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Abstract For an analytic function f of the form f(z) = z + a22> + a32° + - - - sat-
isfying either Re((f'(2))*(z'2)/f(2)") >0 or Re((f'(2))*(1 +z"(z)/
f (z))(l_“)) > 0, the bounds for the third Hankel determinant H3(1) = a3(asay —

a3) — as(as — azaz) + as(a; — a3) are obtained. Our results include some previ-
ously known results.
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Subordination - Hankel determinant
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1 Introduction

Let A be the class of all normalized analytic functions of the form f(z) =
z+ Y 07, a,z" in the open unit disk D := {z € C : |z] <1} and S be the subclass of
A consisting of univalent functions in . The gth Hankel determinant (denoted by
H,(n)) forg=1,2,...and n = 1,2,3,... of the function fis the ¢ x g determinant
given by H,(n) := det(a,+4j—2). Here a,;1;_» denotes the entry for the ith row and
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jth column of the matrix. The second Hankel determinant H,(2) := asas — a3 for
the class of functions whose derivative has positive real part, the classes of starlike
and convex functions, close-to-starlike and close-to-convex functions with respect
to symmetric points have been studied in [3, 4] respectively. One may refer to the
survey given by Liu et al. [7] for the other work done in the research of Hankel
determinant for univalent functions. Other than the survey, their paper also contains
bounds on the second Hankel determinant for some other subclasses of analytic
functions. Other interesting papers on this topic include [6, 9].

The third Hankel determinant for the class of starlike and convex functions was
studied by Babalola [1]. Shanmugam et al. [12] obtained the third Hankel
determinant H3(1) for the class of a-starlike functions. The third Hankel
determinant for the class of close to convex functions can be referred to in [10],
for a subclass of p-valent functions has been studied in [13], for a class of analytic
functions associated with the lemniscate of Bernoulli in [11] and for starlike and
convex functions with respect to symmetric points in [8]. One can refer to [14] for
the third Hankel determinant for the inverse of a function whose derivative has a
positive real part and [12] for a-starlike functions.

An analytic function f is said to be subordinate to F, written f < F or f(z) <
F(z), (z € D) if there exists an analytic function w : D — D satisfying w(0) = 0
and f(z) = F(w(z)) in D. If F is univalent in D, then f(z) < F(z) if and only if
f(0) = F(0) and f(D) C F(D). Let ¢ be a univalent function with positive real
part, (0) = 1 and ¢’(0) > 0. In this paper, we determine the bounds on the third
Hankel determinant H3(1) for the functions f in the classes M, and £, defined by:

M= {resire(0@r(3E) ) >0l

and

L= {f €s: Re<(f'(z))“(1 +ZJ{((ZZ)))1> > 0}.

2 Third Hankel determinant
The first theorem gives the coefficient bounds for the first five coefficients for the

functions in the class M, which is the class of all analytic functions f € S satisfying
the following inequality

w0 (45 )

Note that

S*:Moz{fGS:Re(ZJJ:(iZ)))>O} and R=M, ={feS:Re(f'(z)) >0}
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are the classes of starlike functions and the class of functions whose derivative has
positive real part respectively. The latter class is a subclass of the close-to-convex
functions. Thus as o varies from 0 to 1, our class M, provides a continuous passage
from the class of S* of starlike functions to the the class R of functions whose
derivative has positive real part.

