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Abstract
In this paper, the Fractional Laplace Differential Transform Method is presented

firstly in the literature and applied to the fractional partial differential equations to

obtain approximate analytical solutions. This method is a combined form of the

Laplace transform and Differential Transform Method. The obtained numerical

solutions by the Fractional Laplace Differential Transform Method show that this

method is easy to carry out and has high accuracy. These results reveal that the

proposed method is a promising tool for solving fractional partial differential

equations. The described method in this study is expected to be employed to more

problems in fractional calculus.

Keywords Fractional partial differential equations � Fractional laplace
differential transform method � Fractional derivatives � Series solutions

Mathematics Subject Classification 44A10 � 65MXX � 35R11

1 Introduction

Fractional differential equations involving fractional derivatives are generalizations

of classical differential equations and widely used in chemical, physical and

engineering sciences. Fractional partial differential equations (FPDEs) are very

efficiently to characterize many important physical and engineering events [1–6].

To find solutions of FPDEs is very challenging procedure in which we need to use

hard mathematical solutions methods. It is well-known that to get exact solutions of
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2 Department of Mathematics, Pamukkale University, Denizli, Turkey

123

The Journal of Analysis (2020) 28:489–502
https://doi.org/10.1007/s41478-019-00186-0(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s41478-019-00186-0&amp;domain=pdf
https://doi.org/10.1007/s41478-019-00186-0


FPDEs in terms of composite elementary functions in a simple way is not so easy,

hence for the such solutions we need to use effective, reliable numerical algorithms.

It has been shown that fractional differential equations have important role to model

various problems from many different disciplines. Also, this method can provide

more useful results for physical and engineering problems than models just

including integer derivatives. Therefore, fractional differential equations widely

studied among researchers from many different disciplines such as in [7–13].

It is well-known that series expansions are very important sources to evaluate

functions, integrals, derivatives etc. Based on this fact, we focus on obtaining series

expansion to obtain approximate solutions of FPDEs. Although computer based

numerical algorithms which don’t use series expansion solutions are proposed after

the development of automatic methods for formula manipulation, solutions

including series expansion again becomes popular among the researchers. DTM

proposed by Zhou [14] is also a based series expansion method that can be applied

Ordinary Differential Equations (ODEs), Partial Differential Equations(PDEs) and

FPDEs. The method provides an iterative procedure to get the spectrum of analytic

solutions. It has been proven that the technique is an efficient mathematical tool for

solving various kinds of problems [14–17].

In recent years, many hybrid methods combining the Laplace transform method with

Adomian decomposition method (ADM) [10], homotopy analysis method (HAM) [11],

variational iteration method (VIM) [12, 13] are presented to solve FPDE. Using the

same spirit, the aim of this study is to propose a new method combining Laplace

transform method with DTM to obtain approximate solutions of FPDEs.

The main idea of the presented new method in the current study is to convert

Fractional Partial Differential Equations (FPDEs) into Ordinary Differential

Equations (ODEs) by using Laplace Transformation Method. After this transfor-

mation, we are in a position to solve obtained ODEs via DTM which is a very

effective tool to solve for such equations. Basics of the used method during

transformations and the applications of the method can be seen in coming sections.

Nowadays, fractional boundary value problems (FBVPs) appears more and more

frequently in different research fields and engineering applications. To solve the

FBVPs accurately and efficiently is considered a very important issue. Fractional

boundary value problems (FBVPs) have been solved by various methods such as

finite sine transform technique and separation of variables methods. One of the

advantage of the presented study we utilize a new iterative method for solving the

FBVPs with mixed boundary conditions. To best advantage of this study no such

work has been made to combine Laplace transform and DTM to solve FBVPs.

