The Journal of Analysis (2020) 28:867-877
https://doi.org/10.1007/s41478-019-00216-x

ORIGINAL RESEARCH PAPER

™

Check for
updates

On the local convergence of modified Weerakoon’s method
in Banach spaces

Debasis Sharma' ® - Sanjaya Kumar Parhi’

Received: 16 September 2019/ Accepted: 17 November 2019/ Published online: 27 November 2019
© Forum D'Analystes, Chennai 2019

Abstract

Based on Lipschitz continuity condition, we study the local convergence analysis
for the fifth-order convergent modified Weerakoon’s method for solving nonlinear
equations in Banach spaces. Lipschitz continuity condition on the first derivative is
assumed to extend the applicability of the scheme. This analysis enables us to solve
such problems for which previous studies based on higher-order derivatives unable
to find the solution. A theorem showing the existence and uniqueness of the solution
along with computable error bounds is established. Standard numerical examples
like nonlinear integral equation and system of nonlinear equations are solved to
demonstrate the productiveness of our theoretical outcomes.
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1 Introduction

The study presented in this paper is based on the problem of finding a locally unique
solution x* of the equation

F(x) =0, (1)

where F : Q C X — Y is a Fréchet differentiable function and Q is a convex subset
of X. X and Y are Banach spaces. In the field of applied science and engineering, a
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large number of problems can be solved by transforming them into nonlinear
equations of the form (1). For instance, the boundary value problems occur in
Kinetic theory of gases, the integral equations related to radiative transfer theory,
problems in optimization and many others can be reduced to the problem of solving
nonlinear equations. Usually, the solutions of these nonlinear equations can be
found in closed form. So, the most frequently used solution techniques are iterative
in nature.

A commonly used iterative technique for solving (1) is Newton’s scheme, which
can be expressed as:

Xni1 = Xy — [F'(x,)] ' F(x,), n>0. (2)

Evaluation of second and more order derivatives is a major drawback of higher-
order iterative schemes and are not appropriate for practical use. Due to the cal-
culation of F” in each iteration, the cubically convergent classical schemes are not
suitable in terms of computational cost. Some classical third-order algorithms
include Chebyshev’s, the Halley’s and Super-Halley’s schemes are produced by
putting (« = 0), (0 = %) and (o = 1) respectively in

X1 = Xy — <1 +%(1 - aHF(xn))lHF(xn)) [F' (xa)] ' F(x,), (3)

where Hp(x,) = F'(x,) " F" (x,)F'(x2) ' F(x).

The local convergence analysis of many varieties of the methods defined in (3)
has been studied by numerous authors in Refs. [1-6]. Also, the local convergence
analysis for various iterative algorithms is studied in Banach spaces in Refs. [7-12].
In this paper, we use the Lipschitz continuity condition on the first derivative only to
enhance the applicability of modified Weerakoon’s method in Banach spaces.

In Ref. [13], the authors studied the modification of Weerakoon’s method [14]
with fifth-order convergence to solve systems of nonlinear equations in R". The
method is given as:

Yn = Xn — F’(xn)_lF(xn)
2w = X0 = 2[F (%) + F' ()] F (x0) (4)
X1 = 20— F'(y) "' F(z)
In this method, only the first-order derivative occurs in the iteration function but the
convergence is proved with the assumption on higher-order derivatives for which

the applicability of the method is restricted. For instance, consider a function
F defined on Q = [—1,3] by

Flx) = {x3log(x2) +x° — x4, ifx;éO'
0 ifx=0

)

Notice that F”” is unbounded on Q. Therefore, the previous studies [13—15] based on
higher-order derivatives fail to solve this problem. Also, no information is men-
tioned regarding the radius of convergence ball in these studies. The local
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convergence analysis of iterative algorithms provides essential information about
the radius of convergence ball. In this paper, we provide the local convergence
analysis of the method (4) using the hypotheses only on F’ to avoid the use of
higher-order derivatives. Particularly, it is assumed that the first derivative is Lip-
schitz continuous. This study extends the applicability of the method (4) and helps
in obtaining the solution of such problems for which previous studies fail.

