

ORIGINAL RESEARCH PAPER

Complement of the generalized total graph of commutative rings

Tamizh Chelvam Thirugnanam¹ · Balamurugan Mariappan¹

Received: 28 January 2018/Accepted: 18 May 2018/Published online: 4 June 2018 © Forum D'Analystes, Chennai 2018

Abstract Let *R* be a commutative ring with identity, *Z*(*R*) its set of zero-divisors, and *H* a nonempty proper multiplicative prime subset of *R*. The generalized total graph of *R* is the simple undirected graph $GT_H(R)$ with the vertex set *R* and two distinct vertices *x* and *y* are adjacent if and only if $x + y \in H$. In this paper, we investigate several graph theoretical properties of the complement $\overline{GT_H(R)}$. In particular, we obtain a characterization for $\overline{GT_P(R)}$ to be claw-free or unicyclic or pancyclic. Also, we obtain the clique number and chromatic number of $\overline{GT_P(R)}$ and discuss the perfect, planar and outer planarity nature for $\overline{GT_P(R)}$. Further, we discuss various domination parameters for $\overline{GT_P(R)}$ where *P* is a prime ideal of *R*.

Keywords Commutative rings \cdot Total graph \cdot Complement \cdot Domination \cdot Gamma sets

Mathematics Subject Classification 05C75 · 05C25 · 13A15 · 13M05

1 Introduction

Throughout this paper *R* denotes a commutative ring with identity, Z(R) its set of all zero-divisors, $Z^*(R) = Z(R) \setminus \{0\}$ and U(R) its units. Anderson and Livingston [5] introduced the *zero-divisor graph* of *R*, denoted by $\Gamma(R)$, as the undirected simple graph with vertex set $Z^*(R)$ and two distinct vertices $x, y \in Z^*(R)$ are adjacent if and

Tamizh Chelvam Thirugnanam tamche59@gmail.com; tamizhchelvam@msuniv.ac.in
Balamurugan Mariappan bm4050@email.com

¹ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627 012, India

only if xy = 0. Subsequently, Anderson and Badawi [4] introduced the concept of *total graph* of commutative rings. The *total graph* $T_{\Gamma}(R)$ of R is the undirected graph with vertex set R and for distinct elements $x, y \in R$ are adjacent if and only if $x + y \in Z(R)$. Tamizh Chelvam and Asir [7, 15–18] have extensively studied about total graphs of commutative rings.

Recently, Anderson and Badawi [4] introduced the concept of generalized total graph of commutative rings. A nonempty proper subset H of R to be a multiplicative prime subset of R if the following two conditions hold: (1) $ab \in H$ for every $a \in H$ and $b \in R$; (2) if $ab \in H$ for $a, b \in R$, then either $a \in H$ or $b \in H$. For example, H is a multiplicative prime subset of R if H is a prime ideal of R or H is a union of prime ideals of R or H = Z(R), or $H = R \setminus U(R)$. For a multiplicative prime subset H of R, the *generalized total graph* $GT_H(R)$ of R is the simple undirected graph with vertex set R and two distinct vertices x and y are adjacent if and only if $x + y \in H$. The *unit graph* G(R) of R is the simple undirected graph with vertex set R in which two distinct vertices x and y are adjacent if and only if $x + y \in U(R)$. Tamizh Chelvam and Balamurugan [19] studied some graph theoretical properties of the generalized total graph of finite fields and its complement.

Let G = (V, E) be a graph with vertex set V and edge set E. The complement \overline{G} of the graph G is the simple graph with vertex set V(G) and two distinct vertices x and y are adjacent in \overline{G} if and only if they are not adjacent in G. We say that G is connected if there is a path between any two distinct vertices of G. For a vertex $v \in V(G)$, deg(v) is the degree of v. For any graph G, $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degrees of vertices in G respectively. K_n denotes the complete graph of order n and $K_{m,n}$ denotes the complete bipartite graph. For basic definitions in graph theory, we refer the reader to [10] and for the terms regarding algebra one can refer [13]. Note that if R is finite, then $\overline{GT_{Z(R)}(R)}$ is the unit graph [14].

Throughout this paper, we assume that *P* is a prime ideal of *R* with $|P| = \lambda$ and $|R/P| = \mu$. In this paper, we study about the complement $\overline{GT_P(R)}$ of the generalized total graph $GT_P(R)$. In Sect. 2, we study the graph theoretical properties namely girth, clique number, chromatic number and Eulerian of $\overline{GT_P(R)}$. In Sect. 3, we obtain a characterization for $\overline{GT_P(R)}$ to be claw-free or unicylic or pancyclic or planar or outerplanar. In Sect. 4, we study about various domination parameters of $\overline{GT_P(R)}$ and further obtain domatic number of $\overline{GT_P(R)}$.

2 Graph theoretical properties of $GT_P(R)$

In this section, we discuss about some graph theoretical properties of $GT_P(R)$. More specifically, we discuss about girth and Eulerian of $\overline{GT_P(R)}$. Also, we obtain the independence number, clique number and chromatic number of $\overline{GT_P(R)}$. Let us start with some basic properties of $\overline{GT_P(R)}$.

For a prime ideal *P* of a commutative ring *R* which is not an integral domain with $|P| = \lambda$ and $|R/P| = \mu$, we have $|P| = |a_i + P| \ge 2$ for $a_i + P \in R/P$ for $1 \le i \le \mu$.

Since *R* contains identity 1, we denote 1 + 1 by 2. First we recall the following structure theorem for $GT_P(R \setminus P)$.

Theorem 1 [4, Theorem 2.2] Let *P* be a prime ideal of a commutative ring *R*, and let $|P| = \lambda$ and $|R/P| = \mu$.

- (i) If $2 \in P$, then $GT_P(R \setminus P)$ is the union of $\mu 1$ disjoint K_{λ} 's;
- (ii) If $2 \notin P$, then $GT_P(R \setminus P)$ is the union of $\frac{\mu-1}{2}$ disjoint $K_{\lambda,\lambda}$'s.

Assume that *R* is finite and $2 \in P$. Since |R| is finite, $R \cong R_1 \times \cdots \times R_q$ where each R_i is a local ring. Note that $P = P_1 \times \cdots \times P_q$ where $P_i \subseteq R_i$ for $1 \le i \le q$. Since *P* is a prime ideal in $R, P_i = Z(R_i)$ for exactly one $i, 1 \le i \le q$ and $P_j = R_j$ for $1 \le j \ne i \le q$. Since $2 \in P \subseteq Z(R), 2 \in P_i \subseteq Z(R_i)$ for some $i, 1 \le i \le q$. By [14, Corollary 2.3] $|R_i| = 2^{\alpha_i}$ where α_i is a positive integer. This implies that μ is even. Hence we get that μ is even if $2 \in P$ and μ is odd if $2 \notin P$. Throughout this paper, we consider the following partition of *R* into distinct cosets $a_0 + P, a_1 + P, \ldots, a_{\mu-1} + P$ of *P* with $a_0 \in P$.

