n� zp

0 ðzÞ
pðzÞ

�
�
�
�
�

2

¼ n2 þ
�
�
�
�
�

zp
0 ðzÞ

pðzÞ

�
�
�
�
�

2

� 2nRe

 
zp0ðzÞ
pðzÞ

!

� n2 þ
�
�
�
�
�

zp
0 ðzÞ

pðzÞ

�
�
�
�
�

2

� 2n

 
s

1 � jz0j
þ n� s

1 þ k

!

:

That is

jðp�ðzÞÞ
0
j2 � jzp0 ðzÞj2 þ

(

n2 � 2n

 
s

1 � jz0j
þ n� s

1 þ k

!)

jpðzÞj2:

Since

jz0j � 1 � 2sðk þ 1Þ
nðk � 1Þ þ 2s

and n[
2sk

k � 1
;

it can be easily verified that

n2 � 2n

 
s

1 � jz0j
þ n� s

1 þ k

!

� 0: ð10Þ

From this we get, for z 2 D1

jðp�ðzÞÞ
0
j �
"

jp0 ðzÞj2 þ
(

n2 � 2n

 
s

1 � jz0j
þ n� s

1 þ k

!)

jpðzÞj2
#1

2

: ð11Þ

Inequality (11) together with Lemma 1, gives

jp0 ðzÞj þ
"

jp0 ðzÞj2 þ
(

n2 � 2n

 
s

1 � jz0j
þ n� s

1 þ k

!)

jpðzÞj2
#1

2

� nMðp; 1Þ:

This gives, for z 2 D1

jp0 ðzÞj2 þ
(

n2 � 2n

 
s

1 � jz0j
þ n� s

1 þ k

!)

jpðzÞj2 �
�
nMðp; 1Þ � jp0 ðzÞj

�2

:

On simplifying we get, for z 2 D1
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jp0 ðzÞj� 1

2

"

n�
(
nðk � 1Þ
ðk þ 1Þ � 2sðk þ jz0jÞ

ðk þ 1Þð1 � jz0jÞ

)
jpðzÞj2

ðMðp; 1ÞÞ2

#

Mðp; 1Þ

� 1

2

"

nþ 2sðk þ jz0jÞ
ðk þ 1Þð1 � jz0jÞ

� nðk � 1Þ
ðk þ 1Þ

jpðzÞj2

ðMðp; 1ÞÞ2

#

Mðp; 1Þ:

From which the result follows.

Proof of Theorem 2 Since p(z) has all its zeros in Dk [ D�
k ; except a zero of

multiplicity s at z0; z0 2 D�
1 ; 0� s\n; therefore

pðzÞ ¼ ðz� z0ÞsuðzÞ;

where u(z) is a polynomial of degree n� s having all its zeros in Dk [ D�
k :

Therefore, if z1; z2; . . .; zn�s be the zeros of u(z), then jzjj � k; k� 1; j ¼
1; 2; . . .; n� s: Hence, we have

zp
0 ðzÞ

pðzÞ ¼ sz

z� z0

þ
Xn�s

j¼1

z

z� zj
:

This, in particular, gives

Re

 
zp

0 ðzÞ
pðzÞ

!

¼ Re

 
sz

z� z0

!

þ Re

 
Xn�s

j¼1

z

z� zj

!

:

Therefore, for the points eih; 0� h\2p which are not the zeros of p(z), we have

Re

 
eihp

0 ðeihÞ
pðeihÞ

!

¼ Re

 
seih

eih � z0

!

þ Re

 
Xn�s

j¼1

eih

eih � zj

!

¼ Re

 
seih

eih � z0

!

þ Re

 
Xn�s

j¼1

1

1 � e�ihzj

!

:

ð12Þ

Using the facts that for jwj � k� 1 we have

Re

 
1

1 � w

!

� 1

1 þ k

and for z0 2 D�
1

Re

 
seih

eih � z0

!

� s

1 þ jz0j
:

We get from (12)
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jp0 ðzÞj �
(

s

1 þ jz0j
þ n� s

1 þ k

)

jpðzÞj

¼ 1

1 þ k

(

nþ s

 
k � jz0j
1 þ jz0j

!)

jpðzÞj:

This proves the desired result.
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