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Abstract
Based on Lipschitz continuity condition, we study the local convergence analysis

for the fifth-order convergent modified Weerakoon’s method for solving nonlinear

equations in Banach spaces. Lipschitz continuity condition on the first derivative is

assumed to extend the applicability of the scheme. This analysis enables us to solve

such problems for which previous studies based on higher-order derivatives unable

to find the solution. A theorem showing the existence and uniqueness of the solution

along with computable error bounds is established. Standard numerical examples

like nonlinear integral equation and system of nonlinear equations are solved to

demonstrate the productiveness of our theoretical outcomes.

Keywords Banach space � Local convergence � Iterative methods � Lipschitz
continuity condition

Mathematics Subject Classification 47H99 � 65D10 � 65D99 � 65G49

1 Introduction

The study presented in this paper is based on the problem of finding a locally unique

solution x� of the equation

FðxÞ ¼ 0; ð1Þ

where F : X � X ! Y is a Fréchet differentiable function and X is a convex subset

of X. X and Y are Banach spaces. In the field of applied science and engineering, a
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large number of problems can be solved by transforming them into nonlinear

equations of the form (1). For instance, the boundary value problems occur in

Kinetic theory of gases, the integral equations related to radiative transfer theory,

problems in optimization and many others can be reduced to the problem of solving

nonlinear equations. Usually, the solutions of these nonlinear equations can be

found in closed form. So, the most frequently used solution techniques are iterative

in nature.

A commonly used iterative technique for solving (1) is Newton’s scheme, which

can be expressed as:

xnþ1 ¼ xn � ½F0ðxnÞ��1FðxnÞ; n� 0: ð2Þ

Evaluation of second and more order derivatives is a major drawback of higher-

order iterative schemes and are not appropriate for practical use. Due to the cal-

culation of F00 in each iteration, the cubically convergent classical schemes are not

suitable in terms of computational cost. Some classical third-order algorithms

include Chebyshev’s, the Halley’s and Super-Halley’s schemes are produced by

putting (a ¼ 0), (a ¼ 1
2
) and (a ¼ 1) respectively in

xnþ1 ¼ xn � 1þ 1

2
ð1� aHFðxnÞÞ�1HFðxnÞ

� �
½F0ðxnÞ��1FðxnÞ; ð3Þ

where HFðxnÞ ¼ F0ðxnÞ�1F00ðxnÞF0ðxnÞ�1FðxnÞ.
The local convergence analysis of many varieties of the methods defined in (3)

has been studied by numerous authors in Refs. [1–6]. Also, the local convergence

analysis for various iterative algorithms is studied in Banach spaces in Refs. [7–12].

In this paper, we use the Lipschitz continuity condition on the first derivative only to

enhance the applicability of modified Weerakoon’s method in Banach spaces.

In Ref. [13], the authors studied the modification of Weerakoon’s method [14]

with fifth-order convergence to solve systems of nonlinear equations in Rn. The

method is given as:

yn ¼ xn � F0ðxnÞ�1FðxnÞ
zn ¼ xn � 2½F0ðxnÞ þ F0ðynÞ��1FðxnÞ
xnþ1 ¼ zn � F0ðynÞ�1FðznÞ

ð4Þ

In this method, only the first-order derivative occurs in the iteration function but the

convergence is proved with the assumption on higher-order derivatives for which

the applicability of the method is restricted. For instance, consider a function

F defined on X ¼ � 1
2
; 5
2

� �
by

FðxÞ ¼ x3 logðx2Þ þ x5 � x4; if x 6¼ 0

0; if x ¼ 0
:

�

Notice that F000 is unbounded on X. Therefore, the previous studies [13–15] based on
higher-order derivatives fail to solve this problem. Also, no information is men-

tioned regarding the radius of convergence ball in these studies. The local
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convergence analysis of iterative algorithms provides essential information about

the radius of convergence ball. In this paper, we provide the local convergence

analysis of the method (4) using the hypotheses only on F0 to avoid the use of

higher-order derivatives. Particularly, it is assumed that the first derivative is Lip-

schitz continuous. This study extends the applicability of the method (4) and helps

in obtaining the solution of such problems for which previous studies fail.

