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Abstract In this article, we prove two versions of the spectral theorem for
quaternionic compact normal operators, namely the series representation and the
resolution of identity form. Though the series representation form already appeared
in [5], we prove this by using simultaneous diagonalization. Whereas the resolution
of identity is new in the literature for the quaternion case, we prove this by asso-
ciating a complex linear operator to the given right linear operator and applying the
classical result. In this process we prove some spectral properties of compact
operators parallel to the classical theory. We also establish the singular value
decomposition of a compact operator.
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1 Introduction and preliminaries

The spectral theorem for quaternionic compact normal operators on right
quaternionic Hilbert space was recently proved by Ghiloni et al. [6], in which the
authors established the left multiplication to prove the series representation of such
operators [6, Theorem 1.4].
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We prove two versions of the spectral theorem. The first version is the series
representation of quaternionic compact normal operator and the second version is
the resolution of identity form. First we observe that spherical point spectrum of
self-adjoint operator coincides with classical definition of point spectrum. This helps
us to prove the series representation of quaternionic compact self-adjoint operators.
Using the cartesian decomposition and simultaneous diagonalization, we prove the
series representation for quaternionic compact normal operators. This approach is
similar to the classical one. Moreover, we prove several important spectral
properties of quaternionic compact operators. We, then prove the singular value
decomposition theorem similar to the classical result. In proving these, we establish
several results related to compact operators which are similar to the classical case.

Next, we establish the resolution of identity for the quaternionic compact normal
operators. This is a new result in this paper. In this case, we associate a complex
linear operator to the given operator and use the classical result to get the
representation for the complex linear operator and lift this result to the given
operator.

Throughout, we consider right eigenvalues for the operators. The concept of right
eigenvalues of quaternion matrices is discussed in [1] with topological approach.
Brenner and Lee proved that every n- dimensional quaternion matrix have exactly
n-complex right eigenvalues with nonnegative imaginary parts (See [2, 8] for
details). Such eigenvalues are known as standard eigenvalues. The spectral theorem
for quaternion matrices is proved in [3].

We prove that a quaternionic compact normal operator has series representation.
We observe that the standard eigenvalues are enough to describe the spectral
properties of the operator. This generalizes the result of Brenner and Lee.

We organize this article into four sections. In the first section we recall some of
the basic properties of quaternions, definitions, properties of compact operators on
quaternionic Hilbert spaces.

In the second section we discuss the spectral theorem for quaternionic compact
self-adjoint operators, singular value decomposition and the simultaneous
diagonalization.

In the third section, the spectral theorem for quaternionic compact normal
operator is proved by using the cartesian decomposition.

In the final section, the resolution of identity on quaternionic Hilbert space is
given.

1.1 Quaternions

Let i, j, k be three vectors that satisfy i> =2 =k> = -1 =i-j-k. Let H = {g =
qo+ qii+qj+ qzk: g, € R, n=0,1,2,3} denote the division ring (skew field)
of all real quaternions. The conjugate of g is § = g9 — q1i — g2j — g3k. The real part
of H is denoted by Re(H) = {g € H: g =7} and the imaginary part of H is
denoted by Im(H) = {g € H: g = —q}. Theset S := {g € Im(H) : |¢| = 1} is the
unit sphere in Im(H). Here we list out some of the properties of quaternions, which
we need later.
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Spectral theorem for quaternionic compact normal operators 67

1. Forp,q€H, pg=gpand |q| .= \/@ + ¢} + & + 4.
- Ip-gl = Ipl-|lg| and |p| = |p|.
3. For p,q € H define p ~ ¢ if and only if p = s !gs, for some s # 0 € H. This is
an equivalence relation and the equivalence <class of p s

[p] = {s7'ps: 0 #£ 5 € H}.

4. Foreachm € S, define C,, := {a+mf : o, f € R}, areal sub algebra of H (It
is also called as slice complex plane).

5. Letm,n € S.If m # £n, then C,, NC, = R. In fact, H = (J,,c5 Ci-

Let H be a right H-module with the map (-|-) : H x H — H satisfying the following
three properties:

1. If x € H, then (x|x) >0 and (x|x) = 0 if and only if x = 0.
2. (xlyp +zq) = (xly)p + (xlz)q, if x,y,z € H and p,q € H.

