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Abstract Let A;x(n) denote the number of partition k-tuples of n where each
partition is t-core. In this paper, we prove some Ramanujan-type congruences for
the partition function A, (n) when (¢, k) = (3,4), (3,9), (4.8), (5, 6), (8, 4), (9, 3)
and (9, 6) by employing g-series identities.
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers,
called parts, whose sum equals n. Let p(n) denote the number of partition of n. For
convenience, we shall set p(0) = 1. The generating function for p(n) is given by
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o0 0 1
;p(n)q C(@9)s m
where
(@:9) = ﬁ(l —aq"),lql<1. (2)
n=0

Most popular congruences of p(n) that discovered by Ramanujan for n >0,

p(5n+4) =0(mod5) (3)
p(7Tn+5) =0 (mod7) (4)
p(11n+6) =0 (mod 11) (5)

Ramanujan’s work inspired scholars to study the arithmetic properties for the other
types of partition functions such as z-core partition. A partition of n is called a ¢-core
of n if none of its hook number is a multiple of 7. Let A,(n) denote the number of -
core partitions of n, the generating function of A,(n) is given by

> g =0 ©

o (49) o

The arithmetic properties of #-core partition function have been studied by several
authors, see [2, 4, 5, 8, 10, 15]. A partition k-tuple (41, 4s,...,4) of a positive
integer n is a k-tuple of partitions 4, 45, ..., such that the sum of all the parts
equals n. A partition k-tuple (Zi,..., ) of n with t-cores means that each /; is #-
core. Let A,;(n) denote the number of partition k-tuples of n with z-cores. The
generating function of A, (n) can be obtained as

0 t. t\kt

Zszk(n)q" — (q 4 )oo ]

e (4:9)% @)

Wang [12] proved some arithmetic identities and congruences for partition triples
with 3-cores. Recently, Chern [9] studied the function A,;(n) and proved some
identities by employing the method of modular form. In sequel, in this paper we
study the arithmetic properties of A,;x(n) for (1,k) = (3,4),(3,9),(4,8),
(5, 6),(8,4), (9, 3) and (9, 6) by using g-series identities and prove some
Ramanujan-type congruences.

In Sect. 3, we prove some congruence and infinite family of congruences for As 4
for modulo 4. For example, we prove for o >0,

112241 4
Asy (22<“+1>“n + 3) =0 (mod4). (8)

In Sect. 4, we prove arithmetic identities and congruences for A3 9 modulo 3 and 9.
For example, we prove, for k >0,
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Asp(9-2%n 430 2% = 3) = 0(mod3).

©)

In Sect. 5, we prove congruences for A4 g modulo 4. In Sect. 6, we prove congru-
ences for Ag 4 modulo 2. In Sects. 7 and 8, we prove some congruences for Ag 3 and

Ag . Section 2 is devoted to record some preliminary results.

2 Preliminaries

Lemma 2.1 For any prime p, we have

(@";4") o = (4;9)% (modp).

Proof Follows easily from binomial theorem.

Lemma 2.2 [1, Lemma 1.4] For any prime p, we have

(4:9)% = (¢:¢") (mod p?).

Proof Follows easily from binomial theorem.

Lemma 2.3 [13, Eq. (2.11)] We have

L (g5 A (g% %2 (6% 4%)%

T = 4 4 10
(@) (@59%) (% 6%) (7% %)

Lemma 2.4 [3, p. 648, Eq. (2.9)] For any integer k> 1, we have
2% 1
p(20 4550 = 9o,

where

Lemma 2.5 [13, Eq. (3.75)] We have

3 3 2 3
(@) _ (454" | (4%4")s
@D (P100)%(@%0?) (@4

(11)
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Lemma 2.6 [14, Lemma 2.1, Eq. (2.3)] We have

4. 4520 2. 2\4 (8. 8\8
8 (0% 9" 2(4%97)5(4% 9" ) 4. a8
(4: )5 = @) ) + 16g @) —84(q% 4 ) (14)

Lemma 2.7 [11] We have

1 (QZS'CI%)S 475 3/.5 20275
G (qs_qs);c (Fq) +aF (@) +24°F (")
’ [e’e} ) [e%s)
+3¢F (¢°) + 54" = 3¢4°F(q°)

+20°F(¢°) — ' F(§) + ¢°F}(q)),

(15)

where F(q):=q '"R(q) and R(q) is Roger’s Ramanujan continued fraction
defined by

Lemma 2.8 [7, p. 345, Entry 1(iv)] We have
(@:9)% = (@°:4°)3 (4’ W (@*) = 3¢ + W' (7)), (16)

where W(q) = q~'*G(q) and G(q) is the Ramanujan’s cubic continued fraction
defined by

