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Abstract
For more than three decades, distributed systems have been described and analyzed
using topological tools, primarily using two techniques: protocol complexes and
directed algebraic topology. In both cases, the considered computational model gener-
ally assumes communication via shared objects (typically a shared memory consisting
of a collection of read-write registers) or message-passing enabling direct communi-
cation between any pair of processes. This paper aims to examine the use of protocol
complexes in the study of network computing. In this case, processes are located at the
network nodes and communicate by exchanging messages only along the network’s
edges (i.e., not every pair of processes can directly communicate). There are several
reasons why applying the topological approach to network computing can be chal-
lenging, and a prominent one is that node identifiers yield protocol complexes whose
sizes grow exponentially with the size of the underlying network. However, many of
the problems studied in this context are of local nature, and their definitions do not
depend on the identifiers or the network size. We leverage this independence to meet
the above challenge and present local protocol complexes, whose sizes do not depend
on the network size. As an application of the “compacted” protocol complexes, we
reformulate the celebrated lower bound of�(log∗ n) rounds for 3-coloring the n-node
ring in the topological framework.
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1 Context and objective

Several techniques for formalizing distributed computing based on algebraic topology
have emerged in the last decades, including the study of complexes capturing all
possible global states of the systems at a given time (Maurice et al. 2013), and the
study of the (di)homotopy classes of directed paths representing the execution traces
of concurrent programs (Fajstrup 2016). We refer to (Goubault et al. 2018) for a recent
attempt to reconcile the two approaches. This paper is focusing on the first approach,
based on the study of complexes.

Protocol complexes: A generic methodology for studying distributed computing
through the lens of topology has been set by Herlihy and Shavit (Herlihy and Shavit
1999).Thismethodologyhas played an important role in distributed computing,mostly
for establishing impossibility results and time lower bounds (Castañeda and Rajsbaum
2010; Herlihy and Shavit 1999; Saks and Zaharoglou 2000; Pierre et al. 2022), but
also for establishing time upper bounds (Castañeda and Rajsbaum 2012; Attiya et al.
2019; Hoest and Shavit 2006). It is based on viewing distributed computation as a
topological deformation of an input space. More specifically, recall that a simplicial
complex K is a collection of non-empty subsets of a finite set V , downward closed
under inclusion, i.e., for every σ ∈ K, and every non-empty σ ′ ⊂ σ , it holds that
σ ′ ∈ K. Every σ ∈ K is called a simplex, and every v ∈ V is called a vertex. For
instance, an undirected graph G = (V , E) with E ⊆ (V

2

)
, can be viewed as the

complexK = {{v} : v ∈ V }∪ E on the set V of vertices. A sub-complex of a complex
K is a subset of simplices ofK forming a complex. The dimension of a simplex is one
less than the number of its elements. A facet of a complex K is a maximal simplex of
K, that is, a simplex not contained in any other simplex. E.g., the facets of a graph are
its edges and its isolated nodes (viewed as singleton sets). We note that a set of facets
uniquely defines a complex.

The set of all possible input (resp., output) configurations of a distributed system
can be viewed as a simplicial complex, called input complex (resp., output complex),
and denoted by I (resp., O). A vertex of I (resp., O) is a pair (p, x) where p is a
process name, and x is an input (resp., output) value. For instance, the input complex
of binary consensus in an n-process system with process names p1, . . . , pn is:

I ‖ =
{{

(pi , xi ) : i ∈ I , xi ∈ {0, 1} for every i ∈ I
} : I ⊆ [n], I 	= ∅

}
,

with [n] = {1, . . . , n}, and the output complex is:

O ‖ =
{{

(pi , y) : i ∈ I
} : I ⊆ [n], I 	= ∅, y ∈ {0, 1}

}
.

One can check that I ‖ andO ‖ are indeed collections of non-empty subsets of a finite
set, downward closed under inclusion. A distributed computing task is then specified
as a carrier map � : I → 2O, i.e., a function � that maps every input simplex σ ∈ I
to a sub-complex �(σ) of the output complex, satisfying that, for every σ, σ ′ ∈ I,
if σ ⊆ σ ′ then �(σ) is a sub-complex of �(σ ′). The carrier map � is describing
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the output configurations that are legal with respect to the input configuration σ . For
instance, the specification of consensus is, for every σ = {(pi , xi ) : i ∈ I , xi ∈
{0, 1}} ∈ I ‖,

� ‖(σ ) =
{{{(pi , 0) : i ∈ I }, {(pi , 1) : i ∈ I }} if ∃ i, j ∈ I , xi 	= x j ;{{(pi , y) : i ∈ I }} if ∀ i ∈ I , xi = y.

Note that the specification of consensus given here is very general, i.e., � is specified
for every simplex σ ∈ I ‖. This enables, e.g., to handle crash failures. In absence of
failures, the specification of a task can be done just by specifying � for the facets in
the input complex.

In the topological framework, computation is modeled by a protocol complex that
evolves with time, where the notion of “time” depends on the computational model at
hand. The protocol complex at time t , denoted by P(t), captures all possible states of
the system at time t . Typically, a vertex of P(t) is a pair (p, s) where p is a process
name, and s is a possible state of p at time t . A set {(pi , si ) : i ∈ I } of such vertices,
for ∅ 	= I ⊆ [n], forms a simplex of P(t) if the states si , i ∈ I , are mutually
compatible, that is, if {si : i ∈ I } forms a possible global state for the processes in the
set {pi : i ∈ I } at time t .

A crucial point is that an algorithm that outputs in time t induces a mapping δ :
P(t) → O. Specifically, if the process pi with state si at time t outputs yi , then δ maps
the vertex (pi , si ) ∈ P(t) to the vertex δ(pi , si ) = (pi , yi ) in O. For the task to be
correctly solved, the mapping δ must preserve the simplices of P(t), and must agree
with the specification � of the task. That is, δ must map simplices to simplices, and if
the configuration {(pi , si ), i ∈ I } of a distributed system is reachable at time t starting
from the input configuration {(pi , xi ), i ∈ I }, then it must be the case that

{δ(pi , si ), i ∈ I } ∈ �({(pi , xi ), i ∈ I }).

The set of configurations reachable in time t stating from an input configuration σ ∈ I
is denoted by �t (σ ). In particular, �t : I → 2P(t)

is a carrier map.

Fundamental lemma: The framework defined by Herlihy and Shavit (1999)
enables to characterize the power and limitation of distributed computing, thanks to
the following generic result, which can be viewed as the basis of distributed comput-
ing within the topological framework. Let us consider some (deterministic) distributed
computingmodel, assumed to be full information, that is, every process communicates
its entire history at each of its communication steps. The following result connects
solvability of a task by an algorithm in a given model with the existence of a map-
ping of a specific form between the topological complexes corresponding to this task
and this model (see (Castañeda et al. 2021; Maurice et al. 2013; Herlihy and Shavit
1999; Maurice and Sergio 1997, 1998) for instantiations of this result for different
computational models).

Lemma 1 A task (I,O,�) is solvable in time t if and only if there exists a simplicial
map δ : P(t) → O such that, for every σ ∈ I, δ(�t (σ )) ⊆ �(σ).
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Fig. 1 a A chromatic subdivision of a 3-process simplex; b Subdivision for 1-resiliency; a triangle labeled,
e.g., {i}{ jk} corresponds to the case in which pi writes and reads the memory without seeing p j and
pk , while p j and pk saw pi when they read after they wrote, and they also saw each other; all possible
interleavings for one write-read instruction are displayed

Again, beware that the notion of time in the above theorem depends on the computa-
tional model. The topology of the protocol complexP(t), or, equivalently, the nature of
the carrier map �t , depends on the input complex I, and on the computing model at
hand. For instance, wait-free computing in asynchronous shared memory systems
induces protocol complexes by a deformation of the input complex, called chro-
matic subdivisions (Maurice et al. 2013) and depicted in Fig. 1a. Similarly, t-resilient
computing may introduce holes in the protocol complex, in addition to chromatic
subdivisions, see Fig. 1b. More generally, the topological deformation �t of the input
complex caused by the execution of a full information protocol in the considered
computing model entirely determines the existence of a decision map δ : P(t) → O,
which makes the task (I,O,�) solvable or not in that model.