3. (xly) = (y|x),for allx,y € H.

Define ||x|| = 1/ (x|x), for every x € H. If the normed space (H, || - ||) is complete,
then we call H, a right quaternionic Hilbert space.

Let xi,xp,x3...x, be vectors in H. Then the H-linear span is denoted by
spany {x1,x2,x3...x,} and it is defined as

spany {x1,x2,x3. . X, } = {Zx,q, qeH = l,2,...,n}.

=1

Let S be a subset of H. Then the orthogonal complement of S is denoted by S* and is
defined as

St:={x€H| (x]y) =0forally € S}.

Throughout this article H denotes the division ring of quaternions and H refers to be
the right quaternionic Hilbert space.

Proposition 1.1 Let {¢, :n € N} be an orthonormal basis for H. Then the
following are equivalent:

1. For x,y € H. The series

(xly) =D (xlba) - (buly)

neN

converges absolutely in H.
2. For every x € H, we have

el =D 1xlp)

neN

3. (spany{¢, :n € N} ={0}.
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68 G. Ramesh, P. Santhosh Kumar

Definition 1.2 [5, Definition 2.9] A map T : H — H is said to be a right H-linear
operator or quaternionic linear if T(x.q + y) = Tx.q + Ty, for every x,y € H and
g € H. We say that T is bounded (or continuous), if there exists k > 0O such that
ITx|| <k||x||, for all x € H. If T is bounded, then

[T := sup{[|Tx|| : x € H, [|x]| = 1},
is finite and is called the norm of T.

We denote the set of all bounded right linear operators between H; and H, by
B(H\,H>) and B(H,H) = B(H). If T € B(H,,H>), the null space and the range
space are denoted by N(T) and R(T) respectively.

Definition 1.3 Let 7 € 5(H). The minimum modulus of 7 is defined by
m(T) = inf{||Tx|| : x € H, ||x|| = 1}.

Definition 1.4 [5, Definition 2.12] Let T € B(H). Then there exists a unique
operator T* € B(H) such that (x|Ty) = (T*x|y) for all x,y € H. This operator T* is
called the adjoint of T.

Definition 1.5 Let 7 € B(H). Then T is said to be

self-adjoint if 7 = T*

positive if (x|Tx) >0, for all x € H
anti self-adjiont if 7% = —T
normal if TT* = T*T

unitary if 7TT* =T*T = 1.

Nk e =

Definition 1.6 Let T € B(H). A closed subspace M of H is said to be invariant
under 7, if T(M) := {Tx : x € M} C M. Moreover, if M* is also invariant under T,
then we say M to be a reducing subspace for T.

Theorem 1.7 [5, Theorem 2.18]

1. Let T € B(H) be positive. Then there exists a unique positive operator S €
B(H) such that S* = T. The operator S is called the square root of T and it is
denoted by S = T,

2. IfT € B(H,,H,), then |T| = (T*T)% is called the modulus of T and is denoted
by ITN.

Theorem 1.8 [5, Theorem 2.20] Let T € B(H). Then there exists a unique
operator W € B(H) such that

1. T=W|T|
2. N(W)=N(T)
3. |\W@)| = |ull, for all u e N(T)*.
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Spectral theorem for quaternionic compact normal operators 69

Theorem 1.9 [5, Theorem 5.9] Let T € B(H) be normal. Then there exists three
mutually commuting bounded operators A, B and J such that

T =A+JB,

. T-T
where A =L B == 5 |

and J is an anti self-adjoint unitary operator.

Through out this article, J denotes an anti self-adjoint unitary operator.

Definition 1.10 Let 7 € B(H). Then T is said to be compact if T(S) is compact for
every bounded subset S of H. Equivalently (7T (x,)) has a convergent subsequence
for every bounded sequence (x,) of H.

We denote the class of compact operators between H; and H, by C(H,, H;) and
K(H,H) = K(H).

