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Abstract

This work provides the Legendre spectral projection (Galerkin and collocation),
iterated Legendre spectral projection, Legendre spectral multi-projection and iter-
ated Legendre spectral multi-projection methods to approximate the solution of
weakly singular Hammerstein integral equations of mixed type. The convergence
rates of approximate solutions to the exact solutions are obtained for all the above
four methods in both L? and infinity norm. The comparison of convergence rates for
all these methods have been discussed. We also have shown that iterated Galerkin
improves over Galerkin, multi-Galerkin improves over iterated Galerkin and iterated
multi-Galerkin improves over multi-Galerkin in Z? norm using Legendre polynomial
bases.
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1 Introduction

We consider the following weakly singular Hammerstein integral equation of mixed
type

m 1
u(s) — Z/ ki(s, )yt u@)) dr = f(s), =1 <s<1, ¢))
i=1 /-1
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where the source function f, the kernels k;(.,.) and the nonlinear functions (., .)
fori=1,2,...,m are known and u is the unknown function to be determined in a
Banach space X. We consider the kernel k;(.,.) as weakly singular type which is of
the form

ki(sv [) = mi(sv t)g(xls - tlv (2)
my(s,t) € C([—1,1] x [-1,1]) and
) = x 1 if 0<a<l,
8\ logx,  if a=1.

As a reformulation of boundary value problem, this type of problem (1) arises in
nonlinear physical phenomenon such as electromagnetic fluid dynamics [3].

Several authors have used numerical methods such as projection methods (Galer-
kin and collocation), Petrov-Galerkin method, degenerate kernel method and
Nystrom method ([6-8, 11, 12, 15]) to solve the various linear and nonlinear integral
equations because these integral equations can’t solve explicitly. Integral equations
of type (1) with smooth and weakly singular kernel were solved numerically in ([2,
5,9, 10, 13, 14, 18]) using piecewise polynomials as bases. In piecewise polynomial
based projection methods the number of partitions should be increased to obtain
more accurate approximate solution. So, one has to solve a large system of nonlinear
equations, which take lots of time to compute. Therefore, many spectral methods
have been developed by using global polynomials in last some years. In the global
polynomial based projection methods, if 7, denotes either orthogonal or interpola-
tory projection operator, then || P, ||, is unbounded.

We are interested to solve numerically the Hammerstein integral equations of
mixed type with weakly singular kernel using Legendre spectral projection, iter-
ated Legendre spectral projection methods. To improve convergence rates further,
Legendre multi-projection and iterated Legendre multi-projection method have been
used. We evaluate the convergence rates in all the above four methods in both L2 and
infinity norm, even if || P, ||, is unbounded. We have given a comparison of error
bounds in all the methods.

We have organized this paper in the following way. We have discussed the
abstract framework for the Legendre spectral projection methods for Hammerstein
integral equations of mixed type with the weakly singular kernels in Sect. 2. The
convergence rates of approximated solution with exact solution have been discussed
using spectral projection, iterated spectral projection, spectral multi-projection and
iterated spectral multi-projection methods in Sects. 3, 4, 5 and 6, respectively, in
both L? and infinity norm using Legendre polynomial bases. However, in the end,
we have added a remark through which, we have given the comparison of error
bounds in all the methods.

Throughout this paper, we assume c is a generic constant which may differ and is
independent of n.
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2 Hammerstein integral equation of mixed type with weakly
singular kernel

In this section, we set up an abstract framework for the Hammerstein integral equation
of type (1) with weakly singular kernel of type (2) on the Banach space X = C[—1, 1]
or L*[—1, 1]. Throughout the paper, the following assumptions are made on £, k,(.,.)

and y;(., u(.)):

i fec[-1,1],
(i) s;= sup |ms, 1) <ocofori=1,2,...,mandM =Y
si€l-L11
(i) M, = sup |8ls = 1l*dr < co,forl <a < 1.
sel-1,11J -1
(iv) The nonlinear functions y;(t, u) are continuous on[—1, 1] X Rfori = 1,2, ... ,m.
y;(t, u) are Lipschitz continuous in u, i.e., for any u;, u, € R, 3 constants
¢;>0,i=1,2,...,msuch that

lll’

lwit,u)) — wi(t,up)| < ciluy —uyl, V1 e [-1,1],
and/; = sup,_;, %
(v) The functions 1// )(t u(t)) exist and are Llpschltz continuous in u, i.e., for any
u;, u, € R, Iconstants ¢; > 0, i = 1,2, ..., m such that

v V) =y V)| < gluy —wl Ve [-1,1),

and [, = sup,_, 5 _, ¢ This implies y""(,,.) € C([-1,1] X R).
Define the integral operator KC; : X = X, i=1,2,...,mby

(Kyuls) = [: k;(s, Dw;(t, u(t))dt, s € [-1,1].
Then the equation (1) can be written in the following operator equation
U= i Kiyi(u) =f. 3)
i=1
Next, we define the operator 7 on X by

Tu=f+ Z Kiy,(u), u e X, 4)
i=1

then the equation (3) can be written as

u=Tu. 5)
Define the Fréchet derivatives of 3" | K;y;(u) at uy by
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m m 1
D K (wpuis) = Y / (s, Dy D (e, ug(1)uo)dr.
i=1 i=1 /-1

Lemma 2.1 ([16]) Let my(s,t) € C([—1,1]1 X [-1,1]) and g,|s — t| be the weakly
singular part of the kernel k,(s,t) for 1 <i < m. Then for any s,,s, € [-1, 1], we
have the followings:

1
@) lim/ |m(sy, 1) — m(s,, 1)|>dt = 0, for1 <i <m,

S1752 )

. . 1
(i) lim /] 8o 181 — ] — g4lsy — t]]*dr - 0, forz <a <l

s1=8, J_

The next theorem shows the existence and uniqueness of the solution of equation

5).

