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Abstract

The notion of non-linear contraction via implicit function was first introduced by
Popa. Sub-sequentially, Aydi extended and proved fixed point results for o-implicit
contraction in quasi b-metric space. In this paper, we have obtained some new fixed
point results for the implicit contraction in the setting of quasi-partial b-metric
space. The results are validated with the application based on them.
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1 Introduction

Metric fixed point theory came into existence with the elegant result of contraction
mapping principle given by Banach [6] in 1922. Researchers have generalized this
result by refining the contraction condition and replacing the metric space with a
generalized abstract space [8, 15, 21]. In 1997, Popa [17] introduced the concept of an
implicit relation in contractive condition. In 2012, Berinde [7] obtained some
constructive fixed point theorems for almost contractions satisfying an implicit
relation. Several classical and common fixed point theorems which were unified via
self-mappings satisfying implicit relation were proved in [1-5, 11-13, 16, 18-20, 22].
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In 2012, Karapinar [14] introduced the notion of quasi-partial metric space and
discussed the existence of fixed points of self-mapping on this space. Gupta and
Gautam [9, 10] further generalized the quasi-partial metric space to the class of quasi-
partial b-metric space. The aim of this paper is to determine a fixed point satisfying an
implicit relation in the setting of quasi-partial b-metric space. Some examples are also
given to verify the validity of our results.

2 Preliminaries

We begin the section with some basic definition and concept.

Definition 1 [14] A quasi-partial metric on a non-empty set X is a function
q: X X X — R, satisfying the following conditions:

(OPM,) Tf g(x,x) = q(x,y) = q(y,y), then x =y

(OPM3) q(x,x) <q(x,y)

(QPM3) q(x,x) <q(y,x)

(OPMy) q(x,y) +q(z,2) <q(x,2) +q(z,y) for all x,y,z € X.

A quasi-partial metric space is a pair (X, ¢) such that X is a non-empty set and g is a
quasi-partial metric on X.

Definition 2 [9] A quasi-partial b-metric on a non-empty set X is a mapping gpy :
X x X — R™ such that for some real number s > 1 and for all x,y,z € X

(OPb1) qpp(x,x) = qpp(x,y) = qpp(y,y) = x =y
(QPDb3) qpy(x,x) < qpp(x,y)

(QPb3) qpp(x,x) < qpp(y,x)

(OPby) qpy(x,y) < slqpy(x,2) + qpp(z,¥)] — qpp(z,2)-

A quasi-partial b-metric space is a pair (X, gpp) such that X is a non-empty set and
qpp is a quasi-partial b-metric on X. The number s is called the coefficient of

(X, qps).

Let gp, be a quasi-partial b-metric on the set X. Then d,,, (x,y) = gp(x,y) +
apy(y,x) — qpy(x,x) — gpy(y,y) is a b-metric on X.
Example 1 Let X = [0, 1]. Define gp, : X X X — R" as gpy(x,y) = (x — y)2 +x. It
can be shown here that (X, gp,) is a quasi-partial b-metric space.

apy(x,x) = qpp(x,y) = qpp(y,y) = x =y asx = (x — y)’ +x =y gives x = y.

Again gpy (x,x) < gpy(x,y) as x < (x — y)* + x and similarly gpj (x,x) < gpy(y, x)
as x< (y —x)2 +y for 0<x<y.

Also gpy(x,y) < slgps(x,2) + qps(2,¥)] — aps (2, 2)

As (x—y) +x42<s[(x —2)* +x+ (z — y)* + 2] for fixed s = 2.

It can be observed that

(x—y) +x4z2<(x—z+24+y)  +x+2<2[(x—2) > +x+ (z—y)* +2.
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Fixed point via implicit contraction... 1253

So (QPby) holds. Thus (X, gpp) is a quasi-partial b-metric space with s = 2.

Example 2 Let X = [1,00). Define gp, : X X X — R as gp,(x,y) = ¢* + €.
Then (X, gpp) is a quasi-partial b-metric space.
Let gpp(x,x) = gpp(x,y) = qpp(y,y) => *+e* ="+ & =’ + & = ' =&,
which implies x = y.
Let x,y € X. Without loss of generality, for x <y we have 2¢* <e* 4 ¢”.

