The Journal of Analysis (2021) 29:1367-1374
https://doi.org/10.1007/s41478-021-00316-7

ORIGINAL RESEARCH PAPER

™

Check for
updates

Inequalities for the derivative of a polynomial
with restricted zeros

Uzma Mubeen Ahanger' @ + W. M. Shah’

Received: 5 November 2020/ Accepted: 21 March 2021/ Published online: 8 April 2021
© Forum D’Analystes, Chennai 2021

Abstract
For a polynomial p(z) of degree n, it is known that

max ——ma ,
max | ()] < 1 max p(c)

if p(z) # 0 in |z| <k,k>1 and

max |p (z) x [p(z)],

|z|=1 |_1+k\|1

if p(z) #0 for |z| > k,k<1. In this paper, we assume that there is a zero of
multiplicity s, s<n at a point inside |z| = 1 and prove some generalizations and
improvements of these inequalities.
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1 Introduction

Let 2, be the class of polynomials p(z) := Z}Loa_;zj of degree at most n. For p €
2, and a positive real number k, we write:
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Dii={z: |2 =k}, Dy = {z: |2l > k}, Dy := {2+ [z] <k,
M = ‘= mi .
(p,k) = max|p(z)| and m(p, k) := min |p(z)|

If p € 2, and p is the derivative of p, then

M(p', 1) <nM(p,1). (1)

(1) is a famous sharp inequality due to Bernstein [2] (see also [6]). If we restrict
ourselves to the class of polynomials p € 2, such that p(z) # 0 for z € D7, then
inequality (1) can be sharpened. Infact, it was conjectured by Erdds and latter
proved by Lax [3], that if p(z) does not vanish in D[, then

Mp ., 1)< gM(p, ). (2)

In case p(z) is a polynomial of degree n and does not vanish in D, then it was
shown by Turan [7] that
M(p 1) =S M(p,1). (3)

For the polynomials p € 2, with p(z) # 0, z € D}, k> 1, Malik [4] proved

I\J\S

M(p/’l)SmM( al)a (4)

th

where for the n™ degree polynomial p(z) # 0, for z € D], k<1, he obtained

M(p,1)> 1 oM@ 1). (5)

Aziz and Shah [1] generalized (5) and proved that if p(z), the polynomial of degree
n has all its zeros in Dy U D, , k<1, with s-fold zeros at the origin, then

n—|—sk

M@p ., 1)> e M(p.1). (6)

Nakprasit and Somsuwan [5] investigated M(p', 1) in terms of M(p, 1) for a poly-
nomial p € #,, having a zero of order s at some point zy, where zo € D| and
proved:

Theorem A If p(z) := (z—20) (a0 + X1, a2"), 1<pu<n—5,0<s<n—1, is
a polynomial of degree n, having a zero of order s at zo, where zo € D| and the
remaining n — s zeros are outside D, , k> 1, then

N

, A A
MW)S{(1—|zo|>+<1—|zO|>-‘}M(’” Er Ry "0

where
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(L +[z0l)"(n )

AT (I -l

Observation In Theorem A, if we put s = 0, that is, if we assume, there is no zero
inside D, , then

n(1 + |zl)
(T k(1 — Jzo])

n(1 + |zol)

M@p, 1)< (1+ k) (1 — |zo)

M(p,l) -

m(p, k). (8)

The presence of zy in the R.H.S of (8) as well as (}’_L—tg}) > 1, shows that their

attempt of obtaining the desired result is not only incomplete but incorrect.
In the light of Theorem A followed by the observation, we are in a position to
prove the following results.

2 Main results

Theorem 1 If p(z) is a polynomial of degree n having no zeros in D, , k > 1, except

2s(k + 1
a zero of multiplicity s, 0<s<n at zo, where |z0| <1 — ﬁ then for
n(k — s
- 2sk
n
k—1’
, 1 2 —1 :
M(p71)§_ n S(k+|Z0|) _I’l(k ) |P(Z)| 5 M(p,l)
2 (k+ 1)1 —lz2l) (k+1) (M(p,1))

The result is best possible for zo = 0 and equality holds for p(z) :=z*(z+ k)"",
0<s<n, evaluated at z = 1.
In particular if zo = 0, then we have the following sharp result.

Corollary 1 If p(z) is a polynomial of degree n having all zeros outside D , k > 1,
except a zero of multiplicity s, 0 <s<n at origin, then

25k nk—1) |p()

n+ -
kel k1 (M(p,1))°

M(p/,l)gé ]M( 1),
2sk

k—1°
Theorem 1 reduces to the following result, by taking s = 0.

where n >

Corollary 2 If p(z) is a polynomial of degree n having no zeros in D, , k > 1, then

nk—1) |p(2)
k+1 (M(p,1))°

/ 1
M@jl)SZ[n_ ‘|M(pvl)
Equality sign holds for the polynomial p(z) := (z + k)", evaluated at z = 1.
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Theorem 2 If p(2) is a polynomial of degree n having no zeros in D;", k < 1, except
a zero of multiplicity s, 0<s<n at zo, where zo € Dy, then for z € D

/ 1 k—|Z(‘
lp (2)| > 1—+k{n+s<1 n |Z;|>}|P(Z)-

The result is best possible for zo = 0 and equality holds for p(z) = 2*(z+ k)",
0<s<n, evaluated at 7 = 1.
For k = 1, we have the following result from Theorem 2.