Topological invariants: The typical approach for determining whether a task (e.g.,
consensus) is solvable in t rounds goes through identifying topological invariants,
i.e., properties of complexes that are preserved by simplicial maps. Specifically, the
approach consists in:

1. Identifying a topological invariant, i.e., a property satisfied by the input complex I,
and preserved by �t ;

2. Checking whether this invariant, which must be satisfied by the sub-complex
δ(P(t)) of the output complex O, does not contradict the specification � of the
task.

For instance, in the case of binary consensus, the input complex I ‖ is a sphere.
One basic property of spheres is being path-connected (i.e., there is a path in I ‖
between any two vertices). As mentioned earlier, shared-memory wait-free computing
corresponds to subdividing the input complex (Maurice et al. 2013). Therefore, inde-
pendently from the length t of the execution, the protocol complex P(t) is a chromatic
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subdivision of the sphere I ‖, and thus it remains path-connected. On the other hand,
the output complex O ‖ of binary consensus is the disjoint union of two complexes
O0 andO1, whereOy = {{(i, y) : i ∈ I }, I ⊆ [n], I 	= ∅

}
for y ∈ {0, 1}. Since sim-

plicial maps preserve connectivity, it follows that δ(P(t)) ⊆ O0 or δ(P(t)) ⊆ O1. As a
consequence, δ cannot agree with � ‖, as the latter maps the simplex {(i, 0), i ∈ [n]}
toO0, and the simplex {(i, 1), i ∈ [n]} toO1. Therefore, consensus cannot be achieved
wait-free, regardless of the number t of rounds.

The fact that connectivity plays a significant role in the inability to solve consensus
in the presence of asynchrony and crash failures is known since the original proof of the
FLP theorem (Fischer et al. 1985) in the early 1980s. However, the relation between k-
set agreement and higher dimensional forms of connectivity (i.e., the ability to contract
high dimensional spheres) was only established ten years later (Herlihy and Shavit
1999; Saks and Zaharoglou 2000). We refer to Maurice et al. (2013) for numerous
applications of Lemma 1 to various models of distributed computing, including asyn-
chronous crash-prone shared-memory or fully-connected message passing models. In
particular, for tasks such as renaming, identifying the minimal number t of rounds
enabling a simplicial map δ to exist is currently the only known technique for upper
bounding their time complexities (Attiya et al. 2019).

Network computing: Recently, Castañeda et al. (2021) applied Lemma 1 to syn-
chronous fault-free computing in networks, that is, to the framework inwhichprocesses
are located at the vertices of a simple (no multiple edges, no loops) n-node undirected
graph G, and can exchange messages only along the edges of that graph. They mostly
focus on input–output tasks such as consensus and set-agreement, in a simplified com-
puting model, called KNOW-ALL, specifying that every process is initially aware of
the name and the location of all the other processes in the network. As observed in
Castañeda et al. (2021), synchronous fault-free computing in the KNOW-ALL model
preserves the facets of the input complex, and does not subdivide them. However,
scissor cuts may occur between adjacent facets during the course of the computation,
that is, the protocol complex P(t) is obtained from the input complex I by partially
separating facets that initially shared a simplex. Figure2 illustrates two types of scissor
cuts applied to the sphere, corresponding to two different communication networks.
The positions of the cuts depend on the structure of the graph G in which the com-
putation takes place, and determining the precise impact of the structure of G on the
topology of the protocol complex is a nontrivial challenge, even in the KNOW-ALL
model.

Fig. 2 a The input complex of binary consensus for three processes; b The scissor cuts for the consistently
directed 3-process cycle C3 after one round; (c) The scissor cuts for the directed 3-process star S3, where
edges are directed from the center to the leaves, after one round
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Instead, we aim at analyzing classical graph problems (e.g., coloring, independent
set, etc.) in the standard LOCAL model (David 2001) of network computing, which is
weaker than the KNOW-ALLmodel, and thus allows for more complicated topological
deformations. In the LOCALmodel, every node is initially aware of solely its identifier
(which is unique in the network), and its input (e.g., for minimum weight vertex cover
or for list-coloring), all nodes wake up synchronously, and compute in locksteps.
The LOCAL model is an ideal model for studying locality in the context of network
computing (David 2001).

In addition to the fact that the topological deformations of the protocol complexes
strongly depend on the structure of the network, another obstacle that makes applying
the topological approach to the LOCAL model even more challenging is the presence
of process identifiers. Indeed, the model typically assumes that the node IDs are taken
from a range [N ] where N = poly(n). As a consequence, independently from the
potential presence of other input values, the size of the complexes (i.e., their number
of vertices) may become as large as

(N
n

)
n!, since there are

(N
n

)
ways of choosing

n IDs, and n! ways of assigning the n chosen IDs to the n nodes of G (unless G
presents symmetries). For instance, Fig. 2 assumes the KNOW-ALLmodel, hence fixed
IDs. Redrawing these complexes assuming that the three processes can pick arbitrary
distinct IDs as in the LOCALmodel, even in the small domain {1, 2, 3, 4}, would yield
a cumbersome figure with 24 nodes. Note that the presence of IDs also results in input
complexes that may be topologically more complicated than pseudospheres, even for
tasks such as consensus.

Importantly, the fact that the IDs are not fixed a priori, and may even be taken
from a range exceeding [n], is inherent to distributed network computing. Indeed,
this framework aims at understanding the power and limitation of computing in large
networks, from LANs to the whole Internet, where the processing nodes are assigned
arbitrary IDs taken from a range of values which may significantly exceed the number
of nodes in the network.

Objective: To sum up, while the study of protocol complexes has found numer-
ous applications in the context of fault-tolerant message-passing or shared-memory
computing, extending this theory to network computing faces a difficulty caused by
the presence of arbitrary IDs, which are often the only inputs to the processes (David
2001). The objective of this paper is to show how the combinatorial blowup caused
by the presence of IDs in network computing can be avoided, at least as far as local
computing is concerned.

2 Our results

We show how to bypass the aforementioned exponential blowup in the size of the com-
plexes, that would result from a straightforward application of Lemma 1 for analyzing
the complexity of tasks in networks. Our result holds for a variety of problems, includ-
ing classical graph problems such as vertex and edge-coloring, maximal independent
set (MIS), maximal matching, etc. More specifically, it holds for the large class of
locally checkable labeling (LCL) tasks (Naor and Stockmeyer 1995) on bounded-
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degree graphs. These are tasks for which it is possible to locally verify the correctness
of a solution, and thus they are sometimes viewed as the analog of NP in the context
of computing in networks. An LCL task is described by a finite set of labels, and a
local description of how these labels can be legally assigned to the nodes of a network.
Our local characterization theorem is strongly based on a seminal result by Naor and
Stockmeyer (1995) who showed that the values of the IDs do not actually matter much
for solving LCL tasks in networks, but only their relative order does.