Theorem 2.1 If the function f € M,, then the coefficients a, (n =2,3,4,5) of f
satisfy:

la] < —2

a —7

= +0)
23+«

4] < (3+a)

2+ o) (1 +a)*’
2(36 + 190 + 110 4 503 + oc4)

|a4|§ 3
31+a)"2+a0)(3+a)

and

2(360 + 4330 + 4370% 4 3310 + 137a* + 284° + 205)

las| < 3(1+a)4(2+a)2(3+“)(4+°‘)

Proof Since f € M,, there is an analytic function p(z) = 1 +cjz+ 222 + -+ €
‘P such that

/ o Zf/(Z) 1-2 _
@ (Fey) = (2.1)
The Taylor series expansion of the function f gives
/ o Zf/(Z) 1-a 1
@ (T ) =1 el + et 5 (@4 n) e~ (1 - 09d)d

+é(3 + a)(6as — 6(1 — )azas + (1 — o)(2 — w)a3))z + - -
(2.2)

Then using Egs. (2.1), (2.2) and the expansion of the function p, the coefficients a,—
as can be expressed as a function of the coefficients c; of p € P:

ap = (130!)7 (23)
= (21 + a)er + (1 - D)2+ 0)2), (24)

224 a)(1 + o)
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1

a; = T2 1 061 (1 —a)(2+a)(3+ o) (1 —2a)c]
+6(1+0)* (2 + a)es + 6(1 + a)*(1 — a)(3+ a)cica), (2.5)
and
as = ! (24(1 + 22 + 2X(1 — D)4 + D)ercs

24(1 + 0)* 2+ 2)°(3 + 2) (4 + )
+24(1 +0)* B+ 0) (2 + o) cq + 12(1 + a)* 3 + o) (1 — @) (4 + o)
+12(1 4 a)*(1 — ) (2 4 @) (3 + o) (4 + o) (1 — 2a)c3c,

+ (240 (1—a)(3+a)(4+a)(1 —20)(1 = 3)ct). (2.6)
Consequently, using the triangle inequality and the fact that |c| <2

(k=1,2,3,...), we arrive at the desired bounds for a,, a3, a4 and as.

We now prove some results which will be required to estimate the third Hankel
determinant H3(1) for functions in the class M,. We make use of the following
lemma in proving our next result:

Lemma 2.2 [2] If the function p € P and is given by

p(2) =1+4ciz+ e+ +--- (2.7)

then,
20y = ¢} +x(4 - ), (2.8)
4c3 = cl +2(4 - )clx —ci(4- )x2 +2(4 - c%)(l — |x|2)y, (2.9)

for some x, y with |x| <1 and |y|<1.

Theorem 2.3 Let

1
=3 ((77 +24/1489)'/% — - 4) ~ 0.267554

3
(77 + 24/1489)"/3

For the function f € M, the following coefficient bounds hold:

2018 — o — 402 — o
1. When 0<oa<oy, then |aza; —a4| < ( u—da” — o) .
3(1-1—0() 2+a)(3+a)

2643 6 1+ Qo + 402 3
2. When og<a<l, then |azaz —as4] < (6 + 3+ %) V6 + 9o + 402 + o

T3+ )2+ )3+ a)VTou+ 402 + o3

Proof Using the expressions for ay, asz and a4 from Egs. (2.3) to (2.5), we see that
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1
31+ a)°(2+2)(3+a)
—(1=a)2+x)(3+a)))|.

|(3(1 + )*(2 + 2)es + 31 + 2)(3 + a)cye

arasz — (14| =

Substituting the values for ¢, and ¢3 from Lemma 2.2 in the above expression, we
have

1
12(1 4+ 0)*(2 4 «) (3 + «)
+3(4 — A1+ a)’ 2+ a)erx® —6(4 — ) (1 +0)*(2+a) (1 — [x[*)y].
< 1
T 120+ 0’2+ 2)(3+a)
+3(4 = A)(1+2)* 2+ 2)er[x* +6(4 = ) (1 + 2> 2+ a)(1 = [x*)]y]).

|(18 — o — 40” — a)e] — 12(4 — *)(1 + a)crx

|a2a3 — a4\ =

(18 — o — 4o” — a)e; + 12(4 — *)(1 + o)y [x]

Choosing ¢; = ¢ € [0,2], replacing lxl by u and using the fact that |y| <1 in the
above inequality, we get:

1
12(1 4 0)*(2 4 @) (3 + «)
+3(4 =)0 +0)* 2+ a)e® +6(4 — )1+ a)* (2 + ) (1 — M)).
=: F(c, p).