The rest portion of this paper is arranged as follows: The local convergence

analysis of the method (4) is placed in Sect. 2. Section 3 is devoted to

demonstrating the applications of our theoretical outcomes on some numerical

examples. Conclusions are discussed in the last section.

2 Local convergence analysis

The local convergence analysis of modified Weerakoon’s method (4) is studied in

this section. Let the open and closed balls in X are denoted as Bðc; qÞ and �Bðc; qÞ
respectively with center c and radius q[ 0. Suppose the parameters k0 [ 0 and

k [ 0 be given with k0 � k. To study the local convergence of the scheme (4), we

introduce the function J1 on the interval 0; 1
k0

h �
by

J1ðsÞ ¼
ks

2ð1� k0sÞ ð5Þ

and the parameter

R1 ¼
2

2k0 þ k
\

1

k0
:

Observe that J1ðR1Þ ¼ 1. Again, we define functions J2 and K2 on 0; 1
k0

h �
by

J2ðsÞ ¼
k0
2
ð1þ J1ðsÞÞs ð6Þ

and

K2ðsÞ ¼ J2ðsÞ � 1:

Now, K2ð0Þ ¼ �1\0 and lim

s! 1
k0

� �� K2ðsÞ ¼ þ1. According to the intermediate

value theorem, the interval ð0; 1
k0
Þ contains the zeros of the function K2ðsÞ. Let the

smallest zero of K2ðsÞ in 0; 1
k0

� �
is R2. Also, we introduce functions J3 and K3 on

½0;R2Þ by

J3ðsÞ ¼
k½1þ J1ðsÞ�s
2ð1� J2ðsÞÞ

ð7Þ

and
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K3ðsÞ ¼ J3ðsÞ � 1:

Now, K3ð0Þ ¼ �1\0 and lim
s!R�

2

K3ðsÞ ¼ þ1. The intermediate value theorem

confirms that the interval ð0;R2Þ contains the zeros of the function K3ðsÞ. Let the
smallest zero of K3ðsÞ in ð0;R2Þ is R3. Again, we define J4 and K4 on 0; 1

k0

h �
by

J4ðsÞ ¼ k0J1ðsÞs ð8Þ

and

K4ðsÞ ¼ J4ðsÞ � 1:

Now, K4ð0Þ ¼ �1\0 and lim

s! 1
k0

� ��
K4ðsÞ ¼ þ1. According to the intermediate

value theorem, the interval 0; 1
k0

� �
contains the zeros of the function K4ðsÞ. Let the

smallest zero of K4ðsÞ in 0; 1
k0

� �
is R4. Finally, let us define J5 and K5 on ½0;R4Þ by

J5ðsÞ ¼ 1þ 1þ k0J3ðsÞs
1� J4ðsÞ

� �
J3ðsÞ ð9Þ

and

K5ðsÞ ¼ J5ðsÞ � 1:

Now, K5ð0Þ ¼ �1\0 and lim
s!R�

4

K5ðsÞ ¼ þ1. The intermediate value theorem

confirms that the interval ð0;R4Þ contains the zeros of the function K5ðsÞ. Let the
smallest zero of K5ðsÞ in ð0;R4Þ is R5. Consider

R ¼ minfR1;R3;R5g ð10Þ

Now, we have

0� J1ðsÞ\1; ð11Þ

0� J2ðsÞ\1; ð12Þ

0� J3ðsÞ\1; ð13Þ

0� J4ðsÞ\1; ð14Þ

and

0� J5ðsÞ\1 ð15Þ

for each s 2 ½0;RÞ. Furthermore, let us assume the followings hold for the Fréchet

differentiable function F : X � X ! Y .
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Fðx�Þ ¼ 0; F0ðx�Þ�1 2 BLðY ;XÞ;

jjF0ðx�Þ�1ðF0ðxÞ � F0ðx�ÞÞjj � k0jjx � x�jj; 8x 2 X ð16Þ

and

jjF0ðx�Þ�1ðF0ðxÞ � F0ðyÞÞjj � kjjx � yjj; 8x; y 2 X; ð17Þ

where BL(Y, X) is the set of all bounded linear operators from Y to X.
In several studies [1, 2, 9, 16, 17], a third condition assumed is

jjF0ðx�Þ�1F0ðxÞjj �M; 8x 2 B x�;
1

k0

� �
: ð18Þ

This assumption is not taken in our study. We use the following results to avoid this

extra condition.