(i) If
$$2 \in P$$
, then $R = P \cup (\bigcup_{i=1}^{\mu-1} (a_i + P));$

(ii) If
$$2 \notin P$$
, then $R = P \cup \bigcup_{i=1}^{\frac{\mu-1}{2}} (a_i + P) \bigcup_{i=1}^{\frac{\mu-1}{2}} (-a_i + P)$.

Now, using Theorem 1, we obtain the degrees of vertices in $\overline{GT_P(R)}$.

Lemma 1 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then the following are true in $\overline{GT_P(R)}$.

(i) If $2 \in P$, then $deg(v) = (\mu - 1)\lambda$ for every $v \in R$; (ii) If $2 \notin P$, then $deg(v) = \begin{cases} (\mu - 1)\lambda & \text{for } v \in P; \\ (\mu - 1)\lambda - 1 & \text{for } v \in R \setminus P. \end{cases}$

Now, we observe some of the immediate consequences of Lemma 1.

Lemma 2 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then the following hold:

- (i) $GT_P(R)$ contains no isolated vertex;
- (ii) $\overline{GT_P(R)}$ contains no vertex of degree |R| 1;
- (iii) $GT_P(R)$ is complete μ -partite if and only if $2 \in P$;
- (iv) $\overline{GT_P(R)}$ is connected bi-regular if and only if $2 \notin P$. Moreover, $\Delta(\overline{GT_P(R)}) = \delta(\overline{GT_P(R)}) + 1;$
- (v) $GT_P(R)$ is connected.

The following Lemma follows from Theorem 1 and is useful throughout this paper.

Lemma 3 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then the following are true in $\overline{GT_P(R)}$.

- (i) Let $2 \in P$. Two distinct vertices x and y are adjacent in $GT_P(R)$ if and only if x and y are not in the same coset of P;
- (ii) Let $2 \notin P$. Two distinct vertices x and y are adjacent in $GT_P(R)$ if and only if $x \in a_i + P$ and $y \in R \setminus (-a_i + P)$ for some $i, 0 \le i \le \frac{\mu 1}{2}$.

Now we obtain the girth of $\overline{GT_P(R)}$.

Lemma 4 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then

$$gr(\overline{GT_P(R)}) = \begin{cases} 4 & \text{if } 2 \in P \text{ and } \mu = 2; \\ 3 & \text{if } 2 \in P \text{ and } \mu \ge 3; \\ 3 & \text{if } 2 \notin P. \end{cases}$$

Proof Assume that $2 \in P$. If $\mu = 2$, then by Lemma 2(iii), $\overline{GT_P(R)} = K_{\frac{|R|}{2},\frac{|R|}{2}}$ and so $gr(\overline{GT_P(R)}) = 4$.

If $\mu \ge 3$, then by Lemma 2(iii), $\overline{GT_P(R)} = K_{\underbrace{\lambda, \lambda, \dots, \lambda}}_{\text{winnes}}$. Since $\mu \ge 3$, choose $x \in M$

 $P, y \in a_1 + P, z \in a_2 + P$ and $S = \{x, y, z\}$. Then the subgraph induced by S is C_3 in $\overline{GT_P(R)}$ and so $gr(\overline{GT_P(R)}) = 3$.

Assume that $2 \notin P$. Note that, for $1 \le i \le \frac{\mu-1}{2}$, $|P| = |a_i + P| = |-a_i + P| \ge 2$. Let $S = \{x, a, b\}$ where $x \in P$ and $a, b \in a_i + P$ for some *i*. Then the subgraph induced by *S* is C_3 in $\overline{GT_P(R)}$ and so $gr(\overline{GT_P(R)}) = 3$.

Note that, a *clique* in a graph G is a complete subgraph of G. The order of the largest clique in a graph G is its *clique number*, which is denoted by $\omega(G)$. Now, we obtain the clique number of $\overline{GT_P(R)}$.

Lemma 5 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then

$$\omega(\overline{GT_P(R)}) = \begin{cases} \mu & \text{if } 2 \in P; \\ \frac{(\mu - 1)}{2}\lambda + 1 & \text{if } 2 \notin P. \end{cases}$$

🖄 Springer

Proof Suppose $2 \in P$. By Lemma 2(iii), $\overline{GT_P(R)}$ is complete μ -partite. Consider the set $S = \{x_0, x_1, \dots, x_{\mu-1}\}$ where $x_0 \in P$ and $x_i \in a_i + P$, for $1 \le i \le \mu - 1$. Clearly $\langle S \rangle = K_{\mu}$ is a maximum clique in $\overline{GT_P(R)}$ and so $\omega(\overline{GT_P(R)}) = \mu$.

If $2 \notin P$, then $R = P \cup (\bigcup_{i=1}^{\frac{\mu-1}{2}} ((a_i + P) \cup (-a_i + P)))$. Let $S = \{a_0\} \cup \bigcup_{i=1}^{\frac{\mu-1}{2}} (a_i + P)$ where $a_0 \in P$. By Lemma 3(ii), $\langle S \rangle$ induces a complete subgraph of order $\frac{(\mu-1)}{2}\lambda + 1$ in $\overline{GT_P(R)}$. Note that, any two elements in P are non-adjacent in $\overline{GT_P(R)}$. Also, the elements of $a_i + P$ and $-a_i + P$ are not adjacent. Thus S is a maximum clique in $\overline{GT_P(R)}$ and so $\omega(\overline{GT_P(R)}) = \frac{(\mu-1)}{2}\lambda + 1$.

An assignment of colors to the vertices of a graph *G* so that adjacent vertices are assigned different colors is called a *proper coloring* of *G*. The smallest number of colors in any proper coloring of a graph *G* is called the *chromatic number* of *G* and is denoted by $\chi(G)$. A set of vertices in a graph *G* is an *independent* if no two vertices in the set are adjacent. In the following lemma, we obtain the chromatic number of $\overline{GT_P(R)}$.

