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Abstract Herein, we propose a fractional-order prey–predator dynamical system

with Beddington–DeAngelis type functional response and time-delay. We study the

existence of various equilibrium points, and sufficient conditions that ensure the

local asymptotic stability of the steady states of such system. The system shows a

Hopf-bifurcation which depends on the time-delay. The presence of fractional-order

and time-delay in the differential model improves the stability of the solutions and

enriches the dynamics of the model. Some numerical examples and simulations are

provided to validate the derived theoretical results.
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1 Introduction

The dynamical relationship between prey and their predators has long been and will

continue to be one of the dominant themes in ecology due to its universal existence and

importance. The qualitative properties of prey-predator systems, such as stability, chaos,

bifurcations and oscillations usually depend on the system parameters. Many

researchers discussed the dynamical behaviors of prey-predator systems in population

dynamics (see [1–6]). In each species, stage-structure of individuals is mainly based on

characteristics of the biological sense, development, rate of survival and reproduction.

The individuals in each species may belong to juvenile or adult class.

& Rajivganthi Chinnathambi

rajivganthic@uaeu.ac.ae

1 Department of Mathematical Sciences, College of Science, UAE University, Al-Ain 15551,

United Arab Emirates

123

J Anal (2019) 27:525–538

https://doi.org/10.1007/s41478-018-0092-7

http://orcid.org/0000-0002-9386-2173
http://orcid.org/0000-0003-3855-5944
http://crossmark.crossref.org/dialog/?doi=10.1007/s41478-018-0092-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41478-018-0092-7&amp;domain=pdf
https://doi.org/10.1007/s41478-018-0092-7


Assume that the life history of predator population has two stages: immature (or

juvenile) and mature (or adult stage). Juvenile predators are not able to attack the

prey species just after their birth, and it takes time for their maturity to attack the

preys. Therefore, we should consider time-delays, in the model, to justify the time

required for predators to be matured and attack the preys [4]. Time-lags (or time-

delay) are usually incorporated into biological systems to represent the time

required for maturation period, resource regeneration time, reaction time, gestation

period, feeding time, etc. The logistic growth for the prey population, and mortality

rate of the matured predators are important factors in the prey-predator models.

Wang et al. [7] investigated the stability results of predator–prey system with stage-

structure for predator. One important component of the predator–prey relationships

is functional response. Functional response refers to the change in the density of

prey attached per unit time per predator as the prey density changes. In theoretical

ecology, there are several well-known response functions in the predator–prey

interactions such as Holling type I (linear), type II (cyrtoid), type III (sigmoid), type

IV, Beddington–DeAngelis-type response function, Hassel-Verley-type, etc. (see

[2, 8–10]). In [11], Holling addressed three different types of functional response for

different kinds of species to model the phenomena of predation, which make the

standard Lotka–Volterra system more realistic. Xu et al. [12] studied the bifurcation

analysis in a delayed Lotka–Volterra predator–prey model with two delays.

However, Holling type IV response function is relatively less investigated in the

literature of theoretical ecology. Xia et al. [13] discussed the effects of time-delay

and harvesting on two different types of prey-predator model with Holling type II

functional response. Khajanchi [14] reported the stage structure for predator–prey

system with Monod–Haldane functional response and defined suitable Lyapunov

function for the study of global asymptotic stability. The Beddington–DeAngelis

functional response was firstly introduced by Beddington [15] and DeAngelis et al.

[16] in 1975, which is similar to the Holling type functional response but contains

an extra term describing mutual interference by predators. Shulin et al. [17] studied

the effects of impulsive perturbations on the prey-predator model with Beddington–

DeAngelis functional response and also studied global stability results.

Recently, much attention has been given to fractional-order models, due to the

fact that fractional-order models are more consistent with the real phenomena than

the integer-order models, and enable the description of the memory and hereditary

properties of dynamical processes (see [18–20]). Also the fractional-order gains the

model greater degree of freedom and consistency with the reality of the interactions

due to its ability to provide an exact description of the nonlinear phenomena. Also,

most of biological, physical, and engineering systems have long-range temporal

memory and/or long-range space interactions; The presence of memory (time-lag/

fractional-order) leads to a notable increase in the complexity of the observed

behavior. Rihan [21] studied fractional-order modeling of HIV infection of CD4þT
Cells, and tumor-immune system. Nosrati et al. [8] reported the impacts of

fractional-order derivative and economic profit on the dynamical analysis of

singular predator–prey system. The bifurcation control analysis for incommensurate

fractional-order prey-predator system with delays was addressed in [22]. Latha et al.
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[23] discussed the stability and bifurcation results for fractional-order model for

Ebola infection and CD8þT-cells response. To the best of our knowledge, stability

results of fractional-order stage structured predator–prey system with Beddington–

DeAngelis type functional response with time-lag is an untreated topic in the

existing literature and this fact is main motivation of the present work.