The rest portion of this paper is arranged as follows: The local convergence
analysis of the method (4) is placed in Sect. 2. Section 3 is devoted to
demonstrating the applications of our theoretical outcomes on some numerical
examples. Conclusions are discussed in the last section.

2 Local convergence analysis

The local convergence analysis of modified Weerakoon’s method (4) is studied in
this section. Let the open and closed balls in X are denoted as B(c, p) and B(c, p)
respectively with center ¢ and radius p > 0. Suppose the parameters ky > 0 and
k > 0 be given with ky <k. To study the local convergence of the scheme (4), we

introduce the function J; on the interval {0, t) by

ks
Ji(s) =———
1(s) 2(1 — kos) )
and the parameter
R, = 2 < !
' T2k +k ko

Observe that J;(R;) = 1. Again, we define functions J, and K, on [0, %) by

15) =21+ (s)s (©
and
K2<S) = JQ(S) — 1.

Now, K;(0) = —1<0 and lim K(s) = 4+oo. According to the intermediate

L
s— %

value theorem, the interval (0, k]_o) contains the zeros of the function K;(s). Let the
smallest zero of K,(s) in (O,% is R,. Also, we introduce functions J3 and K3 on

[Oa RZ) by

(5) =5 s )

and
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K3(S) = J3(S) — 1.
Now, K3(0) = —1<0 and lirlg K3(s) = +00. The intermediate value theorem
5. >

confirms that the interval (0, R;) contains the zeros of the function K3(s). Let the

smallest zero of K3(s) in (0,R,) is R3. Again, we define J4 and K4 on [0,%) by

Ja(s) = koJ1(s)s (8)
and
K4(S) = J4(S) —1.

Now, K4(0) = —1<0 and lim Ky(s) = 4+oo. According to the intermediate

s—| L

ko
1

value theorem, the interval (O, %) contains the zeros of the function K4(s). Let the

smallest zero of K4 (s) in (O, é) is Ry. Finally, let us define Js and K5 on [0, R4) by

s5(9) = (142 )
and
Ks(s) =Js(s) — 1.
Now, K5(0) = —1<0 and 5111% Ks(s) = +oo. The intermediate value theorem

confirms that the interval (0, R4) contains the zeros of the function Ks(s). Let the
smallest zero of Ks(s) in (0, R4) is Rs. Consider

R = min{Rl,R3,R5} (10)
Now, we have
0<Ji(s) <1, (11)
0<Ja(s) <1, (12)
0<J3(s) <1, (13)
0<Jy(s)<1, (14)
and
0<Js(s)<1 (15)

for each s € [0, R). Furthermore, let us assume the followings hold for the Fréchet
differentiable function F: Q C X — Y.
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F(x*) =0, F'(x*)"" € BL(Y,X),

IF' ()~ (F'(x) = F'(x"))|| <kollx — x"||, Vx € @ (16)
and
1F' (") (F'(x) = F'0) || <kllx = yl|, Vx,y € 2, (17)

where BL(Y, X) is the set of all bounded linear operators from Y to X.
In several studies [1, 2, 9, 16, 17], a third condition assumed is

() F )l <M, vae B(,}) (18)

This assumption is not taken in our study. We use the following results to avoid this
extra condition.

Lemma 1 If F obeys (16) and B(x*,R) C Q, then Vx € B(x*,R), we get
[IF (") F (ol < 1+ kol e — 7)) (19)
and

[1F (") F ()] < (1 + kol ke — 27| )] Jr — "] (20)

Proof Applying (16), we obtain
IF' ()" F @)l < 1+ |IF/ () 7 (F () = F' ()] < 1 kol — 7).
For 0 € [0, 1],
[1F' (") F (x4 0x = x)) ] < 1+ kol — x| < 1+ kol — 27|
The mean value theorem is used to obtain
IF'(x") " F )| = ||F' ()~ (F(x) = F(x))l]

<[/ () T+ 00— ) (x = x|
< (1 + kollx = x"[[)[]x — x7]].

O

Next, the local convergence analysis of the method (4) is presented in
Theorem 1.