Another, the basic motivation of this work is to overcome of a deficiency of

generalized DTM [17]. Because; generalized DTM can be used to solve FPDEs with

accuracy approximation, which is acceptable for a small interval, because boundary

conditions are satisfied via the method, and the remaining unsatisfied conditions

play no roles in the final results. The aim of the using Laplace transform is to

overcome the deficiency that is mainly caused by the unsatisfied conditions

This paper is organized as follows: in Sect. 2, we introduce the basics knowledge of

fractional calculus and Laplace transformation. In Sect. 3, we introduce the key points

of standard Differential Transform Method. In Sect. 4, we introduce Fractional
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Laplace Differential Transform method. In Sect. 5, we introduce convergence

analysis and error estimation of DTM. Additionally, the method is applied to different

problems in Sect. 6. Finally, a brief conclusion is given in Sect. 7.

2 Basic definitions and preliminaries

In this section, we mention the following basic definitions and properties of the

fractional calculus theory and Laplace transform which will be used in this paper:

Definition 1.1 A real function f(t), t[ 0 is said to be in the space Cl, l 2 R, if

there exists a real number p[ l, such that f ðtÞ ¼ tpf1ðtÞ where f1ðtÞ 2 Cð0;1Þ;and
it is said to be in the space Cn iff f ðnÞ 2 Cl; n 2 N:

Definition 1.2 The left sided Riemann–Liouville fractional integral of order l� 0;
of a function f 2 Ca, a� � 1 is defined [18] as,

Ilf ðtÞ ¼
1

CðlÞ

Z t

0

ðt � sÞl�1
f ðsÞds; l[ 0; t[ 0

f ðtÞ; l ¼ 0

;

8<
:

where Cð:Þis Gamma function.

Definition 1.3 The left sided Caputo fractional derivative of f ; f 2 Cm
�1;

m 2 N [ 0f g;is defined by Podlubny [19] and Samko et al. [20] as

Dl
� f ðtÞ ¼

olf ðtÞ
otl

¼
Im�l omf ðtÞ

otm

� �
; m� 1\l\m;m 2 N;

omf ðtÞ
otm

; l ¼ m:

8>><
>>:

Definition 1.4 The Laplace transform of f(t) in 0;1½ Þ is defined as

FðsÞ ¼ L f ðtÞ½ � ¼
Z 1

0

e�stf ðtÞdt

where s is real or complex number.

Definition 1.5 The Laplace transform L f ðtÞ½ �of the Riemann–Liouville fractional

integral is defined [21] as

L Iat f ðtÞ
� �

¼ s�aFðsÞ:

Definition 1.6 The Laplace transform L f ðtÞ½ �of the Caputo fractional derivative is

defined [21] as

L Dna
t f ðtÞ

� �
¼ snaFðsÞ �

Xn�1

k¼0

sðna�k�1Þf ðkÞð0Þ; n� 1\a 6 n:
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Definition 1.7 The Mittag-Leffler function Ea with a[ 0 is defined by following

series representation, valid in the whole complex plane [22]:

EaðtÞ ¼
X1
n¼0

tn

Cðnaþ 1Þ ; a[ 0; t 2 C:

3 Differential transform method (DTM)

The basic definitions and fundamental operations of the differential transform

method (DTM) are defined in [14–17] as follows:

The differential transform of k-th derivative of a given univariate function u(x)

which is analytic and continuously differentiable in the domain of interest is defined

as

UðkÞ ¼ 1

k!

dkuðxÞ
dxk

� �
x¼x0

ð1Þ

where U(k) is the transformed function of u(x). Also, the relevant differential

inverse transform for function U(k) is defined as

uðxÞ ¼
X1
k¼0

UðkÞðx� x0Þk
n o

: ð2Þ

Combining Eqs. (1) and (2), we get

uðxÞ ¼
X1
k¼0

1

k!

dkuðxÞ
dxk

� �
x¼x0

ðx� x0Þk ð3Þ

which implies that the concept of differential transform is derived from Taylor

series expansion, but the method does not used to evaluate the derivatives sym-

bolically. Some basic operations of the one-dimensional differential transform are

listed in Table 1. Proofs of the given operations in Table 1 can be extracted from

[14–17].