Examples 1.11 We give some examples of compact operators:

1. Every right linear bounded operator with finite rank is compact.
2. Let H=(*(N,H). Define D: H— H by

92 q3

D(q1,92,93,-..) = (ql,?,?,...), for all (c]j)jeN €H.
Define D, : H — H by

q2 qn
D, (q1,92, - Gny---) = (ql,z,...,;,0,0,...), for all (qj)jeN €H.

Then {D,},y converges to D in the operator norm. Since each D, is compact,
by [4, Theorem 2], D is compact.

LetT € B(H) and g € H. Define A,(T) :=T?> — T(q +q) + 1.|g|*. This operator
is used to define the spherical spectrum of 7.

Definition 1.12 [5, Definition 4.1] If T € B(H), then the spherical spectrum and
the spherical point spectrum are defined as follows:

1. the spherical spectrum:

os(T) :={q € H:A,(T) is not invertible in B(H)}.

2. the spherical point spectrum:

6(T) = {q € H: N(A,(T)) # {0}

Theorem 1.13 [10, Theorem 5.4] If T is an n X n quaternion matrix, then T has
exactly n-right eigenvalues which are complex numbers with nonnegative imaginary
parts.

These eigenvalues are said to be standard eigenvalues.
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2 Representation of compact self-adjoint operators

In this section we obtain a spectral representation of quaternionic compact self-
adjoint operator. Though [4, Conjecture 1] is proved for quaternionic normal
operators in [6], we reprove it for quaternionic compact self-adjoint operators
inspired by the classical proof.

Proposition 2.1 If T € K(H) is self-adjoint, then ||T|| € 0,s(T).

Proof Since T is self-adjoint, there exists a sequence (x,) in H such that ||x,|| = 1,
for every n € N and |(x,|Tx,)| — ||T|| as n — oo. That is there exists r € R with
|r| = ||T|| and {x,|Tx,) — r, as n — co. We see that

| Tx, — 7 - an2 = ||T)cn||2 47— 27 (x| Txy ) < 2% — 2r{x,|Tx,) — 0,

as n — oo. Since T is compact (Tx,) has a convergent subsequence, say (7x,,)
converges to y € H. Then

Fexpy —y=(Txy —y) — (Txy, — 7 xp,) — 0,
as n — oo. By using the continuity of 7, we have T(x,,) converges to %Ty. This
implies that Ty = ry. Moreover,

A (T)y = T?y — 21Ty + r*y = 2r’y — 2%y = 0.
Hence N(A,(T)) # {0}. Equivalently, r = £(|T|| € 6,s(T). O

Lemma 22 [f T=T"<€B(H) and reR, then N(A(T))=N(T—r-1I).
Moreover,

0,5(T) = {r € R:Tx, = r - x,, for some 0 # x, € H}.

Proof Let x € H. Then x € N(A,(T)) if and only if (T2 — 2rT + r*I)x = 0 if and
only if (T—r- 1)2x =0. Since T is self-adjoint, it is equivalent to write
x € N(T —r-1I). By [5, Theorem 4.8(b)], as5(T) C R. Therefore
0,5(T) ={re R: N(A(T)) # {0}}

={reR:N(T—r-I)#{0}}

={reR:Tx, =r-x,, for some 0 # x, € H}. O

Theorem 2.3 Let T € KC(H) be self-adjoint. Then there exists an orthonormal
system ¢y, d,, P3,... of eigenvectors of T corresponding to the eigenvalues
)»1,/12, }v3, . such that |)L]| > I/L2| > |/13| >, and

Tx = Z Dpin{pplx), forall x € H.

neN

Moreover, if (1,) is infinite, then 7, — 0 as n — oo.
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Spectral theorem for quaternionic compact normal operators 71

Proof By Proposition 2.1 and Lemma 2.2, the proof follows along the similar lines
of classical spectral theorem for compact self-adjoint complex operators (see [7,
Theorem 5.1] for classical proof). O

Theorem 2.4 Let T € K(H). Then, there exists a sequence (¢,),(y,) of
orthonormal vectors and a sequence of positive reals (o) such that

Tx =1 Y,0u(d,h), forallxeH. ()

neN
If (o) is infinite, then o, — 0 as n — oo. Moreover, the series in Eq. (1) con-

verges in the operator norm.