Theorem 1 Let F: QC X — Y be a Frechet differentiable function. Suppose
Xt € Q F(x*) =0,F'(x*)"" € BL(Y,X), F obeys (16), (17) and

B(x",R) C Q, (21)
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where R is defined in (10). Starting from xo € B(x*,R) the method (4) generates the
sequence of iterates {x,} which is well defined, {x,},~, € B(x*,R) and converges
to the solution x* of (1). Moreover, the following estimations hold ¥Yn >0

[yn = x| < Tu(llen — 2D Pen — x| <[Jxn — x"[| <R, (22)

|20 = ™[] < J3([bxw — x| Jxn — 7| <[|xa — x*|| <R, (23)
and

[ = x| < Is([[xn — 2D |a — X7 <[[xa —x7|[ <R, (24)

where the functions J,, J3 and Js are given in (5), (7) and (9) respectively. Furthermore,
the solution x* of the equation F(x) = 0 is unique in B(x*, 4) N Q, where A € [R, %)

Proof Using the definition of R, the equation (16) and the assumption
Xo € B(x*,R), we find
1F'(x) ™ (F'(x0) = F'(x)| < kol [xo — 7| <koR < 1. (25)

Now, Banach Lemma on invertible functions [18-23] confirms that F’ (xo)f1 IS

BL(Y,X) and

1 1
< < .
H_l—kOHXO—X*H 1 —koR

|1 (x0) " F'(x") (26)

Hence, it follows from the first step of the method (4) for n = 0 that y, is well
defined. Again,

Yo —x" = X0 —x" —F Xo lF(xo
1
B _[ « H/ F') (F(x" +0(xo —x7))  (27)
0
—F'(x0))(xo — x*)d0)].
Using (5), (10), (11) and (17), we find

oo — 11 < [0y F )] | [ F) (G 00 - )

—F,(X()))(X() - x*) do

] 8)
k||xo — x|

= 2(1 = koljxo — x*||)

= Ji(Ilxo — x*[)[lxo — x*|| <[]xo — x"[| <R

oo — x|

and this shows (22) for n = 0. Then we show [F'(xo) + F'(yo)]"' € BL(Y,X). The
equations (6), (10), (12), (16) and (28) are used to obtain
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[I(2F" (x

/—\

)N F (x0) + F'(y0) = 2F (")) |

[1E ()™ (F' (o) = F' () + I/ ()~ (F (v0) = F' ()]

IN
N —

IN

([P0 =[] + [lyo — x71]

IN
5 NWNWN@

= (110 = 2711+ 1 (| xo — "][[}x0 — "]

S 1+ 1 ([l — 27 xo — x°]]
2(||x0 — x*||) <2 (R) < 1.

Now, we obtain [F'(xo) + F'(yo)] "' € BL(Y,X) using Banach Lemma on invertible
functions. Also,

! ! =11y x 1
I (x0) + F 0ol F 6 < 57— e =y

Now, it follows from the second step of the method (4) for n = 0 that zy is well
defined. Using the definition of R, (13), (17), (28) and (29), we get

(29)

o =11 < (H[IF (x0) + F' ()] F/ @)1 (|| / F/() " (F(x)
—F'(x* 4+ 0(xo — x))) (x0 — x*)d0)||

+ / F() " (F () — F'(x*+9<xox*>>><xox*)den)

Ellxo = x> + & fy ([lyo — x* = 0(xo — x*)[[)a0]|xo — x°]|
2(1— A (Ilvo — «°[I))
_ Sl =X 1P 4 ko — 'l + ) o — 7
- 2(1 = A2 (Il —x*[1))
Ellxo — 2|17+ k[ ([lxo — x°[])| o — 7] + Il
2(1 = %2 (Il —x*[))
(ko — x*|| + &I (Jlxo — x*|)]xo — **[)]Jxo — x°]]
2(1 = A2 ([l —x*[I))
_ [Klbxo — x*[] + 1 ([ [xo — [0 — [}l lro — x*]
2(1 = Jao([|xo — x*(]))
K il = D)o — x* [[Jllro — 2]
2(1 = A([lxo — (1))
= Ja(|lxo — x*[[)[x0 — x| <o — x°[| <R.