Table 1 Some operations of the

dimensional differential

transformation

Original function Transformed function

uðxÞ ¼ wðxÞ � vðxÞ UðkÞ ¼ WðkÞ � VðkÞ
uðxÞ ¼ cvðxÞ UðkÞ ¼ cVðkÞ
uðxÞ ¼ ekx UðkÞ ¼ kk

k!

uðxÞ ¼ wðxÞvðxÞ
UðkÞ ¼

Pk
r¼0

WðrÞVðk � rÞ

uðxÞ ¼ dðnÞ

dxðnÞ
vðxÞ UðkÞ ¼ ðkþnÞ!

k! Vðk þ nÞ
uðxÞ ¼ xn

UðkÞ ¼ dðk � nÞ ¼ 1; k ¼ n

0; otherwise

�
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4 Basic idea of the new fractional laplace differential transform
method (FLDTM)

In order to illustrate the solution procedure of the fractional laplace differential

transform method for the FPDEs, we consider the following general nonlinear

FPDE:

Da
t uðx; tÞ þ R½x�uðx; tÞ þ N½x�uðx; tÞ ¼ f ðx; tÞ; t 2 Rþ

0 ; x 2 R; 0\a 6 1 ð4Þ

where Da ¼ oa

ota
and R½x�; N½x� corresponds to linear, nonlinear operator in x,

respectively while f (x, t) is a continuous function. For simplicity, we disregard all

boundary and initial conditions of Eq. (4). They can be used in similar procedure.

Let’s start with to apply the laplace transformation on both sides of Eq. (4) with

respect to t. Thus, we get:

L Da
t uðx; tÞ

� �
þ L R½x�uðx; tÞ þ N½x�uðx; tÞ½ � ¼ L f ðx; tÞ½ �:

Now, by using Definition 1.6, we obtain the following ordinary differential

equation which can be solved via DTM.

Duðx; sÞ þ Nuðx; sÞ ¼ qðx; sÞ ð5Þ

where uðx; sÞ ¼ L uðx; tÞ½ �. Here, D ¼ d
dx
þ d 2

dx2
þ � � � þ d n

dxn
; n 2 N; is a linear opera-

tor; N is a nonlinear operator, and q (x, s) is a known analytical function.

Then, applying DTM to both sides of the Eq. (5) yields to the following recursive

system:

AðkÞUðk þ nÞ þ FðkÞ ¼ QðkÞ ð6Þ

where AðkÞ is the coefficient of Uðk þ nÞ which is differential transform of Duðx; sÞ:
F(k),Q(k) are the transformations of Nuðx; sÞ; qðx; sÞ, respectively. As mentioned

before, for the sake of simplicity, we ignore initial and boundary conditions. Nat-

urally, if the equation representing the system (4) is transformed into Eq. (6), we

have to transform also the initial and boundary conditions given (4) into new forms

that will be used to represent in Eq. (6). This will give us U (k), k ¼ 0; 1; . . .; n� 1.

By using U(k), k ¼ 0; 1; . . .; n� 1and Eq. (6), we can iteratively obtain

UðkÞ; k ¼ n; nþ 1; nþ 2; . . .. Here, it must be noted that U(k) values are the

components of the spectrum of uðx; sÞ. Finally, we get approximate solution of the

Eq. (5) in the following form:

uðx; sÞ ¼
X1
k¼0

UðkÞxk: ð7Þ

Taking the inverse Laplace transform with respect to s from both sides of Eq. (7),

we get uðx; tÞ which is the solution of Eq. (4).