Proof Since T is compact, by [4, Theorem 2], we have |T| := (T*T)% is compact.
By Theorem 2.3, there exists an orthonormal system (¢,,) of eigenvectors of 171 and
corresponding eigenvalues (o) such that

|T|x = Z ¢, {(¢p,lx), forallx e H. (2)

neN

If («,) is infinite, then a, — 0, as n — oco. By Theorem 1.8, there exists a unique
operator W € B(H) such that T = WI|T|, where W|y . is an isometry and

N(W) = N(|T|). Let us take y,, = W¢,. We show that (i) forms an orthonormal
system. Consider

WnlY) = W, |Wo,,) = (W W, |d,,) = (dyldyn) = Sum-
Forx e H,

Tx = W|Tlx =Y W(,)on(dalx) = > 0 (dylx).

neN neN

Since the expression of |71 in Eq. (2) converges in the operator norm, it follows that
the series in Eq. (1) converges in the operator norm. ([

Example 2.5 Let H = (*(N,H). Define R : H — H by
R(x) = (0,x1,x2,x3,...,), forall x= (x;,x,x3,...,) € H,

and let D be as in Example 1.11(2). Also we have

6,5(D) = {1:;1 c N} and  og(D) = {%n € N} U {0},

n

Let T = RD. Then |T|* = T*T = D*R*RD = D*D = D?. Hence |T| = D. By The-
orem 2.4, the representation of 171 is,

|T|(x):(x17x2 X3 ) Zen L), VxcH.

neN

Thus for all x € H,
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T(x) = R|T|(x) (Zen e,,|x> ZR en) e,,|x

neN neN

= Zem —(en|x).

neN

Now we prove the converse of Theorem 2.3.

Theorem 2.6 Suppose there exists an orthonormal system of vectors (¢,,) and a
sequence (o) of real numbers which is either finite or converges to 0. If the
operator T is defined by

Tx = Z ¢, (¢, |x), forallx e H,

neN
then T is a bounded quaternionic compact self-adjoint.

Proof Clearly, T is right H-linear. We show that T is self-adjoint. Let x,y € H.
Then

(Tx|y) = <Z B0 (P, | > = Z % (b %) (D)

neN neN

= Z an<x|¢n><¢n|y>

neN

= <x | Zan¢n<</>n|y)>

neN
= (x|Ty).

Therefore T = T*. The rest of the proof is to show T is compact. This follows in the
similar lines as in [7, Theorem 6.2]. Define

T,x = o x), for all x € H.
k k

Here each T, is a finite rank operator, hence compact. We see that

2

IT = Tll* = sup (T = T)x|* = sup
=1 =1

Z beoc{py|x)

k=n+1

< sup |ock| — 0,
k>n+1

as n — oo. Since T, converges to T in the operator norm and /C(H) is closed in
B(H) by [4, Theorem 2], we conclude that T is compact. O
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Spectral theorem for quaternionic compact normal operators 73

Theorem 2.7 (Simultaneous diagonalization) Let T,S € K(H) be self-adjoint. If
TS = ST, then there exist an orthonormal system { ¢, } of eigenvectors of both T and
S with corresponding eigenvalues {A,} and {u,} respectively, such that

Tx = Z Gpin(bylx) and Sx = Z Outtn(Pp,lx), forallx € H.

neN neN

Proof By Theorem 2.3, there exist an orthonormal system {¢,,} of eigenvectors of
T and corresponding eigenvalues {Z,} such that

Ix= Z ¢n’1n<¢n|x>; for all x € H.
n=1

We claim that N(A;, (T)) is invariant under S. Let x € N(A;, (T)) = N(T — A,1).
That is 7Tx =xA,. Then T(Sx) = STx = S(x4,) = (Sx)4,. This shows that
S(N(A4,(T))) € N(A,,(T)).

