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Abstract
The present paper squarely aims to analyze the squeezing velocity of a hydrody-

namic lubrication used for symmetric roller bearings. Hydrodynamic compressible

fluid film lubrication of cylindrical rollers is here considered under the influence of

non Newtonian power law lubricants with squeezing velocity and cavitations. The

changes that show up in lubrication consistency due to pressure, density and tem-

perature are shown via ures and tables. Further, pressure, density, temperature, load,

traction and coefficient of traction for various consistency index n and normal

speeds are calculated and compared with the previous results. Those results are

united with the previous findings.
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List of symbols
a Pressure coefficient

b Temperature coefficient

h Film thickness

h0 Minimum film thickness

m Lubricant consistency

m0 Consistency at ambient pressure and temperature

p Hydrodynamic pressure
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q Squeezing parameter

R Radius of cylinder

T Lubricant temperature

T0 Ambient temperature

TFh Traction force

u Velocity of the lubricant in x-direction

U Velocity of the lubricant at y ¼ h=2
v Velocity of the lubricant in y-direction

V Normal velocity (V/2) of either cylinder

x1 Point of maximum pressure

x2 Cavitation point

1 Introduction

Nature teaches human many valid techniques at free of cost, and lubrication is one

of such techniques. For example, saliva plays the role of a lubricant when it comes

to eschewing the given solid food. Today, the industries do function in automatic

mode because at instances, the industries have to work all the twenty four hours

without a break. The application of lubricant for smooth running of machine was

successful with some lacunae like acid etching, formation of debris in lubricant.

And with bearing defects like surface roughness, waviness, race misalignment,

formation of micro pits, etc were reported [1].

The earlier Reynolds equation for the study of incompressible and isoviscous

fluid gave fruitful results only in case of low pressure, and altogether ignored the

density and viscosity variation. In order to manage the load system, different

lubricants were utilized. Newtonian lubricant is the well known simple lubricant

used to attend the shear stress and shear strain rate. However, the Newtonian

lubricant is not successful for the calculation of traction force. Non-Newtonian

lubricant is nothing but inclusion of concentration to the base oil. The Power law

fluid model is one among them, and is highly successful in the study of squeeze

films, externally pressurized bearings, conical and roller bearings including

Newtonian as well.

Floberg and Jakobsson [2] gave forth an able mass conserving algorithm to

examine the lubricant film with cavitations. The algorithm exploits ad-hoc equations

to detect the cavitations boundaries. Further, it assigns fixed pressure value to

passive area and thereby makes Reynolds equation a successful one. Elrod and

Adams [3] pioneered the development of such cavitations algorithm. Here, detection

of cavitations boundary does not arise due to the use of simple equation. To the

passive region they launched a switch function g(p), where g(p) stands one when

pressure is more than the cavity pressure, and zero otherwise. Likewise, the

Poiseuille term of Reynolds equation could be unnaturally brought down in the

domain of cavitation. Here, EHL and dynamic transient behavior respond to well

with outputs in the study of lubrication problems [4].

In order to establish the active and cavitated film domain, previously

complementary concept was used. Cavitation related problems were extensively
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used by many authors, like Lewy and Stampacchia [5], Rohde and McAllister [6],

Cimatti [7]. Strozzi [8] proposed a piquant model of decoding the resumptions

pertaining to cavitation. Then Kostreva [9], Oh [10] and Oh and Goenka [11] widely

used the issue of cavitation for hydrodynamic and EHL. They found a solution to

active and cavitated film regions adopting complementarity but not for conservation

of mass. This exception arises because Reynolds equations are worked out for

assuming a constant lubricant density. Even this presumption is permissible in

active region but in the passive regions the density definitely changes in space and

time. Giacopini et al. [12] demonstrated how the adoption of constant fluid density

may lead to false serving of film reformation.

Further, different level of study of EHL has contributed to the augment of

longevity of the contraption. So far only a little contribution is disclosed in the field

of lubricating performance of finite line contact which provided unsteady

conditions. Kushwaha and Rahnejat [13] explained the character of finite line

EHL of rolling contacts under transient conditions. Here, the load is allowed to vary

from time to time. The variation is performed by the transient load at the

background of lubrication. The lubricant fluid present at the place of contact affects

both the pressure and the film thickness there. Along with finite line contacts subject

to transient load conditions they also clarified film thickness and pressure variations

in the lubricated system [14]. This system further motivates us to study of the

lubricated finite line contacts.