We shall now maximize the function F(c, u) for (¢, u) € [0,2] x [0, 1]. Differenti-
ating F(c, p) partially with respect to u, we get:

|araz — as| < (18 — o —4o* — a®)c* + 12(4 — 2) (1 + o)ep

F (4=

du 22+a)(3+a)
Then OF /0u = 0 for iy = (2¢)/((2 —¢)(1 + a)(2 4+ «)) € [0,1] when ¢ € [0,1]. As
observed from the graph of the function F(c,u), when ¢ € [0, 1], maximum of

F(c, ) occurs at u, and for ¢ € [1,2], maximum occurs at g = 1. Thus, we maxi-
mize the function G(c) given by:

(2¢+ (2 + o)u(c — 2)).

B Gi(c), 0<c<l;
G(C) B {GZ(C)7 1 727
where
Gi(e) _24(1+9)’ (2 + @)’ 4 6c%(3 + o) (4 + 3+ ) + (3 + &) (=16 + 307 + o)
: 121 + 2’2 + ) (3 + 2) ’
and
12¢(4 — A) (14 ) 4+ 3c(4 — ) (1 +0)* (2 + ) + (18 — o0 — 4o — o)
Gi(c) = )

12(1 +2)*(2 + ) (3 + a)
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50 K. Khatter et al.

Firstly, we observe that Gj(c) = —c(4a(l + a)(2 + o) + c(—16 + 3a* + o))/

(4(1 + 0)*(2 4 @)*). When o € [o*,1], Gy(c) is an increasing function of ¢ as
G} (c) > 0 for all values of ¢ € [0, 1] and when « € [0*, 1], Gi(c) is a decreasing
function of ¢ as G/(c)<O0 for all ¢ € [0,1]. Thus, for « € [0,2*], maximum is
attained at ¢ = 1 and for o € [o*, 1], maximum is at ¢ = 0, and is given by:

144 + 2320 + 2250 + 10203 + 170*
12(1 + 2)*(2 + &)*(3 + « ’
P A SRR 0
o (2+) o <a<l.

(24 0)*B+a)

o <o

— —_— )

Here o is the root of the equation 144 + 2320 + 2250 + 10203+ 17a* =
24(1 4 a)* (2 + o).

We now maximize Gy(c). It is seen that Gh(c) = (— (7 + 4o+ o?)c*+
(1+a)(6+3u+a2))/((1 +2)*(2+a)(3+a)). When o € [0,0], Gy(c) >0 for
all ¢ €[1,2], thereby implying that G(c) is an increasing function of c¢. For
o € [of, 1], it can be seen that:

max_ G,(c) = 1??§2{G2(C0)’ G2(1),G2(2)} = Ga(co),

1<ce<2

where ¢ = ((6 + 90+ 40® + %) /a(7 4 4u + 2))"/? is the positive root of
G5(c) = 0. Thus, it is seen that
2(18 — o — 4o — o)
G 314024+ a)3+a)
1<e<2 B 2(6 + 30+ 02)\V/6 + 90 + 4o + o

3(1 4 a)(2 + o) (3 + o)\ /(7 + 4o+ o2)

where o is the rtoot of (18 —a — 402 —a®)(a(7 + 4o+ o2)? = (1 +a)

(6 + 30 + a2) (6 + 9u + 4o + o3)'/?
the interval ¢ € [0,2] is given by:

0<a<d,

(2.11)
o <a<l.

. The absolute maximum value of G(c) over

max G(c) = maxz{Gl(c),Gz(c)}

0<c<2 0<c<
2(18 — o0 — 4o? — o)
31+0)Q2+a)(3+a)
2(6 + 3o + 02)V6 + 9o + 402 + o3

3(14 )2+ a)(3 + o) /(7 + 4o+ o2)
12 _

where o is the root in [0, 1] of (18 — o — 4o — o3)(a(7 + 4o+ o))/~ = (1 +
2)(6 + 300 + #2)(6 4 9a + 402 + 3)"/? which on solving gives the expression for o
given in the statement of the theorem.

o <a<l.