Theorem 2.2 Let X =C[-1,1], f€ X and g,|s —t| satisfies the assumption
(iii) with my(.,.) € C([=1,1] X [=1,1]) and s; = sup c;_y 1 Im(s,0)| < co. Let
y,(t, u(t)) € C([-1, 1] X R) satisfy the assumption (iv) with \/2M,Ml, < 1, where
M= E:’;l s; and l; =sup,_;, ¢ Then the operator equation Tu=u has a
unique isolated solution uy € X, i.e., T uy = u.

Proof The proof follows exactly by using similar technique given in Theorem-2.4 of
[12]. O

We will first approximate the space X by a finite dimensional space X, . We consider
X, = span{d>0, brsnns d)n} as the sequence of Legendre polynomial subspaces of X of
degree < n. Define Ly(s) =1/ 21; 1q’)i(s), i=0,1,...,n. Since L; and L’s are

polynomials

1

1
(Li,Lj> = / Ly(H)L(n)dt = / L(nL(ndt =6, (6)
-1 -1

fori,j=0,1,...,n.

Then the Legendre polynomials {LO, L,... ,L,,} be the orthonormal bases for the
subspaces X, of X of degree < n. Now we need to introduce the Legendre orthogonal
and Legendre interpolatory projection operator.

Let PnG : X = X, be the orthogonal projection defined by

Pou = Z (u.L)L;, ueX, @)
0

J=

where (u,L,) = [ u()L;(t)dr.
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Let {10, Ty, ... ,Tn} be the zeros of Legendre polynomial of degree n + 1 and define
the interpolatory projection Pnc : X - X, by

Pfu eX,, Pncu(f,») =u(r;),i=0,1,....,n,ue X (8)
Now onwards, we assume that the projection operator P, : X — X, is either orthog-
onal projection PnG or interpolatory projection Pnc for notational convenience.

Lemma 2.3 ([4]) Consider P, = PnG or PHC as the projection operator is defined to
be Legendre orthogonal projection or Legendre interpolatory projection operator.
Then the following conditions hold:

(i) Foru € C[-1,11,||Pull;2 < pllully, where p is a constant independent of n.
(i) There exists a constant ¢ > 0 such that for anyu € X and any n € N,

|l — Pull < C¢in>£ lu =l = 0asn — oo.
S

(iii)) Foranyu € C'[—1, 1], there exists a constant ¢ independent of n such that
1P = ullpz < en™ u®]l 2,
3
1P7u—ullyy < eni ™ [Ju®|l
1
1PCu—ullyy < cn2 ™" [lu®|l .
(iv) Foranyu € C'[—1, 1], there exists a constant ¢ independent of n such that
1
[ — PnGl/l”Do < cen27V@u™),
where V(u) denotes the total variation of u®.
Note that||u — P,u||, - 0asn — oo foranyu € C[-1,1].
Lemma 2.4 ([1]) Let X be a Banach space and T, T, € BL(X). If T, is norm con-
vergent to T or T, is v-convergent to T and (I — T)™! exists and bounded on X, then
(I — T,)" " exists and uniformly bounded on X for sufficiently large n.
3 Legendre spectral projection methods
In this section, Legendre spectral projection methods for weakly singular Hammerstein
integral equation of mixed type are being discussed. The convergence rates for approxi-
mated solution with exact solution have been evaluated in both L? and infinity norm.

The Legendre spectral projection methods for the equation (3) is to find an
approximate solution u,, € X, such that

u, — Zl pnniwi(un) = pnf (9)
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IfprP, = PnG, then the above scheme leads to Legendre Galerkin method, whereas if
P, = Pnc, we get the Legendre collocation method.
Let 7, be the operator defined by

m

=Y PRy ) +Pf. ueX
i=1

Then equation (9) can be written as
u, = Tu,.

We need the following lemma and theorem for the convergence rates of the approxi-
mate solution u, to the exact solution .

Lemma 3.1 Foranyu, v € L*[-1,1]0rC[-1,1], the followings hold

Y Kwg) = Y K@) < /MM Nlug = ull 2, (10)
i=1 i=1 )
DK () = Y Ky @ | vl < VMMbllug = ull 2Vl (11)
| i=1 i=1 1 e
D Ky o) = D Ky ) | vl < VMM llug = ull [Vll2- (12)
| =1 i=1 - 0

Proof Using Lipschitz continuity of y,(., u(.)) and Cauchy-Schwarz inequality, we
obtain

DKy ug) = Y (K (w)
i=1 i=1

(&)

1
Z / mi(s, 08,15 — tl[w;(t, ug(1)) — w2, u(1)]dr
-1

= sup
sel-1,1]
m 1
< sup |my(s, )] sup / |8als — 11yt up(0) — wi(t, u(1))]|de
i=1 St€l-1.1] s€E[— -1
m l
< sup ciZsi sup ||ga s—t|||Lz</ g (1) — u(®)] dt)
i=1,2,....m i=1 se[—1,
< VMM lug — ull 2,
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which completes the proof of first inequality. Similarly, using Lipschitz continuity
and Cauchy-Schwarz inequality, we obtain

lZ(’CMY(“o) - Z(/ciw’(u)] v
i=1 i=1

m 1
< sup Y / my(s, g, ls — 1] [wf“"’(t,uo(t))—w}"’”(t,u(z»]v(z)dt
sel-1.11 107 |/ -1
< sup |m;(s, 1)]