Instead of Eq. (4), let us consider the system
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Dai
t uiðx; tÞ ¼ Ai u1ðx; tÞ; . . .; unðx; tÞð Þ; mi � 1� ai �mi; i ¼ 1; 2; . . .; n; mi 2 N

ð8Þ

where Ai are nonlinear operators and uiðx; tÞ are unknown functions of fractional

partial differential equations (FPDEs). Taking Laplace transform on both sides of

Eq. (8), we obtain

L Dai
t uiðx; tÞ

� �
¼ L Ai u1ðx; tÞ; . . .; unðx; tÞð Þ½ �; i ¼ 1; 2; . . .; n:

In view of Definition 1.6. and initial conditions, we obtain the system (9) in below

of ordinary differential equations which can be solved via DTM.

saiL uiðx; tÞ½ � �
Xmi�1

k¼0

sai�k�1u
ðkÞ
i ðx; 0Þ ¼ L Ai u1ðx; tÞ; . . .; unðx; tÞð Þ½ �; i ¼ 1; 2; . . .; n

ð9Þ

after this modification, rest of the solution can be obtained by above same analog.

5 Convergence analysis and error estimation of DTM

Recently, Odibat et al. [23] proved the sufficient condition for convergence of

generalized differential transform method and estimate the maximum absolute

truncated error of the fractional power series. In case of a ¼ 1 the generalized

differential transform method reduces to the classical differential transform method.

In this section, convergence and error estimation of differential transform method

which is a ¼ 1 case in Odibat et al. [23] is given for the convenience of the reader.

The convergence of differential transform method can be obtained by following a

similar argument in Odibat et al. [23]. Moreover based on sufficient condition for

convergence, an error estimation of the solutions can be also obtained with the same

analog with Odibat et al. [23].

As we mention before in Sect. 3, the main steps of the differential transform

method are the following. First, we apply the differential transform Eq. (1) to the

given problem, and then the result is a recurrence relation. Second, solving this

relation and using the differential inverse transform Eq. (2), we can obtain the

solution of the problem as uðxÞ ¼
P1

k¼0 UðkÞðx� x0Þk, where U(k) is the

differential transform of u(x).

The fundamental operations of the differential transform method consists in

obtaining power series expansion for the solutions of non-linear models containing

derivatives about the initial time x0,

uðxÞ ¼
X1
k¼0

akðx� x0Þk; x � I; ð10Þ

where I ¼ ðx0; x0 þ rÞ; r[ 0: Now, we are ready to give the convergence results.
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Theorem 4.1 Let /kðxÞ ¼ akðx� x0Þk, then the series solution
P1

k¼0 /kðxÞ, defined
in Eq. (10), converges if 90\c\1 such that k /kþ1ðxÞ k � c k /kðxÞ k; 8k� k0,

for some k0 2 N.

Now we will give the proof of Theorem 4.1.

Proof Let ðC½I�; k : kÞ the Banach space of all continuous functions on I with the

norm k f ðxÞ k¼ maxx2I jf ðxÞj. Let Snf g1n¼0 be the sequence of partial sums

Sn ¼ /0ðxÞ þ /1ðxÞ þ � � � þ /nðxÞ;

where /kðxÞ ¼ akðx� x0Þk. We know that every Cauchy sequence is convergent in

Banach space. So if we were able to prove that Snf g1n¼0 is a Cauchy sequence in this

Banach space then it’s complete the proof. For this purpose, consider

k Snþ1 � Sn k ¼k /nþ1ðxÞ k � c k /nðxÞ k � � � � � cn�k0þ1 k /k0
ðxÞ k

¼ cn�k0þ1maxx2I j/k0
ðxÞj:

For every n;m 2 N; n�m[ k0; we have

k Sn � Sm k ¼k
Xn�1

j¼m

ðSjþ1 � SjÞ k �
Xn�1

j¼m

k ðSjþ1 � SjÞ k ð11Þ

�
Xn�1

j¼m

cj�k0þ1maxx2I j/k0
ðxÞj ¼ 1� cn�m

1� c
cm�k0þ1maxx2I j/k0

ðxÞj ð12Þ

and because 0\c\1, we obtain

lim
n;m!1

k Sn � Sm k¼ 0:

Therefore, Snf g1n¼0 is a Cauchy sequence in the Banach space ðC½I�; k : kÞ, so it is

convergent.