Lemma 1 If F obeys (16) and �Bðx�;RÞ � X, then 8x 2 Bðx�;RÞ, we get

jjF0ðx�Þ�1F0ðxÞjj � 1þ k0jjx � x�jj ð19Þ

and

jjF0ðx�Þ�1FðxÞjj � ð1þ k0jjx � x�jjÞjjx � x�jj ð20Þ

Proof Applying (16), we obtain

jjF0ðx�Þ�1F0ðxÞjj � 1þ jjF0ðx�Þ�1ðF0ðxÞ � F0ðx�ÞÞjj � 1þ k0jjx � x�jj:

For h 2 ½0; 1�,

jjF0ðx�Þ�1F0ðx� þ hðx � x�ÞÞjj � 1þ k0hjjx � x�jj � 1þ k0jjx � x�jj

The mean value theorem is used to obtain

jjF0ðx�Þ�1FðxÞjj ¼ jjF0ðx�Þ�1ðFðxÞ � Fðx�ÞÞjj
� jjF0ðx�Þ�1F0ðx� þ hðx � x�ÞÞðx � x�Þjj
� ð1þ k0jjx � x�jjÞjjx � x�jj:

h

Next, the local convergence analysis of the method (4) is presented in

Theorem 1.

Theorem 1 Let F : X � X ! Y be a Fréchet differentiable function. Suppose

x� 2 X;Fðx�Þ ¼ 0;F0ðx�Þ�1 2 BLðY;XÞ, F obeys (16), (17) and

�Bðx�;RÞ � X; ð21Þ
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where R is defined in (10). Starting from x0 2 Bðx�;RÞ the method (4) generates the
sequence of iterates fxng which is well defined, fxngn� 0 2 Bðx�;RÞ and converges

to the solution x� of (1). Moreover, the following estimations hold 8n� 0

jjyn � x�jj � J1ðjjxn � x�jjÞjjxn � x�jj\jjxn � x�jj\R; ð22Þ

jjzn � x�jj � J3ðjjxn � x�jjÞjjxn � x�jj\jjxn � x�jj\R; ð23Þ

and

jjxnþ1 � x�jj � J5ðjjxn � x�jjÞjjxn � x�jj\jjxn � x�jj\R; ð24Þ

where the functions J1, J3 and J5 are given in (5), (7) and (9) respectively. Furthermore,

the solution x� of the equation FðxÞ ¼ 0 is unique in �Bðx�;DÞ \ X, where D 2 ½R; 2
k0
Þ.

Proof Using the definition of R, the equation (16) and the assumption

x0 2 Bðx�;RÞ, we find

jjF0ðx�Þ�1ðF0ðx0Þ � F0ðx�ÞÞjj � k0jjx0 � x�jj\k0R\1: ð25Þ

Now, Banach Lemma on invertible functions [18–23] confirms that F0ðx0Þ�1 2
BLðY ;XÞ and

jjF0ðx0Þ�1F0ðx�Þjj � 1

1� k0jjx0 � x�jj\
1

1� k0R
: ð26Þ

Hence, it follows from the first step of the method (4) for n ¼ 0 that y0 is well

defined. Again,

y0 � x� ¼ x0 � x� � F0ðx0Þ�1Fðx0Þ

¼ � F0ðx0Þ�1F0ðx�Þ
h i Z 1

0

F0ðx�Þ�1ðF0ðx� þ hðx0 � x�ÞÞ
	

�F0ðx0ÞÞðx0 � x�Þdh�:

ð27Þ

Using (5), (10), (11) and (17), we find

jjy0 � x�jj � F0ðx0Þ�1F0ðx�Þ


 



 

h i 












Z 1

0

F0ðx�Þ�1ðF0ðx� þ hðx0 � x�ÞÞ
"

�F0ðx0ÞÞðx0 � x�Þ dh













#

� kjjx0 � x�jj
2ð1� k0jjx0 � x�jjÞ jjx0 � x�jj

¼ J1ðjjx0 � x�jjÞjjx0 � x�jj\jjx0 � x�jj\R

ð28Þ

and this shows (22) for n ¼ 0. Then we show ½F0ðx0Þ þ F0ðy0Þ��1 2 BLðY;XÞ. The
equations (6), (10), (12), (16) and (28) are used to obtain
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jjð2F0ðx�ÞÞ�1ðF0ðx0Þ þ F0ðy0Þ � 2F0ðx�ÞÞjj