Lemma 6 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then

$$\chi(\overline{GT_P(R)}) = \begin{cases} \mu & \text{if } 2 \in P; \\ \left(\frac{\mu - 1}{2}\right)\lambda + 1 & \text{if } 2 \notin P. \end{cases}$$

Proof If $2 \in P$, then by Lemma 2(iii), $\overline{GT_P(R)}$ is complete μ -partite and so $\chi(\overline{GT_P(R)}) = \mu$.

If $2 \notin P$, then $R = P \cup \bigcup_{i=1}^{\frac{\mu-1}{2}} (a_i + P) \bigcup_{i=1}^{\frac{\mu-1}{2}} (-a_i + P)$. Note that , for $1 \le i \le \frac{\mu-1}{2}$, $\langle a_i + P \rangle = \langle -a_i + P \rangle = K_{\mu}$ in $\overline{GT_P(R)}$. By Lemma 3(ii), the elements of $a_i + P$ and $-a_i + P$ are not adjacent in $\overline{GT_P(R)}$. Hence one can use λ colours to the elements of $a_i + P$ and $-a_i + P$. Let $S = \bigcup_{i=1}^{\frac{\mu-1}{2}} a_i + P$ and $T = \bigcup_{i=1}^{\frac{\mu-1}{2}} (-a_i + P)$. Then $\langle S \rangle = \langle T \rangle = \bigcup_{\frac{\mu-1}{2}} K_{\lambda}$ in $\overline{GT_P(R)}$. Thus we require $\frac{(\mu-1)}{2} \lambda$ colours for the union $S \cup T$. Note that $\langle P \rangle$ is an independent set and each element of P is adjacent to every element of $S \cup T$ in $\overline{GT_P(R)}$. Assign a different color to all the elements of P. This implies $\chi(\overline{GT_P(R)}) = (\frac{\mu-1}{2})\lambda + 1$.

Corollary 1 ([10]) A nontrivial connected graph G is Eulerian if and only if every vertex of G has even degree.

Using Corollary 1, we state below a characterization for $\overline{GT_P(R)}$ to be Eulerian.

Lemma 7 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then the following are true:

- (i) If $2 \in P$, then $GT_P(R)$ is Eulerian if and only if λ is even;
- (ii) If $2 \notin P$, then $\overline{GT_P(R)}$ is not Eulerian.
- *Proof* Proof of (i) follows from Lemma 2(iii), Lemma 2(v) and Lemma 1(i). Proof of (ii) follows from Lemma 2(iv).

The vertex independence number (or the independence number) $\beta(G)$ of a graph G is the maximum cardinality of an independent set of vertices in G. In the following lemma, we obtain the independence number of $\overline{GT_P(R)}$.

Lemma 8 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then the independence number $\beta(\overline{GT_P(R)}) = \lambda$.

Proof Suppose $2 \in P$. Then by Lemma 2(iii), $\beta(\overline{GT_P(R)}) = \lambda$.

Suppose $2 \notin P$. Then *P* is an independent set in $\overline{GT_P(R)}$ and $|P| = \lambda \ge 2$. Assume that $S \subseteq V(\overline{GT_P(R)}) \setminus P$ is an independent subset.

Claim : $|S| \leq 2$.

Suppose $|S| \ge 3$. Let *x*, *y* and *z* be three distinct vertices in *S* such that $x \in a_i + P$, $y \in a_j + P$ and $z \in a_k + P$ for $1 \le i, j, k \le \mu - 1$.

Assume that any two of *i*, *j* and *k* are equal. Without loss of generality, let us take i = j. Then *x*, *y* are adjacent in $\overline{GT_P(R)}$ and so *S* is not an independent in $\overline{GT_P(R)}$.

Assume that *i*, *j* and *k* are all distinct. Suppose sum of at least any two of a_i, a_j and a_k is 0. Without loss of generality, let us assume that $a_i + a_j = 0$. Then *z* is adjacent with both *x* and *y*. Hence *S* is not an independent set in $\overline{GT_P(R)}$.

Suppose sum of any two of a_i, a_j and a_k is not equal to 0. Then $\langle S \rangle$ contains a K_3 , a contradiction to S is an independent set in $\overline{GT_P(R)}$. Hence $|S| \leq 2$. Since each element in P is adjacent to every element in $R \setminus P$ in $\overline{GT_P(R)}, P$ is a maximal independent set in $\overline{GT_P(R)}$ having order $\lambda \geq 2$ and so $\beta(\overline{GT_P(R)}) = \lambda$.

The *edge independence number* $\beta_1(G)$ of a graph *G* is the maximum cardinality of an independent set of edges. In the following lemma, we obtain the edge independence number of $\overline{GT_P(R)}$.

Lemma 9 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then the edge independence number

$$\beta_1(\overline{GT_P(R)}) = \begin{cases} \frac{|R|}{2} & \text{if } 2 \in P; \\ \left(\frac{\mu - 1}{2}\right)\lambda + \frac{\lfloor \lambda \rfloor}{2} & \text{if } 2 \notin P. \end{cases}$$

Proof Case 1. If $2 \in P$, then μ is even. Consider the partition $R = \bigcup_{i=0}^{\mu-1} (a_i + P)$ where $P = a_0 + P$. Let $S = \bigcup_{i=0}^{\frac{\mu}{2}-1} (a_i + P)$ and $T = \bigcup_{i=\frac{\mu}{2}}^{\mu-1} (a_i + P)$. Consider $E = \{\{x_j y_j\} : x_j \in S \text{ and } y_j \in T\}$ for $1 \le j \le \frac{|R|}{2}$. Clearly E is a maximal edge independent set in $\overline{GT_P(R)}$ and hence $\beta_1(\overline{GT_P(R)}) = \frac{|R|}{2}$.

Case 2. Assume that $2 \notin P$. Let $S_i = (a_i + P) \cup (-a_{i+1} + P)$ for $i \in \{1, \dots, \frac{\mu-3}{2}\}$ and $S_{\frac{\mu-1}{2}} = P \cup (-a_1 + P)$. Then $K_{\lambda,\lambda} \subseteq \langle S_i \rangle$ for each i in $\overline{GT_P(R)}$ and so $\beta_1(\langle S_i \rangle) = \lambda$. Since $\langle a_{\frac{\mu-1}{2}} + P \rangle = K_\lambda$, we have $\beta_1(\langle a_{\frac{\mu-1}{2}} + P \rangle) = \frac{|\lambda|}{2}$. Thus we have $\beta_1(\overline{GT_P(R)}) = (\frac{\mu-1}{2})\lambda + \frac{|\lambda|}{2}$.