Thus gpy(x, x) < gps(x, y).

Similarly, gpy(x, x) < gpy(y, x).

For (QPb,), we have

gpp(x,y) = ¢ + & <s[e* + €] since s> 1, €, &, ¢ >0

<se* + se¥ 4 2¢*(s — 1) since (s — 1) >0,

<sle* + e+ e+ '] — 2¢°

aps(x,y) < slaps(x,2) + aps (2, ¥)] — qps (2, 2).
Lemma 1 [9] Let (X,gpy) be a quasi-partial b-metric space. Then the following
hold:

o Ifqpy(x,y) =0, then x =y.
e Ifx=y, then qpb(X,y) > 0 and qph(y7x) > 0.

Proof is similar as for the case of quasi-partial b-metric space [9].

Definition 3 [9] Let (X, gp)) be a quasi-partial b-metric. Then

e A sequence {x,} CX converges to x€X if and only if
qpy(x,x) = lim gpy(x, x,) = lim gpp(xn, x).

e A sequence {x,} C X is called a Cauchy sequence if and only if lim

n,m—00

qpy (X, Xy) and  im  gpp(x,, x,) exist (and are finite).
n,m—oo

e The quasi-partial b-metric space (X, gpp) is said to be complete if every Cauchy
sequence {x,} C Xconverges with respect to 7,4, to a point x € X such that

qpb(-xa -x) = n}rzgloc QPb(xnu-xm> = mlr}gloc qpb(xm7-xn)-

Lemma 2 [9] Let (X,qpy) be a quasi-partial b-metric space. The following
statements are equivalent:

(X, gpp) is Cauchy.
e (X,dg,) is Cauchy.
Lemma 3 [9] Let (X,qpy) be a quasi-partial b-metric space. The following
statements are equivalent:
(X, gpp) is complete.
o (X,dg,) is complete.

Definition 4 Let (X,gp,) be a quasi-partial b-metric space and 7:X — X be a
given mapping. T is said to be sequentially continuous at z € X if for each sequence
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1254 P. Gautam, S. Verma

{x,} in X converging to z, we have
Tx, — Tz, i.e., im gp,(Tx,, Tz) = qpp(Tz, Tz).
n—oo
T is said to be sequentially continuous on X if T is sequentially continuous at
each z € X.

Lemma 4 Let (X, qpy) be a quasi-partial b-metric space and {x,} be a convergent
sequence in X to a point z € X such that lim gpp(x,,z) = 0 = lim gpy(z,x,) and
n—oo n—oo

arr(z,z) =0, y € X, then

e 7 is unique and
 1app(2,y) < lim gpy(xa,y) <sqpy(2,y).

Proof Suppose that there exist 7 € X such that lim gp,(x,,7) = 0.
n—oo

Since gpy(z,2") < slapp(z, %) + qoo(Xn, )] — qpo(Xa, ).
Letting n — oo, we obtain, z = 7/

Lapy(z,y) < Llaps(z, %) + apu(xn, ¥)] — Lqpp (xa, xa)
tapp(z,y) < lim gpy(x,,y).

Also gy, y) < 5(qpp(xa; 2) +qpo(2:)) = aps(z,2)
Jim gpy (i, y) < sqpy(2,y)- U

3 Implicit relation

Here, we have defined Implicit relation in a different manner:

Definition 5 Let Fy be the family of lower semi continuous functions F : R> — R*
such that

(F1) : F is non-increasing in variable #; and ¢s.

(F) : For all u,v>0, s>1, there exist & € [0,1) such that F(u,v,v,u,s(u+
v)) <0 implies u < hv.

(F3) : F(1,1,0,0,1) >0V > 0.

Example 3 Let F:R> — R'. Define F(ll, 12,l3,l4,l5) =fH — amax{t27t3, l4,l‘5},
where o € [0, %) Then F satisfies an implicit relation.

(Fy) : F is non increasing in variable #; and #s.

(F) : Let u,v >0 such that

F(u,v,vyu,s(u+v)) =u— amax{v,v,u,s(u+v)} <0=u—a(s(u+v)) <0,
where o € [0,7).

Thus u < hv with h :ﬁ <I.