In continuation to the above discussion, this paper includes the analysis of

changes in hydrodynamic pressure and temperature of non Newtonian power law

lubricants beneath the rigid symmetrical cylindrical rollers with cavitations and

normal squeezing motions. The consistency equation for compressible fluids is

considered to be functions of the one dimensional pressure and temperature under

isothermal boundaries. The normal load carrying capacity and the traction force are

calculated for the various values of the consistency index and normal squeezing

parameter (Fig. 1).

2 Mathematical analysis

Considering the basic fluid flow momentum [15] and continuity equations [16] of

symmetric cylinders for compressible power law fluid may be written as:

dp

dx
¼ os

oy
ð1Þ

o q uð Þ
ox

þ o q vð Þ
oy

¼ 0 ð2Þ

The Heat Energy equation considered to be [17]
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q cp u
dT

dx
¼ s

o u

o y
þ e T u

dp

dx
ð3Þ

Here cp is the specific heat of the lubricant at constant pressure and the density qis
calculated by [18].

q ¼ 1þ 0:6� 10 �9p

1þ 1:7� 10�9 p

The shear stress and the strain rate relation for non-Newtonian power law fluids is:

s ¼ m
ou

oy

�
�
�
�

�
�
�
�

n�1
ou

oy
ð4Þ

The consistency m is assumed to vary as follow as

Fig. 1 Lubrication of symmetric cylindrical rollers
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m ¼ m 0 e a p þ T0 = Tð Þ ð5Þ

where p and T are hydrodynamics pressure and temperature respectively. Consid-

ering the boundary conditions for the given system as:

ou

oy
¼ 0 at y ¼ 0; u ¼ Uat y ¼ h

2
; T ¼ T01 at x ¼ �1; ð6Þ

Integrating Eq. (1) with respect to ‘y’ with the above boundary conditions gives

u1 ¼ U þ 1

m

dp1
dx

� �� �1
n n

nþ 1
y
nþ1
n � h

2

� �nþ1
n

 !" #

;�1\x� � x1 ð7Þ

Similarly, for the region �x1 � x � x2, one can have

u2 ¼ U � 1

m
� dp2

dx

� �� �1
n n

nþ 1
y
nþ1
n � h

2

� �nþ1
n

 !" #

: �x1 � x� x2 ð8Þ

Integration of the continuity Eq. (2) with the boundary conditions together with the

specified conditions: vh=2 ¼ U
2
dh
dx þ V

2
and v0 ¼ 0, gives

o

ox
q
Z h=2

0

u dy ¼ � qV
2

ð9Þ

Further integration of the above equation with the associated conditions:
dp1
dx ¼ 0 at x ¼ �x1 and h ¼ h1 , one can get

dp1
dx

¼ m
2nþ 1

n

� �n
2

h

� �2nþ1 r1
q
þ Uh

2

� �n

;�1\ x � � x1 ð10Þ

Similarly for the other region

dp2
dx

¼ �m
2nþ 1

n

� �n
2

h

� �2nþ1

� r2
q
þ Uh

2

� �� �n

;�x1 � x � x2 ð11Þ

Making the above equations dimensionless, these Eqs. (10) and (11) are reduced to

dp1
dx

¼ m f
n

h
2nþ1 ;�1\ x � � x1 ð12Þ

d r1
d x

¼ q 1 q;�1\ x � � x1 ð13Þ

dp2
dx

¼ � m gn

h
2nþ1 ;�x1 � x � x2 ð14Þ
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d r2
d x

¼ q2 q;�x1 � x � x2 ð15Þ

Where

f ¼ r 1=qð Þ þ h=2
� �

; g ¼ � r 2=qð Þ þ h=2
� �	 


; q ¼ 1þ 0:6� 10�9 p

1þ 1:7� 10�9 p
;

h ¼ h

h0
; p ¼ ap; E ¼ epþ T0=Tð Þ; cn ¼

4ð2nþ 1Þ
n

� �n ffiffiffiffiffiffi

2R

h0

r

U

h0

� �n

; T ¼ bT ;

r ¼ r

q0 U h0
; q ¼ V

2U

ffiffiffiffiffiffi

2R

h0

r

; c ¼ b
q0Cpa

; e ¼ e =b ;