In this paper, we study the dynamics of fractional-order predator–prey system

with Beddington–DeAngelis type functional response and time-delay. We incorpo-

rate the time-delay to justify the time required for maturation of adult predators. The

authors believe that a combination of time-delay and fractional order in the model

enriches the dynamics of the system. We investigate the existence of various

equilibrium points, and sufficient conditions that ensure the local asymptotic

stability of the steady states of such system. The positivity of the solution of such

model is also derived. We discuss the theoretical analysis, using the linearization

techniques and eigenvalues method. We provide some numerical simulations to

show the dynamical behaviors of juvenile and adult predators with the interaction of

prey species and impact the fractional-order in the system.

This paper is organized as follows. Problem formulation, definitions and lemmas

are given in Sect. 2. The local asymptotic stability and bifurcation results for

fractional-order predator–prey model are derived in Sect. 3. Numerical example is

given, in Sect. 4, to verify the obtained theoretical results. Finally, Sect. 5 contains

conclusion.

2 Problem formulation

Assume that x(t) and y(t) denote the density of prey and predator population at any

time t, respectively. Assume that the prey species grow logistically in the absence of

a predator spices with intrinsic growth rate q and the environmental carrying

capacity j. Beddington [15] and DeAngelis et al. [16] discussed Beddington–

DeAngelis type functional response of the form:

f ðx; yÞ ¼ xxy
1 þ bxþ cy

;

where x (units : time�1) and b (units : prey�1) are strictly positive constants, which

describe the effects of capture rate and handling time respectively. b determines

how fast the per capita feeding rate approaches its saturation value x. c
(units : predator�1) measures the magnitude of mutual interference between indi-

viduals of the specialist predators. The predator–prey model with Beddington–

DeAngelis type functional response takes the form (see [15, 16])

dxðtÞ
dt

¼ qxðtÞ
�

1 � xðtÞ
j

�
� xxðtÞyðtÞ

1 þ bxðtÞ þ cyðtÞ ;

dyðtÞ
dt

¼ dxxðtÞyðtÞ
1 þ bxðtÞ þ cyðtÞ � ryðtÞ:

ð1Þ
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Assume that the predator population y(t) splits into two stages: juvenile/immature,

y1ðtÞ and adult/mature predator, y2ðtÞ based on characteristics in biological sense,

development, rate of survival and reproduction. The adult predators are able to

attack the prey species and have reproductive capability but the immature predator

are not able to attack prey species, i.e, the loss rate of the prey population. Recently,

Khajanchi [24] studied the dynamical behaviors of stage structured predator–prey

system with Beddington–DeAngelis type functional response of the form

dxðtÞ
dt

¼ qxðtÞ
�

1 � xðtÞ
j

�
� xxðtÞy2ðtÞ

1 þ bxðtÞ þ cy2ðtÞ
;

dy1ðtÞ
dt

¼ dxxðtÞy2ðtÞ
1 þ bxðtÞ þ cy2ðtÞ

� ðrþ k1Þy1ðtÞ;

dy2ðtÞ
dt

¼ ry1ðtÞ � k2y2ðtÞ:

ð2Þ

The constant d represents the conversion co-efficient from prey into immature

predator populations and constant r defines for the rate of immature predator

converting to mature predators. k1 and k2 represent the natural death rate of

immature and mature predator species, respectively.