1/3 2 2 4

97 9+q¢ ¢ +q

G(q) == — , gl <1
1 + 1 + 1 e

Lemma 2.9 [6, Eq. (3.9)] We have

1 () (1 3q >
(@) (¢ <W2(‘13) Ty T (17)

+8¢°w(q’) + 124" (q°) + 16¢°w* (),

(4:9)a0 (¢%:0°)2,

where w(q) = (%30%) o (P50P)2

3 Congruences for As 4(n) modulo 4

Theorem 3.1 For n>0, we have
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()A34(2n+ 1) = 0 (mod4),
(i))A34(8n+6) = 0(mod4),
(iif)A3 4(16n + 8) = 0 (mod 4).

Proof Setting t = 3 and k = 4 in (7), we obtain

S A
Y Asa(n)g" ==
= saln)a (4:9)% s

Using Lemma 2.2 in (18), we obtain

3 Asa(n)g” % (mod 4). (19)
n=0 (q g )oo
Since there are no terms containing ¢*"*! in (19), we complete the proof (i).

Extracting terms involving ¢** and replacing ¢> by ¢ from (19), we have

ZA34211 _ (@) (mod 4). (20)

(9%

Using Lemma 2.5 in (20) and squaring, we obtain
00 6 4 3 2 2
3 A0 = (¢ 4*) 5 (4% ¢°)5 iy (%442 (¢% ¢*)5 (¢ 4o
= (@025 (@297 (0522 (0'7:9"2) (6% 42):

(12. 12)6 h (21)
+q —E]q4;;14)ic°°> (mod 4).

4

Extracting terms involving ¢?"*! in (21), dividing by ¢ and replacing ¢* by g, we
obtain
> Asaldn+2)q" = 2(¢;9)2 (4% °)% (mod 4). (22)
n=0

Equation (22) can be written as

N 0 0 (@58
D Asa(dn+2)q" =2(qiq)0 5>

o (mod4). (23)
n=0 » 1) o00

Again using Lemma 2.5 in (23), we have

00 2. .2\2 (.12, ,.12\6
ZA3"4(4n+2)q”52(q 4y 2(4’Q)3°(q 9 ) (mod 4). (24)
=0 (4% 2% (g% %)%

2n+1
2n

in (24), we arrive at (ii).
in (21) and replacing ¢*> by g, we obtain

Extracting terms containing ¢
Extracting terms involving g
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6
(4% %)%
2
(@45

Extracting terms involving ¢*" in (25) and replacing ¢ by ¢ , we obtain

iAsA(‘m)q” = (050)% + 4 (mod 4). (25)
n=0

S Asa(8)d” = (@)%, = (¢ )2 (mod 4). (26)
n=0

2n+1

Again, extracting terms containing ¢ in (26), we arrive at (iii). O

Theorem 3.2 For any positive integer n, and o> 0, we have

20

A34(2n) = Asy (22“+1n 1.2 > (mod 4). (27)

Proof Extracting terms involving ¢**! in (25), dividing by ¢, and replacing ¢* by
g, we have

00 3. .3\0

Y Asa(8n +4)g" = M (mod 4). (28)

e (45 9)%
From (20) and (28), we can deduce that

A374(27’l) = A3’4(81’l + 4) (mod 4) (29)

Replacing n by 4n + 2 in (29) and iterating, we arrive at the desired result. O

Theorem 3.3 For any positive integer n, and o> 0, we have

112241 4

Asa (22(a+1)+1n +
’ 3

) = 0(mod 4). (30)

Proof Replacing n by 4n + 3 in (27) and employing Theorem 3.1(ii), we complete
the proof. O

4 Congruences for A3 9(n) modulo 3 and 9

Theorem 4.1 For any positive integer n and k >0, we have

S Aso(9- P+ 3(2% — 1)g" = (g50)". (mod 3). (31)

n=0

Proof Setting t = 3 and kK =9 in (7), we obtain
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- o (@)
Az o(n =—"— 2 32
; 39(n)gq @ a. (32)

Using Lemma 2.1 in (32), we obtain

%o 9. 9\
;Agyg(n)q” - %(mod 3). (33)

Extracting terms involving ¢ in (33) and replacing ¢° by g, we obtain

zoojAw(%)q" = (¢;9)%, (mod 3). (34)
n=0

Using (12) in (34), we obtain

D A39(9n)¢" = py(n)(mod 3). (35)
n=0
Employing Lemma 2.4 in (35), we arrive at the desired result. O

Theorem 4.2 For n>0, we have
A3‘,9(9n +]) =0 (mod 3),
where j =1,2,3,4,5,6,7,8

Proof Extracting terms containing q9”+j for 1 <j <8, from both sides of (33), we
arrive at the desired result. O