Define S, := S|y, (r)) : N(A4,(T)) — N(A,,(T)), which is quaternionic com-
pact self-adjoint operator, for each n € N. Then by Theorem 2.3, we can choose
¢, € N(A; (T)) such that S¢, = ¢,u,. Since H = N(T) @ N(T)*, if x € H, then
there exists x; € N(T) and x, € N(T)" such that x = x; + x,. Since {¢, } forms an
orthonormal basis for N(T)*, we have

X2 = Z ¢n<¢n|x>'

neN

If S(N(T)) = {0}, then

S.X = S)C1 + S)Cz = ZS(¢n)<¢n|x> = Z ¢nﬂn<¢n|‘x>' (3)

neN neN

If S(N(T)) # {0}, then as N(T) is invariant under S, the operator S|y is compact

self-adjoint. By Theorem 2.3, there exist a system {y,} C N(T) of eigenvectors of S
and corresponding eigenvalues {&;} such that

Sx = Z Vil (Wilx), for all x € N(T). (4)
X

If x € H, then x = x; + x,, x; € N(T),x, € N(T)". The system {¢,} U {¢),} give
the spectral decomposition for both S and 7. By Egs. (3) and (4), we have

Sx = Sx1 + Sxp = Z Oty (D, lx1) + Z U (Wilx). g
n=1 k
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3 Representation of compact normal operators

In this section, we give a spectral representation for quaternionic compact normal
operators by using Theorems 2.3, 2.4 and the Cartesian decomposition of a quaternionic
normal operator. First, we prove few results that are needed for our purpose.

Proposition 3.1 Let T € B(H) be normal and qi,q; € 0,5(T) such that [q,] N
[42] = 0. Then N(A,, (T)) LN(Ay, (7).

Proof Since T is normal, we have 6,s(T) = 0,s(T*). Let x € N(A,,(T)) and y €
N(A,(T)). Then Tx=x.s'qs, for some O#s€H and since
N(A,(T*)) = N(A,,(T)), T*y = y.I"'qol, for some 0 # [ € H. Then
5qr s aly) = (s qusly) = (Taly) = (1[T7y)

= (.l qal)

= (x[y)-I" gl
We show that (x|y) = 0. Suppose (x|y) # 0, then multiplying with (x|y) " from left
side of the above equation, we get

(uly) s g1 5 ) = 1ok,

which is contradiction to [g1] N [g2] = . Hence the result. O

We prove a Lemma which plays an important role in proving the spectral
representation for quaternionic compact normal operator.

Lemma 3.2 Let J € B(H) be anti self-adjoint and unitary. Let B € B(H) be
positive such that JB = BJ. Then

0,5(JB) ={rq:r € ao,(B),q € a,(J)}.

Proof  Since JB is anti self-adjoint, if ¢ € 6,s(JB), then ¢ C Im(H) and there exists
0 # x € H such that x € N(A,(JB)). This implies

0 = A,(/B)(x) = ((/B)* = JB(q +7) + |gI'T)(x)
= (-B +qI’1)(»)
= (B+ lql1)(B — lq|1)(x)-
Since B>0, (B + |g|I) is invertible. So we conclude that Bx = x|g|. Therefore
gl € 0,5(B).
Clearly, % € aps(J).

Conversely, suppose that r € g,s(B) and g € a,s(J). We claim that rq € ,5(JB).
It is clear that there exists 0 # x € H such that Bx = xr and |¢q| = 1. Consider
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Spectral theorem for quaternionic compact normal operators 75

Ary(JB)(x) = ((JB)® — JB(rq +7q) + |rq|"1)(x) = (=B* + ’|q"I) ()
= —B*(x) + xr?
=0.

Therefore rq € g,s(JB). O
Note 3.3 Let g € H. Then g € 6,5(JB)\{0} < |q| € 0,5(B)\{0}.
We generalize Lemma 3.2 to the whole spherical spectrum.

Lemma 3.4 Let J and B be as in Lemma 3.2. Then

os(JB) = {rq:r € as(B),q € as(J)}.

Proof Let q € 5(JB). Then g = —¢q and A,(JB) = (B + |q|I)(B — |g|I) is not
invertible. Since B>0, (B + |g|I) is invertible. This implies (B — |g|I) is not
invertible. By [5, Theorem 4.8(¢e)], \%I € as(J).

