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Abstract In this paper, a fixed point theorem for multi-valued mappings on a
complete metric space is established taking a general contractive condition which
generalizes several contractive conditions. Many generalizations of some well
known results are also obtained as corollaries. Further, we give an application to the
existence and uniqueness of solutions for certain classes of functional equations
arising in dynamic programming.
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1 Introduction and preliminaries

Let (X, d) be a metric space and CB(X) the collection of all nonempty closed and
bounded subsets of X. The Hausdorff metric H on CB(X) induced by the metric d is
given by

H(A,B) = max{sup D(a, B), sup D(b,A)}
acA beB

for A,B € CB(X), where D(x,A) = infyc4 d(x, ).
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Following the Banach contraction principle, Nadler [9] introduced the concept of
multivalued contraction and established a fixed point theorem. In fact, Nadler [9]
proved the following result.

Theorem 1.1 (Nadler [9]) Let (X, d) be a complete metric space and T : X —
CB(X) be a mapping. Assume there exists r € [0, 1) such that H(Tx,Ty) <rd(x,y)
for all x,y € X. Then, there exists z € X such that z € Tz.

Subsequently a number of fixed point theorems have been obtained by the
researchers for multivalued mappings in different settings of spaces (see
[2, 4, 7, 10, 11] and references therein). Kikkawa and Suzuki [7] proved a new
version of Nadler’s result taking Suzuki type contractive condition for multivalued
mappings. Pori¢ and Lazovi¢ [5] obtained a generalization of Kikkawa—Suzuki
theorem for Ciri¢ type generalized multivalued mappings [2]. This result also
extends some well known theorems on the existence of fixed points for multivalued
mappings.

Theorem 1.2 (Pori¢ and Lazovic [5]) Let (X, d) be a complete metric space and
T : X — CB(X). Define a non-increasing function ¢ : [0,1) — (3, 1] by

1
1 if 0<r< 3
o) = 1 1)
1—r if =<r<l.
2
Assume there exists r € [0, 1) such that ¢(r)D(x, Tx) <d(x,y) implies

D(x,Ty) + D(y, Tx)
G

(3, 19) < rmax{ ), DL 12). D0 ),

for all x,y € X. Then, there exists z € X such that z € Tz.

In this paper, we extend and generalize the result due to Porié et al. [5] for
multivalued mappings satisfying generalized contractive type condition. For rest of
the paper, we use following notation.

M(x,y) = a(x,y) d(x,y) + b(x,y) max{D(x, Tx), D(y, Ty)}
+ ¢(x,y) [D(x,Ty) + D(y, Tx)].

2 Main results

Theorem 2.1 Let (X, d) be a complete metric space and T : X — CB(X). If there
exists r € [0, 1) such that

¢(r)D(x, Tx) <d(x,y) implies H(Tx, Ty) <M(x,y) (3)

for all x,y € X, where a(x,y),b(x,y),c(x,y) >0 with sup, .x[a(x,y) + b(x,y) +
2¢(x,y)] = r<1 and the function ¢ : [0,1) — (3,1] is defined as in Theorem 1.2,
then T has a fixed point, i.e., there exists 7 € X such that z € Tz.
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Proof Without loss of generalitry, choose r; such that 0 <r<r; <1. Suppose
yi €X and y, € Ty; are arbitrary, then D(y,,Tyvy) <H(Ty1,Ty;). Since
G (r)D(y1, Tyr) <d(yi, Tyr) <d(y1,y2), hence by (3),
H(Ty1, Tyz) <M(y1,y2)
<ad(y1,y2) + bmax{d(yi,y2), D(y2, Ty2) } + ¢ D(y1, Ty2)
<ad(y1,y2) + bmax{d(y1,y>),D(y2, Ty2)}
+ cld(y1,y2) + D(y2, Ty2)]
<(a+b+2c)max{d(y,y2), D(y2, Ty2)},
where a,b and c are evaluated at the point (y;,y,).

Hence,
D(y2, Ty2) <H(Ty1, Ty2) < rmax{d(y1,y2),D(y2, Ty2)}
= D(y2,Ty>) <rd(y1,y2) <rid(y1,2).