Herein, we extend model (2) to include the fractional order 0\a� 1 and

investigate the impact of combination of both fractional-order and time-delay in the

response functional. The fractional order systems are more suitable than integer-

order in biological modeling due to the memory effects and fractional order

derivatives depends not only on local conditions but also on the past. We assume

that the time-delay s occurs in the adult predator response term. It represents a

gestation time of the adult predators. The reproduction of adult predators after

predating the prey is not instantaneous but will be mediated by some discrete time

lag required for gestation of the predators. Therefore, the model becomes

DaxðtÞ ¼ qxðtÞ
�

1 � xðtÞ
j

�
� xxðtÞy2ðt � sÞ

1 þ bxðtÞ þ cy2ðt � sÞ ;

Day1ðtÞ ¼
dxxðtÞy2ðt � sÞ

1 þ bxðtÞ þ cy2ðt � sÞ � ðrþ k1Þy1ðtÞ;

Day2ðtÞ ¼ ry1ðtÞ � k2y2ðtÞ;

ð3Þ

with initial conditions

xð0Þ ¼ x0 [ 0; y1ð0Þ ¼ y1;0 [ 0; y2ðsÞ ¼ uðsÞ[ 0; s 2 ½�s; 0� ð4Þ

where uðsÞ is a smooth function. Here, we define fractional derivative Da in caputo

sense, with some properties, 0\a� 1.

Definition 1 [19] The Caputo derivative of fractional-order a for the function

f(t) is defined as

Daf ðtÞ ¼ 1

Cðn� aÞ

Z t

0

ðt � sÞn�a�1
f nðsÞds;
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where n� 1\a\n 2 Zþ; Cð�Þ is the Gamma function.

Lemma 1 (see [25]) Suppose that f ðtÞ 2 C½a; b� and its derivatives Daf ðtÞ 2
Cða; b� for 0\a� 1, then we have

f ðtÞ ¼ f ðaÞ þ 1

CðaÞD
af ðnÞðt � aÞa; a� n� t; 8t 2 ða; b�:

Lemma 2 (see [25, 26]) Suppose that f ðtÞ 2 C½a; b� and Daf ðtÞ 2 Cða; b� for
0\a� 1: If Daf ðtÞ� 0;8t 2 ða; bÞ, then f(t) is a nondecreasing function for each

t 2 ½a; b�: If Daf ðtÞ� 0; 8t 2 ða; bÞ, then f(t) is a non-increasing function for each

t 2 ½a; b�:

The nonnegative population densities of the model (3) are defined by

fðx; y1; y2Þ 2 R3
þ : x� 0; y1 � 0; y2 � 0g. We should prove the positivity of the

solutions of the system.

Theorem 1 For any initial conditions satisfying (4), system (3) has a unique

solution in ½0;þ1Þ. Moreover, this solution remains nonnegative.

Proof Assume that R3
þ ¼ fðx; y1; y2Þ 2 R3 : x� 0; y1 � 0; y2 � 0g is positively

invariant. System (3) can be written in the vector form

DaXðtÞ ¼ AðXðtÞÞ:

Here XðtÞ ¼ ðxðtÞ; y1ðtÞ; y2ðtÞÞT , and

AðXðtÞÞ ¼

qxðtÞ 1 � xðtÞ
j

� �
� xxðtÞy2ðt � sÞ

1 þ bxðtÞ þ cy2ðt � sÞ
dxxðtÞy2ðt � sÞ

1 þ bxðtÞ þ cy2ðt � sÞ � ðrþ k1Þy1ðtÞ

ry1ðtÞ � k2y2ðtÞ

2
666664

3
777775
:

X0 ¼ ðxð0Þ; y1ð0Þ; y2ðsÞÞT 2 R3
þ. For that, we investigate the direction of the vector

field AðXðtÞÞ on each coordinate space and see whether the vector field points to the

interior of R3
þ. From (3),

DaxðtÞjx¼0 ¼ 0;

Day1ðtÞjy1¼0 ¼ dxxy2ðt � sÞ
1 þ bxþ cy2ðt � sÞ � 0;

Day2ðtÞjy2¼0 ¼ ry1 � 0:

ð5Þ

From Lemmas 1, 2 and Eq. (5), then the vector field AðXðtÞÞ is interior of R3
þ. The

solution of (3) with initial conditions X0 2 R3
þ; say XðtÞ ¼ Xðt;X0Þ, in such a way

that XðtÞ 2 R3
þ: h

For the boundedness of solution of system (3), we refer [27].
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Lemma 3 The equilibrium point ðxH1 ; xH2 Þ of the following fractional-order

differential equations

Dax1ðtÞ ¼ f1ðx1; x2Þ; Dax2ðtÞ ¼ f2ðx1; x2Þ; a 2 ð0; 1�;
x1ð0Þ ¼ x1;0; x2ð0Þ ¼ x2;0

is locally asymptotically stable if all the eigenvalues of Jacobian matrix

J ¼
of1=ox1of1=ox2

of2=ox1of2=ox2

 !
;

calculated at ðxH1 ; xH2 Þ satisfies the condition j argðeigðJÞÞj[ ap
2
:

3 Stability and Hopf bifurcation results

In this section, we study the local asymptotic stability and bifurcation conditions for

system (3). The system has three steady-stats: trivial equilibrium point E0ð0; 0; 0Þ;
predator free equilibrium point E1ðj; 0; 0Þ and interior equilibrium point

E2ðxH; yH1 ; yH2 Þ; where

yH2 ¼ qðj� xHÞð1 þ bxHÞ
jx� cqðj� xHÞ ; yH1 ¼ k2qðj� xHÞð1 þ bxHÞ

rðjx� cqðj� xHÞÞ ;

and xH satisfies the quadratic equation

ðxHÞ2bðrþ k1Þk2cqþ xH
�
dxr� ð1 þ bÞðrþ k1Þk2 þ ð1 � jbÞðrþ k1Þk2cq

�

� ðrþ k1Þk2ð1 þ jcqÞ ¼ 0:

In order to study the local asymptotic stability of (3), let us define the co-ordinate

transformation XðtÞ ¼ xðtÞ � xH; Y1ðtÞ ¼ y1ðtÞ � yH1 ; Y2ðtÞ ¼ y2ðtÞ � yH2 : The

corresponding linearized system of (3) at any equilibrium point ðxH; yH1 ; yH2 Þ is

DaXðtÞ ¼
��

q� 2qxH

j

�
�
� ð1 þ bxH þ cyH2 ÞxyH2 � xbxHyH2

ð1 þ bxH þ cyH2 Þ
2

��
XðtÞ

�
� ð1 þ bxH þ cyH2 ÞxxH � xcxHyH2

ð1 þ bxH þ cyH2 Þ
2

�
Y2ðt � sÞ;

DaY1ðtÞ ¼
� ð1 þ bxH þ cyH2 ÞxyH2 � xbxHyH2

ð1 þ bxH þ cyH2 Þ
2

�
dXðtÞ � ðrþ k1ÞY1ðtÞ

þ
� ð1 þ bxH þ cyH2 ÞxxH � xcxHyH2

ð1 þ bxH þ cyH2 Þ
2

�
dY2ðt � sÞ;

DaY2ðtÞ ¼ rY1ðtÞ � k2Y2ðtÞ:

ð6Þ

Taking Laplace transform on both sides, yields
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saXðsÞ � sa�1Xð0Þ ¼
�
ðq� 2qxH

j
Þ �

� ð1 þ bxH þ cyH2 ÞxyH2 � xbxHyH2
ð1 þ bxH þ cyH2 Þ

2

��
XðsÞ

�
� ð1 þ bxH þ cyH2 ÞxxH � xcxHyH2

ð1 þ bxH þ cyH2 Þ
2

�
e�ss½Y2ðsÞ þ

Z 0

�s
e�stuðtÞdt�;

saY1ðsÞ � sa�1Y1ð0Þ ¼
� ð1 þ bxH þ cyH2 ÞxyH2 � xbxHyH2

ð1 þ bxH þ cyH2 Þ
2

�
dXðsÞ � ðrþ k1ÞY1ðsÞ

þ
� ð1 þ bxH þ cyH2 ÞxxH � xcxHyH2

ð1 þ bxH þ cyH2 Þ
2

�
de�ss½Y2ðsÞ þ

Z 0

�s
e�stuðtÞdt�;

saY2ðsÞ � sa�1Y2ð0Þ ¼ rY1ðsÞ � k2Y2ðsÞ:
ð7Þ

Here, XðsÞ; Y1ðsÞ; Y2ðsÞ are the Laplace transform of XðtÞ;Y1ðtÞ;Y2ðtÞ respectively.