(F3): F(1,£,0,0,t) =t(1 —o) >0V > 0.

1
So F € F satisfies an implicit relation with o € [0,2—).
s

Example 4 Let F e FQ. Define F:R> — Rt as F(ll,lz,l3,l4,l5) =t —aith —
ats — asty — agts where a; >0,i = 1,2,3,4. Also if we have
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o O<ay+ax+az+2sas<l,
o O<a)tas<l,

then F satisfies an implicit relation.
(F1) Here F is non increasing in variable #; and ts.
(F) For all u,v > 0, we have
F(u,v,v,u,s(u+v)) =u(l —az — sag) — v(a; + az + say).
Without loss of generality, if F(u,v,v,u,s(u+v)) <0, then u<hv, where

]’l — aj+ax+say
l—asz—say *

By first assumption 0 <a; + a; + a3 + 2say <1, we have h € [0, 1). Thus (F,) is
satisfied.

(F3) By O0<a; +as<1, it can be observed that F(t,7,0,0,7) =¢(1 —a; —
a4) > 0 for all ¢ > 0.

4 Main result

Let us discuss the main result.

Theorem 1 Let (X, gp)) be a complete quasi-partial b-metric space and T : X — X
is continuous self map for all x € X. Suppose that

Flapy(Tx, Ty), apy(x,¥), aps(x, Tx), qps (v, Ty), (s (x, Ty) + (qps(y, Tx))] < 0.
(1)
For some F € Fg and if F satisfies F(u,0,v,v,2su) <0 for all u,v>0, there exist
pe [O,%) such that u< v, then z is a unique fixed point of T. i.e., Tz = z with
apy(2,2) = 0.

Proof Let xo be an arbitrary point in X. Define {x,} in X by x, = Tx,_; for all
n=1,2,3,.... If there exist nyp € N with x,, = x,,+1 , then x,, is a fixed point of T.
Suppose that x,, # x,1, for all n € N by (1),

Flapy(Txu—1, Txn), qpp(Xn—1, %),
apy(Xn—1, Txn—1), qPo(Xn, Txn), (qP6 (Xn—1, TXn) + (g (Xn, Txa—1))] <O

F[qpb(xm xn+1)7 qpb(xnfl ) xn)v qpb(xnfhxn)a qpb(xnaxn+1)a (qpb(xnfl » errl)

2
+ (qpb(xnaxn))] <O0. ( )

By (QPby),
P (n15Xn1) + (@Po (s Xn) < 5qPp (en—15%0) +qpp (5, K1)l (3)

By (3) and (F;) we obtain,
Flgpy(Xn, Xn11), qPb(Xn—1,%n),

apy(Xn—1,%n), qPb (X, X1 1), $GPb(Xn—1,Xn) + SGPp(Xn, Xp11)] <O.
By (F,), there exist & € [0, 1) such that
qpp(Xn, Xn1) < hgpp(xn—1,X,) which implies
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1256 P. Gautam, S. Verma

qpy(Xn, Xnt1) < hgpp(Xu—1,%,) < ... <H'gpp(x0,x1).
Letnme N,m>n

apy (Xns Xm) < 5GPy (Xn, Xns1) + 57qPp (Xng1, Xnr2) + -+ + " gpp (X1, Xm)
S [Sh” + s2hn+1 L+ Sminilhmil]qpb()q),xl)
<YE nl s'higpy(xo,x1)
S Zz:n lhlqpb(-x07xl)
qpp(Xn, xXm) — 0 as n,m — 0. 4)
This implies {x,} is a right Cauchy sequence. [J
Similarly, by (2)
F[qpb(Txm Txy— )7 qpb(xm Xn—1 )7 qpb(Txn—l y Xn—1 )7 qpb(Txnvxn)a (qpb(Txm Xn l)
+qps (xna Txp—y ))] <0

Flqpy(Xns1,%n), qPb(Xn; Xn—1), qPb (Xn, Xn—1), qPb(Xnt1, Xn), (GP6 (Xns1,%0-1) 5)
+ qpp(xa, x,))] <0.