Making the above equation dimensionless, it reduces to

dT1
dx

¼ m f
n
c

q h
2nþ1 eT1 �

qh
2r1

� 1

� �

;�1\ x � � x1 ð16Þ

dT2
dx

¼ � m gn c

q h
2nþ1 eT2 �

qh
2r2

� 1

� �

;�x1 � x � x2 ð17Þ

Making the above Eqs. (7) and (8) dimensionless, they reduce to

u1 ¼ 1þ 2
1
n

4 2nþ 1ð Þ
nþ 1

� �
f

h
2nþ1
n

y
nþ1
n � h

2

� �
nþ1
n

2

4

3

5;

�1\ x � � x1

ð18Þ

u2 ¼ 1� 2
1
n

4 2nþ 1ð Þ
nþ 1

� �
g

h
2nþ1
n

y
nþ1
n � h

2

� �
nþ1
n

2

4

3

5;

� x1 � x � x2

ð19Þ

The normal load is given [19] as

wy ¼
Z x2

�1
p dx ð20Þ

The dimensionless load wy ¼ Waffiffiffiffiffiffiffi
2Rh0

p is calculated as

wy ¼
Z x2

�1
x
dp

dx
dx ð21Þ

The tangential load is given [20] as
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wx ¼ �2

Z h 2

h 1

p dh ¼ �2 h0

Z x 2

�1
x2

dp

dx
dx ð22Þ

The dimensionless load wx ¼ Wxa
2h0

comes out to be

wx ¼
Z x2

�1
x 2 dp

dx
dx: ð23Þ

The load W is calculated by

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w 2
x þ w 2

y

q

ð24Þ

the surface traction force TF , obtained from the integration of shear stress s over the
entire length, may be written as [20]

TFh ¼
Z x2

�1

h

2

dp

dx

� �� �

dx ð25Þ

Then, the dimensionless traction may be written as

TFh ¼
Z x2

�1
h

dp

dx

� �

dx ; ð26Þ

Finally, one can get the consistency expression in the form

m ¼ m0 E: ð27Þ

3 Results and discussion

Two heavily loaded infinite rigid symmetric roller bearings are employed for the

discussion. They are lubricated with non- Newtonian power law compressible fluid.

In this setup the thermal effect of the fluid is beneath the rolling and normal

motions. It is presumed that the lubricant pressure is a constant across the film

thickness. At the same time, the consistency is licensed to differ exponentially with

pressure and film temperature. The reshaped Reynolds and energy equations are

derived and solved concurrently yielding pressure and temperature. The following

values are used to the numerical calculations:

�0:09\ q \0:09; 0:4� n � 1:15; T0 ¼ 3; e ¼ 0:5; h0 ¼ 4�10�6 m;

a ¼ 0:6 �10�9 pa�1 m2; c ¼ 5; U ¼ 4 m s�1 and R ¼ 0:03m.

This paper investigates to show the variation of consistency in a steady state

thermal lubrication. The dimensionless velocity u pressure p, temperature T are

calculated as functions of the non Newtonian power law flow behavior index n and

squeezing parameter q; & m is the consistency of the lubricant.
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3.1 Pressure distribution

The pressure p against x for different values of q for a fixed n and for different

values of n for a fixed q is shown respectively in Figs. 2 and 3 for compressible

fluids in thermal case. From the graph, it is possibly known that p increases

continuously in the input region and decreases in the outlet region. Once the

pressure reaches the zenith, at the point of maximum pressure x ¼ �x1, p falls

down, making a steep slope in graph and reduces to the ambient pressure p2 ¼ 0

[14, 21]. Also, the behavior of p against x for n (fixed) and different values of q are

similar to that of Prasad et al. [17]. The lubricant pressure p increases significantly

with n for a fixed value of q, particularly for n � 1. This is also similar with the

results of Safar and Shawki [22]. Here it is noted that fixed q value gives both the

points of cavitation and maximum pressure nearer to the centre line of contact, (the

origin 0) as n increases. Fixed n value increases p considerably as q decreases; and

the cavitation point moves slowly towards the centre line of contact as q increases.