Which implies that there exists y3 € Ty, such that d(y2,y3) <7 d(y1,y2). Contin-
uing this process, we can construct a sequence {y,} in X such that

Yut+1 € Ty, and d()’n+l7yn+2) <r d(ynayn—o—l)-

Hence,
o0

Zd(ynayn+1) < Zr'f_ld(ylayz) <00
n=1

n=1

which shows that {y, } is a Cauchy sequence in X. Since X is complete, there exists a
point z € X such that lim, . y, = z.
Now, we will show that

D(z, Tx) <r max{d(z,x),D(x, Tx)} forall x € X\{z}. (4)
As lim,,_,, y, = z, then there exists m € N such that
1
d(z,yn) < ga’(x7 ) Vn>m.

Now,

d(r)D(yn, Tyn) < D(Yu, Tyn)

(Vs Ynt1)
(yﬂ7 Z) + d()’n+17Z)

Using (3),

@ Springer



52 N. Chandra et al.

H(Ty,,Tx) <M(y,,x) YneN, n>m
= H(Ty,, Tx) <ad(y,,x) + b max{D(y,, Ty,), D(x, Tx)}
¢ [D(yn, Tx) + D(x, Ty, )],
where a,band care evaluated at the point (y,,x).

Since yui1 € Ty, D(Yny1, Tx) < H(Ty,, Tx). Hence,

D(ypi1, Tx) <ad(yn, x) + b max{d(yn, yu+1), D(x, Tx) }
+ ¢ [D(yn, Tx) 4 d(x, yns1)]
< (a+ b+ 2c) max{d(yn, x),d(yn, yn+1),
D(x,Tx),D(yn,Tx) (x yn+1)}
<r max{d(ym ) (ynayn+1)a
D(x7 Tx)vD(yme) (X yn+l)}
Taking n — oo,
D(Z> Tx) <r max{d(z,x), D(xa T)C), D(Za Tx)}
= D(z, Tx) <r max{d(z,x),D(x,Tx)}.
Now, we prove that z is a fixed point of T.

(i) Consider 0<r< % and assume that z & Tz. Let a € Tz be such that
2rd(a,z) <D(z,Tz). Since a € Tz = a # z, hence by (4),

D(z,Ta) <rmax{d(z,a),D(a,Ta)}. (5)
For 0<r<1 ¢(r)D(z,Tz) = D(z, Tz) <d(z,a). Therefore, by (3)

H(Tz,Ta) <M(z,a)
<ad(z,a) + b max{D(z,Tz),D(a,Ta)} + c [d(z,a) + D(a, Ta)]
<(a+b+2c) max{d(z,a),D(z,Tz),D(a, Ta)},

where a,b and care evaluated at the point (z,a).

Hence,

D(a,Ta) <H(Tz,Ta) <r max{d(z,a),D(a,Ta)} (asa € Tz)
= D(a,Ta) <rd(z,a)<d(z,a).

From (5), D(z,Ta) <rd(z,a). Thus,

D(z,Tz) <D(z,Ta) + H(Ta, Tz)
<D(z,Ta) + r max{d(z,a),D(a,Ta)}
<2rd(z,a)
<D(z,Tz), a contraction.

Hence z € Tz.
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(i)  Now, consider + <r<1. Firstly, we prove that

(6)

H(Tx,Tz) < rmax{d(x’ 2),D(x, Tx), D(z, Tz)7D(x’ Tz) + D(z, Tx)}

for all x € X. For x = z, (6) is obvious. Taking x # z, there exists z, € Tx
such that

1
d(z,z,) <D(z, Tx) +;d(x,z) Vn € N.

Using (5), we get

D(x,Tx) <d(x,z,)
<d(x,z) +d(z,2n)

<d(x,z) + D(z, Tx) + %d(x, 2)
<d(x,z) + rmax{d(x,z),D(x, Tx)} + %d(x, 2).
Case (i) If d(x,z) > D(x, Tx), then
D(x,Tx) <d(x,z) + rd(x,2) + %d(x, 7) = (1 +r+ %)d(x, 2).
Making n — oo, we have D(x, Tx) < (1 + r)d(x, z). Thus,
¢(r)D(x, Tx) = (1 — r)D(x, Tx) < %_HD()C, Tx) < D(x,Tx) <d(x,2)

Again, using (3),
H(Tx,Tz) <M(x,z)

<(a+ b+ 2c) max {d(x, z),D(x, Tx), D(z, Tz),

D(x,Tz) + D(z, Tx)
e,

where a,band c are evaluated at the point (x, z).

