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Abstract We are pleased to investigate some Riemann—Liouville fractional integral
inequalities in a very simple and novel way. By using convexity of a function fand a
simple inequality over the domain of f we establish some interesting results.
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1 Introduction

The study on the fractional calculus continued with contributions from Fourier,
Abel, Lacroix, Leibniz, Grunwald and Letnikov for detail (see, [2, 4]). Riemann—
Liouville fractional integral operator is the first formulation of an integral operator
of non-integral order.

Definition 1 Letf € L;[a, b]. Then the Riemann-Liouville fractional integrals of f
of order o > 0 with a >0 are defined by

B0 =g [ 0w x>

and
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b
zggf(x):ﬁ / (t—x)""'f(0)dt, x<b.

In fact these formulations of fractional integral operators have been established
due to Letnikov [5], Sonin [6] and then by Laurent [3].

Since the inequalities always have been proved worthy in establishing the
mathematical models and their solutions in almost all branches of applied sciences.
Especially the convexity takes very important role in the optimization theory. The
aim of this paper is to introduce some fractional inequalities for the Riemann—
Liouville fractional integral operators via the convexity property of the functions.

2 Main results
First we give the following estimate of the sum of left and right handed Riemann—
Liouville fractional integrals.

Theorem 1 Let f : I — R be a positive convex function. Then for a,b € I;a<b
and o, f > 1, the following inequality for Riemann—Liouwville fractional Integrals
holds

C(a)I%f (x) + D(B)IL-f (x)

< e + (=)

(x—a)"+ (b—x)’ (1)

+f(x) >

Proof Let us consider the function f on the interval [a,x],x € [a,b]. Then for
t € [a,x] and o> 1 the following inequality holds

(=0 <l —a) 2)
Since f is convex therefore for ¢ € [a,x] we have

xX—t t—a

f(n) < fla) + f (). (3)

T Xx—a X—a

Multiplying inequalities (2) and (3), then integrating with respect to 7 over [a, x] we
have

(x—a)"'

/a e < [f(a) / (e — 1)t + () / - a)dt]

X—a
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(x—a)”

Do)l f(x) < [f(a) +f(x)]- (4)

Now we consider the function f on the interval [x, b],x € [a, b]. Then for ¢ € [x, D]
and > 1 the following inequality holds

(-0 <(b-n. (5)

Since f is convex on [a, b], therefore for ¢ € [x, b] we have

t—x b—t
FO < 5= f ) +5—

Multiplying inequalities (5) and (6), then integrating with respect to 7 over [x, b] we
have

f (). (6)

/X b(t — ) (ndr < (bb_f)xﬂl [f(b) / b(r — x)dt + f(x) / b(b - t)dt]

(b—x)’
2

[F(b) + /()] ()

Adding (4) and (7) we get the required inequality in (1). U

TR f(x) <

It is nice to see that the following implications hold.

Corollary 1 By setting o = f in (1) we get the following fractional integral
inequality

T(a) (15 f (%) + I f ()

o o Y _ o Y 8
< b=ara Mf@+ﬂmvxa);@ %) (8)

Corollary 2 By setting o = p = 1 and taking x = b or x = a in (1) we get
_a/f e < 11 +/0) +f() (9)

Corollary 3 By setting o = § = 1 and taking x = ”*b in (1) we get

O<—/f i f<a+b)gf(a)42rf(b)' (10)

Remark I 1t is interesting to see that if in Theorem 1 we consider f is concave
function and 0 <o, <1, then reverse of inequalities (1) holds.
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In the following result we investigate the fractional integral inequality that
appears as the generalization and refinement of a well known inequality for
functions whose derivative in absolute value is convex.

Theorem 2 Let f : I — R be a differentiable function. If || is convex, then for
a,bel, a<b and o, >0 the following inequality for the Riemann—Liouville
fractional integrals holds

(4 DELF () + T+ DILf(x) = (x = a)’f(a) + (b= x)f (b))]
x_aoHrl (g _xﬁ+1 / . "
< ( ) lf( )|+(b ) [f(b)|+vl(x)|((x_a)a+ —|—(b—x)ﬁ )

= 2
(11)

Proof Since |f’| is convex, therefore for t € [a,x] we have
()] < ()]

from which we can write

x—1t t—a

(@) +

X—a X—da

xX—1t t—a

xX—t ., t—a , ) / / /
- <f'(r)< 12
C=F@l+—@l) </ O < = f @l +— 1  (12)
We consider the right hand side of inequality (12)
—1 t—a
< L) (). 13
£ @)+ =2 ) (13)
Now for « > 0 we have the following inequality
(x—1)"<(x—a)*, 1€ ]a,x]. (14)