Conversely, suppose that r € a5(B) and ¢ € a5(J). Consider
Ay(JB) = —B> + |rp|*d = —B* + ».1 = (B+r.I)(B — r.I).
Since (B — r.I) is not invertible, rg € as(JB). O

We give a spectral representation of quaternionic compact normal operators and
show that the spherical spectrum is precisely the equivalence class of standard
eigenvalues. Necessarily, in order to have eigenspace to be right linear, the
eigenvalues should be given in terms of equivalence class. This is a generalization
of [10, Theorem 5.4].

Theorem 3.5 Let T € KC(H) be normal. Then there exists an othonormal system
{¢,} of eigenvectors of T and corresponding quaternion eigenvalues {q,} such that

1. Tx =3 ,cn Putdn(@ulx), for all x € H. Moreover, if (q,) is infinite, then q, —
0, as n — co. Hence, the series above converges in the operator norm of B(H).
2 (1) = {lgu] :n € N} = {[Re(g,) + Im(q)| -] : n € N}

Furthermore, the following properties holds true:

(@) The system of eigenvectors {¢, },,.n forms an orthonormal basis for N (T)L =

R(T) and thus R(T) is separable.
(b) The matrix of T‘N(T)L with respect to {¢,},cn is diag(qi, g2, q3,...,), the

diagonal matrix with the diagonal entries q1,q>,q3, - - ..
(©) H=N(T)D,., N4, (T)).
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Proof Proof of (1): Since T is normal, we have
T=A+JB,
where A, B and J as in Theorem 1.9. By Lemma 3.2, we have

os(JB) ={r-q:r € o,(B)and g € g,5(J)}.

Since T is compact, the operators A and B are also compact. By [4, Theorem 2],
JB is compact. In fact A is a quaternionic compact self-adjoint and B is a quater-
nionic compact positive operator with AB = BA. If {";—"‘} C S is a sequence of

eigenvalues of JB, then {|u,|} is a sequence of eigenvalues of B. Thus by Theo-
rem 2.7, there exists an orthonormal system {¢, } of eigenvectors of both A and B
with corresponding eigenvalues {4,}, {|u,|} of A and B respectively, such that

Ax=3"hinld,lx) and Bx=" /() forallxe H.

neN neN

By Lemma 3.2, we have J(¢,,) = ¢, - ‘Z—"‘ .Letx € H. Then by Theorem 1.9, we have

Tx = Ax + JBx = Z ¢nln<¢n|x> +J<Z ¢n|:un|<¢n|x>>

neN neN
= Budalbulx) + > I(ba) ity | (1)
neN neN
721¢¢u+2m|n%¢w
neN neN ”
= Z (ﬁn(/ln + :un)<¢n‘x>
neN

Let g, = A, + p,,- Then

Tx = Z ¢nqn<¢n|x>'

neN

If {g,} is infinite, then either {4,} or {u,} is infinite. So ¢, — 0, as n — oo.

Proof of (2) Let 0#p € H. If p € [g] for some k, then p = s 'g;s, for some
0+#seHand

T(¢y - s) Z‘bn% Duldi)s = Praus = (dy - ) (s qus) = (- ) - p

neN

This implies that p € ,5(T). Suppose 0 # ¢ is an eigenvalue of T such that g & [g]
for all k € N. Then there exists 0 % x € H such that Tx = x - g thatis x € N(A,(T)).
By the representation of 7, we have

Z ¢nqil<¢n |x> =X-q.

neN
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Since [g]N[g] =0, for all k€N, by Proposition 3.1, we have
N(A4(T))LN(A,(T)) for all k € N. Since ¢, € N(A,(T)), for all k € N, we
conclude that

x-gq=0
a contradiction. Therefore 6,s(T) = {[g,] : n € N}.

Now we prove the properties by using the representation of quaternionic compact
normal operator.

Proof of (a) It is clear that {¢,} is an orthonormal set. We prove that N(T) =
spang {¢y, ¢a, b3, ..., } . Let x € N(T). Then, (¢,|x) = 0 for each n € N. Equiv-
alently, x € spany{¢,, ¢, ¢s, ..., }L. Conversely, suppose that xe¢&
spang {¢,, ¢a, 3, ..., } . Then, Tx = 0.