The above system (7) can be written as follows

DðsÞH

XðsÞ

Y1ðsÞ

Y2ðsÞ

0
BB@

1
CCA ¼

b1ðsÞ

b2ðsÞ

b3ðsÞ

0
BB@

1
CCA

and

DðsÞ ¼
sa � m1 0 m2e

�ss

� m3 sa þ m4 � m5e
�ss

0 � m6 sa þ m7

0
@

1
A:

where

b1ðsÞ ¼ sa�1Xð0Þ �
� ð1 þ bxH þ cyH2 ÞxxH � xcxHyH2

ð1 þ bxH þ cyH2 Þ
2

�
e�ss

Z 0

�s
e�stuðtÞdt;

b2ðsÞ ¼ sa�1Y1ð0Þ þ
� ð1 þ bxH þ cyH2 ÞxxH �xcxHyH2

ð1 þ bxH þ cyH2 Þ
2

�
de�ss

Z 0

�s
e�stuðtÞdt;

b3ðsÞ ¼ sa�1Y2ð0Þ;

m1 ¼
��

q� 2qxH

j

�
�
� ð1 þ bxH þ cyH2 ÞxyH2 � xbxHyH2

ð1 þ bxH þ cyH2 Þ
2

��
;

m2 ¼
� ð1 þ bxH þ cyH2 ÞxxH � xcxHyH2

ð1 þ bxH þ cyH2 Þ
2

�
;

m3 ¼
� ð1 þ bxH þ cyH2 ÞxyH2 � xbxHyH2

ð1 þ bxH þ cyH2 Þ
2

�
d; m4 ¼ rþ k1;
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m5 ¼
� ð1 þ bxH þ cyH2 ÞxxH � xcxHyH2

ð1 þ bxH þ cyH2 Þ
2

�
d; m6 ¼ r; m7 ¼ k2

Let, DðsÞ be the characteristic matrix for system (6) at ðxH; yH1 ; yH2 Þ. The charac-

teristic equation of (6) is detðDðsÞÞ ¼ 0

A1ðsÞ þ A2ðsÞe�ss þ A3e
�ss ¼ 0; ð8Þ

where

A1ðsÞ ¼ ðsaÞ3 þ p1ðsaÞ2 þ p2s
a þ p3; A2ðsÞ ¼ r1s

a; A3 ¼ m1m5m6 þ m2m3m6;

p1 ¼ m4 þm7 �m1; p2 ¼ m4m7 �m1ðm4 þm7Þ; p3 ¼�m1m4m7; r1 ¼�m5m6:

Suppose s¼ 0; the equilibrium point E1 of system (3) is locally asymptotically

stable when p1 [0;p3 þA3 [0;p1ðp2 þ r1Þ[p3 þA3:
If s 6¼ 0; As in [28], assume s ¼ iw ¼ wðcos p

2
þ i sin p

2
Þ;w[ 0; then s is

substituted in (8), we get

ðc1 þ id1Þ þ ðc2 þ id2Þe�iws þ A3e
�iws ¼ 0; ð9Þ

where

c1 ¼ w3a cos
3ap

2
þ p1w

2a cos apþ p2w
a cos

ap
2
þ p3;

d1 ¼ w3a sin
3ap

2
þ p1w

2a sin apþ p2w
a sin

ap
2
;

c2 ¼ war1 cos
ap
2
; d2 ¼ war1 sin

ap
2
:

Separating the real and imaginary parts of (9), yields

ðc2 þ A3Þ coswsþ d2 sinwsþ c1 ¼ 0;

d2 cosws� ðc2 þ A3Þ sinwsþ d1 ¼ 0:
ð10Þ

From the Eq. (10), we obtain

cosws ¼ �ðc2 þ A3Þc1 þ d1d2

ðc2 þ A3Þ2 þ d2
2

;

sinws ¼ ðc2 þ A3Þd1 � c1d2

ðc2 þ A3Þ2 þ d2
2

:

It is obvious that cos2 wsþ sin2 ws ¼ 1; and
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w6a þ g1w
5a þ g2w

4a þ g3w
3a þ g4w

2a þ g5w
a þ g6 ¼ 0;

where g1 ¼ p1 cos
ap
2
; g2 ¼ p2

1 þ p2 cos ap;

g3 ¼ p3 cos
3ap

2
þ p1p2 cos

ap
2
; g4 ¼ p2

2 � r2
1 þ p1p3 cos ap;

g5 ¼ ðp2p3 � 2A3r1Þ cos
ap
2
; g6 ¼ p2

3 � A2
3:

ð11Þ

Label f ðwÞ ¼ w6a þ g1w
5a þ g2w

4a þ g3w
3a þ g4w

2a þ g5w
a þ g6. Then, we dis-

cuss the distribution of the roots of (8).