� 1

2
½jjF0ðx�Þ�1ðF0ðx0Þ � F0ðx�ÞÞjj þ jjF0ðx�Þ�1ðF0ðy0Þ � F0ðx�ÞÞjj�

� k0
2
½jjx0 � x�jj þ jjy0 � x�jj�

� k0
2
½jjx0 � x�jj þ J1ðjjx0 � x�jjjjx0 � x�jj�

¼ k0
2
½1þ J1ðjjx0 � x�jjÞ�jjx0 � x�jj

¼ J2ðjjx0 � x�jjÞ\J2ðRÞ\1:

Now, we obtain ½F0ðx0Þ þ F0ðy0Þ��1 2 BLðY;XÞ using Banach Lemma on invertible

functions. Also,

jj½F0ðx0Þ þ F0ðy0Þ��1F0ðx�Þjj � 1

2ð1� J2ðjjx0 � x�jjÞÞ : ð29Þ

Now, it follows from the second step of the method (4) for n ¼ 0 that z0 is well

defined. Using the definition of R, (13), (17), (28) and (29), we get

jjz0 � x�jj � jj½F0ðx0Þ þ F0ðy0Þ��1F0ðx�Þjj
� �

jj
Z 1

0

F0ðx�Þ�1 F0ðx0Þð
�

�F0ðx� þ hðx0 � x�ÞÞÞðx0 � x�Þdhjj

þjj
Z 1

0

F0ðx�Þ�1 F0ðy0Þ � F0ðx� þ hðx0 � x�ÞÞð Þðx0 � x�Þdhjj
�

�
k
2
jjx0 � x�jj2 þ k

R 1

0
ðjjy0 � x� � hðx0 � x�ÞjjÞdhjjx0 � x�jj

2ð1� J2ðjjx0 � x�jjÞÞ

�
k
2
jjx0 � x�jj2 þ kðjjy0 � x�jj þ jjx0�x�jj

2
Þjjx0 � x�jj

2ð1� J2ðjjx0 � x�jjÞÞ

�
k
2
jjx0 � x�jj2 þ k½J1ðjjx0 � x�jjÞjjx0 � x�jj þ jjx0�x�jj

2
�jjx0 � x�jj

2ð1� J2ðjjx0 � x�jjÞÞ ð30Þ

� ðkjjx0 � x�jj þ kJ1ðjjx0 � x�jjÞjjx0 � x�jjÞjjx0 � x�jj
2ð1� J2ðjjx0 � x�jjÞÞ

¼ ½kjjx0 � x�jj þ kJ1ðjjx0 � x�jjÞjjx0 � x�jj�jjx0 � x�jj
2ð1� J2ðjjx0 � x�jjÞÞ

¼ k½ð1þ J1ðjjx0 � x�jjÞÞjjx0 � x�jj�jjx0 � x�jj
2ð1� J2ðjjx0 � x�jjÞÞ

¼ J3ðjjx0 � x�jjÞjjx0 � x�jj\jjx0 � x�jj\R:

Hence, we establish (23) for n ¼ 0. Again,
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jjF0ðx�Þ�1ðF0ðy0Þ � F0ðx�ÞÞjj � k0jjy0 � x�jj\k0J1ðjjx0 � x�jjÞjjx0 � x�jj
¼ J4ðjjx0 � x�jjÞ\1: ð31Þ

So, F0ðy0Þ�1 2 BLðY ;XÞ with

jjF0ðy0Þ�1F0ðx�Þjj � 1

1� J4ðjjx0 � x�jjÞ : ð32Þ

Now, it follows from the last step of the method (4) for n ¼ 0 that x1 is well define.
Finally, we use (10), (15), (20), (30) and (32) to get

jjx1 � x�jj � jjz0 � x�jj þ jjF0ðy0Þ�1Fðz0Þjj
� jjz0 � x�jj þ jjF0ðy0Þ�1F0ðx�Þjj jjF0ðx�Þ�1Fðz0Þjj