3 Some characterizations of $\overline{GT_P(R)}$

In this section, we characterize when $GT_P(R)$ to be claw-free or unicylic or pancyclic or perfect. A graph *G* is said to be *unicyclic* if *G* contains exactly one cycle. A graph *G* is a *claw-free* if *G* does not have $K_{1,3}(a \text{ claw})$ as the induced subgraph.

Theorem 2 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R* with $|P| = \lambda$ and $|R/P| = \mu$. Then the following hold:

- (i) $\overline{GT_P(R)}$ is claw-free if and only if |P| = 2;
- (ii) $\overline{GT_P(R)}$ is unicyclic if and only if R is isomorphic to either of the rings $\mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_4, \frac{\mathbb{Z}_2[x]}{\langle x^2 \rangle}$.

Proof

(i) Assume that |P| = 2 and $S \subseteq V(\overline{GT_P(R)})$ with |S| = 4. Then $\langle S \rangle$ contains a C_4 as a subgraph and so $\overline{GT_P(R)}$ is claw-free. Conversely, assume that $\overline{GT_P(R)}$ is claw-free. Suppose $|P| \ge 3$. If $2 \in P$, then by Lemma 2(iii), $\overline{GT_P(R)}$ is $K_{\underline{\lambda}, \underline{\lambda}, \dots, \underline{\lambda}}$ where $\mu \ge 2$ and so $\overline{GT_P(R)}$ contains a $K_{1,3}$ as an

induced subgraph, a contradiction. Suppose $2 \notin P$. Let $S = \{u, v, w, x\}$ where $u, v, w \in P$, $x \in a_i + P$ for some $i, 1 \le i \le \frac{\mu - 1}{2}$. Then $\langle S \rangle = K_{1,3}$ in $\overline{GT_P(R)}$, a contradiction.

(ii) Assume that *R* is isomorphic to any one of $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_4 or $\frac{\mathbb{Z}_2[x]}{\langle x^2 \rangle}$. Then $\overline{GT_P(R)} = C_4$ and so $\overline{GT_P(R)}$ is unicyclic. Conversely, assume that $\overline{GT_P(R)}$ is unicyclic. Since *R* is not an integral domain, |R| is not a prime number. Then $|R| \ge 4$. Suppose $|R| \ge 6$.

Case 1. Let $2 \in P$. Then *R* satisfies any one of the following: (a) $\lambda = 2$ and $\mu \ge 4$; (b) $\lambda \ge 3$ and $\mu \ge 2$. In both the situations, $\overline{GT_P(R)}$ contains $K_{3,3}$ as a subgraph, a contradiction. Hence |R| = 4 and so *R* is isomorphic to either $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_4 or $\frac{\mathbb{Z}_2[x]}{|x|^2}$.

Case 2. Let $2 \notin P$. Since *R* is not an integral domain, $|P| = |a_i + P| = \lambda \ge 2$, for all $i, 1 \le i \le \frac{\mu-1}{2}$. Let $x_1, x_2 \in P$ and $y_1, y_2 \in a_i + P$ for some *i*. Let $S_1 = \{x_1, y_1, y_2\}$ and $S_2 = \{x_2, y_1, y_2\}$. Then $\langle S_1 \rangle = \langle S_2 \rangle$ are two different cycles in $\overline{GT_P(R)}$ and so $\overline{GT_P(R)}$ is not unicylic and hence no other *R* exists.

Note that a graph G is perfect if and only if both G and \overline{G} have no induced subgraph that is an odd cycle of length at least 5 [20, 8.1.2]. Using this, now we prove that $\overline{GT_P(R)}$ is perfect.

Theorem 3 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R* with $|P| = \lambda$ and $|R/P| = \mu$. Then $\overline{GT_P(R)}$ is a perfect graph.

Proof By Theorem 1, $GT_P(R)$ does not contain an odd cycle of length ≥ 5 as an induced subgraph. It remains to prove that $\overline{GT_P(R)}$ does not contain an odd cycle of length ≥ 5 as an induced subgraph.

Case 1. Assume that $2 \in P$. By Lemma 2(iii), $\overline{GT_P(R)}$ is complete μ -partite. If $\mu = 2$, then $\overline{GT_P(R)}$ is complete bipartite and so $\overline{GT_P(R)}$ does not contain any odd cycle.

Assume that $\mu \ge 3$ and $S \subseteq V(\overline{GT_P(R)})$ with $|S| \ge 5$. Consider the partition of $R = \bigcup_{i=0}^{\mu-1} (a_i + P)$ with $a_0 \in P$. If $S \subseteq a_i + P$ for some *i*, then $\langle S \rangle$ is totally disconnected in $\overline{GT_P(R)}$. If *S* is not contained in $(a_i + P)$ for some *i*, let $n = \max\{|S \cap (a_i + P)|\}$ for all *i*. Then $n \ge 1$ and $K_{n,|S|-n} \subseteq \langle S \rangle \subseteq \overline{GT_P(R)}$. Hence $\langle S \rangle$ contains a vertex of degree at least 3. From this, any cycle of length at least 5 cannot be an induced subgraph of $\overline{GT_P(R)}$.

Case 2. Assume that $2 \notin P$. Consider $R = P \cup \bigcup_{i=1}^{\frac{p-1}{2}} (a_i + P \cup -a_i + P)$. Suppose $S \subseteq V(\overline{GT_P(R)})$ with $|S| \ge 5$.

Case 2.1. Assume that $S \cap P \neq \phi$. If $S \subseteq P$, then $\langle S \rangle = \overline{K}_{|S|}$ in $\overline{GT_P(R)}$. If S is not contained in P, then the induced subgraph $\langle S \rangle$ of $\overline{GT_P(R)}$ contains a $K_{n,|S\setminus P|}$ where $n = |S \cap P|$. Hence $\langle S \rangle$ contains a vertex of degree at least 3 and so any cycle of length at least 5 cannot be an induced subgraph of $\overline{GT_P(R)}$.

Case 2.2. Assume that $S \cap P = \phi$. Then $S \subseteq \bigcup_{i=1}^{\frac{p-1}{2}} (a_i + P \cup -a_i + P)$. Let $A_i = (a_i + P) \cup (-a_i + P)$ for all $i, 1 \le i \le \frac{\mu-1}{2}$. Suppose $S \subseteq A_i$ for some i. If either $S \subseteq (a_i + P)$ or $S \subseteq (-a_i + P)$, then $\langle S \rangle = K_{|S|}$ in $\overline{GT_P(R)}$. If $S \cap (a_i + P) \ne \phi$ and $S \cap (-a_i + P) \ne \phi$, then either $|S \cap (a_i + P)| \ge 3$ or $|S \cap (-a_i + P)| \ge 3$. Then K_3 is a subgraph of $\langle S \rangle$ and in turn an induced subgraph of $\overline{GT_P(R)}$.