For the third Hankel determinant, we have the following theorem:
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Corollary 2.4 If f € M,, then the third Hankel determinant H;(1) satisfies

R, 0<a<op,
|H3(1)] <
S, w<la<l.
where
4
R= (10368 + 228150 + 27229a” + 226440

9(14a) (24 0)’ B+ a) (4 +a)
+ 125050 + 41900 + 7390° + 320" — 90® — &),
4
S = 24 o)(4+a
9(1 + 0)* (2 + 0)°(3 + ) (4 + o) (a(7 + 4t + 02)) /> {2+ +a)
X (6 + 9a + 402 + o®) /2 (216 + 2220 + 1595 + 820> + 32a* + 80 + o°)
+3(3 4 o) (7 + 4ot + 02))* (576 + 10630 + 110902 + 6554° + 2090

+ 340° + 24°)},

and

1 3
ap == | (77 +2v/1489)'/3 — — 4 ~0.267554.
°73 <( ) (77 + 21/1489)'/3

Proof Since f € A, a; = 1, so that we have
|H3(1)| < |as||azas — @3] + |asllas — azas| + |as||as — a3 (2.13)

By substituting B; =2 (i = 1,2,3,...) and u = 1 in [5, Theorem 2.11], we get the
following bound for the expression |a3 — a3| for f € M,:

las — a5| <2/(2 + o).
Similarly, [5, Theorem 2.9] gives the following bound for f € M,:
|aray — a3| <4/(2 + a)*.

Using these two bounds, the bound for the expression |as — ayasz| from Theorem 2.3
and the bounds for |a;| (k=1,2,3,...) from Theorem 2.1 in the equation (2.13),
the desired estimates for the thrid Hankel determinant follows.

Remark 2.5 For o = 0, Corollary 2.4 reduces to the following estimate for starlike
functions given in [1]: H53(1) < 16.

Our next theorem gives bounds for the first five coefficients for functions in the
class £, which is the class of all analytic functions f € S satisfying

Re((f’(z))“(l + ij((z? ) ”) > 0.
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52 K. Khatter et al.

Note that

IC:llo:{feS:Re(l—l—?((;))) >o} and  R=L ={feS:Re(f'(z)) >0}

are the classes of convex functions and a subclass of close-to-convex functions
respectively. Thus as o varies from O to 1, our class £, provides a continuous
passage from the class /C of convex functions to the the class R of functions whose
derivative has positive real part.

Theorem 2.6 [f the function f € L,, then the coefficients a,—as satisfy
las] <1,

2

< _ = (3_
las| < 32—9) (3 —2u),
1

< 3EaG a8~ 78 41— )1 ~2)),

|aa]

and

- 1
T 10(2 — 2)*(3 — 2a)(4 — 3)
+16(1 — a)[1 — 22| ((12 — 7o) + |4 — 130 + 607°])).

(4(56 — 1010 + 540* — 82°)

|as|

Proof Since the function f € L, there is an analytic function
p(z) =1+ciz+ c272% 4 -+ € P, such that

oz @\
@ (1+55)  =pe. (2.14)
The Taylor series expansion of the function f gives
(f’(z))“(l + ZJ]:,”((ZZ)) ) . 14 2a0z+ (3(2 — w)az — 4(1 — a)a3)z?