The product of last two inequalities give

(x =0 (1) < (x = @) ((x = 0)If (@) + (£ = @)lf'(0)])-

Integrating with respect to ¢ over [a, x] we have
X
[ a=ora

<=0 @l [(w-napwl [c-od 03

(- [LLE

and
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X

/X(x — 0" (t)dt = f(r)(x — )], + oc/ (x— )" 'f(r)dr

= —fla)(x —a)" + T(a+ DI f(x).
Therefore (15) takes the form

UCIETIL]

Mot DI = ) - 0 < - o L

If we consider from (12) the left hand side inequality and proceeding as we did for
the right side inequality we get

ORI

@) - @ = Tt D) < (-0 O
From (16) and (17) we get

T+ D) — @) — 0y < -0 LAy

On the other hand for ¢ € [x, b] using convexity of |f’| we have

1< 2B + el (19)
Also for t € [x,b] and § > 0 we have
(t—x)f <(b—x)P. (20)

By adopting the same treatment as we have done for (12) and (14) one can obtain
from (19) and (20) the following inequality

(1)

(6 01 £la) =700~ < 6 - | FOLEE,

2

By combining the inequalities (18) and (21) via triangular inequality we get the
required inequality. O

It is interesting to see the following inequalities as special cases.

Corollary 4 By setting o= f§ in (11) we get the following fractional integral
inequality
T (o + DG f () + I f ()] = ((x = a)’f (@) + (b — x)°f (b))l

_ =" (@) + (b - )" ()]

< 5 @[ = a) ™ + (b — ).

Corollary 5 By setting oo = f =1 and x:# in (11) we get the following
inequality
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/f 1)dr — +f( )‘_ . {V,(a)|+v()|+2f/(a+b>]. 22)

‘ —a

Remark 2 If ' passes through x = “”’ , then from (22) we get [1], Theorem 2.2]. If
f(x) <0, then (22) gives the reﬁnement of [1], Theorem 2.2].

Before going to the next theorem we observe the following result.

Lemma 1 Let f : [a,b] — R, be a convex function. If f is symmetric about 2,
then the following inequality holds

b
(“37) <0 we o (23)
Proof We have
a+b 1(x—a b—x 1/(x—a b—x
= - . 24
2 2<b—ab+b—ax)+2<b—aa+b—ab) 24)

Since fis convex, therefore we have

a-+b 1 xX—a b—x xX—a b—x
f( 2 )SE[f<b—ab b—ax> +f(b—aa+b—ab>} (25)

1

= S (f@) +flatb—x).

Also fis symmetric about %, therefore we have f(a + b — x) = f(x) and inequality
in (23) holds. O

Theorem 3 Let f : I — R be a positive convex function. If f is symmetric about
“”’ then the following inequality for Riemann—Liouville fractional integrals holds

1/ 1 1 a+b
§(a+1+ﬁ+ )f( 2 )

< TB+ DR f(@) | T+ DI () (26)
Z(b )/3+1 z(b_a)wrl
Sﬁ@%ﬁg,

Proof For x € [a,b] we have
x-af<@-af, p>o0 (27)

Also fis convex function we have
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X—a b—x

F) < —25(b) +

—a b—a

f(a). (28)
Multiplying (27) and (28) and then integrating with respect to x over [a, b] we have
)’

b _a)f b —a
/a(X—a)ﬁf(x)de (l;_ ) f(b)/a (x—a)dx+(l;_a

a

b
(a) / (b — x)dx.
From which we have

LB+ DI fa)

fla) +£(b)

< 29
(b _ a)/)’-‘rl - 2 ( )

On the other hand for x € [a, b] we have
b—x)"<(b-a)", a>0. (30)

Multiplying (28) and (30) and then integrating with respect to x over [a, b] we get

/b(b —x)’f(x)dx < (b — a)“'w.

a
From which we have

Lo+ DI () _ fla) +f(b)
(bia)xﬂ < 2 . (31)

Adding (29) and (31) we get

LB+ DIy fa)  T(a+ DETS(b) < fla) +1(b)
2(b — a)P™! 2b—a)*™  — 2

Using Lemma 1 and multiplying (23) with (x — a)”, then integrating over [a, b] we
have

a—"_b ' - b ' —aﬂ X)dx
(“30) [ ot [T afra (32)
a —a)ft!
(“50) S5 <t i s (33)
a+b 1 LB+ DIF f(a)
f( 2 )2(ﬂ+1)< 2(b—a§/f“ ' (4

Using Lemma 1 and multiplying (23) with (b — x)”, then integrating over [a, b] one
can get
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+b 1 I+ DI%f(b
2 ) 2(e+1) 2(b — a)”
Adding (34) and (35) we get the required inequality. ([

Corollary 6 If we put o = f5 in (26), then we get

a+b 1 I(a+1) at1 a1 JM
f( 2 )(aﬂ)gza,_a)m [ () + 12 )] < BT

Remark 3 If oo — 0, then from above inequality we get the Hadamard inequality.
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