Assume that *S* is not a subset of A_i for some *i*. Then $S \cap A_i \neq \phi$ and $S \cap A_j \neq \phi$ for some $1 \le i \ne j \le \frac{\mu-1}{2}$. If $S \cap A_i \ne \phi$ for $1 \le i \le \frac{\mu-1}{2}$ and $|S \cap A_i| = 1$, then $\langle S \rangle$ contains a K_5 as a subgraph in $\overline{GT_P(R)}$. Suppose $|S \cap A_i| \ge 2$ for some *i*. Let $A_i = A_1, |S \cap A_1| \ge 2, n = |S \cap A_1|$ and $m = |S \cap \bigcup_{i=2}^{\frac{\mu-1}{2}} A_i|$. Since $|S| \ge 5$, either $n \ge 3$ or $m \ge 3$. Thus $K_{n,m}$ is a subgraph of $\langle S \rangle$. Hence, in this case also, $\overline{GT_P(R)}$ has no induced subgraph that is an odd cycle of length at least 5.

A graph G of order $m \ge 3$ is *pancyclic* [8, Definition 6.3.1] if G contains cycles of all lengths from 3 to m.

Theorem 4 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*, where $|P| = \lambda$ and $|R/P| = \mu$. Then $\overline{GT_P(R)}$ is pancyclic if and only if either $2 \notin P$ or $2 \in P$ with $\mu > 2$.

Proof Assume that $2 \notin P$. Consider the partition $R = P \cup \bigcup_{i=1}^{\frac{\mu-1}{2}} (a_i + P \cup -a_i + P)$. Let $P = \{x_{01}, x_{02}, \dots, x_{0\lambda}\}, a_i + P = \{x_{i1}, x_{i2}, \dots, x_{i\lambda}\}$ and $-a_i + P = \{y_{i1}, y_{i2}, \dots, y_{i\lambda}\}$ for $1 \le i \le \frac{\mu-1}{2}$.

Note that $\langle P \rangle = \overline{K}_{\lambda}$ and $\langle a_i + P \rangle = \langle -a_i + P \rangle = K_{\lambda}$ in $\overline{GT_P(R)}$. Let P_i and P'_i be spanning paths of length $\lambda - 1$ in $\langle a_i + P \rangle$ and $\langle -a_i + P \rangle$ respectively for $i, 1 \le i \le \frac{\mu - 1}{2}$.

If $\mu = 3$, then $C: x_{01} - x_{11} - x_{02} - x_{12} - x_{03} - \cdots - x_{0(\lambda-1)} - x_{1(\lambda-1)} - x_{1\lambda} - x_{0\lambda} - P_1' - x_{01}$ is a spanning cycle of length |R| in $\overline{GT_P(R)}$. By removing vertices one by one from $P_1' \setminus \{x_{11}\}, P \setminus \{x_{01}, x_{0\lambda}\}, P_1 \setminus \{x_{1\lambda}\}$, we get cycles of lengths $|R| - 1, |R| - 2, \dots, 4$ as subgraphs in $\overline{GT_P(R)}$. Also $x_{01} - x_{11} - x_{1\lambda} - x_{01}$ is a 3-cycle in $\overline{GT_P(R)}$. From this, we get cycles of length from 3 to |R| as subgraphs in $\overline{GT_P(R)}$.

If $\mu > 3$, then $C: x_{01} - x_{11} - x_{02} - x_{12} - x_{03} - \cdots - x_{0(\lambda-1)} - x_{1(\lambda-1)} - x_{0\lambda} - x_{1\lambda} - P_2 - P_3 - \cdots - P_{\frac{\mu-1}{2}} - P'_1 - P'_2 - \cdots - P'_{\frac{\mu-1}{2}} - x_{01}$ is a spanning cycle of length |R| in $\overline{GT_P(R)}$. By removing vertices one by one from the spanning paths $P'_{\frac{\mu-1}{2}}, P'_{\frac{\mu-3}{2}}, \dots, P'_1, P_{\frac{\mu-3}{2}}, \dots, P_2, P \setminus \{x_{01}\}, P_1 \setminus \{x_{11}, x_{1\lambda}\}$, we get cycles of lengths $|R| - 1, |R| - 2, \dots, 4, 3$ as subgraphs in $\overline{GT_P(R)}$. From this, we get cycles of length from 3 to |R| as subgraphs in $\overline{GT_P(R)}$. Hence $\overline{GT_P(R)}$ is pancyclic.

Assume that $2 \in P$ and $\mu > 2$. Note that $R = P \cup \bigcup_{i=1}^{\mu-1} (a_i + P)$ and $\overline{GT_P(R)}$ is complete μ -partite graph. Let $P = P_0 = \{x_{01}, \dots, x_{0\lambda}\}$ and $a_i + P = \{x_{i1}, \dots, x_{i\lambda}\}$ for $1 \le i \le \mu - 1$. Consider $C = x_{01} - x_{11} \cdots - x_{(\mu-1)1} - x_{02} - x_{12} - \cdots - x_{(\mu-1)2} - \cdots - x_{0\lambda} - \cdots - x_{(\mu-2)\lambda} - x_{(\mu-1)\lambda} - x_{01}$ in $\overline{GT_P(R)}$. Clearly *C* is a spanning cycle of length |R| in $\overline{GT_P(R)}$. By removing the vertices one by one from the sets $(a_{\mu-1} + P) \setminus \{x_{(\mu-1)\lambda}\}, a_{\mu-2} + P, \dots, a_2 + P$ and alternatively removing the vertices one by one from the sets $(a_1 + P) \setminus \{x_{11}\}$ and $P \setminus \{x_{01}\}$, we get the cycles of lengths $|R|, |R| - 1, \dots, 4, 3$ as subgraphs in $\overline{GT_P(R)}$. Thus $\overline{GT_P(R)}$ is pancyclic.

Conversely, assume that $2 \in P$. If $\mu = 2$, then $\overline{GT_P(R)} = K_{\lambda,\lambda}$ and so $\overline{GT_P(R)}$ contains no odd cycle, which is a contradiction to our assumption.

Now, we discuss about planarity and outerplanarity of $\overline{GT_P(R)}$. For this purpose, we recall the following results.

