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Abstract

The main target of this article is to present several unitarily invariant norm
inequalities which are refinements of arithmetic-geometric mean, Heinz and Cau-
chy-Schwartz inequalities by convexity of some special functions.
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1 Introduction

In this sequel, we use the standard notation M,,, M;" and M for the algebra of all
n X n complex matrices, the cone of positive (or positive semidefinite) matrix and
that of strictly positive matrices in M,,, respectively. Matrices and their inequalities
have attracted researchers working in functional analysis. These inequalities have
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been studied in different approaches among which unitarily invariant norms
inequalities are most popular. Recall that a unitarily invariant norm is a norm || - ||
defined on M, satisfying the property |UAV|| = ||A|| for all A € M,, and unitaries
U,V € M,. The absolute value of a matrix A = (a;;) is defined by |A| = (A*A)'/2.
The motivation behind this work starts with some crucial inequalities which will be
presented as follows.

The classical arithmetic-geometric mean inequality [1] states that for A, B € M,"
and X e M,

1
JASXB| < 3 lAX + XB|. (1)

Heinz inequality [1] is a refinement of inequality (1) which states that

A'XB'-t + Al-IXB! AX + XB
> I<1=——1 2)

hold for A,B e M, X € M, and 0<¢<1.
A general form of Cauchy-Schwartz inequality [2] states that for A,B € M|, X €
M, and r > 0,

lA2xB|| < |

Lo phirn2 r r
IfAzxB2[" ||~ < [[[AX"|[[[[XB]"]]. 3)

We remark that the above inequalities have been studied deeply in the literature. We
refer the reader to [3—5] as samples of recent work treating such inequalities and
their variants.

Motivated by Bhatia and Bourin [2, 6], here we define two functions f and 4 for a
given unitarily invariant norm || - ||,

A'XB'"' + A'IXB'
. ||

where A, B € M| and X € M,,. The above functions f and 4 are convex on [0,1] and
attain their minimum at t = % In this article, we utilize convexity of these functions
to obtain refinements of arithmetic-geometric mean, Heinz and Cauchy-Schwartz
inequalities. The following convex function inequalities are also essential to our
results.

Hermite-Hadaward inequality [7] states that for every real-valued convex
function g on the interval [a, b], we have

((0) < [ s 0

f(6) = |AXB""||A™'XB|| and (1) = ||

Y

In 2010, EL Farissi [8] refined Hermite-Hadaward inequality as follows

o(“30) <ins s [ earsion < 4050
for all 1 € [0, 1], where

b—a
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1(2) = Ag (Li_))ﬂ +(1- i)g<(1 i )“)b; U- Ma)

and
1, . )
L(2) = E(g(ﬂb + (1 = A)a) + Ag(a) + (1 — A)g(b)).
A few years later, Abbas and Mourad [9] got that

o(“40) <5 [ stars - [en - vt + 26 (50 + o 1)

2 “b—a
g(a) +g(0)
-

<

The following lemma combining Farissi and Abbas’ results will be essential for our
main results. The main results in this paper, Theorems 1, 2 and 3, are obtained by
applying some refinements of Hermite-Hadaward inequalities on the convex func-
tions f and / using the same method from Kittaneh [10].

Lemma 1 Let g be a real-valued convex function which is convex on the interval
[a,b]. Then for any positive integer n, we have

L e A G G

< % {(2;1 ~ 1)g(a) +2g(“;b> +(n— l)g(b)}
<8 a) +g(b)

Recently, Chen, Chen and Gao [11] obtained the following refinements of
Hermite-Hadaward inequality.

Lemma 2 Let m,n:[a,b] — [0,+00) be convex functions and meet
[m(a) — m(D)] - [n(a) — n(b)] <0. Then for all i € [0, 1], we have

b
b 1 a/a m(t)n(t)dt <L'(%) < %M(a, b) + éN(“’ b)
and
a a b
2m< —;b)n( ;‘b> _ éM(a,b) - %N(a,b) <l(7)< 5 1 a/ m(t)n(t)dt
where
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M(a,b) =m(a)n(a) +m(b)n(b),N(a,b) = m(a)n(b) + m(b)n(a),

L'(%) :i (a)n(a) + l%im(b)n(b) +§m(/lb+(1 — Nan(ib + (1 — A)a)
% m(2b + (1 — 2)a)in(a) + (1 — A)n(b)]
% n(b + (1 = 2)a)in(b) + (1 — Ln(a)]
and
1) = 2Am((z - ;L)za + Ab)n((z - A)Za + Ab) RE 3;{ 3;?M(a7 b)
_2—3/16+3/12N(ajb)+2(1_;L)m((l—A)a;—(l-ﬁ-i)b)n((l—i)a;—(l—o—/{)b).

The organization of this article will be as follows. In the following, we mainly
present some unitarily invariant norm inequalities for matrix means which are
refinements of arithmetic-geometric mean, Heinz and Cauchy-Schwartz inequalities
utilizing Lemmas 1 and 2.