Hence,

H(Tx,Tz) < rmax{d(x7 2),D(x, Tx),D(z, Tz), D(x,Tz) —; D(z,Tx) } '

Case (ii) If d(x,z) <d(x, Tx), then
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1

d(x,Tx) <d(x,z) + rd(x,Tx) + —d(x, z2)
n

1
= (1 —r)d(x,Tx) <(1 —|—;)d(x, 2).
Taking n—oo, we have (1—r)d(x,Tx)<d(x,z), e,
¢(r)d(x, Tx) < d(x, z). Therefore, condition (3) implies
H(Tx,Tz) <M(x,z)
<(a+ b+ 2c)max {d(x, z),D(x, Tx),D(z, Tz),

D(x,Tz) + D(z, Tx) }
2 b
where a, b and c are evaluated at the point (x, z).

Hence, we obtain (6) for all x € X.

Now, from (6), we get

D(z,Tz) :nli»rgo D(yui1,Tz) < n”li‘o H(Ty,,Tz)

D(y,, Tz) + D(z, Ty,
< lim rmax{d(ymz),D()’n,Tyn),D(Z,Tz)7 (Yn, Tz) + D(z y)}

n—oo 2
. D(yu, 1z) + d(z, yn
< ,}chrmaX{d(yn,Z)vd(yn,ym),D(z, Tz), O 72) 3 (& “)}
1
:rmaX{D(z, Tz),iD(z, Tz)} =rD(z,Tz),
=d(z,Tz) = 0.
Since Tz is closed, hence z € Tz. O

Remark 2.2 1f we take a(x, y), b(x, y) and c(x, y) as constants witha +b +2c =r
in Theorem 2.1, we get Theorem 1.2 due to Poric et al. [5].

Taking b(x,y) = ¢(x,y) =0 in Theorem 2.1, we get the following corollary
which is generalization of Suzuki type contraction theorem [12, Theorem 2] for
multivalued mappings.

Corollary 2.3 Let (X, d) be a complete metric space and T : X — CB(X). Define a
non-increasing function ¢ : [0,1) — (3,1] as in Theorem 1.2. Assume there exists
a(x,y) € [0,1) such that

d(r)D(x, Tx) <d(x,y) implies H(Tx, Ty) <a(x,y) d(x,y)
for all x,y € X. Then T has a fixed point.

Taking a(x,y) = c¢(x,y) =0 in Theorem 2.1, we obtain the generalization of
Kikkawa and Suzuki [6, Theorem 2.2] for multivalued mappings.
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Corollary 2.4 Let (X, d) be a complete metric space and T : X — CB(X). Define a
non-increasing function ¢ : [0,1) — (3,1] as in Theorem 1.2. Assume there exists
b(x,y) € [0,1) such that

¢(r)D(x, Tx) <d(x,y) implies H(Tx, Ty) <b(x,y) max{D(x, Tx),D(y, Ty)}
for all x,y € X. Then T has a fixed point.

Taking a(x,y) = b(x,y) = 0 in Theorem 2.1, then we get following result which
is generalization of [3] for multivalued mappings.

Corollary 2.5 Let (X, d) be a complete metric space and T : X — CB(X). Define a
non-increasing function ¢ : [0,1) — (5, 1] as in Theorem 1.2. Suppose that there
exists c(x,y) € [0,3) such that

¢(r)D(x, Tx) <d(x,y) implies H(Tx, Ty) < c(x,y)[D(x, Ty) + D(y, Tx)]
for all x,y € X. Then T has a fixed point.
Taking 7, a single valued mapping, we obtain following corollary.

Corollary 2.6 Let (X, d) be a complete metric space and 7 : X — X. Define a non-
increasing function ¢ : [0,1) — (3, 1] as in Theorem 1.2. Assume there exists r €
[0,1) such that ¢(r)d(x, Tx) <d(x,y) implies d(Tx, Ty) <M(x,y) for all x,y € X,
where sup, ,y[a(x,y) + b(x,y) + 2c(x,y)] = r<1. Then T has a unique fixed point.