Theorem 5 ([10, Theorem 9.7]) A graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$.

Theorem 6 ([11, Theorem 11.10]) A graph G is outerplanar if and only if it does not contain a subdivision of K_4 or $K_{2,3}$.

Using the above theorems, we determine all finite commutative rings *R* for which $\overline{GT_P(R)}$ to be planar or outerplanar.

Theorem 7 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*, where $|P| = \lambda$ and $|R/P| = \mu$. Then the following hold:

- (i) If $2 \in P$, then $\overline{GT_P(R)}$ is planar if and only if R is isomorphic to any one of $\mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2, \frac{\mathbb{Z}_2[x]}{\langle x^2 \rangle};$
- (ii) If $2 \notin P$, then $\overline{GT_P(R)}$ is planar if and only if $R = \mathbb{Z}_6$;
- (iii) $\overline{GT_P(R)}$ is outerplanar if and only if R is either $\mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2$ or $\frac{\mathbb{Z}_2[x]}{\mathbb{Z}_2^2}$.

Proof

- (i) Assume that *R* is isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$ or $\frac{\mathbb{Z}_2[x]}{\langle x^2 \rangle}$. Then $\overline{GT_P(R)} = C_4$ and so $\overline{GT_P(R)}$ is planar. Conversely assume that $\overline{GT_P(R)}$ is planar. If $|R| \ge 8$, then any one of the following is true: (a) |P| = 2 with $\mu \ge 4$; (b) $|P| \ge 3$.
 - (a) Assume that |P| = 2 with $\mu \ge 4$. Then $\overline{GT_P(R)} = K_{2,2,\dots,2}$ and so $\overline{GT_P(R)}$ contains a $K_{3,3}$, as a subgraph. From this $\overline{GT_P(R)}$ is not planar.
 - (b) Assume that $|P| \ge 3$. Note that $\mu \ge 2$. Then once again $\overline{GT_P(R)}$ contains a $K_{3,3}$, as a subgraph and hence $\overline{GT_P(R)}$ is not planar.

If |R| = 6, by assumption on $R, R \cong \mathbb{Z}_6$ and $P = \langle 2 \rangle$. From this one can see that the graph $\overline{GT_P(R)}$ is $K_{3,3}$, which is not planar. From the above arguments, |R| = 4 and so R is isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$ or $\frac{\mathbb{Z}_2[x]}{\langle x^2 \rangle}$.

(ii) Assume that $R \cong \mathbb{Z}_6$. Since $2 \notin P, P = \langle 3 \rangle$. The planar embedding of $\overline{GT_P(\mathbb{Z}_6)}$ is given in Fig. 1 and so it is planar.

Conversely, assume that $\overline{GT_P(R)}$ is planar and $2 \notin P$. If $|R| \ge 9$, then any one of the following is true:

- (a) |P| = 2 with $\mu \ge 5$;
- (b) $|P| \ge 3$.

Fig. 1 $\overline{GT_{\langle 3 \rangle}(\mathbb{Z}_6)}$

- (a) Assume that |P| = 2 with $\mu \ge 5$. Then $GT_P(R) = K_2 \cup \bigcup_{\frac{\mu-1}{2}} K_{2,2}$ and so $\overline{GT_P(R)}$ contains a $K_{3,3}$, a contradiction.
- (b) Proof is trivial.
- (iii) By above (i) and (ii), it is enough to show that $\overline{GT_P(R)}$ is not outerplanar for $R = \mathbb{Z}_6$ and $2 \notin P$. For $R = \mathbb{Z}_6$ and $2 \notin P$, from the Fig. 1, $\overline{GT_P(R)}$ contains a $K_{2,3}$ and so $\overline{GT_P(R)}$ is not outerplanar.

4 Domination parameters of $\overline{GT_P(R)}$

In this section, we discuss about various domination parameters of $\overline{GT_P(R)}$. More specifically, we discuss about $\gamma_t, \gamma_c, \gamma_{cl}, \gamma_p, \gamma_s, \gamma_w$ and γ_i of $\overline{GT_P(R)}$. A nonempty subset S of V is called a *dominating set* if every vertex in $V \setminus S$ is adjacent to at least one vertex in S. A subset S of V is called a total dominating set if every vertex in V is adjacent to some vertex in S. A dominating set S is called a *connected (or clique) dominating* set if the subgraph induced by S is connected (or complete). A dominating set S is called an *independent dominating set* if no two vertices of S are adjacent. A dominating set S is called a *perfect dominating set* if every vertex in $V \setminus S$ is adjacent to exactly one vertex in S. A dominating set S is called a strong (or *weak) dominating set*, if for every vertex $u \in V \setminus S$ there is a vertex $v \in S$ with deg(v) > deg(u)(ordeg(v) < deg(u)) and u is adjacent to v. The domination number γ of G is defined to be the minimum cardinality of a dominating set in G and the corresponding dominating set is called as a γ -set of G. Similar definition is applicable for the total domination number γ_t , connected domination number γ_c , clique domination number γ_c , independent domination number γ_i , perfect domination number γ_p , strong domination number γ_s and the weak domination number γ_w . For all these definitions, one can refer Haynes et al. [12]. In the following Lemma, we obtain the domination number of $GT_P(R)$.

Lemma 10 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then $\gamma(\overline{GT_P(R)}) = 2$.

Proof By Lemma 2(ii), $\gamma(\overline{GT_P(R)}) > 1$. Let *x* and *y* be two distinct elements in *R* such that $x \in P$ and $y \notin P$.

If $2 \in P$, then by Lemma 3(i), *x* covers all the elements in $V(GT_P(R)) \setminus P$ and *y* covers all the elements in *P*. Hence $\gamma(\overline{GT_P(R)}) = 2$.

Assume that $2 \notin P$. Let $z \in V(\overline{GT_P(R)}) \setminus \{x, y\}$. If $z \in P$, then by Lemma 3(ii) z, y are adjacent in $\overline{GT_P(R)}$. Suppose $z \notin P$. Then by Lemma 3(ii) z, x are adjacent in $\overline{GT_P(R)}$. Therefore $\{x, y\}$ is a dominating set in $\overline{GT_P(R)}$. By Lemma 2(ii), $\{x, y\}$ is a minimal dominating set in $\overline{GT_P(R)}$. From this we get that $\gamma(\overline{GT_P(R)}) = 2$.

In view of Lemma 10, we have the following characterization of γ -sets in $\overline{GT_P(R)}$.