We prove an analog of Lemma 1, but where the size of the complexes involved in
the statement is independent of the size of the networks. Specifically, the size of the
complexes in our characterization theorem depends solely on the maximum degree d
(number of neighbors) in the network, the number of labels used for the description
of the task, and the number of rounds (time) of the considered algorithm for solving
that task. In particular, the identifiers are taken from a bounded-size set, even if the
theorem applies to tasks defined on networks with arbitrarily large number n of nodes,
and for identifiers taken from an arbitrarily large range [N ]. We denote by Kd,[R] the
fact that the facets of K have dimension d, and that the IDs in it are taken from the
set [R] = {1, . . . , R}, and we let Kd = Kd,∅. In addition, π : Kd,[R] → Kd denotes
the mapping that removes the IDs of the vertices. Every LCL task in networks with
maximum degree d can be expressed topologically as a task (Id ,Od ,�) where Id

and Od are complexes of dimension d. Our main result is the following.

Theorem 2 [A simplified version of Theorem 6] For every LCL task T = (Id ,Od ,�)

on graphs of maximum degree d, and for every t ≥ 0, there exists R ∈ N such that
the following holds. The task T is solvable in t rounds in the LOCAL model if and only
if there is a simplicial map δ : P(t)

d,[R] → Od such that, for every facet σ ∈ Id,[R],
δ(�t (σ )) ⊆ �(π(σ)).

Figure 3 provides a rough description of the commutative diagram corresponding
to the brute force application of Lemma 1 to LCL tasks, and of the commutative
diagram corresponding to Theorem 2. Note that Lemma 1, which corresponds to the
left diagram in Fig. 3, involves global complexes with (n − 1)-dimensional facets,
whose vertices are labeled by IDs in an arbitrarily large set [N ]. In contrast, the
complexes corresponding to Theorem 2, which correspond to the right diagram, are
local complexes, with facets of constant dimension, and vertices labeled with IDs in
a finite set whose size is constant w.r.t. the number of nodes n in the network.

As an application of Theorem 2, we reformulate the celebrated �(log∗ n) lower
bound rounds for 3-coloring the n-node ring-shaped network by Linial (1992), in the
algebraic topology framework (see Corollary 7).

Fig. 3 The commutative diagrams of Lemma 1 (left), and Theorem 2 (right)
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Reducing the size of the protocol complex (and the other simplicial complexes
involved) is standard in the highly studied case of colorless tasks (Borowsky et al.
2001;Maurice andSergio 2012). This is a class of taskswhere processes can adopt each
other’s input and output values, such as consensus, set agreement and approximate
agreement. However, we stress that in our context of network computing and LCL
tasks, almost all interesting tasks are not colorless, which requires the use of another
tool — local complexes.

3 Models and definitions

We study networks modeled by simple, undirected n-node graphs, denoted G =
(V , E). The degree of a node is the number of its neighbors, and we are particularly
interested in d-regular graphs, where each node has degree d. A graph is connected
if there is a path between every two nodes in it. For d ≥ 2, we denote by Gd be the
class of connected simple undirected d-regular graphs. A star is a graph composed of
a center node that is a neighbor of all other nodes, and no additional edge; it can also
be seen as a rooted tree of depth 1. Given an n-node graph G, we study the collection
of n stars defined by each node and its neighbors.

Our study cases involve graph problems, where each node must be assigned a label
satisfying specific conditions. A proper c-coloring of a graph is a function λ : V →
{1, . . . , c} such that for every pair of adjacent nodes u, v, it holds that λ(u) 	= λ(v).
In the distributed setting, we want each node u to compute its color λ(u), so that the
resulting coloring is proper.

An independent set is a set S ⊆ V of node such that no two nodes in S are neighbors.
Such an independent set is maximal if no node outside of S can be added to it without
violating the independence condition. An independent set S can be represented by
its indicator function λ : V → {0, 1}, where λ(u) = 1 if and only if u ∈ S. In the
distributed setting, maximal independent set (MIS) is the task of assigning each node
a Boolean value such that the set of all nodes assigned 1 forms a maximal independent
set.

3.1 The LOCALmodel

The LOCALmodelwas introducedmore than a quarter of a century ago (see, e.g., Linial
1992; Naor and Stockmeyer 1995; David 2001) for studying which tasks can be solved
locally in networks, that is, which tasks can be solved when every node is bounded to
collect information only fromnodes in its vicinity. Specifically, the LOCALmodel states
that the processors are located at the nodes of a connected simple graph G = (V , E)

modeling a network. All nodes are fault-free, they wake up simultaneously, and they
execute the same algorithm. Computation proceeds in synchronous rounds, where a
round consists of the following three steps performed by every node: (1) sending a
message to each neighbor in G, (2) receiving the messages sent by the neighbors, and
(3) performing local computation. There are no bounds on the size of the messages
exchanged at every round between neighbors, and there are no limits on the individual
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computational power or memory of the nodes. These assumptions enable the design
of unconditional lower bounds on the number of rounds required for performing some
task (e.g., for providing the nodes with a proper coloring), while the vast majority
of the algorithms solving these tasks do not abuse of these assumptions (Suomela
2013), that is, they exchange small (i.e., polylogarithmic size) messages, and perform
efficient (i.e., poly-time) individual computations.

Every node in the network has an identifier (ID) which is supposed to be unique
in the network. In n-node networks, the IDs are supposed to be in a range 1, . . . , N
where N � n typically holds (most often, N = poly(n)). The absence of limits on
the amount of communication and computation that can be performed at every round
implies that the LOCAL model enables full-information protocols, that is, protocols
in which, at every round, every node sends all the information it acquired during the
previous rounds to its neighbors. Therefore, for every t ≥ 0, and every graph G, a
t-round algorithm allows every node in G to acquire a local view of G, which is a
ball of radius t in G centered at that node. A view includes the inputs and the IDs of
the nodes in the corresponding ball. It follows that a t-round algorithm in the LOCAL
model can be considered as a function from the set of views of radius t to the set of
output values.

3.2 Locally checkable labelings (LCL)

A locally checkable labeling (LCL) Naor and Stockmeyer (1995) is a graph problem
on regular graphs that can be defined using a set L of node-labels, and a set of labeled
stars called good stars. For d ≥ 2, an LCL for d-regular graphs involves labeling the
nodes of a graph G = (V , E) ∈ Gd with a labeling λ : V → L such that every star in
G (defined by a node v ∈ V and its neighbors) is assigned labels by λ in a way that
forms a good star.

For example, a proper c-coloring inGd can be described by the labels {1, . . . , c} and
the collection of good stars where the center node has a color different from the colors
of the leaves. Similarly, a maximal independent set (MIS) in Gd can be described by
the label set {0, 1} and the collection of degree-d stars where if the center node is
labeled 1 then all the leaves are labeled 0 (independence), and if the center node is
labeled 0 then at least one leaf is labeled 1 (maximality). Other tasks such as variants
of coloring, or (2, 1)-ruling set1 can be described similarly, by a finite number of
properly labeled stars.

Formally, given a finite set L of labels, we denote by SLd the set of all labeled stars
resulting from labeling each node of the (d +1)-node star by some label inL. An LCL
is then defined by a finite set L of labels, and a set S ⊆ SLd of good stars; the stars in
SLd \S are called bad. The computational task defined by an LCL (L,S) consists, for
every node of every graph G ∈ Gd , of computing a label in L for each node in G such
that each resulting labeled star in G is isomorphic to a star in S. In other words, the
objective of every node is to compute a label inL such that every resulting labeled star

1 Recall that an (α, β)-ruling set in a graph G = (V , E) is a set R ⊆ V such that, for any node v ∈ V there
is a node u ∈ R in distance at most β from v, and any two nodes in R are at distance at least α from each
other.
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in G is good. It is undecidable, in general, whether a given LCL task has an algorithm
performing in O(1) rounds in the LOCAL model (Naor and Stockmeyer 1995).