2 Unitarily invariant norm inequalities

Now we are in a position to begin our main results.

Applying Lemma 1 to the convex function A(f) on the interval [u, | — p] when
0< u<% and on the interval [1 — u, ] when % <p <1, we obtain the following
refinement of arithmetic-geometric mean and Heinz inequalities.

Theorem 1 IfA,B € M:, X € M,, and 0 < u <1, then for unitarily invariant norm

|| : ||’

+(2n-2)u 14+(2n-2)u 14+(2n-2)u 14+(2n-2)p
1 A 37— XB! 2n Al 2w XB
I < | : §

o A’XB' '+ A"'XB' , 1
2dr =

1 APXBIH + Al-RXBH
<[@n—nn - n%wmﬂﬁﬁ]
n 2
< ”A”XBI*" + AHXB! 2
- 2

hold for any positive integer n.

Proof Assume that A,B € M, X € M, and 0<pu< %, then it follows by Lemma 1
that
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h(”+;_ﬂ>§%h(l —u+2(jn—1)u> N (1_%)h((n+1)(1 —;n)+(n—1)u)

<oty o (i)

which is equivalent to

h(%) S%hl(l _M:z(jn_ 1)u> n 1(1 _%>h<(n+l)(l —2#”)+(n_ 1)u>
< 1_2HA h(t)dt <,u 7é§>

< 4i [(2}1 — () + Zh(%) +(2n— (1 - u)}

n
< hw) +h(1 — )
< 5 :
Hence,
1+(2n—2)u 1+(2n—2)u 1+(2n-2)u 1+(2n—2)u
HA%XB%H2<1HA w XB! n }—|-A1 7w XB ||2
<- 5
1 o AXB'' 4+ AIXB 1
< — dt _
<5/ : o (n23)
1 AMXB'"H 4 AZHXBF 110
< o - A g

- HAﬂXBH‘ + Al7HXBH P2
i 2 .

On the other hand, if % <pu <1, then it follows by symmetry (i.e., by applying the
above inequality (4) to 1 — u) that
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14(2n-2)u 14+(2n-2)u 1+(2n-2)u 14(2n-2)u
 XB!mT Al XB &
A < - ) 5 il P
2
1 moAIXBITT 4 AIXBY 1
< dt _
_2:“_1/lu| 3 [ <#7é2> (5)
1 AMXBI=H 4+ Al-HXBH Ly
<—12n-1 A2XB?
< 5 | @0 =11 : P+ At
< HA”XBH‘ + A'"IXB! 2

- 2
We complete the proof of Theorem 1 by combining the inequalities (4) and (5).

Following the same logic of Theorem 1 and applying Lemma 1 to the function
f(r) on the interval [, 1 — ] when 0 < <4 and on the interval [1 — y, ] when
% <n <1, we have the following refinement of Cauchy-Schwartz inequality.

Theorem 2 IfA,B € M:[, X € M, and 0 < u <1, then for unitarily invariant norm

|| : ||’

+(2n-2)u

1
JAXBH|? < —[|A™ 5 XB!
n

1+(2n 14+(2n-2)u 1+(2n-2)p

2u 1
AT XB |

1 I-u 1
< ol [ I (#%—)
=2/, 2

1
< 5| @n = DIAUXB |4 XB" | + [[AXBH |
n
<||AXBH||[|AaT XxB"|
hold for any positive integer n.

Proof Assume that A,B € Mj[ , XeM,and 0 < u< %, then it follows by Lemma 1
that

f(/H-;—,u)S%f(l—u—i—z(jn—l)u)+ (“%)f((nﬂ)(l_;,zﬂn_l)ﬂ)

[ 1
Slfzu . f()dr (u#—)

%{(2;1—1 +2f(“+1_) 2n—1)f(1—u)}

n

()+f(1*)
2 y

which is equivalent to
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f@ B %f<1 —;H—z(jn— 1)u) . <1 _%)f((wr (1 —2,;)+(n— 1)u>
L ar (wé)

T 1-2u),
1 1
< |@n— 1w + 27 (3) + 2n— 171 - )
F) +f(1 —p)
- 2
Hence,
HA%XB%||2§ l”AH(zzn;z)uXBl 1+(2;:2);¢||HA1 H<22”[2MXBH(ZZI:2)“H
n
< T amasa () (6)
1-2u/, 2

1 | 1

< o [(2n = 1)arxB! | - rxE) + aixs?]
n

< lAnxB! At x|

On the other hand, if % <p<1, then it follows by symmetry (i.e., by applying the
above inequality (6) to 1 — u) that