=1 stel-11]

1
[
m

1
1 2
< sup g ) s; sup |lg,ls — 1|l </ |u (t)—u(t)lzlv(t)lzdt>
i:1,2,?.,mq; be[p eA\J, (13)

< VMM [lug = ull 2]Vl o

which completes the proof of (11). From estimate (13), we get

< VMM |lug = ull [Vl 2+

gals = 1w up0) = v )|

D (K (i) - Z(lciw,)’(u)]
i=1 i=1

This completes the proof of the lemma. O

Theorem 3.2 Let 37" (K;w;) (uy) be the Fréchet derivative of Y | (Kw;)(u) at u,.
Then||(I —=P,) X1, (K (up)||,» = Oasn — oo.

Proof To prove Z;’;l(IC,-q/i)’ (uy) 1s a compact operator, we have to show that
Z;’;l (K;w;) (ug) is uniformly bounded and equicontinuous.
Now using Cauchy-Schwarz inequality, we obtain

= sup
se[-1,1]

DK (ugu

i=1

/ Z my(s, 08, 1s — thy P, up()u(r)dt

< sup sup ’w“’”(r uo(t))‘z sup  |my(s, )|

i=1,2,....mte[-1,1] —1 St€[-L1]

1
x/ |8y |s — tlu(®)|dt
-1

< sup d; ZS llgals =t 2 lluell 2

i=12,....m i=1
<Md/M, ||ull,» £ Md\/2M,||ul| ., (14)
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0.1 .
where d; = sup,¢[_; ; |q/l.( (t, uy(t)) and d = ' 1s;lp d;. Hence, Z:."zl(lCl-y/i)’(uO) is
i=1,2,....m

uniformly bounded. Next to show equicontinuity, consider

D) (oyuls,) = Y () (g)usy)

i=1 i=1

m 1
< sup sup]lu/i(o’])(l,uo(l)ﬂz / |Umi(s1, g, lsy — 1l
i=1 /-1

i=12,...mte[-1,1

_mi(SZs t)ga|s2 - tl]u(t)|dt9

m

1
<dY sw sy / lgalsy = 1] = gals, — u(oldr
-1

i=1 s,te[—1,1

1 1
+d ; /_] |m;(sy, 1) — my(sy, D18, |5, — tlu(t)|de. s

Now using Cauchy-Schwarz inequality and Lemma 2.1 in the above estimate, we
obtain

m m

D) (ughusy) = Y ) (uphu(s,)

i=1 i=1

1 2
< dM</ |8alsy — 2] — &alsy — tllzdt> lluell 2
-1

1
m

1 2
+d2< / |mi<s],t>—mi<s2,t)|2> gals> = 12 el
i=1 -1

-0 as s, = s,.

This proves that )" (K;y;)' (1) is equicontinuous. Hence by Arzeld-Ascoli’s theo-
rem ," (Kw;) (1) is a compact operator.
Let B be a closed unit ball in X. Thus, S = { X" (K;w,) (ug)u : u € B} is rela-
tively compact set in X. By using Lemma 2.3, we get
‘u€B }
12

=sup
12

:sup{ll(I—Pn)yIILz : yeS} -0 asn — oo.

m

(I =P, Y () (o)
i=1

=

(I =P, Y () (wp)u

i=1

Thus, the proof is completed. a

For rest of the paper, we assume that 1 is not an eigenvalue of the operator
Z;il(lciwi)’(uo)~

@ Springer



Legendre spectral projection methods for weakly singular... 395

Theorem 3.3 Let u, € C'[—1,1], r > 1. Then for sufficiently large n, the oper-
ator (1 —7;’ (uy)) is invertible, i.e., there exists a constant A, >0 such that
(T — 7:,,(”0))_1”L2 <A, <o0. Also the equation (9) has a unique solution
u, € B(uyg,6) = {u : |lu—uyl|l,2 < 6} for some 6 > 0. Moreover, there exists a con-
stant 0 < q < 1, independent of n such that

an

a
—— <lu, —uoll> < ;
1+¢ 1—¢g

where a,, = (T — T, (o))~ (T, (ug) — T (up))l ;2.

Proof Using Theorem 3.2, we get

(T, () = T ) @)l 2

Z(/c,-w,o'(uO)] ()

P, - 1)
i=1

12

< llull;2 = 0, as n = 0.

12

P, = 1) Y (K (ug)
i=1

This shows that 7./(u,) is norm convergent to 7’(uy) in L*norm. Since 1 is not
an eigenvalue of T'(u,), (I —T'(uy)) is invertible. Then by the Lemma 2.4,
T-T7' (uy))~! exists and is uniformly bounded on X for sufficiently large n, i.e.,
there exists a constant A; > 0 such that||(Z — Tn’(uo))‘1 2 <A < .

Using || P,ull;2 < pllull, and estimate (11) for any u € B(u,, 5), we get

m m

17,/ o) = T @)ll 2 = D, PO () = D P, (K )
i=1 i=1

12
<p|| Q0w (wg) = D (K ()
i=1 i=1 o0

Now using the estimate (16) and ||(Z — Tn’(uo))‘1 ;2 < A,, we obtain

sup ||(T — 7;’(“0))_1(7;’(“0) - Tn/(u))”LZ <A ”Tn/(uo) - Tn,(“)”LZ

iyl 2 <6
<A VMMLS < q.