<

IN

IN

Hence, we establish (23) for n = 0. Again,
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I/ (x) ™ (F' (o) = F'(x"))[| < kollyo — x"[| < ko1 (|10 — x°[)|Ixo — "]
=Ja(llxo — x"]) <1. (31)
So, F'(yo) ' € BL(Y, X) with

1
< .
A

1F' (yo) ' F'(x") (32)

Now, it follows from the last step of the method (4) for n = 0 that x; is well define.
Finally, we use (10), (15), (20), (30) and (32) to get

b1 = x*|| < 20 — x"|| + ||F' (o) "' F(z0) ]
<llzo — x*|| + [|F'(vo) "F'(x")|| ||F'(x*) "' F(z0)||
(1 + kol|zo — x*[])[|z0 — x*||
1= Ja(l[xo — x*[])

u+mmfm)
<(1+ 20— X
( = Ja(lo )} o =l

-+l — 1)l 1)) : :
s(1+ Ja3(||xo — x Xo — X
_< 1 — Ju([Jxo — x|]) 3(Ilxo — x| lxo — x|

= J5(|beo — x*[)llxo — 7| <[lxo = x*|| <R.

<llzo = "Il +

(33)

Thus, we show the estimate (24) for n = 0. We get the estimates (22)-(24) by
substituting x,, y,, z, and x,;; in place of xo, yo, zo and x; respectively in the
previous estimations. Using the fact ||x,+1 — x*|| <J5(R)||x, — x*|| <R, we derive
that x,, .| € B(x*,R) and nll»nolo x, = x*. Now, we want to show the uniqueness of the

solution x*. Suppose there exist another solution y* of F(x) =0 in B(x*, 4). Con-
sider T = fol F'(y* 4+ 0(x* — y*))d0. From equation (16), we get

1
16 T = FEDIS [l + 067 = y) ] do
0
k
< Sl =yl
koA
< —x<1.
- 2
Applying Banach Lemma, we find T-! € BL(Y,X). Now, Using the identity

0=F(x*) — F(y*) = T(x* —y*), it is concluded that x* = y*. This ends the proof.
O

3 Numerical examples

Example 1 Define F on Q = [—1,3] by
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Table 1 Parameters for example

1 MWM

R; = 0.006896
R3 = 0.006060
Rs = 0.004426
R = 0.004426

Flx) = {x3log(x2) +x° — x4, ifx;éO'
0 if x=20

)

We have x* = 1. Also, kg = k = 96.6628. The value of R is determined using the
definitions of ““J” functions (Table 1).

Example 2 1Let us define F on B(0, 1) for (x;,x,x3)" by

e

—1 4
F(x) = (e’“ — 1,—2 x% +xz,x3>

We have x* = (0,0,0)". Also, we have ky = ¢ — 1 and k = e. We determine the
value of R using “‘J” functions (Table 2).

Example 3 Let us define F on Q = [—1,1] by
F(x) = sin(x)

We have x* = 0. Also, we have ko = k = 1. R is determined using *J” functions
(Table 3).

Table 2 Parameters for

example 2 MwM
R, = 0.324947
R; = 0.268633
Rs = 0.184350
R =0.184350
;’able 3 Parameters for example MWM
Ry = 0.666667
R3 = 0.585786
Rs = 0.427846
R = 0.427846
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Table 4 Parameters for example

4 MWM

R; = 0.066667
R3 = 0.053333
Rs = 0.035647
R = 0.035647

Example 4 Consider the nonlinear Hammerstein type integral equation given by

1
F(x)(s) = x(s) = 5 /0 stx(r)* dt,

where x(s) € C[0,1]. We have x* = 0. Also, ko = 7.5 and k = 15. Using the defi-
nitions of “J” functions the value of R is determined (Table 4).

4 Conclusions

We studied the local convergence analysis of the method (4) to find a locally unique
solution of a nonlinear equation in Banach spaces. The Lipschitz continuity
condition on the first derivative is used to enhance the applicability of these
methods. This study helps in solving those problems for which higher-order
derivative based previous studies fail. Lastly, the theoretical outcomes are applied
on standard numerical examples like Hammerstein equation and system of nonlinear
equations.
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