(2n-2)u 14+(2n-2)p 14+(2n-2)u 14+(2n-2)u

1
JASXB|? < — A" 5 XB 3| JA 5 XB |
n

1 H 1
< A'XB'||||A'XB" || dt =
< s BB (5 ™)
1
< 5|20 = DIAPXB! | A XBY| + ||AtXB! |
n

< [|A"XB" ||| XB"|.
We complete the proof of Theorem 2 by combining the inequalities (6) and (7). U]
Next, for every positive real number r, we consider the function
¢(1) = [llA'XB'['|| - [l]A""XB" "
which is convex on [0,1] and attains its minimum at t = % obtained by Hiai and Zhan
[12].
Applying Lemma 1 to the function ¢(7) on the interval [u, 1 — ] when 0 < <1

and on the interval [1 — p, 4] when J <u <1, then we have the following refinement
of general Cauchy-Schwartz inequality.
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Theorem 3 IfA,B € M, X € M, and 0 < u< 1, then for unitarily invariant norm

-1,
2u 2)#

llaxBe|"|* < = |||A SR xp

1402,

17t e

1 /1# 1
< — A'XB'"'"|| - |||A'"'XB'|"||dt (mé—)
Tl [, IAXB AT XE 5

1
< 5[ @n = DIIAXB' | - []AXBH || + ASXBH ||
n
< [JA"XB' | - [[[aXBY |
hold for any positive integer n.

Proof Assume that A, B € M;r , XeM,and 0 < u< %, then it follows by Lemma 1
that

¢<ﬂ+;fu)§%¢(lfu+2(§n71),u)+ (1_%)¢((n+1)(1 fzun)+(nf1)u)

1 o 1
§1—2u/ﬂ $(1)di (u#i)

1= 100 + 2055 4 o= 1001 - ]

d(p) +p(1 — )
2 9

IN

which is equivalent to
A<t (et
<ioa) o (n#3)

< 3| 1= 10t +206) + @0 - 191 - )

¢(p) + ¢(1 — p)
I

Hence,
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1 L 2 _
[JAzXB[" " < ~ ||| S A

1 1= 1
< A'XB'™'|"|| - |||A'XB|"||dt -
<itmf st (r3) o ®

1 |
< 5 [(2n— D)llARXBY | AT+ (A
< JA*XB' - A" .

On the other hand, if % <p<1, then it follows by symmetry (i.e., by applying the
above inequality (8) to 1 — u) that

+<2 2,

a1 ;e

[|AXBE|'||> < ~ |||A “XB'~

1
<
S o=

a r — r 1
[ s et (e2g) o

1 r — r 1 Lir
< o[ @n = DIAPXB Y - A KB + [lAXBH
< [[[A"XB'H| - [lAT B
We complete the proof of Theorem 3 by combining the inequalities (8) and (9). U

In view of the fact that the functions f{¢) and h(f) are symmetric, we have

() =f (1= )] - [A(p) = A(1 = )]
= [[|A"XB""|[[|A""XB"|| — A" XB"[[[|A"XB'"]|-

=0.
We can have the following result by applying Lemma 2 to function

AMXB'=H 4 A'-HXBH E

f(2) - h(t) = ||A'XB™"[[|A™"XB'||| :

Corollary 1 For 0<u<1 and all / € [0, 1], we have
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AMXB'"F + ATTHXBY
iyvpi4 - - 2
2ljaxxB||" — [la"xB" " |AT XB | I

2
<I'(2)

1 I-p B B A'XB'"' + A'-'XB! 1
< 75 / |AXB' |4 xB'| |d (w—)
| - :u| I

2 2
<L'(2)

A'XB'"1 4+ ATHXBY
< AKX x| - §

)

where

R _ o AVEXBE 4 ARXBYR
/() =3 lla""xB||[|A"XB" | > |
+ g HA/l-&-y—Z/l,uXBl—(/l+y—2/1p) || HAl—(2+y—2/1;1)XB/1+,u—2/1uH.

‘A/"Hr,u*Z/lﬂXBlf(/lJrufblu) +A17<;“+“72;"“)XB)'+”72)'” ”2
2
A ; ; )
+ 8 ‘|A/~+#*2/~,UXBl7(/~+#*2/~#) ” ||A17(2+,L172/1;L)XB/1+,L¢72MH .

AMXB'H 4 AVHXBE
AT
y) A/Hr;th/l,uXBlf(/lJrufZ/lu) +Al7(2+u72).u)XB).+u72).u 5
"% 2 I
Al"EXBt 4 AFXB'H
2

2
[
and

J2u=20p | 220
7 XB Z

I(7) =224

JA2u=20p J42u—20p
AT T XB"T

J2u—2ip J2u=20u
T XB™ 2

|4’
A 1 /1+2,L272/‘.;,XB/2+2,L272;#
2
5 ||
_ _ AMXB'"1 4+ ATIXBE
= lanxB [l AT xB 7 I
||A1 H];M(XB

1 A+ 12—2/’.u I+1-2)p

XB—2 ||2

PEE P I R Ea
)

+2(1-2)|A"7 XB

A/’.+l—2/‘.;4 1 A+1-2Apn
2

JH1=2ip
)

= XB +A

2

Here we remark that |f(u) —f(1—u)|-|p(n) — ¢(1 — )| =0 and [h(n) —

h(1 = )| - |¢p(n) — (1 — )] = 0 for 0 < u< 1. Hence, results similar to Corollary
1 can be obtained by using f - ¢ and & - ¢.
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