Choosing 6 in such a way that g € (0, 1), this proves the equation (4.4) of Theorem-2
of [19].
Now using Lemma 2.3, we get
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a, =T = T (o)™ (T, (ug) = T )l 2
< AT, (ug) = T o))l 2

:A1

(P, = T) ) [(Cw) (o) +f]
i=1

j3 (17)
=A P, = Dugll2 < Alcn_rllug)llu — 0asn — oco.

Choose n large enough such that @, < 6(1 — ¢), then equation (4.5) of Theorem-2 of
[19] is satisfied. Then by applying Theorem-2 of [19], we get

<y = gl < 2
1+qg "~ n o r=1_yq
where a, = ||(T - ’/jq’(uo))‘l(’];(uo) — T (ug))ll2- This completes the proof. O

Theorem 3.4 Let u, € C'[—1,1]. Let uf be the Legendre Galerkin and uf be the
Legendre collocation approximation of the equation (9). Then the following hold

G - c _
1uC = ugll o = O™, NuS = ugll, = O™,

G 1 c 1
148 = tollee = O( "), 1S = wgll o, = O(7").

Proof The proof of estimates in L?> norm follows directly from Theorem-3.3. Using
equations (3) and (9), and || P, ||, < clogn (cf., Page-147, [3]), we have

D Py + Pof = = Y (K ug)
i=1 i=1

lt, = sl =
<P g(lC,-u/,-)(u,,)— 2(1@%)(%)1
+|@,-D| 2(1@%)(%) +f|
<clogn i(/ciw,)(un) - i(/ciw(uo)
Dl ) (18)

Using estimate (10) in the first term of the right hand side of estimate (18), we get

M, — upllee <V MMl clogn|lu, — uyll;2

+ 1P, = Dugll.. (19)
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Using u,, = uf and u, = uf, then using Lemma 2.3, we obtain the desired results.
O

4 Iterated Legendre spectral projection methods

In this section, the iterated Legendre spectral projection methods for Hammer-
stein integral equations of mixed type with weakly singular kernels have been
discussed. The rate of convergence for iterated approximate solution with exact
solution have been evaluated for both L% and infinity norm.

The iterated approximate solution 1, corresponding to the approximate solu-
tion u, given by equation (9) is defined as

%=;WMMJH. (20)

If u,= uf in equation (20), we get iterated Legendre Galerkin solution and if

u, = ”f’ then we get iterated Legendre collocation solution. To discuss the conver-
gence of the iterated approximate solution 1, to the exact solution u,, we need the
following theorem.

Theorem 4.1 Let uy € C'[-1,1], r > 1 and 4, be the iterated Legendre Galerkin
approximation ﬁf or iterated Legendre collocation approximation uf of uy. Then the
following holds

2, — upllee <VMMI(1 + Myclogn)llu, — ugll 2 llu, — gl

+(1+Mjclogn) S[l_lPl] [(hGs, ), (P, = ()],

where h(s, 1) = Y ki(s, w2, ug(1)).

Proof The steps of the proof follows similarly as in Theorem-4.1 of [16]. So, we
omit it. O

Theorem 4.2 Let u, € C'[-1,1], r > 1 and ’ﬁf be the iterated Legendre Galerkin
approximation of u,. Then the following holds

1
~ ~ %1+ clogn),  fori<a<l,
7 = ugll2 < V2T =gl < { <, (I Helosm. o fory<a
cn”27"(1 + clogn)logn, fora=1.

Proof From Theorem-4.1, we have

W,C,; =gl SVM,MIH(1 +M3clogn)||uf - “0||L2||“,C,; =gl

+ (1 + Msclogn) s[u%)” [(h(s,.), (Pf — D)(ug)())].
sel[—1,

2n
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Since P,? be the orthogonal projection from the space X into X,,, then we have

(w, X =POHuy =0, VweEX,.

By using Holder’s inequality, Lemma 2.3, and Theorems 2 and 3 of [17], we obtain

sup [(h(s,.), (PY = D)(up)()) < sup [(h(s,.) = d(s,.), (PE = T)(up)())]

se[-1,1] se[-1,1]

<llhy = Gyl 1Py = D))l

I 1
cn2 s for - <a<l,
SV(Mg)) _1l_, 2
cn 27" logn, fora=1,

(22)

where ¢, € X,. Now using Theorem-3.4 and estimate (22) in estimate (21), we
obtain

1
||ufl; — iyl (1 + clogn)en™"nz™"

1
1, 1
cn2 7Y, f0r5<a<1,

+(1+c10gn){ .

cen 2 "logn, fora =1,

< cn%_r_”’(l + clogn), for % <a<l,
a cn_%_r(l +clogn)logn, fora=1.