Theorem 4.3 For any positive integer n and k >0, we have

A39(9 - 2%+ 2y 4+ 30-2% — 3) = 0 (mod 3). (36)

Proof Using Lemma 2.6 in (31) and then extracting terms involving ¢**3,
dividing by ¢* and replacing ¢* by ¢ ,we complete the proof. O

Theorem 4.4 For n>0, we have
A39(3n) = t(n+ 1) (mod 9)
where t is the Ramanujan’s tau function defined by
00
a(g;9)m =Y t(n)q" (37)

n=1

Proof Setting t = 3 and kK =9 in (7), we obtain
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00 3. 3\27
> Asoln)gr =T
n=0

(@9
Using Lemma 2.2 in (38), we obtain

N n)q (@) mod 9
;A&G’( (C],Cl)io( O )

(38)

Extracting terms involving ¢* in (39) and replacing ¢ by ¢, we obtain

ZA39 (Bn)q" = (¢;¢)% (mod 9).
n=0

From (40) and (37), we deduce that

iA379(3n)qn+l = i ‘L' mod 9)

n=0 n=0

From (41), we easily arrive at the desired result.

5 Congruences for A, g(n) modulo 4

Theorem 5.1 For n>0, we have

Agg(4n+j) =0 (mod4); j=1,2,3.

Proof Setting t =4 and k = 8 in (7), we obtain

o0

4, 4\32
S Assng = L.
o (45 9)x
Applying Lemma 2.2 in (42), we obtain
ZA48 "= (q*q ) (mod4).

n=0

(40)

(41)

(42)

(43)

Extracting terms involving ¢**/ for j = 1,2, and 3 in (43), we complete the proof. (]

6 Congruences for As(n) modulo 3 and 5

Theorem 6.1 For n>0, we have
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(i) As¢(3n+1) =0 (mod 3)
(ll) A5,6(3n + 2) =0 (mod 3)
(iii) Asg(5Sn+4) =0 (mod 5)

Proof Setting t =5 and k = 6 in (7), we obtain

% 5. 5130
> Asalng’ = LD (@4)
n=0 (49)2%
Applying Lemma 2.1 in (44) we obtain
o) 15. ,15\10
n_ 973797 ) 3
S Ass(ma’ = UL (g1 g) (mod 3. (45)
e (% 4%)%
Using Lemma 2.8 in (45), we obtain
o . (q 5;6115)3)2 3,203 -1/,3
=0 (@ 0°)%
3n+1 3n+2

Extracting terms containing g
(i) and (ii), respectively.
Applying Lemma 2.1 in (44), we obtain

and ¢ in (46), we complete the proof of

S Aso(n)d” _ @) 05 (47)
LS = ) (45 9) '

Using Lemma 2.7 in (47) and extracting terms involving ¢>"**, dividing by ¢* and
replacing ¢° by g, we can easily obtain (iii). O

7 Congruences for Ag4(n) modulo 2

Theorem 7.1 For n>0, we have

(it) Ag 4(4n + 2) = 0O(mod 2)
(iii) Ag 4(4n + 3) = 0(mod 2)

Proof Setting t = 8 and k = 4 in (7), we obtain

% 8. 8\32
> Asalmg =L ) (48)
=0 (4:9)
Applying Lemma 2.3 in (48) and extracting the terms involving ¢**!, ¢**2 and
g**3, we complete the proof of (i), (ii), and (iii), respectively. O
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8 Congruences for Ag;(n) modulo 3

Theorem 8.1 For n>0, we have

(l) A9“’3(31’l + 1) =0 (mod 3)
(ii) Ag3(3n+2) =0 (mod 3)

Proof Setting t =9 and k = 3 in (7), we obtain
00 9. 9\27
459 )x
=0 (4:9)%

Using Lemma 2.9 in (49) and extracting the terms involving ¢***!' and ¢*"*2, we

complete the proof of (i) and (ii), respectively. ([

9 Congruences for Ag¢(n) modulo 3

Theorem 9.1 For n>0, we have

(l) A976(3I’l + 1) =0 (mod 3)
(ii) Agg(3n+2) =0 (mod 3)

Proof Setting t =9 and k = 6 in (7), we obtain

3

S o (@5 (@59
ZAg,ﬁ(n)q = 6 = 9 . (50)
(¢: )5 (4:9)5
Using Lemma 2.8 in (50), we obtain
A _ @) %) —3q+w ' (¢%))(mod3 51
Z 96(n :W(q w(q’) = 3g+w (q))(mo )- (51)
Extracting terms involving ¢***! and ¢**? in (51), we complete the proof of (i) and

(ii), respectively. Ul
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