More generally, LCL tasks include tasks in which nodes have inputs, potentially of
some restricted format. For instance, this is the case of the task consisting of reducing
c-coloring to MIS in the n-node cycle Cn , studied in the next section. In this case,
an LCL task is described by a quadruple (Lin,Sin,Lout ,Sout ) where Lin and Lout

are the input and output labels, respectively. The set of stars Sin can often be simply
viewed as a promise stating that every star of the input graph G belongs to Sin , and
the set Sout is the target set of good stars.

In its full generality, the framework of LCL tasks can be extended by replacing stars
by balls of radius t > 1, for capturing more problems, like (α, β)-ruling set for large
α’s or β’s. They can also be extended to non-regular graphs with bounded maximum
degree d. However, up to extending the set of labels, all such tasks can be reformulated
in the context of stars and regular graphs (Sebastian 2019). To get the intuition of why
this is true, consider the task in which every node must compute a label in {T , F} such
that every node labeled F has a node labeled T at distance at most k, for some fixed
k ≥ 1. To describe this task by stars, let L = {T , F1, . . . , Fk}, where we interpret the
index i of a label Fi as an upper bound on the distance to a T -marked node. The good
stars are defined as follows: a star whose center is labeled T is always good, and, for
i = 1, . . . , k, a star whose center is labeled Fi is good if it has a leaf with label in
{T , F1, . . . , Fi−1}.

In another, more general case of LCLs, the legality of an output star may depend
on the corresponding input star (Naor and Stockmeyer 1995). In this scenario, an LCL
is defined by a quintuple (a 5-tuple), consisting of input labels and stars, output labels
and stars, and a relation between the input and output stars. A typical example of such
a setting is list-coloring, where the output color of each node must be chosen from a
list of colors provided as input to the node. To simplify the presentation, we consider
LCL tasks without an input–output relation and stick to the quadruple representation.
Nevertheless, handling LCLs with input–output relations is a simple extension of our
techniques, and we explain how to apply it after presenting the topological definition
of LCLs, as defined in Definition 4.

4 Warm up: coloring andMIS in the ring

In this section, we exemplify our technique, in a way that resembles the proof of
Theorem 2. We consider an LCL task on a ring, where the good input stars define a
proper 3-coloring, and the good output stars define a maximal independent set (MIS).
That is, we study the time complexity of reducing a 3-coloring to a MIS on a ring. It
is known (Linial 1992) that there is a 2-round algorithm for the problem in the LOCAL
model, andwe show that this is optimal using topological arguments. This toy example
provides the basic concepts and arguments that we use later, when considering general
LCL tasks and proving Theorem 2.
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Fig. 4 Three consecutive nodes in the n-node ring
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0 0
0

(a) (b)

p0 p1p-1

Fig. 5 The local complexM2 of MIS in the ring. a the vertices are labeled with the index of the processes
and the values; b the indexes of the processes are replaced by colors

4.1 Reduction from 3-coloring to MIS

Let us consider three consecutive nodes of the n-node ring Cn , denoted by p−1, p0,
and p1, as displayed on Fig. 4. Note that the names p−1, p0 and p1 are arbitrary, and
external to the algorithm. Here and later, p0 will always denote the central node in the
star we analyze.

We now apply topological tools in order to analyze this task. By the independence
property, if p0 is in the MIS, then neither p−1 nor p1 can be in the MIS, and, by the
maximality property, if p0 is not in the MIS, then p−1 or p1, or both, must be in the
MIS. These constraints are captured by the complexM2 displayed on Fig. 5, including
six vertices (pi , x), with i ∈ {−1, 0, 1}, and x ∈ {0, 1}, where x = 1 (resp., x = 0)
indicates that pi is in the MIS (resp., not in the MIS).

The complex M2 of Fig. 5 has four facets of dimension 2: they are triangles.
Some triangles intersect along an edge, while some others intersect only at a node.
The complex M2 is called the local complex of MIS in the ring (the index 2 refers
to the fact that rings have degree 2). Note that the sets {(p−1, 0), (p0, 0), (p1, 0)}
and {(p−1, 1), (p0, 1), (p1, 1)} do not form simplices of M2. We call these two sets
monochromatic. In the objective of reducing 3-coloring toMIS,M2 will be the output
complex, corresponding to Od with d = 2 in Fig. 3 and in Theorem 2.

Similarly, let us focus on 3-coloring, with the same three processes p−1, p0, and
p1. The neighborhood of p0 cannot include the same color as its own color, and thus
there are twelve possible colorings of the nodes in the star centered at p0. Each of these
stars corresponds to a 2-dimensional simplex, forming the facets of the local complex
C2 of 3-coloring in the ring, depicted in Fig. 6. This complex contains nine vertices
of the form (pi , c), with i ∈ {−1, 0, 1}, and c ∈ {1, 2, 3}, and twelve facets. Note
that the vertices (p−1, 3) and (p1, 3) appear twice in the figure, since the leftmost and
rightmost edges are identified, but in opposite direction, forming a Möbius strip. C2 is
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1

1

1 2

2

2

3

3

3

3

3

p0 p1p-1

Fig. 6 Local complex C2 of 3-coloring in the ring

a manifold (with boundary). When reducing 3-coloring to MIS, C2 will be the input
complex, corresponding to Id with d = 2 in Fig. 3.

Remark It is crucial to note that the complexes displayed in figures 5 and 6 are not
the ones used in the standard settings (e.g., Castañeda et al. 2021; Maurice et al.
2013), for which Lemma 1 would use vertices of the form (p, x) for p ∈ [n], or even
p ∈ [N ] assuming IDs in a range of N values. As a consequence, these complexes
have 6 vertices instead of 2n!(N

n

)
forMIS, and 9 vertices instead of 3n!(N

n

)
for coloring,

where n can be arbitrarily large. Even if the IDs would have been fixed, the approach
of Lemma 1 would yield complexes with a number of vertices linear in n, while the
complexes of figs. 5 and 6 are of constant sizes.

As it is well-know since the early work by Linial (1992), a properly 3-colored ring
can be “recolored” into a MIS in just two rounds. First, the nodes colored 3 recolor
themselves 1 if they have no neighbors originally colored 1. Then, the nodes colored 2
do the same, i.e., they recolor themselves 1 if they have noneighbors colored 1 (whether
it be neighbors originally colored 1, or nodes that recolored themselves 1 during the
first round). The nodes colored 1 output 1, and the other nodes output 0. The set of
nodes colored 1 forms a MIS. Note that this algorithm is name-independent, i.e., it
can run in an anonymous network.

Task specification:The specification of reducing 3-coloring toMIS can be given by
the trivial carrier map � : C2 → 2M2 defined by �(F) = {F ′ : F ′ is a facet of M2}
for every facet F of C2. (As the LOCAL model is failure-free, it is enough to describe
all maps at the level of facets.) Note that the initial coloring of a facet in C2 does not
induce constraints on the facet ofM2 to which it should be mapped. Figure7 displays
some of the various commutative diagrams that will be considered in this section. In
all of them, � is the carrier map specifying reduction from 3-coloring to MIS in the
ring, and none of the simplicial maps δ exist. Also recall that π is the map removing
IDs.