Hence,
(1 4 clogn),  forl<a<1
~ ~ cn:? clogn), or-<a<l,
78— ull 2 < V20— ugllg < {7, iy 2
cn 2 '(1+clogn)logn, fora=1.
Thus, the proof is completed. O

Theorem 4.3 Letu, € C'[-1,1], r > land ﬁf be the iterated Legendre collocation
approximation of u,. Then the following holds

I = ugllz < V2IES = wglloy < (14 clogmen™.
Proof From Theorem-4.1, we have

~C c c
i, = uglloe SVMML(1 + Msclogmllu, — ugll 21w, — uplle

+(1+ Miclogn) sup (h(s, ), (P€ = D). P

Using Cauchy-Schwarz inequality and Lemma 2.3, we get
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Legendre spectral projection methods for weakly singular... 399

sup [(h(s,.), (P€ = D)) < sup Al I(PE = D)l
se[—1,1] se[-1,1]

B 24

< sup(ihyllzen” up .

sel-1,1]
Substituting estimate (24) and Theorem-3.4 in equation (23), we obtain
~ 1
||u$ — iyl Sc(1 +clogn)en™n2™" + ¢(1 + clogn)en™
<(1 + clogn)cn™.
Hence,
I = upllz < V2IES = wglloy < (1 +clogmen™.

This completes the proof. O

5 Legendre spectral multi-projection methods
To improve the results further, we use now the Legendre spectral multi-projection
methods for weakly singular Hammerstein integral equations of mixed type. Define the

multi-projection operator (IC”Yiu/i) X = Xfori=1,2,...,mby

Ky wdw) = P,y w) + Iy )(P,u) = P, () (P, u). (25)

The multi-projection method for equation (3) is to find an approximate solution
u! € X such that

Wl = Y (K wa) = f. (26)
i=1

IftpP, = PnG, then equation (26) leads to multi-Galerkin method and if P, = Pnc, then
equation (26) leads to multi-collocation method. Let

7M@) = Y KN v +f, ueX,
i=1
then equation (26) can be written as

“24 = TnM(ul:I).

The Fréchet derivative of 7™y at u is given by
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T (ug) = Y (KM ) (up)
i=1

m m

=)' P () + Y (K (Poug)P,
i=1 i=1

= ) P (P,ug)P,.

i=1

To discuss the convergence rates of ufl” to uy, we need the following lemma and
theorem.

Lemma 5.1 Forany x,y € X, we have

m m

D) (0 = D) 3

i=1 i=1

p @7)
< VMMLp[1 + V2p(1 + plix =yl -

Proof Using estimate (11), we obtain

m

DMy (0 = KMy ()
i=1 i=1

L2

<

P k@ - Yy o))
i=1 i=1

LZ
(T =P)| L0w) @0 = Y (Kw) PP,
i=1

i=1

—+

L2

<p ;uciw,»)'oo - ;(/Ciwi)’(y)

oo

+ V21 +p)|| Y K P) = Y () (P,y)
i=1 i=1

(o9

< pVMLML|Ix =yl + V2p(1 + p)A/MLML || P,x — Pyl
= pVMuML 1+ v 2p(1 + p)llix = yll 2.

The proof is completed. O
Theorem 5.2 Letu, € C'[—1,1], r > 1. Then the operator (I — 7;M/(u0)) is invert-

ible on C[—1, 1] for sufficiently large n, and there exists a constant A, > 0 independ-
ent of n such that ||(I — 7:11""'(140))_1 2 <A, < .
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Proof For any u € X, we have
T (ug) = T (up)ull 2

” TP~ DK ) - Z(P — D) PP, |u

L2
m

@, -1 3 e ) — YK )P,

i=1 i=1

+ Y ) )P, = Y (K (Pyitg)P, |
i=1 i=1

12

(P, = 1) ) (Kw) (o)X = P, u
i=1

12

P = D] Tk @) = Y 0w @) | Py
i=1 i=1

2 (28)

The first term of right hand side of estimate (28) becomes

P, -1 Z(IC,»W,-)'(MO)(I —Pu
i=1

12

P, = 1) Y () (up)

i=1

(T =P, ull- (29)

L2

(P, = 1) Y () (ug)

i=1

<(+p) lull -

12

Using equation (12) and Lemma 2.3 in the second term of right hand side of esti-
mate (28), we obtain

(P =D Tk wy) = Y (K Pyag)| Py
i=1 i=1

< \/5(1+p)

< V201 + p) /MMy |ty — Pt | [Pt 2
< V2Myp(1 + pMLen” " |[ul || llull 2. (30)

L2

[ Z(lc,.w,.)’(uo) - Z(/CHI/,')’(PMO)] P,u
i=1 i=1

[e)

Substituting estimates (29) and (30) in estimate (28), and then using Theorem-3.2,
we obtain
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(P, = 1) Y () (ug)

i=1

7™ (ug) = T (up)ll 2 <(1 +p)

LZ
+V2M,p(1 + p)Mben® " |[u .,
-0 asn—->owandf<r=1,2,--.

Hence, 7 M/(uo) is norm convergent to 7'(u,) in L?>-norm for r > f. Since 1 is not
an eigenvalue of (Ky) (i), (I — T'(uy)) is invertible on X. Then by Lemma 2.4,
T-T7 M'(uo))‘1 exists and is uniformly bounded on X, for some sufficiently large
n, i.e., there exists some A, > 0 such that |[(Z — Tn’w(uo))‘1 ;2 <A, < oo. Thus, the
proof is completed. O

Theorem 5.3 Let u, € C'[—1,1], r > 1. Then for sufficiently large n, the equation
(26) has a unique solution ufl” € B(uy, 6) = {u : |lu—ugll, <6} for some 6 > 0.
Further, there exists a constant 0 < g < 1, independent of n such that

B
1+g¢

n

< My = wollz < 77 .

where B, = (I — TM (ue)) " (TM(uy) — T (up))|l 12

)

Proof Using Lemma 5.1, we obtain

I7M () = T W)l 2 =

DMy () = (M) ()
i=1 i=1

p (31)
<pV/MLMLI1 + V2p(1 + p)]llug — ull 2 < 6.