Now we will prove the error estimation of the DTM.

Simply, using the fact that k /kðxÞ k¼ jakjmaxx2Iðx� x0Þk, the sufficient con-

dition for convergence in Theorem 4.1 can be replaced by the following condition

lim
k!1

j akþ1

ak
j:maxx2Iðx� x0Þ\1:

Consequently, the series solution uðxÞ ¼
P1

k¼0 akðx� x0Þk, where x 2 I, converges

if limk!1 j akþ1

ak
j\1=maxx2Iðx� x0Þ. If the series

P1
k¼0 akðx� x0Þk converges, and

then the function uðxÞ is said to be analytic function at x0 [24].

Theorem 4.2 Assume that the series solution
P1

k¼0 /kðxÞ, where

/kðxÞ ¼ akðx� x0Þk, converges to the solution u(x). If the truncated seriesPm
k¼0 /kðxÞ is used as an approximation to the solution u(x), and then the

maximum absolute truncated error is estimated as
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k uðxÞ �
Xm
k¼0

/kðxÞ k � 1

1� c
cm�m0þ1maxx2I jam0

ðx� x0Þm0 j; ð13Þ

for any m0 � 0, where am0
6¼ 0:

Proof From Theorem 4.1, following inequality Eq. (12), we have

k Sn � Sm k � 1� cn�m

1� c
cm�m0þ1maxx2I jam0

ðx� x0Þm0 j ð14Þ

with n�m�m0 for any m0 � 0, where am0
6¼ 0. Since 0\c\1, we have

1� cn�mð Þ\1, and so, the inequality (14) can be reduced to

k Sn � Sm k � 1

1� c
cm�m0þ1maxx2I jam0

ðx� x0Þm0 j;

Clearly, when n ! 1; Sn ! uðxÞ. Hence, inequality () is obtained. This completes

the proof of Theorem 4.2.

As a conclusion, Theorem 4.1 states that the power series solution, given in

Eq. (), converges to an exact solution under the condition that 90\c\1 such that

k /kþ1ðxÞ k � c k /kðxÞ k; 8k� k0, for some k0 2 N. In other words, if we define,

for every i� k0, the parameters,

ciþ1 ¼
k /iþ1ðxÞ k
k /iðxÞ k

; k /iðxÞ k6¼ 0

0; k /iðxÞ k¼ 0

8<
:

i 2 N [ f0g where k /iðxÞ k¼ maxx2I jaiðx� x0Þij, then the series solutionP1
k¼0 /kðxÞ converges to an exact solution, u(x), when 0� ci\1; 8i� k0.

Moreover, as we state in Theorem 4.2, the maximum absolute truncation error is

estimated to be k uðxÞ �
Pm

k¼0 /kðxÞ k � 1
1�b b

m�m0þ1maxx2I jam0
ðx� x0Þm0 j, where

b ¼ maxfci; i ¼ m0 þ 1;m0 þ 2; . . .;mþ 1g.

6 Results and discussion

In this section, the applicability of the algorithm will be demostrated by using some

examples. All the results are calculated by using the software Maple.

Example 5.1 We consider the following homogeneous time fractional partial

differential equation

oau x; tð Þ
ota

¼ o2u x; tð Þ
ox2

þ ou x; tð Þ
ox

þ u x; tð Þ ; t� 0; 0\a 6 1 ð15Þ

subject to the initial and boundary conditions

uðx; 0Þ ¼ e�x; uð0; tÞ ¼ EaðtaÞ; uxð0; tÞ ¼ �EaðtaÞ: ð16Þ
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As above, we use the notation uðx; sÞ ¼ L uðx; tÞ½ � for the Laplace transform of u:
Operating the Laplace transform on both sides in Eq. (15) with respect to t and after

using the differentiation property of Laplace transform for fractional derivative, we

obtain

saL uðx; tÞ½ � � sa�1uðx; 0Þ ¼ L uxx þ ux þ u½ �:

Application of the proposed method summarized above gives

d2u

dx2
þ d u

dx
þ ð1� saÞu ¼ �sa�1e�x ð17Þ

u ð0; sÞ ¼ sa

sðsa � 1Þ ;
d u

dx
ð0; sÞ ¼ �sa

sðsa � 1Þ : ð18Þ

This is a constant coefficient second order ODE. To solve above problem (17)–(18)

by means of DTM, the recurrence equation can easily be constructed as follows

Uðk þ 2Þ ¼ �1

ðk þ 1Þðk þ 2Þ ðk þ 1ÞUðk þ 1Þ þ ð1� saÞUðkÞ þ sa�1 ð�1Þk

k!

" #

ð19Þ

Uð0Þ ¼ sa

sðsa � 1Þ ; Uð1Þ ¼ �sa

sðsa � 1Þ : ð20Þ

Components of the spectrum of u, U(k), can be calculated by utilizing the recurrence

relation (19) and the transformed initial conditions (20). From the inverse transform

of DTM given by Eq. (2) and via Eq. (3), we get the approximate solution of the

problem (17)–(18) in series form

uðx; sÞ ¼ sa

sðsa � 1Þ 1� xþ 1

2!
x2 � 1

3!
x3 þ � � �

� �
: ð21Þ

Taking the inverse Laplace transform on both sides of Eq. (21) with respect to s, we

have

uðx; tÞ ¼ L�1 uðx; sÞ½ � ¼ EaðtaÞ 1� xþ 1

2!
x2 � 1

3!
x3 þ � � �

� �
: ð22Þ

If a ¼ 1=2, then we get uðx; tÞ ¼ E1=2ð
ffiffi
t

p
Þ
P1
k¼0

ð�1Þkxk
k! which is in complete agreement

with [25].

As a special case when a ¼ 1 in Eq. (22), we reproduce the solution of the

problem (15)–(16) as follows:

uðx; tÞ¼et 1� xþ 1

2!
x2 � 1

3!
x3 þ � � �

� �
: ð23Þ
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So, the exact solution of Eqs. (15) and (16) in a closed form of elementary function

will be u x; tð Þ ¼ e�xþt. As we see, the proposed hybrid technique provides a closed

form approximation for this problem. The convergence and the accuracy of the

solution series in (23) when it is truncated at level n� N are analyzed by calculation

the absolute errors En which is defined as follows: En ¼j uexactðx; tÞ � unðx; tÞ j
where uiðt; xÞ ¼

Pi
k¼0

Pi
h¼0 Uðk; hÞtkxh; i� N and uexactðx; tÞ denotes the exact

solution of the equation.

Figure 1 shows the error E4 of approximate solutions at a ¼ 1. We can say that

En is decreasing by n. So convergence of the method is promising in numerically.

For theoretical convergence further analysis is required.

Example 5.2 In this example, we consider the time fractional partial differential

equation [26] of the form

oau x; tð Þ
ota

¼ o2u x; tð Þ
ox2

þ o

ox
ðxu x; tð ÞÞ ð24Þ

subject to the initial and boundary conditions

uðx; 0Þ ¼ 1; uð0; tÞ ¼ EaðtaÞ; uxð0; tÞ ¼ 0 ð25Þ

where t[ 0; x 2 R; 0\a� 1. As the previous application, applying Laplace

transform first on both sides of Eq. (24) with respect to t gives

L Da
t uðx; tÞ

� �
¼ L uxx þ ðxuÞx

� �
:

Using the method described in Sect. 4, as we have employed in Example 5.1, the

recurrence equation can be ready constructed as follows

Fig. 1 E4 ¼ juexact � u4ðx; tÞj for a ¼ 1
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d2u

dx2
þ d

dx
ðxu Þ � sau ¼ �sa�1;

u ð0; sÞ ¼ sa

sðsa � 1Þ ; u xð0; sÞ ¼ 0:

Then,

Uðk þ 2Þ ¼ �1

ðk þ 1Þðk þ 2Þ ð1� saÞUðkÞ þ ðk þ 1Þ
Xk
r¼0

dðr � 1ÞUðk þ 1� rÞ þ dðkÞsa�1

" #
;

ð26Þ

Uð0Þ ¼ sa

sðsa � 1Þ ; Uð1Þ ¼ 0: ð27Þ

Components of the spectrum of u, U(k) , can be calculated by utilizing the recur-

rence relation (26) and the transformed initial condition (27).