Here we give an example in the support of Theorem 2.1. Here it is to be noted
that a(x, y), b(x, y) and c(x, y) play an important role as variables justifying the
Remark 2.2.

Example 2.7 Let X = {—1,0,1}. Taking d as usual metric, consider a mapping
T : X — CB(X) defined by

{0,-1} ifx#£ -1
Tx = .
(0,1} if x=—1.
Taking r = sup, ,cx[a(x,y) + b(x,y) + 2¢(x,y)] = 3 <1, we have following cases.
y

(i) For x=0, =—1, we have H(Tx,Ty)=1 and M(x,y)=

y
(i) For x=0, y=1, we have H(Tx,Ty)=0 and M(x,y)=
3 with a(x,y) = c(x,y) = 0,b(x,y) = %

(iii) For x=1, y=0, we have H(Tx,Ty)=0 and M(x,y)=
3 with a(x,y) =1,b(x,y) = c(x,y) =0
(ivy For x=1, y=-1, we have H(Tx,Ty)=1 and M(x,y)=

(vy For x=-1 , y=0, we have H(Tx,Ty)=1 and M(x,y) =
1 with a(x,y) = b(x,y) = %,C(x,y) =0.

(vij For x=-1, y=1, we have H(Tx,Ty)=1 and M(x,y)=
1 with a(x,y) = b(x,y) = %,c(x, y) =0.
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Hence for all x,y € X, we have ¢(r)D(x, Tx) <d(x,y) implies H(Tx, Ty) < M(x,y),
i.e., T satisfies the condition of Theorem 2.1 and has O as a fixed point.

Example 2.8 Let X = {—1,0,2}. Taking d as usual metric, consider a mapping
T : X — CB(X) defined by

({02} ifx#2
Tx_{{—l,z} if x = 2.

Define a non-increasing function ¢ : [0,1) — (%7 1] as in Theorem 1.2. In this
example, if we assume a(x, y), b(x, y) and c(x, y) as constants defined by a(x,y) =
+.b(x,y) =1 and c(x,y) =4 for all x,y € X, then T satisfies the condition of The-
orem 1.2 with r = a(x,y) + b(x y) 4 2¢(x,y) =  but it does not satisfy condition of
Theorem 2.1. For if, (x,y) = (2,0) then ¢(r)D (x Tx) <d(x,y), H(Tx,Ty) = 1 and
M(x,y) =4-2+%-0+%-1=3 which implies H(Tx,Ty) > M(x,y). However, if
we consider a(x, y), b(x, y) and c(x, y) as variables, then T satisfies the condition of
Theorem 2.1. To see this, we have the following calculations:

(i) For x=2, y=0, we have ¢(r)D(x,Tx) <d(x,y), H(Tx,Ty) =1 and
M(x,y) =1 with a(x,y) =3,b(x,y) = 0,c(x,y) = 0.

(i) For x=2, y=—1, we have ¢(r)D(x,Tx) <d(x,y), H(Tx,Ty) = 1 and

M(x,y) =1 with a(x,y) =§,b(x,y) = 0,c(x,y)

(iii) For x=0, y=—1, we have ¢(r)D(x, Tx) <d(x,

M(x,y) = 0 with a(x,y) = 0,b(x,y) = 0,c(x

(iv)y For x=0, y=2, we have ¢(r)D(x, Tx)§

= o
~
=

«< ,O‘S/_ox g:

), H(Tx,Ty) =0 and

o
[
2
<
S~—
Il 7=

, H(Tx,Ty) =1 and

M(x,y) =1 with a(x,y) =3,b(x,y) = 0,c(x,y) =

(v) Forx=-1,y=0, we have ¢(r)D(x, Tx) <d(x,y), H(Tx,Ty) =0 and
M(x,y) =0 w1th a(x,y) = 0,b(x,y) =0,c(x,y) = 0.

(vi) For x=-1, y=2, we have ¢(r)D(x,Tx) <d(x,y), H(Tx,Ty) =1 and
M(x,y) = 1 with a(x,y) = b(x y) =0,¢(x,y) =0.

Hence for all x,y € X, we have ¢(r)D(x, Tx) <d(x,y) implies H(Tx, Ty) <M(x,y)
with r = sup, x[a(x,y) 4+ b(x,y) + 2¢(x,y)] = 5 <1. Here, 0 and 2 are fixed points
of T.