4.2 Name-independent algorithms

We start by considering name-independent algorithms, i.e., algorithmswhere all nodes
run the same algorithms and do not use their IDs. These algorithms can also be used
in anonymous networks, where IDs do not exist.
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4.2.1 Impossibility in zero rounds

Name-preserving maps: Let us consider an alleged name-independent algorithm alg
which reduces 3-coloring to MIS in zero rounds. Such an algorithm sees only the
node’s color c ∈ {1, 2, 3}, and must map it to some x ∈ {0, 1}. This induces a
mapping δ, that maps every pair (pi , c) with i ∈ {−1, 0, 1} and c ∈ {1, 2, 3}, to a pair
δ(pi , c) = (pi , x) with x ∈ {0, 1}. We say that such a mapping is name-preserving,
i.e., the algorithmmaps the vertices in Fig. 6 to the vertices in Fig. 5b while preserving
the names p−1, p0, p1 of these vertices. Therefore, the algorithm induces a name-
preserving simplicial map δ : C2 → M2. The term name-preserving (sometimes
refered to as chromatic) is the formal way to express the fact that a vertex (p, x) is
mapped to a vertex (p, y), that is, the name p is preserved.

As discussed above, we are interested in name-independent algorithms. In topolog-
ical terms, such algorithms translate to name-preserving name-independent simplicial
maps (we slightly abuse notation by using the terms name-preserving and name-
independent both for an algorithm and for a mapping). We are therefore questioning
the existence of a name-preserving name-independent simplicial map δ : C2 → M2.
This is in correspondence with Fig. 3 and Theorem 2, in the degenerate case where
t = 0 and [R] = ∅, for which C2 = I2, and C2,∅ = I2,∅ = P(0)

2,∅ = C2 — see the
leftmost diagram in Fig. 7.

It is easy to see that there cannot exist a name-preserving name-independent sim-
plicial map δ from the manifold C2 toM2 (from Fig. 6 to Fig. 5b). Indeed, a simplicial
map δ : C2 → M2 can only map C2 entirely to the sub-complex of M2 induced by
the simplex σ00 = {(p−1, 0), (p0, 1), (p1, 0)}, or entirely to the sub-complex of M2
induced by all the other simplices. To see why, assume the opposite. Then, w.l.o.g., we
can assume that the vertex (p0, 1) of C2 is mapped to (p0, 0) ofM2, and that (p0, 3)
of C2 is mapped to (p0, 1) of M2. Let us consider the two simplices

{(p−1, 2), (p0, 1), (p1, 2)} and {(p−1, 2), (p0, 3), (p1, 2)}

of C2, which form a sub-complex of C2. In order to preserve the edges of this sub-
complex, (p−1, 2) and (p1, 2) must be respectively mapped to (p−1, 0) and (p1, 0).
It follows that the simplex {(p−1, 2), (p0, 3), (p1, 2)} of C2 is correctly mapped to
a simplex of M2 (specifically, to the simplex {(p−1, 0), (p0, 1), (p1, 0)}). However,
the simplex {(p−1, 2), (p0, 1), (p1, 2)} of C2 is mapped to the monochromatic set
{(p−1, 0), (p0, 0), (p1, 0)} which is not a simplex ofM2 (it is a hole in this complex
as depicted in Fig. 5), contradiction. Thus, C2 must be entirely mapped to the sub-

Fig. 7 Complexes corresponding to reduction from 3-coloring to MIS in the n-node ring. From left to right:
0 rounds without IDs, 1-round without IDs, 0 rounds with ID, and 1-round with IDs
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complex ofM2 induced by the simplex σ00 = {(p−1, 0), (p0, 1), (p1, 0)}, or entirely
to the sub-complex of M2 induced by all the other simplices. This yields two cases:
− In the former case, p0 outputs 1 independently from its input color, and therefore,
by the name independence, p−1 and p1 also output 1, which is not the case in σ00.
− In the latter case, p0 outputs 0 independently from its input color, and therefore,
by the name independence, p−1 and p1 also output 0, yielding a contradiction as no
monochromatic sets are simplices ofM2.
Hence, there are no name-preserving name-independent simplicial maps δ : C2 →
M2. The absence of a name-preserving name-independent simplicial map δ : C2 →
M2 is a witness of the impossibility to construct a MIS from a 3-coloring of the ring
in zero rounds, when using a name-independent algorithm.

4.2.2 Impossibility in one round

For analyzing 1-round algorithms, let us consider the local protocol complex P(1)
2,∅,

including the views of the three nodes p−1, p0, and p1 after one round. The vertices
of P(1)

2,∅ are of the form (pi , xyz) with i ∈ {−1, 0, 1}, and x, y, z ∈ {1, 2, 3}, x 	= y,
and y 	= z. The vertex (pi , xyz) is representing a process pi starting with color y, and
receiving the input colors x and z from its left and right neighbors, respectively. The
facets of P(1)

2,∅ are of the form {(p−1, x ′xy), (p0, xyz), (p1, yzz′)}. Figure8 displays
that complex, which consists of three connected components K1,K2, and K3 where,
for y = 1, 2, 3, Ky includes the four vertices (p0, xyz) for x, z ∈ {1, 2, 3} � {y},
and all triangles that include these vertices. Each set of four triangles sharing a vertex
(p0, xyz) forms a cone (see Fig. 9). These cones are displayed twisted on Fig. 8 to
emphasis the “circular” structure of the three components.

Following the same reasoning as for 0-round algorithms, a 1-round algorithm alg
induces a name-preserving simplicial map δ : P(1)

2,∅ → M2, as in the second to left
diagram in Fig. 7.

Let us show that such a mapping cannot exist. Since the mapping is name-
independent, we consider similarly themapping of a pair (pi , xyz) and themapping of
a process view xyz. For every ordered triplet (x, y, z) of distinct values,P(1)

2,∅ contains

212

121

321

131

231

121

123

131

132

313

213 312

212

312

232

132

212

213

232

231

313

213

323

123

313

312

323

321

121

323

123 321

131

232

132 2311 2 3

p0 p1p-1

Fig. 8 Local protocol complex P(1)
2,∅ after 1 round starting from a 3-coloring of the ring
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212

121

321

121

123

212

121

123 321

121

(a) (b)

p0 p1p-1

Fig. 9 a A cone composed of four triangles; b The same cone “twisted”

the following three triangles:

{(p−1, xyz), (p0, yzx), (p1, zxy)},
{(p−1, yzx), (p0, zxy), (p1, xyz)}, and
{(p−1, zxy), (p0, xyz), (p1, yzx)}.

Hence, for each such triplet (x, y, z), one and only one of the three views xyz, yzx ,
and zxy is mapped to 1, while the other two are mapped to 0. Let us assume,
w.l.o.g., that 123 is mapped to 1, while 231 and 312 are mapped to 0. The trian-
gle {(p−1, 212), (p0, 123), (p1, 232)} enforces 212 and 232 to be mapped to 0. The
triangle {(p−1, 232), (p0, 321), (p1, 212)} then enforces 321 to be mapped to 1, and
thus 213 and 132 are mapped to 0.

Now, for every pair (x, y) with 1 ≤ x < y ≤ 3, there are two triangles

{(p−1, xyx), (p0, yxy), (p1, xyx)}, and {(p−1, yxy), (p0, xyx), (p1, yxy)}.

This implies that, for each such pair (x, y), one and only one of the two views xyx and
yxy is mapped to 1, while the other is mapped to 0. Thus, in particular, only one of
the two views 313 and 131 is mapped to 1, while the other is mapped to 0. It follows
that one of the two triangles

{(p−1, 231), (p0, 313), (p1, 132)}, and {(p−1, 213), (p0, 131), (p1, 312)}

is mapped to {(p−1, 0), (p0, 0), (p1, 0)}, which is not a simplex of M2.

Remark If the input 3-coloring of the ring would be such that the sequence 12321
does not appear as the input colors of five consecutive nodes of Cn , then there would
exist a mapping from P(1)

2,∅ to M2, which in turn demonstrates the existence of a
1-round algorithm under this assumption. More generally, if the sequence xyzyx is
guaranteed not to exist in the input 3-coloring for any distinct colors x, y, and z, then
δ : P(1)

2,∅ → M2 defined as

δ(pi , abc) =
{

(pi , 1) if b = x, or abc = zyz;
(pi , 0) if b = z, or b = y with ac 	= zz

(1)
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is a simplicial map. This map induces the 1-round algorithm alg defined by

alg(abc) =
{
1 if b = x, or abc = zyz;
0 otherwise.