Using ||(T — Tn"/"’(uo))‘l [l,2 <A, and estimate (31), we obtain

sup (T = TM )T (ug) = TM )l 2

lu—uoll 2 <6

SANTM (ug) = T W)l 2 < Ayed < g.

Choosing 6 in such a way that 0 < g < 1. This proves equation (4.4) of Theorem-2
of [19].
Now using Theorem-5.2 and Lemma 2.3, we obtain
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B SAT M (ug) = T ()l 2

<A,

D PuK ) + Y (Kwr)(P )
i=1 i=1

= Y PRI Poug) = Y (Kyr)ug)
i=1 =1

1 12

<A,

P, = D| Y 0w~ Y (wr)Pyuo)|
i=1 i=1

L2

<A \V2p + 1)

DK ug) = Dy )(P,up)
i=1 i=1

o (32)
<A, \2M,MI,(p + Dlluy — P,ugyll,2 = 0as n — oo.

Choosing n sufficiently large such that §, < 6(1 — g). Then equation (4.5) of Theo-
rem-2 of [19] is satisfied. Hence, by applying Theorem-2 of [19], we obtain

ﬁn n
Tg <1 ~tolle < 725
where 8, = [[(Z — T™ (uy)) "' (TM(uy) — T (u))ll ;2. Thus, the proof of the theorem
is completed. O

Lemma 5.4 Letu, € C[—1, 1]. Then the following holds

m m

DK (Pyutg) = Y (K ug)

i=1 i=1

ML M, || Pug — ugll 211 P g — ol o

(&)

+ sup [(A(s,.), (P, = Duy())l,

se[—1,11]

where h(s, 1) = Y ki(s, Oy "V (t, uy (1))

i=1 "

Proof Using Mean value Theorem, we obtain

| X w @) = Y v
i=1 i=1

m

1
> / ks, D1, Pyag(0) = wilt, ug()v(n)de
i=1 /-1

m

1
> / ki(s, O[w "V (1, g + 05(P g — ug)(O) P,y — ug)v(1)dt
i=1 /-1

>

where 0 < 6; < 1. Using Lipschitz continuity of y/l.(o’l)(t, ug(.)) and Cauchy-Schwarz
inequality, we have
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[ Z(]Ciy/i)(PnuO) - Z(]Cil//i)(uo)] v(s)
i=1 i=1

m 1
0,1
< | Z/ m(s, t)gals_tl[ll/i( )(h Uy
i=1 /-1

+ 05(P,uy — up)(0)) — <°’”<z uo(1))]

X (P g — uo)v(t)dt / k(s 0w Pt ug (0P — ug)(1)dt

< s gy s mollvl / 185 = 11CP 1ty = 1) (Pt — ) ds
i=1,2,....m im] SI€
1

+ Vil h(s, )(P,uq — uy)(t)dt

-1

1

S ML\ M, || Py = ugll 2 1Pug — tpllo VIl + IVllao| [ A8, DD(Pug — ug)()de |,

-1

where h(s,t) = Zl L ki(s, t)t//(o 1)(t uo(1)). Thus, we obtain the desired result. O

Lemma 5.5 Letuy, € C'[-1,1], r > 1. Let unM be the approximation of u,. Then the
following holds
||unM — |l < (c+clogn)|luy — ufflle +n " (c+ clogn)llug)llw

Proof We have

M
Il = uoll oo

Z(]Cn zwl)(uM) - Z(KIW[)(MO)

©

)(w)h) + Z(lc wP,ul)

m

=Y P )Pty - Z(IC,-w»(uo)
i=1 =1

[

P X et = Y o)
i=1 i=1

[

+ || D K P,ulhy - Z(/C,-w,-)(Pnu(o
i=1 =1

+ [P Zecwor - Z(/C,-w,xp,luy)]

+ Zac W) (P ug) — Z(IC W)

i=1

o

w7 Soewoum - Yoo
i=1 i=1 )
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Using || P,|| < clogn (cf., Page-147, [3]) and estimate (10) with Lemma 2.3 in the
above estimate, we obtain

1) = wgll o <clognM /Myl 1) = wgll 2 + MA/MoL Pt = Pl 2
+ clog nM/My, || Pu — Pl + MA/M,L | Py — ugll 2
+clog nM\/J\le lotg — P ugll 12
<clognllu! — uglls + el — ugll +clog ! gl
+ cn_’||u(()r)||oo +cn" logn||ug)||00

=(c + clogm)[|uM — ugll,» + n~"(c + clog n)llug)lloo.
This completes the proof. O

Theorem 5.6 Letu, € C'[—1,1], r > 1. Then the Legendre multi-Galerkin approx-
imation unM G of u, satisfies the followings

L 1
cnz for- <a<1
||uil”’G—u0||Lz < 1 2 ’
cn” 27" logn, fora =1,
||unM'G — Uyl < (c+clogn)en™.