Therefore N(T)" = spany {¢,, ¢a, b3, ..., } " = spany{¢,, ¢, b3, ..., }. Since
T is normal, R(T) = N(T*)" = N(T)" = spany{¢,, ¢5, d3,..., }. Thus R(T) is
separable.

Proof of (b) 1tis clear from (1), that {¢,},.y is an orthonormal basis for N(T)™.
The matrix representation of T N(T) with respect to {¢,},cn is a diagonal matrix

with the diagonal entries (¢;|T¢;) = d;qi, i,j =1,2,3,...

Proof of (c) By the projection theorem, H = N(T) & N(T)". It is clear that,
spany {¢,, } = N(A,,(T)), for each n € N. From (1), we can write

H = N(T)D,S N (A, (T)). O

Remark 3.6 By using spectral representation in Theorem 3.5, we can prove the
following:

1. The dimension of N(A,, (T)) is finite for g, # 0 and k € N.
2. as(T)\{0} = a,5(T)\{0}.

As a consequence of Theorem 3.5, we prove the result by Brenner [2] and Lee
[6], that an #n X n normal matrix with quaternion entries have exactly n- standard
eigenvalues.

Corollary 3.7 Let A€ M,(H) be normal. Then A has exactly n-standard
eigenvalues.

Proof By Theorem 3.5, there exists an orthonormal system {¢,, ¢,,...¢,} of
eigenvectors of A with corresponding eigenvalues {g1, 2, . ..¢,} such that

Ax = Z $,qi(gjlx), forallx € H,
p=)
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where g; = 4; + ;, for j € {1,2,3,...,n}. Here J; is an eigenvalue of’%7 |1y is

‘A_ZA L and ITTII is an eigenvalue of J, as in Theorem 3.5. Here each
J

[¢] is an eigensphere corresponding to an eigenvector ¢;. By Remark 3.6, we have

os(A) =0,5(A) ={lg)] :j=1,2,..,n}.

Each class [g;] is represented by a complex number (g;) + i - [Im (g;j)|. So A has n-
standard eigenvalues. O

an eigenvalue of

Note 3.8 Let A € M,(H). If A = A*, then A has n- real eigenvalues. In fact, these
are standard eigenvalues of A with the imaginary part zero. In particular, if A = I,
the identity matrix then {1} is the only standard eigenvalue of A.

4 Resolution of identity

We present a second version of the spectral theorem, namely the resolution of
identity for a quaternionic compact normal operator. We restrict the given operator
to the slice complex Hilbert space, use classical theorem given in [9, Theo-
rem 6.11.1], later by using [5, Proposition 3.11] extend this result to the
quaternionic operator.

Definition 4.1

1. If K is Hilbert sapce over the slice C,,, for some m € S, then K is said to be C,,-
Hilbert space.
2. Let K be C,,-Hilbert space. A map T : K — K is said to be C,,-linear if

T(x+ Ay) =Tx+ ATy, foreveryx,y € K and /€ C,.

We need the following facts to establish the resolution of identity.
Lemma 4.2 [5, Lemma 3.9] Let m € S and J € B(H). Define C,,-linear spaces
H™ ={x € H:J(x) = +x-m}. Then H™ # {0}, the restriction of Hermitian
scalar product (-|-) to HI™ is C,,-valued and therefore H'" is C,,-Hilbert space.

Lemma 4.3 [5, Lemma 3.10] As a C,,-Hilbert space, H admits the following
direct sum decomposition:

H=H"®H™

Remark 4.4 1t is not necessary to consider H to be C,,-Hilbert space in Lemma 4.3.
We show that, Hi”‘ @ H™ is quaternionic Hilbert space. Let n € S be such that
mn=—nm. If g€ H, then g=a+ f-n where o, € C,. Let x € H. Then
x =a+ b, where a € H/™ and b € H'™. Moreover,
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x-q=(a+b) (a+p n)
=ao+a-f-n+ba+b-f-n
=(ax+b-f-n)+(a-f-n+ba).
It is enough to show (ac+ b - f-n) € H™ and (a - - n + bo) € H™. But it is clear
from the definition of H{" that

Jaon+b-p-n)=J(aa+Jb)f-n=a-me—b-m-f-n=(ax+b-p n) m.

and

Ja-p-n+ba)=J@)p -n+Jb)ja=a-m-f-n—b-mo=—(a-f -n+bax)- m.