That is, nodes colored x systematically output 1, nodes colored z systematically out-
put 0, and nodes colored y output 0 unless they are adjacent to two nodes colored z,
in which case they output 1. In fact, only nodes colored y need to perform a round,
the other nodes can decide right away, in zero rounds, based solely on their colors.

Remark We showed the impossibility of reducing 3-coloring toMIS in a unique round
using the impossibility of mapping the complex P(1)

2,∅ to the complex M2. If one
considers merely the graphs induced by these two complexes, i.e., their so-called
1-dimensional skeletons, then mapping the 1-dimensional skeleton of P(1)

2,∅ to the
1-dimensional skeleton of M2 is possible by the mapping δ of Eq. (1) even if the
sequence xyzyx may appear. Indeed, this mapping preserves edges. In particular,
no edges {(p−1, abc), (p0, bcd)} (resp., {(p0, abc), (p1, bcd)}) of P(1)

2,∅ are mapped
by δ to the non-edge {(p−1, 1), (p0, 1)} (resp., the non-edge {(p0, 1), (p1, 1)}) ofM2.
This is to say that, as far as mappings are concerned, the impossibility follows from
a contradiction that appears in dimension 2 (i.e., when considering triangles), but not
in dimension 1 (i.e., when considering only edges).

4.2.3 The 2-round algorithm

The local protocol complex P(2)
2,∅ includes the views of the three nodes p−1, p0,

and p1 after two rounds. The vertices of P(2)
2,∅ are of the form (pi , c1c2c3c4c5) with

i ∈ {−1, 0, 1}, c j ∈ {1, 2, 3} for 1 ≤ j ≤ 5, and c j 	= c j+1 for 1 ≤ j < 5. Figure10a

displays one of the connected components of P(2)
2,∅, denotedK323, which includes the

four vertices (p0, c1323c5), c1, c5 ∈ {1, 2}. There are 12 disjoint isomorphic copies of
this connected component in P(2)

2,∅, one for each triplet c2, c3, c4 ∈ {1, 2, 3}, c2 	= c3,
and c3 	= c4.

Interestingly, each connected component of P(2)
2,∅ is isomorphic to each connected

component ofP(1)
2,∅, while there aremore connected components inP(2)

2,∅ than inP(1)
2,∅.

However, the larger views of the processes provide more flexibility for the mapping
from P(2)

2,∅ to M2 than for the mapping from P(1)
2,∅ to M2. And indeed, the 2-round

anonymous algorithm presented at the end of Sect. 4.1 does induce a name-preserving
simplicial map δ : P(2)

2,∅ → M2. Specifically, the four sub-complexesKx1y , as well as
the simplexK232 are entirely mapped to the simplex σ00 (see Fig. 10b for the labeling
of the four facets of M2). The two sub-complexes K1x1 are entirely mapped to the
simplex σ11. The two sub-complexes K321 and K231 are entirely mapped to the sub-
complex σ01 ∪ σ11, and the two sub-complexes K123 and K132 are entirely mapped
to the sub-complex σ10 ∪ σ11. The mapping of the remaining sub-complex K323 is
more sophisticated, and illustrates that the simple algorithm showing reduction from
3-coloring to MIS in Linial (1992) is actually topologically non-trivial. Indeed, K323
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13231

23232

13
23

2 23231

p0 p1p-1

Fig. 10 a The sub-complex K323 of the local protocol complex P(2)
2,∅. b The facets ofM2

is mapped by the algorithm so that it wraps around the hole inM2. This wraparound
phenomenon is visualized in Fig. 10.

4.3 General case with IDs

So far, we have considered only name-independent algorithms — algorithms where
the nodes do not have IDs or do not use them. Recall that the name i ∈ {−1, 0, 1}
of a process pi is external to the system, and is used only for analyzing the ability
to solve tasks. The presence of IDs given to the nodes adds power to the distributed
algorithms, as the output of a process is not only a function of the observed colors in
its neighborhood, but also of the observed IDs. In particular, after one round, a process
p is not only aware of a triplet of colors (c1c2c3), but also of a triplet of distinct IDs
(x1x2x3).

4.3.1 Impossibility in zero rounds with IDs

A local input complex C2,fix for 3-coloring with fixed IDs is displayed on Fig. 11.
Each vertex is a pair (pi , (x, c)), where pi , i ∈ {−1, 0, 1}, is the name of a process,
x ∈ {1, 2, 3} is an ID, and c ∈ {1, 2, 3} is a color. In this figure, it is assumed that p−1
is systematically given ID 1, p0 is systematically given ID 2, and p1 is systematically
given ID 3. This complex is only a small part of a complex describing a colored ring,
where the number of IDs is larger and any process can be given any ID.

Remark The complex C2,fix is not the complex C2,[3] as specified on Fig. 3, because
C2,[3] assumes that every process pi , i ∈ {−1, 0, 1}, can take every possible ID in
[3] = {1, 2, 3}. In fact, C2,fix can be appropriately mapped to the local complex M2.
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(3,1)

(1,1)

(2,1) (2,2)

(1,2)

(3,2)

(2,3)

(1,3)

(3,3)

(3,3)

(1,3)

p0 p1p-1

Fig. 11 Local input complex C2, fix of 3-coloring in the ring with fixed IDs in {1, 2, 3}

A trivial name-preserving name-independent mapping is, for every i ∈ {−1, 0, 1},

δ(pi , (x, c)) =
{

(pi , 1) if x = 2
(pi , 0) otherwise.

(2)

We stress that this does not imply the existence of an algorithm reducing 3-coloring to
MIS, as in reality the IDs are not fixed. To show impossibility of reducing 3-coloring
to MIS in zero rounds, a more sophisticated complex must be considered, in which
IDs are not fixed a priori.

First, let us consider the case where p−1, p0, and p1 take any assignment of unique
IDs in {1, 2, 3}, and not posses fixed IDs as above. The resulting input complex C2,[3] is
displayed on Fig. 12. The vertices are arranged on a grid, and the figure wraps around
in a way similar to a torus. The four triangles forming cones centered at vertices
(p0, (x, c)) with (x, c) ∈ {1, 2, 3}2 are “twisted”, and each of these latter vertices is
appearing twice in the figure, for allowing the figure to be displayed as a torus. (The
specific ID assignment that appeared in Fig. 11 is the upmost part of Fig. 12, twisted.)
Despite its apparent complexity, the complex C2,[3] can be appropriately mapped to
M2, using again the simplicial map of Eq. (2). This shows that more IDs must be
considered to show impossibility.