The inverse transform of DTM given by Eq. (2) and via Eq. (3) results in

uðx; sÞ ¼ 1

s1�aðsa � 1Þ : ð28Þ

Applying the inverse Laplace transform on both sides of Eq. (28) with respect to s,

the FLDTM solution of Eqs. (24) and (25) can be constructed as follows:

uðx; tÞ ¼ L�1 uðx; sÞ½ � ¼ L
�1 1

s1�aðsa � 1Þ

� �
¼ EaðtaÞ

which is precisely the exact solution. As a special case when a ¼ 1, the FLDTM

solution of the problem (24)–(25) has the general pattern form which is coinciding

with the exact solution in terms of elementary function

uðx; tÞ ¼ et:

The proposed solution of the problem (24)–(25) obtained by FLDTM at any x level

for a ¼ 1:0; a ¼ 0:75; a ¼ 0:50 and a ¼ 0:25 can be seen in Fig. 2.

Example 5.3 Consider the following nonlinear time-fractional partial differential

equation in the following form

oau

ota
þ 1

2

o

ox
uð Þ2�uð1� uÞ ¼ 0

with the initial and boundary conditions

uðx; 0Þ ¼ e�x; uð0; tÞ ¼ EaðtaÞ; uxð0; tÞ ¼ �EaðtaÞ

where t[ 0; x 2 R; 0\a� 1 [27]. Using the method described in Sect. 4, similar

to previous examples, we obtain the following solution:
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uðx; tÞ ¼ EaðtaÞ
X1
k¼0

ð�1Þkxk
k!

:

Example 5.4 In this example, we illustrate the applicability of FLDTM for solving

system of fractional partial differential equations. Consider the following system of

linear fractional partial differential equations

oau

ota
� ov

ox
þ vþ u ¼ 0;

oav

ota
� ou

ox
þ vþ u ¼ 0;

8>><
>>:

ð29Þ

subject to

uðx; 0Þ ¼ sinhðxÞ; vðx; 0Þ ¼ coshðxÞ; uð0; tÞ ¼ sinhð�atÞ; vð0; tÞ ¼ coshð�atÞ
ð30Þ

where t[ 0; x 2 R; 0\a� 1. Using the method, as we have employed in pre-

vious examples, setting a ¼ 1; we obtain

uðx; tÞ ¼ sinhðx� tÞ; vðx; tÞ ¼ coshðx� tÞ ð31Þ

which gives us the exact solution of (29)–(30).

Fig. 2 2D graphical representation for the solution of the problem (24)–(25) for different values of a
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7 Conclusion

In this paper, we proposed a new method called fractional Laplace differential

transform method which combines Laplace transformation method and Differential

Transform Method. The idea of the method is to convert Fractional Partial

Differential Equations by Fractional Laplace Differential Transform Method into

ordinary differential equations and then, to solve ordinary differential equations by

using Differential Transform Method. The proposed method is successfully applied

to different equations. From the obtained results, it is show that the fractional

Laplace differential transform method yields very accurate approximate solutions

by using only a few iterations. The main superiority of the proposed method is the

simplicity of computing the coefficients of series expansion by using only algebraic

calculus in the fractional case. However, other analytic methods such as Adomian

decomposition method, Homotopy analysis method and Variational iteration

method need the integration and differentiation operators which are difficult to

use in this case. Thus, it can be concluded that Fractional Laplace Differential

Transform Method can be applied a wide class of fractional partial differential

equations arising in various fields of science and engineering.
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