Proof Using Theorem-5.3, and proceeding similarly as in estimate (32), we obtain

6 = woll> <52
Sﬁ, I = T )™ (T g) = T gl
<Ay V2(p + D) Y K ug) = Y (K )(PCuq) )
i=1 i=1 s

Since Pf be the orthogonal projection from the space X into X, then we have

(w, X =POHuy =0, VweE X,

Using Lemma 5.4 with Holder’s inequality and Lemma 2.3, we get

D Kwug) = Y (K )(Pug)
i=1 i=1

[e]

< Mly\/My||PCuy — ugll 2P ug — uglle + sup  [(h(s, ), (PE = Dug()|

se[-1,1]

< e U V) + sup 1G85, )= 46,0, (P = D)

se[-1,1

L ory (r r
< e ug o V) + by = Sl P = Digll o, (34)
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where ¢, € X,. Using Theorems 2 and 3 of [17] in estimate (34), we get

D Kwg) = Y Ky )(Puy)

i=1 i=1

(o]
1
<en> ™ Ul | V)

(4

1
cn2 %, fori <a<l,
+ V(Mg)) _1_, 2
cn 27" logn, fora =1,

cn%_’_”, fori<a<l,
< | 2
cn” 2 "logn, fora =1. (35)

Combining estimates (33) and (35), we obtain

1
{ cn2 7Y, for % <a<l,

M.G
||'4,, —”()HLZS _l_,
cn 27" logn, fora =1.

(36)
Again, from Lemma 5.5 and using estimate (36), we get
1
PR for L <a <1,
1476 — ugll o <(c +clogm)q ", or; <a
cn” 2 "logn, fora =1,
+n7"(c+clogmlul’ |l
<(c + clogn)cn™".
Hence, the proof is completed. O

Theorem 5.7 Let u, € C'[—1,11, r > 1. Then the Legendre multi-collocation
approximation uﬁl"’ € of uy satisfies the following

r

T € —ugl, < clc + clognn™.

M.C -
e, — upll;z < cn™, .

Proof As proceeding similarly as in equation (33), we obtain

M.C
lee —upll2 < ¢

D K = Y (K (PEug)
i=1 i=1

" ) (37)
Using Lemmas 5.4 and 2.3 with Cauchy-Schwarz inequality, we get
i(IC,-u/i)(uo) - i(/ciw,-)mfuo)
i=1 i=I o
< Ml /Ment ™ 0|2 + sup 1P = Dl (38)

se[—1,

-2, ()12 —r [, -
< My Myen™ |lug |12, + s[uP]] gl zen™"Mluy |l < cn™.
sel—1,
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Now combining estimates (37) and (38), we obtain
M,C -

”Mn —u0||L2 S cn r. (39)

Substituting estimate (39) in Lemma 5.5, we get
”le,c — Uyl <(c+clogn)en™ +n~"(c + clog n)||ug)||oo
<(c+ clogn)cn™.

This completes the proof. O

6 Iterated Legendre multi-projection methods

In this section, we discuss on the iterated Legendre spectral multi-projection meth-
ods for weakly singular Hammerstein integral equations of mixed type in both L?

and infinity norm.
M

The iterated approximate solution ¥ corresponding to the approximate solution
n

uﬁ” given by equation (26) is defined as follows:

W= Y +f.
i=1

(40)

To obtain the supercovergence results for the iterated approximate solution EnM to the

exact solution u,, we need the following lemmas.

Lemma 6.1 Forany x,y,z € X, the following holds

| Dk o= Fkuy 0] @
i=1 i=1
< clogn(c + clogn)||x — y|l;21|z]l o -

o0

Proof Using||P,||,, < clogn (cf., Page-147, [3]) and estimate (11), we obtain
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m m

H [ Xy - Yoty 0] @
i=1 i=1

(o]
m m

P Xk 0= Y ocw) o)
i=1 i=1

(T =P)| Y 0w) P = Y Kw) P)| P,z

i=1 i=1

IA

o

+

(o]

<clogn

[ X kw0 = Y e )] @
i=1 i=1

o

+ (1 +clogn)

[ > 6wy @0 - Y kw) PP
i=1 i=1

< clogn\/M,ML||x = yll211z]l
+ (1 + clogn)\/M,ML||Px — Pyl 2 1Pzl o
< clognyM,Mb||x = yl| 21zl

+ (1 + clogn)\/M,MLpclogn||x — y||,;2 |zl
= clogn(c + clogm)l|x = yl| 2 Izl - S

The proof is completed. O

Theorem 6.2 Let u, € C[—1,1]. Let ’ﬁf be the iterated approximation of u,. Then
the following holds

1% = uoll o
<[c+clogn(c+ clogn)]||unM - uollellunM — iyl + (1 +clogn)

x_sup |(h(s..).(P, = D| T KwPu0) = Y Kw(ug)| )]
1

s€[-1,1]

i=1 i=

Proof The steps of the proof follows similarly as in Theorem 4.1 of [16]. So, we
omit it. O

Theorem 6.3 Let uy, € C'[—1,1], r > 1. Then the iterated Legendre multi-Galerkin
approximation EHM ‘G of u, satisfies the followings
. . cn%_r_z", forl<a<l,
76 = ugll, <V207 = gl < (1 + clogn)? . 2
—3r 2 _
cn 2 '(logn)”, fora=1.
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Proof From Theorem 6.2, we have

~ MG MG
76 = ugllo <lc + clogn(c + clogml|uC — ug|l - llu

— iyl + (1 +clogn)

X sup |(h(s,.),(7)nG—I)
sel-1,1]

| Sk - Zokworru|o) @)

Since PnG be the orthogonal projection from the space X into X,,, then we have

(w, T =Puy=0, VweEX,.