Remark 2.9 Let X = {—1,0, 1} be a usual metric space with metric d. Consider a
mapping T as single valued mapping on X defined as

0 if 1
Tx = . e
-1 ifx=1.

Then by simple calculation, we get ¢(r)d(x,Tx)<d(x,y) implies
d(Tx,Ty) <M(x,y) with r = sup, yla(x,y) + b(x,y) + 2¢(x,y)] =3 <1 and 0 is
only fixed point of 7.
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3 An application to dynamic programming

There exists many applications of various fixed point theorems in dynamic
programming for the existence and uniqueness of solutions of functional equations/
system of functional equations (see, [8, 11] and the refenences therein). Here, we
apply above theorem to prove a result which gives a solution for a class of
functional equations.

Let U and V be Banach spaces and W C U,D C V over the field R. Let B(W)
denote the set of all bounded real valued functions on W. It is well known that B(W)
endowed with the metric

dg(h,k) = sup |h(x) — k(x)|, h,k € B(W) (7)

xeWw
is a complete metric space. Bellman and Lee [1] gave the following basic form of
the functional equation of dynamic programming:

p(x) :Slij(xvy’p(T(x7y)))v (8)

where x and y respresent the state and decision vectors respectively. t: W x D —
W represents the transformation of the process and p(x) represents the optimal return
function with initial state x.

Now, we will study the existence and uniqueness of the solution of the following
functional equation:

p(x) = Slip[g(xay) + G(x,y,p(r(x,y)))], xew (9)

where g: Wx D — Rand G: W x D x R — R are bounded functions. Following
[5], let a function ¢ be defined as in Theorem 1.2 and the mapping T : B(W) —
B(W) be defined by

T(h(x)) = Slip{g(x7y) + G(x7y7h(f(x>y)))} h e B(W)7 xeWw. (10)

Theorem 3.1  If there exists sup,cy [a(h(t),k(2)) + b(h(t), k(2)) + 2c(h(t),k(1))] =
r € [0,1) such that

¢ (r)dp(T(h),h) <dp(h, k) implies
|G(x,y,h(t)) — G(x,y, k(1)) < M(h(1), k(1))
for every (x,y) € W x D, hyk € B(W) and t € W, where
M(h(1), k(t)) = a(h(t), k(1)) (1) — k(1)
+ b(h(r), k(2)) max{|h(t) — T(h(2))], [k(t) — T(k(1))[}
+ c(h(2), k(1)) [|n(2) — T(k(2))] + [k(2) = T(R(2))]],

then the functional equation (9) has a unique bounded solution in B(W).

(11)

—_ —
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Proof Let € be an arbitrary positve real number and h,hy € B(W). Then for
x € W, we can choose y;,y, € D so that

T(h(x)) <g(x,y1) + G(x,y, i (t(x,y2))) + € (12)
T(hy(x)) <g(x,y1) + G(x,y, ha(z(x, 1)) + € (13)
Also from (10),
T(hi(x)) = 8(x,y2) + G(x,y2, b1 (t(x, 2))) (14)
T(ha(x)) = g(x; 1) + G(x, y1, ha((x, 1)) (15)

If the inequality (11) holds, then from (12) and (15),

T(hi(x)) — T(ha(x)) <G(x, y1, hi(t(x, 1)) — G(x, 1, ha(2(x,31))) + €
<[G(x,y1, i (t(x,31))) — Glx, y1, ha(2(x, 31)))[ + € (16)
<M(hi(x),hy(x)) + €.

Similarly from (13) and (14), we obatin
T(hy(x)) = T(h1(x)) <M (hi(x), ha(x)) + € (17)
From (16) and (17), we establish
T (1 (x)) — T(ha(x))] < M(hi(x), ha(x)) + € (18)

which is true for each x € W and arbitrary € > 0.
Hence

O (r)dp(T(hy),hy) <dp(hi,hy) = dg(T(hy), T(h2)) <M(hy, hy),

where a, b and ¢ are evaluated at the point (h;(x), s,(x)). Hence, the conditions of
Corollary 2.6 are satisfied for the mapping T and so, the functional equation (9) has
a unique bounded solution. O
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