Since the simplicial maps δ induced by the potential algorithms are name-
preserving, they actually act on pairs (x, c) where x is an ID and c is a color, i.e.,
δ(p, (x, c)) = (p, δ̂(x, c)) for some δ̂. For brevity, we identify δ̂ with δ. Let us
assume that the IDs are from {1, . . . , R}, for some R ≥ 4. That is, we consider now
C2,[R] for R ≥ 4. By the pigeon-hole principle, there exists a set I1 ⊆ {1, . . . , R}
with |I1| ≥ R/2 such that, for every x, x ′ ∈ I1, δ(x, 1) = δ(x ′, 1). Therefore, again
by the pigeon-hole principle, there exists a set I2 ⊆ I1 with |I2| ≥ |I1|/2 such that,
for every x, x ′ ∈ I2, δ(x, 2) = δ(x ′, 2). Finally, there exists a set I3 ⊆ I2 with
|I3| ≥ |I2|/2 such that, for every x, x ′ ∈ I3, δ(x, 3) = δ(x ′, 3). Therefore, there exists
a set I ⊆ {1, . . . , R}with |I | ≥ R/8 such that, for every x, x ′ ∈ I , δ(x, 1) = δ(x ′, 1),
δ(x, 2) = δ(x ′, 2), and δ(x, 3) = δ(x ′, 3). Whenever R ≥ 24, the set I has size at
least 3. Consider the sub-complex C′

2,[R] of C2,[R] induced by the three smallest IDs
in I —this sub-complex is isomorphic to C2,∅ (Fig. 6).More importantly, themapping
from C′

2,[R] toM2 depends only on the colors and not on the IDs, by the choice of I .
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Fig. 12 Local input complex
C2,[3] of 3-coloring in the ring
with arbitrary IDs in {1, 2, 3}

(3,1)(3,2)(3,3)

(1,1)(1,2)(1,3) (1,3)

(3,3)

(2,1)(2,2)(2,3) (2,3)

(1,1)(1,2)(1,3) (1,3)

(3,1)(3,2)(3,3) (3,3)

(2,1)(2,2)(2,3) (2,3)

(2,1) (2,2) (2,3)

(1,1) (1,2) (1,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,3) (3,2)

(3,1) (3,3) (3,2)

(1,1)(1,2)(1,3) (1,3)

p0 p1p-1

Hence, if there was a mapping from C′
2,[R] to M2, then there would exist a mapping

from C2,∅ toM2, which we know does not exist.
It follows that there are nomappings from C2,[24] = P(0)

2,[24] toM2 — see the second
to right diagram in Fig. 7. In other words, if the IDs are picked from a set of at least
24 values, then 3-coloring cannot be reduced to MIS in zero rounds.

Remark We have presented the pigeon-hole argument in detail because it can be gen-
eralized and give a good intuition for the general case. However, the impossibility
of reducing 3-coloring to MIS in zero rounds can actually be established by letting
nodes taking IDs in a much smaller set, namely in the set {1, 2, 3, 4}. Indeed, the
resulting complex C2,[4] = P(0)

2,[4] cannot be mapped to M2 by a name-preserving
name-independent simplicialmap.To seewhy, let us assume for contradiction that such
a mapping exists. For every ID x , C2,[4] includes triangles in which no vertex has ID x .
Similarly, for every color c, C2,[4] includes triangles in which no vertices have color c.
It follows that the pre-image of (p0, 1) must include at least two vertices (p0, (x, cx ))

and (p0, (x ′, cx ′)) with x 	= x ′ for some (possibly identical) colors cx and cx ′ , and
at least two vertices (p0, (xc, c)) and (p0, (xc′ , c′)) with c 	= c′ for some (possibly
identical) IDs xc and xc′ . As a consequence, there are two distinct IDs x and x ′, and
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two distinct colors c and c′ such that (p0, (x, c)) and (p0, (x ′, c′)) are both in the pre-
image of (p0, 1). This yields a contradiction as the simplex {(p0, (x, c)), (p1, (x ′, c′))}
would then be mapped to {(p0, 1), (p1, 1)}, which is not a simplex inM2.

4.3.2 Impossibility in one rounds with IDs

We reduce the case with IDs to the case without IDs in a way similar to the case of
zero rounds, by using Ramsey’s theorem instead of the basic pigeon-hole principle,
following the lines of Naor and Stockmeyer (1995). Recall that Ramsey’s theorem
states the following. Given a set X and a non-negative integer s, let

(X
s

)
denote the set

of all subsets of X with exactly s elements. In particular,
(X

s

)
has cardinality

(|X |
s

)
.

Theorem 3 [Ramsey’s Theorem Ronald et al. 2015] For all r , s, t ∈ N, there exists
R = R(r , s, t) such that, for every set X, and for every partition of

(X
s

)
into r classes,

if |X | ≥ R, then one of the classes contains all elements of
(Y

s

)
, for some set Y ⊆ X

with |Y | ≥ t .

We consider the 1-round protocol complex with IDs in a finite set X and at least
5 elements, denoted by PX . That is, PX = P(1)

2,[k] with k = |X |. The vertices of this
complex are of the form (pi , (xyz, abc)) where i ∈ {−1, 0, 1}, {x, y, z} ∈ (X

3

)
, and

a, b, c ∈ {1, 2, 3} with a 	= b and b 	= c. The facets of PX are of the form

Fx ′xyzz′,a′abcc′ = {(p−1, (x ′xy, a′ab)), (p0, (xyz, abc)), (p1, (yzz′, bcc′))},

with {x ′, x, y, z, z′} ∈ (X
5

)
, and a′, a, b, c, c′ ∈ {1, 2, 3} with a′ 	= a 	= b 	= c 	= c′.

A name-preserving name-independent simplicial map δ : PX → M2 induces a
labeling of the pairs (xyz, abc) with labels in {0, 1}, where xyz is an ordered triplet
of distinct IDs, and abc is an ordered triplet of colors in {1, 2, 3} with a 	= b and
b 	= c. It follows that δ induces a labeling of the ordered triplets xyz of distinct IDs
by labels in {0, 1}12, by applying δ to the 12 possible choices of color triplets. More
specifically, let us lexicographically order the 12 different ordered triplets of colors,
and let us denote by C1, . . . , C12 this lexicographic ordering. We aim at labeling sets
of IDs, not ordered triplets of IDs. Let S = {x, y, z} be a set of distinct IDs, and
assume that x < y < z. The set S is assigned the label equal to the binary vector in
{0, 1}12 whose i-th entry is equal to δ(p0, (xyz, Ci )).

Let r = 212, s = 3, and t = 5. By Ramsey’s Theorem, by taking the IDs in the set
X = {1, . . . , R} with R = R(r , s, t), there exists a set Y of t = 5 IDs such that, for
every two sets {x, y, z} and {x,′ y′, z′} of IDs in Y , with x < y < z and x ′ < y′ < z′,
and for every ordered triplet abc of colors, we have

δ(p0, (xyz, abc)) = δ(p0, (x ′y′z′, abc)).

More generally, by name-independence, for such IDs and colors, we actually have

δ(pi , (xyz, abc)) = δ(p j , (x ′y′z′, abc))
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for every i, j ∈ {−1, 0, 1}. LetPY be the sub-complex of the 1-roundprotocol complex
PX induced by the vertices with IDs in Y ordered in increasing order. That is, we keep
in PY solely the vertices of PX of the form (pi , (xyz, abc)) with {x, y, z} ⊂ Y and
x < y < z. By construction of Y , δ is name-independent on PY .

Now, recall the protocol complex P(1)
2,∅ displayed on Fig. 8. Let us define the map

δ′ : P(1)
2,∅ → M2 by δ′(pi , abc) = δ(pi , (xyz, abc)) where {x, y, z} ⊂ Y and

x < y < z. Note that δ′ is well defined as δ is name-independent on Y . Moreover,
assuming δ : PX → M2 is simplicial yields that δ′ : P(1)

2,∅ → M2 is simplicial as
well. We have seen in Sect. 4.2.2 that such a simplicial mapping does not exist.

4.4 Wrap up

This section provided an illustration of the fact that the complexity of LCL tasks can
be analyzed by considering finite simplicial complexes, even if the tasks were defined
for arbitrarily large networks, whose nodes are assigned IDs from an arbitrarily large
range of values. The next section provides a formalization of the examples in this
section, and generalize them to establish our main result.