+ (403 — 20)ay — 18(1 — w)azas + 8(1 — w)a3)z> + -+ -.
(2.15)

Then using (2.14), (2.15) and the expansion for the function p, we express a, in
terms of the coefficients ¢; of p € P:

C
a :31, (2.16)

1

s (et (1-2a) (217)

asz =
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1

“= -3 —29) (1 =) (1 =2a)e} + (2 = @)es +3(1 = a)crea),  (2.18)
and
as = 1 (8(2 ) (I —a)cies +2(2 — ) (3 —2a)cy

10(2 — 2)*(3 — 2a)(4 — 30)
+ (1 —a)(4+a)(3 —2u)c5 +2(1 — a)(1 — 20)(12 — Ta)cicr
+ (1 = o)(1 — 20)(4 — 1300 + 60%)cT).
(2.19)

Therefore, by making use of the triangle inequality and the fact that |c;| <2
(k=1,2,3,...), for p € P, we get the desired bounds for a,, a3, a4 and as.

Next, we prove certain results which will be required to estimate the third hankel
determinant Hx(1) for the class £,. Firstly, we find an upper bound for |axa; — a4
for the function f € L,.

Theorem 2.7 Let oy ~ 0.852183 be the root in [0, 1] of the equation
(24 — 192)*? = 9v/3(2 — 2)*/*(3 — 2a)'/2.
If fe€L,, then

(24 — 192)*

18v3(2 — ) (3 — 20)v/6 — Tou + 202 =
1
2(3 —2a)’

aaz — as] <

Proof By making use of the Eqgs. (2.16)- (2.18), we get

1 )(—3(2—0{)C3—(3—5a)clc2—|—(1 —a)(3 = 20)c}).

PGB T2 0GB - 24

Substituting the values for ¢, and ¢3 from Lemma 2.2 in the above expression, we
have

1
layas — as| = 8220 -2 |ot(9 — 8o)e — 2(4 — ¢*)(9 — 8ar)eyx
+3(4— )2 —a)er® —6(4 — )2 —2)(1 = P)yl.
< 48(2 5(3 22) ( (9*80()C? +2(4 — ) (9 — 8a)cy |x|

+3(4 =) 2= a)erlrl’ +6(4 = ) (2 = 2)(1 = k)y]).

Choosing ¢; = ¢ € [0,2], replacing Ixl by u and using the fact that |[y| <1 in the
above inequality, we get
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(2(9 — 8a)c® +2(4 — )(9 — 8a)cu

1
—al<
@y = | S gen 5

+3(4 =) (2 —a)e? +6(4 — )2 —a) (1 — ).
= F(c, ).
We shall now maximize the function F(c, u) for (¢, u) € [0,2] x [0, 1]. Differenti-
ating F(c, p) partially with respect to u, we get
OF (4 —c?)
ou 48(2 — a)(3 —2a)
Then OF /0u = 0 for py = ((9 — 8a)c)/(3(2 — ¢)(2 — «)) € [0, 1] when ¢ € [0,0.8].

As observed from the graph of the function F(c, ), when ¢ € [0,0.8], maximum of
F(c, ) occurs at p, and for ¢ € [0.8,2], maximum occurs at u = 1. Thus, we have:

(2(9 — 8a)c + 6u(2 — o) (c — 2)).

max F(c,1) = G(c) = {Gl(c)’ 0<c<03;

0<u<1 Gz(c), 08<c<2,
where
Gi(0) 7202 — )" +22(3 - 59)(15 — 113) ~ (9 — 8a)(—9 + 20+ 302) |
1442 — o) (3 — 2a)
and

de((24 — 192) — 2(2 — 2)(3 — 2a))
48(2 — a)(3 — 2a) '

