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A note on Ankeny–Rivlin theorem
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Abstract In this paper, we consider the class of polynomials not vanishing in the

unit disk and obtain a result that improves the results of Dubinin, Aziz and Dawood

and the classical result of Ankeny and Rivlin.
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1 Introduction and statement of results

For an arbitrary entire function f(z), let Mðf ; rÞ :¼ maxjzj¼r jf ðzÞj. For a polynomial

P(z) of degree n, it is known that

MðP; qÞ� qnMðP; 1Þ; q� 1: ð1:1Þ

Inequality (1.1) is a simple consequence of Maximum Modulus Principle (see [4]).

It was shown by Ankeny and Rivlin [1] that if PðzÞ 6¼ 0 in jzj\1, then (1.1) can be

replaced by
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MðP; qÞ� qn þ 1

2
MðP; 1Þ; q� 1: ð1:2Þ

In 1988, Aziz and Dawood further improved the bound in (1.2) and proved under

the same hypothesis that

MðP; qÞ� qn þ 1

2
MðP; 1Þ � qn � 1

2
min
jzj¼1

jPðzÞj; q� 1: ð1:3Þ

Recently, Dubinin [3] obtained the following refinement of (1.2) by using the

classical Schwarz lemma.

Theorem 1 If PðzÞ ¼
Pn

j¼0 cjz
j is a polynomial of degree n� 2 with no zeros in

jzj\1, then for any q[ 1,

MðP; qÞ� ð1 þ qnÞðjc0j þ qjcnjÞ
ð1 þ qÞðjc0j þ jcnjÞ

MðP; 1Þ: ð1:4Þ

The result is best possible and equality holds in (1.4) for PðzÞ ¼ lþmzn

2
, jlj ¼ jmj ¼ 1:

In this note, we prove the following generalization of (1.4) which sharpens the

bounds in (1.2) and (1.3) as well.

Theorem 2 If PðzÞ ¼
Pn

j¼0 cjz
j is a polynomial of degree n� 2 with no zeros in

jzj\1, then for any q[ 1 and 0� t� 1;

MðP; qÞ� ð1 þ qnÞðjc0j þ qjcnj � tmÞ
ð1 þ qÞðjc0j þ jcnj � tmÞ

� �

MðP; 1Þ

� ð1 þ qnÞðjc0j þ qjcnj � tmÞ
ð1 þ qÞðjc0j þ jcnj � tmÞ � 1

� �

tm;

ð1:5Þ

where m ¼ minjzj¼1jPðzÞj:
The result is best possible and equality holds in (1.5) for PðzÞ ¼ lþmzn

2
,

jlj ¼ jmj ¼ 1:

Remark 1 Since if PðzÞ ¼
Pn

j¼0 cjz
j 6¼ 0 in jzj\1; then jc0j � jcnj: Also, as in the

proof of the Theorem 2 (given in the next section), we have for every k with jkj � 1;
the polynomial PðzÞ � km does not vanish in jzj\1; hence

jc0 � kmj � jcnj: ð1:6Þ

If in (1.6), we choose the argument of k suitably and note that jc0j[m (from (2.2),

proof of Theorem 2), we get

jc0j � jkjm� jcnj: ð1:7Þ

If we take jkj ¼ t in (1.7) so that 0� t� 1, we get tmþ jcnj � jc0j:

Remark 2 Here, we show that for q[ 1;
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jc0j þ qjcnj � tm

jc0j þ jcnj � tm
� 1 þ q

2
; ð1:8Þ

which is equivalent to showing

jc0j þ qjcnj � tm� jcnj þ qjc0j � qtm;

that is

jcnj þ tm� jc0j;

which clearly holds by Remark 1. Also, the function xMðP; 1Þ � ðx� 1Þtm is a non-

decreasing function of x. If we combine this fact with (1.8) according to which

ð1 þ qnÞðjc0j þ qjcnj � tmÞ
ð1 þ qÞðjc0j þ jcnj � tmÞ � 1 þ qn

2
;

it follows that the right hand side of (1.5) does not exceed ð1þqn

2
ÞMðP; 1Þ � ðqn�1

2
Þtm;

we have a refinement of (1.3).

Remark 3 For t ¼ 0; (1.5) reduces to (1.4).

2 Proof of Theorem

Proof of Theorem 2. Since PðzÞ ¼
Pn

j¼0 cjz
j has all its zeros in jzj � 1 and

m ¼ minjzj¼1 jPðzÞj, therefore

m� jPðzÞj; forjzj ¼ 1: ð2:1Þ

It follows by the Maximum and Minimum Modulus Principles that the strict

inequality

m\jPðzÞj\MðP; 1Þ; ð2:2Þ

holds for jzj\1.

We show that for every complex a with jaj � 1, the polynomial FðzÞ ¼
PðzÞ � am does not vanish in jzj\1. For if FðzÞ ¼ PðzÞ � am has a zero in jzj\1;
say at z ¼ z1 with jz1j\1; then

Fðz1Þ ¼ Pðz1Þ � am ¼ 0:

This gives,

jPðz1Þj ¼ jajm�m;

where jz1j\1, which contradicts (2.2).

Hence, we conclude that the polynomial F(z) does not vanish in jzj\1. Applying

Theorem 1 to the polynomial FðzÞ ¼ PðzÞ � am ¼ ðc0 � amÞ þ
Pn

j¼1 cjz
j, we get

for every complex a with jaj � 1 and q[ 1,
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max
jzj¼q

�
�PðzÞ � am

�
��

�
qn þ 1

qþ 1

��
jc0 � amj þ qjcnj
jc0 � amj þ jcnj

�

max
jzj¼1

�
�PðzÞ � am

�
�: ð2:3Þ

For every a with jaj � 1; we have

jc0 � amj �
�
�jc0j � jajm

�
� ¼ jc0j � jajm;

since jajm�m\jPð0Þj ¼ jc0j; by (2.2).

Further, the function
�
xþqjcnj
xþjcnj

�
is decreasing on fx : x[ � jcnjg [ fx : x\�

jcnjg for every q[ 1; it follows from (2.3) that for every a with jaj � 1 and for every

q[ 1;

MðP; qÞ � jajm�
�
qn þ 1

qþ 1

��
jc0j � jajmþ qjcnj
jc0j � jajmþ jcnj

�
�
�Pðz0Þ � am

�
�; ð2:4Þ

where z0 is a point on jzj ¼ 1 such that jPðz0Þj ¼ MðP; 1Þ: Also by (2.1) and (2.2),

we have

m� jPðzÞj for jzj � 1; ð2:5Þ

we take in particular z ¼ z0 in (2.5) and get

m� jPðz0Þj: ð2:6Þ

Choosing the argument of a with jaj � 1 on the right hand side of (2.4) such that

jPðz0Þ � amj ¼ jPðz0Þj � jajm;

which is possible by (2.6), we obtain from (2.4) that

MðP; qÞ � jajm�
�
qn þ 1

qþ 1

��
jc0j � jajmþ qjcnj
jc0j � jajmþ jcnj

�

ð
�
�Pðz0Þj � jajmÞ;

for every a with jaj � 1 and for every q[ 1.

The above inequality is equivalent to (1.5) and this completes the proof of

Theorem 2.
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