� jjz0 � x�jj þ ð1þ k0jjz0 � x�jjÞjjz0 � x�jj
1� J4ðjjx0 � x�jjÞ

� 1þ ð1þ k0jjz0 � x�jjÞ
1� J4ðjjx0 � x�jjÞ

� �
jjz0 � x�jj

� 1þ ð1þ k0J3ðjjx0 � x�jjÞjjx0 � x�jjÞ
1� J4ðjjx0 � x�jjÞ

� �
J3ðjjx0 � x�jjÞjjx0 � x�jj

¼ J5ðjjx0 � x�jjÞjjx0 � x�jj\jjx0 � x�jj\R:

ð33Þ

Thus, we show the estimate (24) for n ¼ 0. We get the estimates (22)-(24) by

substituting xn, yn, zn and xnþ1 in place of x0, y0, z0 and x1 respectively in the

previous estimations. Using the fact jjxnþ1 � x�jj � J5ðRÞjjxn � x�jj\R, we derive

that xnþ1 2 Bðx�;RÞ and lim
n!1

xn ¼ x�. Now, we want to show the uniqueness of the

solution x�. Suppose there exist another solution y� of FðxÞ ¼ 0 in Bðx�;DÞ. Con-
sider T ¼

R 1

0
F0ðy� þ hðx� � y�ÞÞdh. From equation (16), we get

jjF0ðx�Þ�1ðT � F0ðx�ÞÞjj �
Z 1

0

k0jjy� þ hðx� � y�Þ � x�jj dh

� k0
2
jjx� � y�jj

� k0D
2

\1:

Applying Banach Lemma, we find T�1 2 BLðY ;XÞ. Now, Using the identity

0 ¼ Fðx�Þ � Fðy�Þ ¼ Tðx� � y�Þ, it is concluded that x� ¼ y�. This ends the proof.

h

3 Numerical examples

Example 1 Define F on X ¼ ½� 1
2
; 5
2
� by
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FðxÞ ¼ x3 logðx2Þ þ x5 � x4; if x 6¼ 0

0; if x ¼ 0
:

�

We have x� ¼ 1. Also, k0 ¼ k ¼ 96:6628. The value of R is determined using the

definitions of ‘‘J00 functions (Table 1).

Example 2 Let us define F on �Bð0; 1Þ for ðx1; x2; x3Þt
by

FðxÞ ¼ ex1 � 1;
e � 1

2
x22 þ x2; x3

� �t

We have x� ¼ ð0; 0; 0Þt
. Also, we have k0 ¼ e � 1 and k ¼ e. We determine the

value of R using ‘‘J00 functions (Table 2).

Example 3 Let us define F on X ¼ ½�1; 1� by

FðxÞ ¼ sinðxÞ

We have x� ¼ 0. Also, we have k0 ¼ k ¼ 1. R is determined using ‘‘J00 functions
(Table 3).

Table 1 Parameters for example

1
MWM

R1 ¼ 0:006896

R3 ¼ 0:006060

R5 ¼ 0:004426

R ¼ 0:004426

Table 2 Parameters for

example 2
MWM

R1 ¼ 0:324947

R3 ¼ 0:268633

R5 ¼ 0:184350

R ¼ 0:184350

Table 3 Parameters for example

3
MWM

R1 ¼ 0:666667

R3 ¼ 0:585786

R5 ¼ 0:427846

R ¼ 0:427846
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Example 4 Consider the nonlinear Hammerstein type integral equation given by

FðxÞðsÞ ¼ xðsÞ � 5

Z 1

0

stxðtÞ3 dt;

where xðsÞ 2 C½0; 1�. We have x� ¼ 0. Also, k0 ¼ 7:5 and k ¼ 15. Using the defi-

nitions of ‘‘J00 functions the value of R is determined (Table 4).

4 Conclusions

We studied the local convergence analysis of the method (4) to find a locally unique

solution of a nonlinear equation in Banach spaces. The Lipschitz continuity

condition on the first derivative is used to enhance the applicability of these

methods. This study helps in solving those problems for which higher-order

derivative based previous studies fail. Lastly, the theoretical outcomes are applied

on standard numerical examples like Hammerstein equation and system of nonlinear

equations.
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