By (QPbs),

qpb(xlﬁ-laxn—l) + (qpb(xn;xn) § S[qpb(xn-H 7xn) + qPb (xnaxn—l )] (6)

By (6) and (F;) we obtain,

Flapy(Xnt1,%n), aPo(Xn, Xn-1), @P6(Xn, Xn—1), @Pb (Xns1, %), $(qPb (Xn 1, Xn) +
qpp(Xn, Xp-1))] <O0.

By (F,), there exist & € [0,1) such that
apy(Xn+15 %) < hqpp(Xn, Xn—1) < ... <H'qpp(x1, X0).
Letn,m e N,m<n

aps (X, Xm) < 5qpp(Xn, Xu—1) + 52qPp (X1, %0—2) + .. 4+ " gpp(Xs 15 Xm)
<[sh" '+ 2R 4 ST M gy (0, X))
o
< >, s'happ(x1,x0)
S sz Slhlqph (xl ,X())
qpp (X, Xm) — 0 as n,m — oo.

(7)
This implies {x,} is a left Cauchy sequence. Since (X,gpp) is complete, {x,}
converges to some point z € X with gp,(z,z) = 0.

Therefore, gp,(z,z) = lim gpp(x,,2) = lim  gpp(x,, Xm)-
n—oo n,m— 00

By (4) and (7) we get,

apy(2,2) = lim gpy(x,,2) = Tim qpy(x, xn) = 0

lim gpy,(xp11,2) = lim gpy(xs,2) =0

n—oQ n—oo

lim gp,(Tx,,z) = lim gpy(Tx,—1,2) = 0.

n—oo n—oo

Using the sequential continuity, x, — z in (X, gp;).

lim gpy (41, T2) = lim gpy(Tx,, T2) = lim gpy(Tz, Tz).

n— n— n—
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On the other side, lim gpy(x,,2z) = 0 = gpy(z, 2).
By Lemma 4,

1 .
$aPp(2,T2) < lim gpy(xar1, T2) < sqps(z, T2)

1
B apy(z, Tz) < qpp(Tz, Tz) < sqpy(z, Tz).

Forx=y=z,
Flaps(Tz, Tz), qpi (2, 2), qps (2, T2), qps (2, T2), (qps (2, Tz) + (qps(z, T2))] <0
Flgpy(Tz,Tz),0,qps(z, Tz), qps(z, Tz), (qps(z, T2) + (gps(z, T2))] < 0.
By (8),
Flgpy(Tz, Tz), 0, qps(z, T2), qps (2, Tz), 25(qps (T2, Tz)] < 0.
Since F satisfies gp,(Tz, Tz) < Bapy(z, Tz) < Bsqpy(Tz,T2) ¥ B € [0,4)
which holds unless gpy,(Tz, Tz) = 0, we deduce that gp,(z, 7z) = 0.
Therefore, Tz = z. Hence z is a fixed point of T.
Suppose there exists another fixed point 7' # z of T such that gp,(7,7') = 0.
By (1) we obtain,
Flapy(Tz,T2'), qpy(z,2'), api (2, Tz), qpu (2, T2), qpu (2, T2') + qpi (2, T2)] <O,
Flapy(z,2),qp0(2,2), apb(2,2), qpe (2, 2), apo(2,2') + qpu (2, 2)] <0,
Flgpy(z,7),qps(2,7),0,0,qps(2,2) + qpi(Z, 2)] 0.
Since F satisfies property (F3), so it is a contradiction. Hence z = 7.

Example 5 Let X = [0, 1]. Define gpy, : X x X — X as gpy(x,y) = (x — y)* + x with
s = 2. Also if we have F' € F such that

F(ti,ty,13,14,15) = 1) — (13 + 14) — fts,

where o € [0,1), f € [0,1).

Consider a self map T : X — X such that 7x = x for all x € X, where T is
sequentially continuous on (X, gpp).

Let {x,} be a sequence in X such that x, — x in (X,¢gpy) as n — oo and T is
continuous on (X, ll) which implies |Tx, —Tx| -0 as n— oco. Then
nlirglc qpp(Txy, Tx) — qpp(Tx, Tx)

Flapy(Tx, Ty), qps(x,y), qps(x, Tx), qpp (v, Ty), (qps(x, Ty) + (qps(y, Tx))]
= qpp(Tx, Ty) — a(qpp(x, Tx) + (qps(y, Ty)) — Blaps(x, Ty) + qps (v, Tx))]
= qpi(x,y) — algps(x,x) + (qps(y,¥)) — Blaps(x,y) + (gpp(y,x))
==y +x—alr+y) - B(x—y)’ +x+ (—x)°+).