Lemma 4 For the Eq. (8), the following results hold:

(i) If g1 [ 0; g2 [ 0; g3 [ 0; g4 [ 0; g5 [ 0; g6 [ 0; p2
3 � A2

3 6¼ 0; the Eq. (8)

has no root with zero real parts for all s� 0:
(ii) If g1\0; g2\0; g3\0; g4\0; g5\0; g6 [ 0; the Eq. (8) has a pair of purely

imaginary roots �iwþ when s ¼ sj; j ¼ 0; 1; 2; . . . where

sj ¼
1

wþ
½arccos

�
� ðc2 þ A3Þc1 þ d1d2

ðc2 þ A3Þ2 þ d2
2

�
þ 2jp�; j ¼ 0; 1; 2; . . . ð12Þ

and wþ is the unique positive root of (11).

Proof i) From g1 [ 0; g2 [ 0; g3 [ 0; g4 [ 0; g5 [ 0; g6 [ 0; we derive f ð0Þ ¼
g6 [ 0; and

f
0 ðwÞ ¼ 6aw6a�1 þ 5ag1w

5a�1 þ 4ag2w
4a�1 þ 3ag3w

3a�1 þ 2ag4w
2a�1 þ ag5w

a�1:

Combining a[ 0 and g1 [ 0; g2 [ 0; g3 [ 0; g4 [ 0; g5 [ 0; g6 [ 0, we claim

that Eq. (11) has no real root and hence Eq. (8) has no purely imaginary root.

p2
3 � A2

3 6¼ 0; s ¼ 0 is not a root of (8).

ii) From g6 [ 0 and f ð0Þ ¼ g6 [ 0; then, by limw!þ1 f ðwÞ ¼ þ1; f
0 ðwÞ[ 0

for w[ 0; there exists a unique positive number wþ such that f ðwþÞ ¼ 0: Then

wþ is a root of (11). From (10), we know that the Eq. (8) with s ¼ sjðj ¼
0; 1; 2; . . .Þ has a pair of purely imaginary roots �iwþ: h

Lemma 5 (see [23]) Let sðsÞ ¼ fðsÞ þ iwðsÞ be the root of Eq. (8) such that when

s ¼ sj satisfying fðsjÞ ¼ 0 and wðsjÞ ¼ wþ, then the following transversality

condition holds Reðds
dsÞjs¼sj;w¼wþ

6¼ 0.

Proof Differentiate the Eq. (8) with respect to s, then

ds

ds
¼ e�ss½sA2ðsÞ þ sA3�

A
0
1ðsÞ þ A

0
2ðsÞe�ss � sA2ðsÞe�ss � A3se�ss

:

From the above equation, consider the numerator and denominator terms described

as
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e�ss½sA2ðsÞ þ sA3� ¼ n1 þ in2;

A
0

1ðsÞ þ A
0

2ðsÞe�ss � sA2ðsÞe�ss � A3se
�ss ¼ n3 þ in4;

where n1 ¼ r1w
aþ1

"
sinws cos

ap
2
� cosws sin

ap
2

#
þ A3w sinws;

n2 ¼ r1w
aþ1

"
cosws cos

ap
2
þ sinws sin

ap
2

#
þ A3w cosws;

n3 ¼ 3aw3a�1 cos
ð3a� 1Þp

2
þ 2ap1w

2a�1 cos
ð2a� 1Þp

2

þ p2aw
a�1 cos

ða� 1Þp
2

þ r1aw
a�1

"
cosws cos

ða� 1Þp
2

þ sinws sin
ða� 1Þp

2

#

� sr1 cosws;

n4 ¼ 3aw3a�1 sin
ð3a� 1Þp

2
þ 2ap1w

2a�1 sin
ð2a� 1Þp

2

þ p2aw
a�1 sin

ða� 1Þp
2

þ r1aw
a�1

"
cosws sin

ða� 1Þp
2

� sinws cos
ða� 1Þp

2

#
þ sr1 sinws:

Then,

Re

 
ds

ds

!
js¼sj;w¼wþ

¼ n1n3 þ n2n4

n2
3 þ n2

4

6¼ 0: h

Define sH ¼ minfsjg and based on the bifurcation theorem for functional differ-

ential equations [29], we arrive the following theorem: h

Theorem 2 Suppose the Lemmas 4 and 5 are hold;

(i) If s 2 ½0; s0Þ; then the equilibrium point E1 of system (3) is locally

asymptotically stable.