By applying Holder’s inequality, estimate (35), and Theorems 2 and 3 of [17], we
obtain

m m

sup |(h(s, ), (PF = 1) L 0u)ug) = Y (Cu)PCug) | 0)]

se[—1,1] i=1 i=1

< |(h5 ~¢. Py =1) [ g(lcil//i)(uo) - il(lcil//i)(p,?uo)] (~)>|

i=

< lh; = &gl

(P8 = D Yo = YK w)PCuy)|
i=1 i=1

o0

< (1 +clogn) Z(/Cill/i)(uo)

i=1

= (K )(PCug)
i=1

cn™Y, for% <a<l,
cn'logn, fora =1,
(o]

1 24

: fori <a<1,
<(I+clogmd M, o=«
cn”2"(logn)?, fora =1, (43)

where ¢, € X,. Substituting estimate (43) and Theorem 5.6 in equation (42), we
obtain
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~M,G
||“,, — upl 2

~M,G
< V2@ — gl

1
e forlca<l,
S[c+clogn(c+clogn)]{cn2 o=«

cn_%_’ logn, fora =1.

1
~—r=2a
, for > <a <1,
X (¢ + clogn)en™ + (1 +clogn)2{ e or *

(log n)?, for a=1,

124
< +clogn?q M, for 3 <a<l,
“i7(logn)?, fora = 1.

This completes the proof. O

Theorem 6.4 Let uo E C'[-1,1], r > 1. Then the iterated Legendre multi-colloca-
tion approximation u € of uy satisfies the following

||uﬁlw’c — |l £ c(1+clogn)n™.

Proof From Theorem 6.2, we have

€ — gl <l + clogn(e + clog M€ — gl 2 €

— iyl + (1 +clogn)

x sup (s 0. P = D[ Y ey 44)
sel-1, i=1

- Y ) @lup)| )]
i=1

Using Cauchy-Schwarz inequality, Lemmas 2.3 and 5.4, we obtain

sup |(h(s, ), (PE = 1) X (o) = Y, ()P | 0)]
i=1 i=1

s€[—1,1]

< sup Al
sel-1,1]

PC - 1) Y K = Y (Ky)(PE “o)]
L i=1 %

<V2(1+p) s[u?1 I/l 2
NS

itg) = Y Ky (PEug)
i=1

o

<V2(1+p) sup. {1l Mlz\/Mzupncuo — gl 2 1P g — gl
NS

+ sup [(h(s, ), (PE = Dung()]
se[-1,1]

L) C
< e N V) + sup 1Al II(PE = Dugll

s€[—1,1]

(r) () =1,
llety " lloo V (at )+ses£1_1¥)l] gl 2en™ ug |l oo (45)

< e
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Substituting estimate (45) and Theorem 5.7 in equation (44), we obtain

||ﬁ2”’c — gl <[c+ clogn(c + clogn)lcn™"cn™"(c + clogn) + (1 + clogn)

1 _
x [cnz Nl Nl V) + o lhfen ’||ug>||w]

<c(1 +clogn)n™.

Hence, the result. O

Remark 6.5 Let u®, u¢, u¢, S be the Legendre Galerkin, Legendre collocation,
iterated Legendre Galerkin and iterated Legendre collocation approximations of u,
respectively. Let u¢, yM-C MG 7M-C be the Legendre multi-Galerkin, Legendre
multi-collocation, iterated Legendre multi-Galerkin, iterated Legendre multi-collo-
cation approximations of u.

From Theorems-3.4, 4.2, 4.3, 5.6, 5.7, 6.3 and 6.4, we observe the following con-
vergence rates in the respective methods.

Legendre projection methods:
r r

||unG—u0||Lz <cn™, ||u,f—u0||Lz <cn™’,

1_ 1_
||uf —upll, S en2™’, ”"‘S —upll, < en2™.

Iterated Legendre projection methods:

1
- 2771 log n), fori<a<l,
S = uglle < 4, U eloen 2=
en 27(1 +clogn)logn, fora =1,
1
- 2771 + clog n), fori <a<l,
S = ugll, < 4 O, U Heloen 2=

cn_%_’(l +clogn)logn, fora=1,
||ﬁf —upll2 < en”"(1 + clogn),

|IEZ§ —Upllo < en™"(1 + clogn).

Legendre multi-projection methods:

g 1
||unM’G “ gl < cn? , for s <a< 1,

1
cn” 27" logn, fora =1,
||unM’G — Uyl < (c+clogn)en™.

”MnM’C - M()”LZ < Cn_r,

||unM’C — Uyl < clc+clogn)n™.
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Iterated Legendre multi-projection methods:

~M,G ~M,G
176 — gl 2 V207 = ull.,
r—2a

1_ 1
<U+clognpy @7, 0 fra<ash

cn_%_r(log n)?, fora =1,

7€ — gl < V207 ~ gl < (1 +clogmn™.

We observe that

1. Tterated Galerkin improves over Galerkin, multi-Galerkin improves over Iterated
Galerkin and Iterated multi-Galerkin improves over multi-Galerkin in L? norm
using Legendre polynomial bases.

2. However, in infinity norm, multi-Galerkin improves over Galerkin and iterated
multi-Galerkin improves over iterated Galerkin using Legendre polynomial bases.

3. In collocation method, no improvement recorded from collocation to multi-col-
location and iterated collocation to iterated multi-collocation in L norm.

4. Ininfinity norm, multi-collocation improves over collocation method. However,
there is no improvement from iterated collocation to iterated multi-collocation
method.
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