The change in pressure with respect to q accounts for the observation that as the

surfaces approach each other, comparatively more pressure is generated. The

comparison of pressure and density is presented in Fig. 4 and the compressibility for

different values of n is presented in Fig. 5.

3.2 Temperature distribution

The temperature T verse x with respect to the different values of n is shown in

Figs. 6 and 7. It is notable to understand that T increases in inlet area, and the

increase in temperature is ceased at the maximum pressure point, x = �x1 and then

T comes down slowly to the outer region. The increase in T in the inner area is

because of the dragging action of the faster layers in the high pressure region which
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makes more viscous dissipation in the convergence zone and results in more

temperature [23]. From Figs. 6 and 7, it is learnt that T increases with n [24]. An

increase in n denotes an enhanced effective viscosity. This increases the resistance

to the motion, leading to a higher viscous dissipation. Similarly, T increases as q

decreases with a fixed n.
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3.3 Load and traction

Load carrying capacity and traction force are the important features of bearings. It is

presented in Table 1 which contains tangential and normal loads with different n

and q values for thermal conditions. From the table it can be clearly stated that both

the dimensionless load W and the dimensionless traction force TF increases with n,

but the normal load decreases with q which is in similar to the previous findings

[19].
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Table 1 Load and traction

n=m0 q ¼ �0:09 q ¼ �0:05 q ¼ 0:00 q ¼ 0:05 q ¼ 0:09

Tangential load 1.15/0.56 2.420923 2.572450 2.596763 2.564392 2.518602

1.00/0.75 0.489771 0.558945 0.575525 0.574329 0.566990

0.545/86.0 0.173526 0.206755 0.213715 0.214810 0.214261

0.40/128.0 0.048511 0.053794 0.054186 0.053736 0.053199

Normal load 1.15/0.56 1.590878 1.568511 1.470203 1.360181 1.269853

1.00/0.75 0.263022 0.284669 0.279817 0.266758 0.253891

0.545/86.0 0.075237 0.087509 0.087798 0.085190 0.081729

0.40/128.0 0.019844 0.021254 0.020700 0.019967 0.019218

Load 1.15/0.56 2.896853 3.012926 2.984071 2.902791 2.820618

1.00/0.75 0.555928 0.627260 0.639943 0.633256 0.621239

0.545/86.0 0.189134 0.224511 0.231046 0.231086 0.229319

0.40/128.0 0.052413 0.057841 0.058005 0.057326 0.056564

Traction 1.15/0.56 2.416422 2.572053 2.592239 2.557966 2.515180

1.00/0.75 0.488843 0.558045 0.575231 0.574004 0.566903

0.545/86.0 0.173212 0.205320 0.212583 0.213761 0.215418

0.40/128.0 0.048604 0.054417 0.055018 0.054238 0.053598

Co-efficient of traction 1.15/0.56 0.834154 0.853673 0.868692 0.881209 0.891712

1.00/0.75 0.879328 0.889655 0.898879 0.906432 0.912536

0.545/86.0 0.915816 0.914519 0.920090 0.925026 0.939380

0.40/128.0 0.927333 0.940802 0.948493 0.946129 0.947566
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3.4 Consistency

The main and important feature of this paper is to study the variation in the

consistency (m ) of the non Newtonian power law compressible fluids with pressure

and the temperature as shown in the below figures. The overall consistency changes

with x at different positions of the lubricant heights above the x-axis is shown in

Fig. 8. This indicates basically the dominance of temperature over the pressure is in

accordance with the result of Espejel [25]. A one dimensional consistency variation

in m with x for different flow index n is given in Figs. 8 and 9. Hence, the

consideration of the consistency variation with pressure and temperature is well

justified.
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4 Conclusion

This problem consists the following aspects:

• The pressure and the temperature is considered to study the variation of lubricant

consistency of the non Newtonian power law fluids with respect to the flow

index n and the normal velocity q.

• A descriptive method is used to analyze the pressure and the temperature and

hence the effects of them on the consistency m of the fluids.

• Loads and tractions are also included in the study of consistency variation.

• It is concluded that the pressure and the corresponding temperature increase with

n and decrease as q increases numerically. Also the position of the pressure peak

moves away from the centre line of contact as q increases.

• The load and the traction also follow the trend of pressure with q and n. These

results are compared with the previous findings and are found to be in good

agreement.
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