Lemma 11 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Then $S = \{x, y\} \subseteq V(\overline{GT_P(R)})$ is a γ -set in $\overline{GT_P(R)}$ if and only if *x*, *y* are in two distinct cosets of *P* in *R*.

Corollary 2 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then $\gamma_t(\overline{GT_P(R)}) = \gamma_c(\overline{GT_P(R)}) = \gamma_{cl}(\overline{GT_P(R)}) = 2$.

Proof Let $x \in P$ and $y \in V(\overline{GT_P(R)}) \setminus P$. By Lemma 11, $S = \{x, y\}$ is a dominating set of $\overline{GT_P(R)}$. By Lemma 3, x, y are adjacent in $\overline{GT_P(R)}$. Therefore S is a total dominating set of $\overline{GT_P(R)}$ and so $\gamma_t(\overline{GT_P(R)}) = \gamma_c(\overline{GT_P(R)}) = \gamma_{cl}(\overline{GT_P(R)}) = 2$.

A graph G is called *excellent* if, for every vertex $v \in V(G)$, there is a γ -set S containing v. Using Lemma 11, we have the following result.

Corollary 3 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then $\overline{GT_P(R)}$ is excellent.

Lemma 12 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then $\overline{GT_P(R)}$ has a perfect dominating set if and only if $2 \in P$ and $\mu = 2$.

Proof Assume that $2 \in P$ and $\mu = 2$. Then $\overline{GT_P(R)}$ is a complete bi-partite graph. Let $S = \{x, y\}$ where $x \in P$ and $y \in V(\overline{GT_P(R)}) \setminus P$. Then $S = \{x, y\}$ is a perfect dominating set of $\overline{GT_P(R)}$.

Conversely, assume that S is a perfect dominating set in $GT_P(R)$.

Suppose $2 \notin P$. Since *R* is not an integral domain, $|P| = |a_i + P| = |-a_i + P| \ge 2, 1 \le i \le \frac{\mu-1}{2}$. Let *x*, *y* be two distinct vertices in $V(\overline{GT_P(R)})$. If $x, y \in P$, then every $z \in V(\overline{GT_P(R)}) \setminus P$ is adjacent to both *x* and *y* and hence both *x* and *y* cannot be

in S.

Suppose $x \in P \cap S$ and $y \in P$ with $y \notin S$. Since *P* is an independent set, *x* and *y* are not adjacent in $\overline{GT_P(R)}$. Since *S* is dominating set, $\exists z_1 \in S$ such that z_1 and *y* are adjacent in $\overline{GT_P(R)}$. By Lemma 3(ii), $z_1 \in (a_i + P) \cup (-a_i + P)$ for some *i* where $1 \leq i \leq \frac{\mu-1}{2}$. Without loss of generality, assume that $z_1 \in (a_1 + P)$. Since $|a_1 + P| \geq 2$, $\exists z_2 \in a_1 + P$ with $z_2 \neq z_1$. If $z_2 \in S$, then, by Lemma 3(ii) and $2 \notin P$, *y* is adjacent to z_1, z_2 which is a contradiction. Hence $z_2 \in V(\overline{GT_P(R)}) \setminus S$. By Lemma 3(ii), x, z_2 are adjacent and z_1, z_2 are also adjacent in $\overline{GT_P(R)}$, which is a contradiction to *S* is a perfect dominating set.

Suppose $x, y \in S \setminus P$. Since every element in *P* is adjacent to both *x*, *y* again a contradiction. Hence $\overline{GT_P(R)}$ has no perfect dominating set.

The above argument implies that $2 \in P$.

Suppose $2 \in P$ and $\mu \ge 3$. By Lemma 2(iii), $\overline{GT_P(R)}$ is a complete μ -partite graph. Clearly $\overline{GT_P(R)}$ does not contain any perfect dominating set, which is a contradiction to *S* is a perfect dominating set. Hence $2 \in P$ and $\mu = 2$.

Lemma 13 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then the following are true:

(i) If $2 \in P$, then $\gamma_s(\overline{GT_P(R)}) = \gamma_w(\overline{GT_P(R)}) = 2$;

(ii) If
$$2 \notin P$$
, then $\gamma_s(GT_P(R)) = \lambda$ and $\gamma_w(GT_P(R)) = 2$.

Proof

- (i) Assume that $2 \in P$. Then $\overline{GT_P(R)}$ is a complete μ -partite graph. Let $x \in P$ and $y \in a_i + P$ for some $i, 1 \le i \le \mu - 1$. Then $S = \{x, y\}$ is a dominating set of $\overline{GT_P(R)}$ and so by Lemma 1(i), $deg(v) = (\mu - 1)\lambda \forall v \in \overline{GT_P(R)}$. Therefore $\gamma_s(\overline{GT_P(R)}) = \gamma_w(\overline{GT_P(R)}) = 2$.
- (ii) Assume that $2 \notin P$. By the definition of $\overline{GT_P(R)}$, each vertex $x \in P$ is adjacent with each vertex $y \in V(\overline{GT_P(R)}) \setminus P$. By Lemma 1(ii), we have $deg(x) = (\mu 1)\lambda \forall x \in P$ and $deg(y) = (\mu 1)\lambda 1 \forall y \in V(\overline{GT_P(R)}) \setminus P$. Since *P* dominates $\overline{GT_P(R)}$ and deg(x) > deg(y), *P* is a strong dominating set in $\overline{GT_P(R)}$. Then $\gamma_s(\overline{GT_P(R)}) = \lambda$. Let $x \in a_i + P$ and $y \in -a_i + P$ where $1 \le i \le \frac{\mu 1}{2}$. By Lemma 1(ii), $deg(x) = deg(y) = \lambda(\mu 1) = \delta(\overline{GT_P(R)})$. Then $\{x, y\}$ is a weak dominating set in $\overline{GT_P(R)}$ and so $\gamma_w(\overline{GT_P(R)}) = 2$.

In following lemma, we obtain the independent domination number of $GT_P(R)$. **Lemma 14** Let R be a finite commutative ring which is not an integral domain and P be a prime ideal in R. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then

$$\gamma_i(\overline{GT_P(R)}) = \begin{cases} \lambda & \text{if } 2 \in P; \\ 2 & \text{if } 2 \notin P. \end{cases}$$

Proof If $2 \in P$, then by Lemma 2(iii), $\overline{GT_P(R)}$ is $K_{\underbrace{\lambda, \dots, \lambda}_{utimes}}$ and so $\gamma_i(\overline{GT_P(R)}) = \lambda$.