For o =3, f =41, it can be observed that

(k=) +x—alx+y) = B((x—y)’ +x+ (y—x)*+y) <0.

Then the conditions of Theorem 1 are satisfied and 0 is the unique fixed point of
T as shown in Fig. 1.
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Fig. 1 Zero is the fixed point of
T

Let us define Modified Implicit Relation here.

Definition 6 Let Fy be the family of lower semi continuous functions F : R> — R"
such that

(F1) : F is non-increasing in variable #; and f¢s.

(Fy) : For all u,v>0, s> 1, there exist & € [0,1) such that F(*,v,v,u,s(u+
v)) <0 implies u < hv.

(F3) : F(1,1,0,0,1) >0V ¢r>0.

Theorem 2 Let (X, gpy) be a complete quasi-partial b-metric space and T : X — X
be a continuous function for all x € X. Assume there exists F € Fg such that

Flapy(Tx, Ty), app(x,y), apy (x, Tx), qps (v, Ty), (qps (x, Ty) + (gps (v, Tx))] < 0.
Then z is a unique fixed point of T with qpy(z,z) = 0.

Proof Following the proof of Theorem 1, the sequence {x,} is Cauchy and
converges to some z € X in (X, gp,). We shall show that z = Tz. Taking x = x,, and
y =z in (D),

Flapy(Txu, Tz), qpy (%, 2), qpy (%n, Tn), qps (2, T2), (qps (xn; T2) + (qps
(z, Tx,))] <0

Flapy(xu+1,T2), qpp(Xn, 2), aPb (Xn, Xn+1), ap (2, T2), (qpp (X, T2)+
(qpb (2, Xn41))] <O

sap(2,T2) < lim qpy (T2, Tz) < sqpy (2, T2).

Letting n — oo,

Fl5apy(z,T2),0,0, gpy (2, Tz), sqpy (2, Tz) +0)] <0. By (Fa), it follows that
qpp(z, Tz) <0, which implies that z = Tz. O

Corollary 1 Ler (X, gpp) be a complete quasi-partial b-metric space and T : X — X
be a mapping such that

apy(Tx, Ty) <k max {qpy(x,y), qps(x, Tx), qps(y, Ty), qps((x, Ty) + qps (v, Tx)) },
where k € [0, zls) Then there exists z € X such that 7 is a unique fixed point of T. i.e.,

z = Tz with qpy(z,z) = 0.
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Fixed point via implicit contraction... 1259

Proof 1t is sufficient to take F as given in Example 3, i.e., F(t,...,t5) = k max
{t,.. .15}, where k € [0,5). O

Corollary 2 Let (X, gpp) be a complete quasi-partial b-metric space and T : X — X
be a mapping such that

app(Tx, Ty) < arqpy(x,y) + axqps(x, Tx) + asqpi(y, Ty) + as(gps((x, Ty) + qps(y, Tx)),

forall x,y € X, there exists 7 € X such that 7 is a unique fixed point of T. i.e., 7 = Tz
with qpy(z,z) = 0.

Proof 1t is sufficient to take F as given in Example 4, i.e.,
F(ll, . f5) =1 —aith, —arty — azty — ayts, where a; >0,i =1,2,3,4.
O<ay+ay+az+2sas<1,0<a; +as<1.
Let us define partial order in modified implied relation. [

Definition 7 Consider Fy, be the family of lower semi-continuous function F R> —
R such that

F)) :Fis non-increasing in variable #; and ts with respect to <.

F) :Forallu>=0,v>=0,s>1,thereexisth € [0,1] s.t. F[ %, v,v,s(u+v)] <0
implies u = hv.

F3) :F(t,1,0,0,1) =0V r>0.