Corollary 3  If p(z) is a polynomial of degree n having no zeros in D}, except a
zero of multiplicity s, 0 <s<n at 79, where zo € D, then for z € D,

T §{+<1 . :z:)}m(m.

Remark 1 In particular if zo = 0, then Theorem 2 reduces to inequality (6) due to
Aziz and Shah [1].

3 Lemmas

For the proof of Theorem 1, we need the following Lemma due to Malik [4].

> , then for

NI | =

Lemma 1 [fp(2) is a polynomial of degree at most n and p*(z) = 7"p (
|z[=1
(P (@) +Ip (2)| <nM(p, 1). 9)

The result is best possible and equality is attained at p(z) = az", a being a complex
number.

4 Proofs of theorems

Proof of Theorem 1 Since p(z) has all its zeros in Dy UD;, except a zero of
multiplicity s at zg, zo € D}, 0 <s<n, therefore

p(2) = (z— 20)"u(2),

where u(z) is a polynomial of degree n — s having all zeros in Dy U D} . Therefore,
if 21,2, .. ., 24— be the zeros of u(z), then |z;| >k, k> 1,j=1,2,...,n — 5. Hence,
we have
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n—s

ZIZ ST Z
p (2) n

p(z) T -2 z2—z

j=1

This, in particular, gives

w @)\ sz — Z
Re(p(z)>_Re<z—zo>+Re<;z—zj>.

For the points €. 0 < 0 <2n which are not the zeros of p(z), we have

0" (i i0 n—s i0
ep (eY) se e
Ref —————= | =Re| ———— | +Re .
(225) (o) ()
se'? < 1
=R . R — .
e<6l0—20>+ e<;1—6‘92j>

and

N

<
1 — |zo]

we get, for 0 < 0<2m,
0,7 (i _
Re| € p(;) < s_.n s7
p(ei?) 1=z 1+k

) , it can be easily verified that

Nl =

Now, for p*(z) = z”p(

(p"(2)) ] = Inp(z) — 20 ()], z €D

This gives, for z € D
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P [ _| 7@ i
p(z) p(z)
2 |2@ e (@)
e | TR <p<z>>
>n®+ Zp/(z) 2—2n< u +H>
- () F—TJo] T4k
That is
(@) F 2 lp' QF + { - 2(1_|Z|+1;k> }|p<z>|2.
Since
2s(k + 1) 2sk
|Zo|§1—m and n > 1

it can be easily verified that

2 s n—s
¥ L P 10
" n(lIzo|+1+k> (10)

From this we get, for z € D)

1

(OIE [p’<z>|2+{n22n<1%w+f—;,j>}|p<z>|2] ST

Inequality (11) together with Lemma 1, gives

PP+ { - 2n<1 — +’f—;,ﬁ> }Wﬂ <nM(p,1).

This gives, for z € D)

P + { - 2n<L+ > ‘s> }|p<z>|2< (o, 1) ~ 1P )]) "

P (2)] +

1=z 1+k

On simplifying we get, for z € D)
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, 1 nk—1)  2s(k+ |zl) p(2)]°
|p (Z)| < E |j’l— { (kJr 1) - (k+ 1)(1 — |ZO|) } (M<I77 1))2]M@7 1)

25k + o) nk—1) |p)P
"TEF D) kD) (M(,),W]MW)'

1
< —
-2

From which the result follows.

Proof of Theorem 2 Since p(z) has all its zeros in Dy U D), except a zero of
multiplicity s at zp, zo € D}, 0 <s<n, therefore

p(z) = (z — 20)"u(z),

where u(z) is a polynomial of degree n — s having all its zeros in D, U D, .
Therefore, if zj,z,...,24—s be the zeros of u(z), then |z|<k, k<1, j=
1,2,...,n — 5. Hence, we have

n—s

ZIZ ST Z
p (2) n

p(z) z—2 -z

This, in particular, gives

p )\ sz = Z
Re(p(z))—Rf:(Z_ZO)-i-Re(j_ZlZ_Zj).

Therefore, for the points eio, 0 <0 <27 which are not the zeros of p(z), we have

i0,) ( i i0 n=s i
ep () se e
Re| ———= | =Re| ——— | +Re g .
< p(em) > <618_Z0> (i—l elg_zj>

i0 n—s
se 1
=R . R e B
e(e,g_m>+ (zl_z)

Using the facts that for |w| <k <1 we have

(12)

and for zp € Dy

We get from (12)
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’ S n—s
>t —
Ip (2)| > T TTEk Ip(2)]
1 k — |z
=——9qn+s| —— :
1+k 1+ |z p(2)l

This proves the desired result.
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