(ii) If s[ s0; then the equilibrium point E1 of system (3) is unstable

(iii) System (3) can undergo a Hopf bifurcation at E1, when

s ¼ sjðj ¼ 0; 1; 2; . . .Þ:

Similarly, we can prove the stability and bifurcation results for system (3) at

interior equilibrium point E2:
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4 Numerical simulations

Since most of the fractional-order differential equations do not have exact analytic

solutions, so approximation and numerical techniques must be used. Several

numerical methods have been proposed to solve the fractional-order differential

equations. In this section, we carry out some numerical simulations to display the

qualitative behaviours of model (3), using unconditionally and stable implicit

scheme, discussed in [21], with parameter values:

q ¼ 1:5; j ¼ 1:6;x ¼ 1:4; b ¼ 1; c ¼ 0:1;r ¼ 0:09; k1 ¼ 0:5; k2 ¼ 0:05; d ¼ 0:9:

The figures show impact of time-delays and fractional-order a on the dynamics of

the model (3). The fractional-order a and time-delay are the important factors which

affect the convergence speed of solutions. We deduce the critical value of time-

delay which is sH � 2:1: We also plot the diagram for system (3) with respect to the

time-delay s as a bifurcation parameter. Figures 1, 2 display the time domain and

space plane graphs of the state variables ðx; y1; y2Þ with initial condition
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Fig. 1 Time domain and space plane behaviors of state variables xðtÞ; y1ðtÞ and y2ðtÞ for system (3) with
fractional-order a ¼ 0:9 and time-delay s ¼ s	 ¼ 2:1. We notice the oscillating behaviour
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Fig. 2 Time domain and space plane behaviors of system (3) with fractional-order a ¼ 0:9 and time-

delay s ¼ 1:5\sH. Stable behaviour is shown
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xðsÞ ¼ 1:3; y1ðsÞ ¼ 0:5; y2ðsÞ ¼ 1:3, d ¼ 0:9; a ¼ 0:9, time-delay s ¼ s	 and

s ¼ 1:5. Clearly, system (3) shows a sustained oscillating behaviours and

stable behavior when s ¼ 1:5\sH: The time-domain behaviors of system (3) are

given in Figs. 3, 4, and 5 with different fractional orders a ¼ 0:95; 0:9; 0:85,

d ¼ 1:5(left) and d ¼ 0:9 (right). Clearly, the left graph of each figures shows an

unstable behavior when d ¼ 1:5. However, the right banner of each Figure shows a

stable behavior when d ¼ 0:9: From the Figures, with lower values of d, the system

becomes more stable and we loose stability with higher value of d. We notice that

the convergence speed is affected by the values of the different fractional-order as

well as the parameter d.
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Fig. 3 The time domain behaviors of state trajectories x(t) of system (3) with different values of
fractional orders a ¼ 0:95; 0:9; 0:85; conversion co-efficient d ¼ 1:5 (left) and d ¼ 0:9 (right). The
fractional derivative damps the oscillation behaviour
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Fig. 4 The time domain behaviors of state trajectories y1ðtÞ of system (3) with different values of
fractional orders a ¼ 0:95; 0:9; 0:85; conversion co-efficient d ¼ 1:5 (left) and d ¼ 0:9 (right). The
fractional derivative damps the oscillation behaviour
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5 Conclusion

In this work, we studied a fractional-order predator–prey system with time-delay

and structured stage, by introducing Beddington–DeAngelis functional response.

With the help of Laplace transform, we defined the characteristic equation of such

model. Some interesting stability results have been obtained. Some new and

interesting sufficient conditions that ensure the local asymptotic stability for the

addressed fractional-order model have been derived. The fractional-order and time-

delay in predator–prey model improves the stability results. The presence of

fractional-order and time-delay enriches the dynamics of the predator–prey model

with Beddington–DeAngelis functional response. The numerical simulations, shown

in Figs. 1, 2, 3, 4 and 5, verified the effectiveness of the obtained theoretical results.
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