Example 6 Let < be a partial order with respect to quasi—partial b—metric space
space (X, qpy) and F:R — R T (where F € Fp) as
F(t, ty,13,14,15) = t; — aity — ax(13 + t3) — asts.

o a5+ 2axs+2azs* <1,
o a +a<l,

F1) :Fis non-increasing in variable 7, and #s.
F>) :Forallu>0,v =0,

F(% y Vi Vs Uy S(u + V)) j O, then we have,

ajtax+ass
u = atatas)
1-ay—azs)

s

Thus by assumption a;s + 2a,s + 2a3s> <1, (F,) is satisfied.

F3) :Since a; +az<1, F(£,1,0,0,t) =t(1 —ax +a3) > 0 for all > 0.
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1260 P. Gautam, S. Verma

5 Application

In this paper, we have discussed metric fixed point theory in quasi-partial b-metric
space to obtain solution of non-linear integral equation defined as

x(1) = /K(t,s,x(s)) ds 9)
0

where t € M = [c,d] and K : M x M x R — R is a continuous function. Let X =
C(M, R) with the usual supremum norm i.e., ||x||,, = maxey |x(1)].
We define quasi-partial b-metric space gp, : X X X — R as

[lx — ¥l + [Ix]| forall x,y € X with x #y

apy(x,y) = { 0 (10)

otherwise
with s = 2.
Theorem 3 Suppose the following conditions are satisfied:

(1)  Assume that there exist a function P : [0,M] x [0, M] — [0, 400) with P(t,
)€ L' norm for t € [0, M],

0<K(t,s,y(s)) — K(1,5,x(s)) < P(t,5)(y(s) — x(s))
Also,
|K(2,5,x(s))| < P(t,s)|x(s)| for all x,y € X.

t
(ii)  There exist xy € X such that xo(t) < [K(t,s,x0(s)) ds for all t € [0,M].
0

(iil)  SupemP(t,s) =h< % then the integral Eq. (9) has a unique solution.

Proof Consider the mapping 7 : X — X defined by
t
Tx(t) = /K(t, s,x(s)) ds ¥x € X.
0
Now, we shall show that T has a unique fixed point.

t

ITx(1) < / K (1, 5,x(s) ds| < / P(t, )\x(s)ds = hl|x]|.
0

0

and
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Fixed point via implicit contraction... 1261

t

|Tx(r) = Ty(1)] < [IK(t,s,x(s)) — K(t,5,y(s))|ds

0
< JP(15)(s) = y(o)lds =
0
= hllx = yll-
Thus, ||Tx||, <A||x||o and ||Tx — Ty|| < h|lx — ||
Hence,
apy(Tx, Ty) < h qpy(x,y) (12)

is satisfied for all x,y € X with x # y which implies Tx # Ty. For Tx = Ty, Eq. (11)
is trivial. Therefore by Corollary 2, if F(t;,t,13,t4,15) = 1] — a1ty — apt3 — asty —
asts with a; =a, = a3 =a4 =0 then T has a fixed point. i.e., Eq. (12) has a
solution.

Let us consider the space X = C([0, 1], (R)) by the quasi-partial b-metric space
gpy : X x X — R defined as

e+ e, if x
9Py (x,¥) = { ||0 || otherwiszé ’

For each x,y € X. Note that (X, gp;) is a complete quasi-partial b-metric space.
From Eq. (11), we have

t

|Tx(t) — Ty(z)| < /p(t, 5)|(x(s) — y(s)| ds

< /p(t, 5)[e") 4+ &) ds
0
= hlle + €l

For all 7 € [0,1] and x,y € C([0, 1], R) with x # y, we deduce

aqpy(Tx, Ty) < hgpy(x,y) (13)

For Tx = Ty, Eq. (13) is trivial. Therefore by corollary 2, if F(t1,t,,13,11,15) =
t —ait, — ax(t3 + t4) — asts with a; = a; = a3 = 0, then Eq. (13) has a solution.
O
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6 Conclusion

In recent decades, one of the significant research work is restudying the differential
and integral equations in the context of metric spaces. In the present study, the
authors have investigated an implicit contraction mapping to obtain fixed point on
quasi-partial b-metric space and have solved a non-linear differential equation by
adopting the approach of fixed point theory. Determining the solution of more
generalized integral equations will be an interesting work for future studies.
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