Hence x-q € H.

Proposition 4.5 [5, Proposition 3.11] If T : H{" — H’" is a bounded C,,-linear
operator, then there exists unique bounded, right H-linear operator T:H—H
such that T(x) = T(x), for every x € H™. Furthermore

LT =)
JT =TJ
3. LetV :H — H be bounded right linear quaternionic operator. Then V = U,
for some bounded C,,-linear operator U : Him — Hi’” if and only if JV = VJ
4. (T =T"
5. IfS: Hi’" — Hfr’” is bounded C,,-linear operator, then ST =ST
(6) If S is the inverse of T, then S is the inverse of T.

Remark 4.6 1If T, is a C,-linear operator on Him such that T = ﬁ, then for
a € H",b € H™, we have

T(a+b)=T,(a)—Ty(b-n)- n.

Note that if T € B(H) is normal but not self-adjoint, then by Theorem 1.9, there
exists an anti self-adjoint unitary operator J € B(H) such that TJ = JT. Also, if T is
self-adjoint operator then the existence of an anti self-adjoint unitary operator
J commuting with T is guaranteed by [5, Theorem 5.7(b)]. So Proposition 4.5 holds
true for quaternionic normal operator.

Theorem 4.7 Let T € K(H) be normal and m € S. Then there exists a system of
non-zero eigenvalues {1,} C C,, of T such that
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T=> WP, (5)
t=1

where P, is an orthogonal projection onto N(A; (T)). If {4;} is infinite, then J; — 0
as t — 00. The series in Eq. (5) converges in the operator norm.

Proof Since T is normal, there exists J € B(H) such that JT = TJ and JT* = T*J.

By Proposition 4.5, T, is compact normal with ﬁ =T. By [9, Theorem 6.11.1],
there exists a system of eigenvalues {4,} C C,, of T and let P, be an orthogonal
projection onto N (4, — T,) such that

T, = f:/l,P, and iPt =1.
=1 t=1

Here A, — 0 if {4,} is infinite and the series converges in the operator norm. Let
x=a+b e H, where a € Hﬁ" and b € H'™. Then

T(x)=Ti(a) = Ty(b-n) n= Z)“’Pf(a) - Z/I,Pt(b n)-n
=1

= ii,[P,(a) —P,(b-n)-n

From (4) and (5) of Proposition 4.5, P, isa quaternionic orthogonal projection. We
claim that R(P,) = N(A;,(T)). To see this, let x; +x; -n € R(P,). Then x;,x, €
R(P;,)=N(4I—T4) and

Ai,(T)(xl +xy-n) = AL(T)(xl) + AL(T)()Q) -n=0.

It is enough to show N(A; (T)) C R(P,). By Theorem 3.5(c), there exist a linearly
independent set {¢; : 1 <i<k} C Him such that
T(¢;) = Ti(¢;) = ;- /s, for 1 <i<k,

and spany{¢;: 1 <i<k}=N(A,(T)). Since {¢;: 1<i<k} NI -Ty)=
R(P,) and R(P,) is right H-linear space of H, we conclude that spany{¢; :
1<i<k} CR(P,).Thus R(P,) = N(A,,(T)).1tis clear from Proposition 4.5(1), that

T—zn:)u,ﬁ, T+—zn:itpz
=1 =1

The series in Eq. (5) converges in the operator norm.
It remains to show that Y, P, =1 , where I denote the identity operator on H.
For this, let x = a 4+ b, where a € H{" and b € H’". Then

lim =0.

= lim
n—oQ n—oo
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Therefore

3]

i?:I.

t=1

Note that the above series converges in the strong operator topology of B(H). O

Remark 4.8 In Theorem 4.7, the meaning of J.P; is the extension of C,,- linear
operator A,P; to H. By the definition

JiP(a+b) = JP(a) — JyP,(b-n)-n, forallacH™ beH™

Clearly, P, is a right H-linear operator.
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