Suppose $2 \notin P$. Let $x \in a_i + P$ and $y \in -a_i + P$ where $1 \le i \le \frac{\mu-1}{2}$. By Lemma 11, $\{x, y\}$ is a dominating set in $\overline{GT_P(R)}$. By Lemma 3(ii), x, y are not adjacent in $\overline{GT_P(R)}$ and so $\gamma_i(\overline{GT_P(R)}) = 2$.

Note that, a graph G is said to be *well-covered* if $\beta(G) = \gamma_i(G)$. The following lemma follows from Lemmas 8 and 14.

Lemma 15 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then

- (i) If $2 \in P$, then $\overline{GT_P(R)}$ is well-covered;
- (ii) If $2 \notin P$, then $\overline{GT_P(R)}$ is well-covered if and only if |P| = 2.

A *domatic partition* of G is a partition of V(G) into dominating sets of G. The maximum number of sets in a domatic partition of G is called the *domatic number* of G and the same is denoted by d(G).

Lemma 16 Let *R* be a finite commutative ring which is not an integral domain and *P* be a prime ideal in *R*. Assume that $|P| = \lambda$ and $|R/P| = \mu$. Then

$$d(\overline{GT_P(R)}) = \begin{cases} \frac{|R|}{2} & \text{if } 2 \in P;\\ \frac{|R| - \lambda}{2} + 1 & \text{if } 2 \notin P. \end{cases}$$

Proof If $2 \in P$, then μ is even. Let $S = \bigcup_{i=1}^{\frac{\mu}{2}} (a_i + P)$ and $T = \bigcup_{i=\frac{\mu}{2}+1}^{\mu} (a_i + P)$. Let $X_j = \{\{x_j, y_j\} : x_j \in S \text{ and } y_j \in T\}$ for $1 \le j \le \frac{|R|}{2}$. Clearly X_j is a dominating set in $\overline{GT_P(R)}$ and hence $d(\overline{GT_P(R)}) = \frac{|R|}{2}$.

Suppose $2 \notin P$. Then μ is odd and $\mu \ge 3$. Let $S = \bigcup_{i=1}^{\frac{\mu-1}{2}} (a_i + P)$ and $T = \bigcup_{i=1}^{\frac{\mu-1}{2}} (-a_i + P)$ where $a_i + (-a_i) = 0$. Let $X_j = \{\{x_j, y_j\} : x_j \in S \text{ and } y_j \in T\}$ for $1 \le j \le \frac{|R| - \lambda}{2}$. Clearly, each X_j is a dominating set in $\overline{GT_P(R)}$. Also, P is a dominating set in $\overline{GT_P(R)}$. Hence $d(\overline{GT_P(R)}) = \frac{|R| - \lambda}{2} + 1$.

Acknowledgements This research work is supported by Major Research Project (SR/S4/MS: 806/13), Science and Engineering Research Board (SERB), Government of India through first author.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest regarding the publication of this paper.

Ethical approval The manuscript has not been submitted to more than one journal for simultaneous consideration. The manuscript has not been published previously.

Research involving human participants and/or animal This research does not involve any human participants or animals.

Informed consent The authors hereby adhere to the decision of the journal.

References

- 1. Akbari, S., D. Kiani, F. Mohammadi, and S. Moradi. 2009. The total graph and regular graph of a commutative ring. *Journal of Pure and Applied Algebra* 213: 2224–2228.
- Anderson, D.F., and A. Badawi. 2008. The total graph of a commutative ring. *Journal of Algebra* 320: 2706–2719.
- 3. Anderson, D.F., and A. Badawi. 2012. On the total graph of a commutative ring without the zero element. *Journal of Algebra and Applications* 11 (4): 1250074.
- 4. Anderson, D.F., and A. Badawi. 2013. The generalized total graph of a commutative ring. *Journal of Algebra and Applications* 12 (5): 1250212.
- 5. Anderson, D.F., and P.S. Livingston. 1999. The zero-divisor graph of a commutative ring. *Journal of Algebra* 217: 443–447.
- Ashrafi, N., H.R. Maimani, M.R. Pournaki, and S. Yassemi. 2010. Unit graphs associated with rings. Communications in Algebra 38: 2851–2871.
- Asir, T., and T. Tamizh Chelvam. 2013. On the total graph and its complement of a commutative ring. *Communications in Algebra* 41: 3820–3835. https://doi.org/10.1080/00927872.2012.678956.
- 8. Balakrishnan, R., and K. Ranganathan. 2000. A Text Book of Graph Theory. Berlin: Springer.
- 9. Barati, Z., K. Khashyarmanesh, F. Mohammadi, and Kh Nafar. 2012. On the associated graphs to a commutative ring. *Journal of Algebra and Applications* 11 (2): 1250037.
- 10. Chartrand, G., and P. Zhang. 2006. *Introduction to Graph Theory*. Pennsylvania: Tata McGraw-Hill Edition.
- 11. Harary, F. 1969. Graph Theory. Reading: Addison-Wesley.
- 12. Haynes, T.W., S.T. Hedetniemi, and P.J. Slater. 1998. *Fundamentals of Domination in Graphs*. New York: Marcel Dekker.
- 13. Kaplansky, I. 1974. Commutative Rings. Washington: Polygonal Publishing House.
- Khashyarmanesh, K., and M.R. Khorsandi. 2012. A generalization of the unit and unitary Cayley graphs of a commutative ring. *Acta Mathematica Hungarica* 137 (4): 242–253.
- 15. Tamizh Chelvam, T., and T. Asir. 2011. A note on total graph of ℤ_n, *Journal of Discrete Mathematical Sciences and Cryptography* 14 (1): 1–7. https://doi.org/10.1142/S1793830911001309.
- 16. Tamizh Chelvam, T., and T. Asir. 2011. DYYomination in total graph on Z_n. Discrete Mathematics Algorithms and Applications 3 (4): 413–421. https://doi.org/10.1142/S1793830911001309.
- Tamizh Chelvam, T., and T. Asir. 2012. Intersection graph of gamma sets in the total graph. Discussiones Mathematicae Graph Theory 32: 339–354. https://doi.org/10.7151/dmgt.1611.
- Tamizh Chelvam, T., and T. Asir. 2013. Domination in the total graph of a commutative ring. Journal of Combinatorial Mathematics and Combinatorial Computing 87: 147–158.
- 19. Tamizh Chelvam, T., and M. Balamurugan. 2018. On the generalized total graph of fields and its complement. *Palestine Journal of Mathematics* 7 (2): 450–457.
- 20. West, D.B.. 2007. Introduction to Graph Theory, Second edition.