GQ(C) =

Note  that  Gj(c) = (4c(3 —52)(15 — 11ar) — 3c*(9 — 8x) (30 + 22— 9))/
(1442 — «)*(3 — 22)). The function G)(c)=0 implies c¢=0 and
co = (4(3 = 50)(15 — 112)) /((9 — 8x) (3¢ + 20 — 9)). In order to find the maxi-
mum value for Gy(c), we check the behaviour of G;(c) at the end points of the
interval [0, 0.8] and at ¢ = ¢y. It can be observed that there exists some o* € [0,0.8]
such that for all values of ¢ € [0,0.8] and o € [0,a"], G} (c) > 0, thereby implying
that G (c) is an increasing function of ¢ € [0, 0.8] and maximum occurs at ¢ = 0.8.
Similarly, using a similar argument, it is observed that when o € [0*,0.8], G(c)
decreases as ¢ € [0,0.8] and hence, maximum occurs at ¢ = 0 and is given as:

G1(0.8), 0<ua<uof

ognclixo.s Gile) = ;, o <a<l. (2.20)
2(3 — 2a)

Here o* is the root of the equation 2(3 — 22)G;(0.8) = 1. We now maximize G,(c).
It is seen that Gh(c) = ((24 — 19a) — 3c*(2 — «)(3 — 22)) /(12(2 — ) (3 — 22)).
On solving Gy(c) =0, the critical points as obtained are
¢ =4/(24 —192)/+/3(2 — «)(3 — 2). Since ¢ cannot be negative, thus the only
points of consideration in finding the maximum of G,(c) are the end points of the
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Third Hankel determinant of starlike... 55

interval [0.8,2] and co = ((24 — 192)/3(2 — a)(3 — 22))"/* €[0.8,2] for all
a € [0,1]. It is observed that G5(c) >0 for ¢ € [0.8,¢9] and Gj(c) <0 when
¢ € [co, 1], thereby implying that the function G;(c) increases first in the interval
[0.8,¢o] and then decreases in the interval [co, 1]. Hence the maximum occurs at
¢ = cp and is given by:

1 (24 —192) \*?
o, G2le) = 5 ((2 —a)(3 - 20()) ' (2.21)

In order to find the find the absolute maximum value of G(c) over the interval
¢ € 10,2], we compare the maximum values of Gi(c) and G(c) as obtained in
(2.20) and (2.21) to get:

1 (24— 192) \*/?
<a<oag:
(@ ) -+ osasw

max_G(c) = 18\/1§ — )3 - 2a (2.22)

0<c<2 |
S <a<l.

23— 2a)’ ==
where o is the root of (24 — 19a)*? = 9v/3(2 — 0)*/*(3 — 20()1/2.

For the third Hankel determinant for the function f € £,, we have the following
theorem:

Corollary 2.8 If f € L,, then the third Hankel determinant Hx(1) satisfies

|H5(1)] (P+Q+R)

S s o3
540(2 — o)

where

5v/3(24 — 190)¥%(2 — 0){8 — T+ 4(1 — a)|1 — 24|}
(6 — 7o+ 202)%(3 — 20)°
5{(72 — 780 + 170)* — 320(3 — 201)| 18 — 270 + 82|}
- 48 — 620+ 1702 — 018 — 270 + 802 ’
o 144{56 — 1010+ 5d0” — 800 +4(1 — o)[1 —20)(12 — T+ |4 — 132+ 622 )}
(4 —3a)(3 —20) '

P:

i

Proof By substituting B; =2 (i =1,2,3,--) and u = 1 in [5, Theorem 2.15], we
get the following bound for the expression |a3 — a3| for f € L,:

jas — a3 <2/(3(2 — ).

Similarly, [5, Theorem 2.13] gives the following bound for f € L,:
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|aras — a3| <

320(3 — 20)| — 18 4 2700 — 80| — (72 — 78 + 174%)*
72(2 — 0)*(3 — 2a) {18 — 2700 + 80| + (—48 + 6200 — 1702)}

Using these two bounds, the bound for the expression |as — azas| from Theorem 2.7
and the bounds for |a;| (k=1,2,3,---) from Theorem 2.6 in the equation (2.13),
the desired estimates for the thrid Hankel determinant follows.

Remark 2.9 For o = 0, Corollary 2.8 reduces to Hz(1) <1/8 obtained in [1] for
convex functions.
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