5 Topology of LCL tasks

We now show how to study a general LCL task in the LOCALmodel by representing it
in topological terms. For this, we define the input and output complexes, the relation
between them, and the protocol complexes for LCL tasks in the LOCALmodel. Let Sd

be the star of d + 1 nodes, whose center node is named p0, and the leaves are named
pi , for i = 1, . . . , d. We consider algorithms for classes G ⊆ Gd of graphs, where Gd

denotes the set of all d-regular connected simple graphs.

Definition 4 Let T = (Lin,Sin,Lout ,Sout ) be an LCL task for G ⊆ Gd . The input
complex Id (resp., output complex Od ) associated with T is the complex where
{(pi , xi ) : i ∈ {0, . . . , d}} is a facet of Id (resp., a facet of Od ) if xi ∈ Lin (resp.,
Lout ) for every i ∈ {0, . . . , d}, and the labeled star resulting from assigning label xi

to the node pi of Sd for every i ∈ {0, . . . , d} is in Sin (resp., Sout ). The carrier map
� : Id → 2Od is defined simply by �(F) = {all facets of Od} for every facet F of
Id .

Note that with this definition at hand, we can write the same LCL task T both as
T = (Lin,Sin,Lout ,Sout ) and as T = (Id ,Od ,�). The interpretation will be clear
from the context.

If the considered LCL task T imposes constraints on the correctness of the outputs
as a function of the inputs, as in list-coloring, then the carrier map � : Id → 2Od

is not as above, and instead it specifies for each facet F ∈ Id the facets �(F) which
are legal with respect to F . For instance, in the case of list-coloring where each
xi is a list of colors, for every facets F = {(pi , xi ) : i ∈ {0, . . . , d}} ∈ I and
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F ′ = {(pi , yi ) : i ∈ {0, . . . , d}} ∈ Od we have

F ′ ∈ �(F) ⇐⇒ ∀i ∈ {0, . . . , d}, yi ∈ xi .

Note that we do not have to require yi 	= y0 here, since global states where yi = y0
are not simplices of Od , and so no simplex can be mapped to them.

Mutually compatible views:
Let t ≥ 0, and let us fix a graph G = (V , E) in G ⊆ Gd . In t rounds, every

node in G acquires a view w, whose structure is isomorphic to a radius-t ball in G
centered at that node, including the input labels and the IDs of the nodes in the ball.
The number of nodes in a view after t rounds is at most N (d, t)where, for every t ≥ 0,
N (d, t) = 1 + d + d(d − 1) + · · · + d(d − 1)t−1, that is,

N (d, t) =
{
1 + 2t if d = 2,

1 + d (d−1)t −1
d−2 otherwise.

This number of nodes is exactly N (d, t) if all graphs inG have girth at least 2t +1, (i.e.,
if the graphs have no cycles of less than 2t + 1 nodes), and every t-round view is a d-
regular tree. An ordered collectionw0, . . . , wd of views at distance t forms a collection
of mutually compatible views for G if there exists a graph G ∈ G, an assignment of
input labels and IDs to the nodes of G, and a star S in G with center v0 and leaves
v1, . . . , vd , such that wi is the view of vi in G after t rounds, for i = 0, . . . , d.

Definition 5 Let T be an LCL task for G ⊆ Gd , and let t ≥ 0. The t-round protocol
complex associated with T for a finite set X of IDs, is the complex P(t)

d,X where

F = {(pi , wi ) : i ∈ {0, . . . , d}} is a facet of P(t)
d,X if w0, . . . , wd is an ordered

collection of mutually compatible views at distance t for G.
The special case t = 0 corresponds toP(0)

d,X = Id,X whereId,X in the input complex
Id extended with IDs in X . In this specific case, mutual compatibility requires the
additional condition that the processes p0, . . . , pd are given distinct IDs in X . Two
mappings from Id,X play a crucial role. The first is the simplicial map

π : Id,X → Id

defined by π(pi , (id, x)) = (pi , x) for every i = 0, . . . , d, every id ∈ X , and every
x ∈ Lin . The second is the carrier map

�t : Id,X → 2P
(t)
d,X

that specifies, for each facet F ∈ Id,X , the set �t (F) of facets which may result
from F after t rounds of computation in graphs in G. Specifically, they are merely
the facets of P(t)

d,X for which the views w0, . . . , wd are compatible with the IDs of
p0, . . . , pd in F . While formally �t is defined on all simplices, note that defining �t

on facets is sufficient, as it can easily be extended to all other simplices.
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Our main result is an analog of the generic lemma (see Lemma 1), but involving
local complexes, even for tasks defined on arbitrarily large networks, and for arbitrarily
large sets of IDs. Specifically, in the statement below, the range [R] = {1, . . . , R} of
IDs depends only on the number of rounds t of the algorithm, the maximum degree d
of the network, and the respective sizes |Lin| and |Lout | of the input and output labels.
That is, the range [R] is independent of the size of the network, as well as of the range
of IDs. Theorem 6 is the formal version our main result sketched in Theorem 2.

Theorem 6 Let T = (Id ,Od ,�) be an LCL task for G ⊆ Gd , and let t ≥ 0.

– If there exists a distributed algorithm solving T in t rounds in the LOCALmodel then,
for every R ≥ N (d, t+1), there is a name-preserving name-independent simplicial
map δ : P(t)

d,[R] → Od such that, for every facet F ∈ Id,[R], δ(�t (F)) ⊆ �(π(F)).
– There exists R ≥ N (d, t + 1) satisfying that, if there is a name-preserving name-

independent simplicial map δ : P(t)
d,[R] → Od such that, for every facet F ∈ Id,[R],

δ(�t (F)) ⊆ �(π(F)), then there is a distributed algorithm solving T in t rounds
in the LOCAL model.

Proof Let us fix an LCL task T = (Lin,Sin,Lout ,Sout ) = (Id ,Od ,�) for G, and
t ≥ 0. Let alg be a t-round algorithm for T . For any finite set X of IDs with |X | ≥
N (d, t + 1), let us define δX : P(t)

d,X → Od by

δX (pi , wi ) = (pi ,alg(wi )),

for every i = 0, . . . , d. By construction, δX is name-preserving and name-
independent. To show that δX is simplicial, let

F ′ = {(pi , wi ) : i ∈ {0, . . . , d}}

be a facet of P(t)
d,X . This facet is mapped to

δX (F ′) = {(pi ,alg(wi )) : i ∈ {0, . . . , d}}.

Since alg solves T , every output alg(wi ) is in Lout , and the labeled star resulting
from assigning label alg(wi ) to the node pi of the star Sd , for every i ∈ {0, . . . , d},
is in Sout . It follows that δX (F ′) is a facet ofOd , and thus δX is simplicial. Moreover,
if the facet F ′ belongs to the image �t (F) of a facet F of Id,X , since alg solves T ,
it follows that δX (F ′) ∈ �(π(F)) as desired.

So, the existence of an algorithm alg guarantees the existence of a simplicial map
δX satisfying the requirements of the theorem for every large enough set X of IDs. We
now show that, to guarantee the existence of an algorithm, it is sufficient to guarantee
the existence of a simplicial map δX just for one specific set X = [R].

In order to identify R, we follow the same lines as in the impossibility proof in
Sect. 4.3.2, using Ramsey’s theorem (cf. Theorem 3). Note that the number of possible
balls of radius t in graphs of G is finite, and depends only on t and d. Given such a
ball B, there are finitely many ways of assigning input labels to the vertices of B. The
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number of assignments depends only on the structure of B, and on |Lin|. (It may also
depend on Sin , but in the worst case, all assignments are possible.) Let us enumerate
all the labeled balls in G as

B(1), . . . , B(k).

The number k of such labeled balls depends only on d, t , and |Lin|. (It may also depend
on G, but it is upper bounded by a function of d, t , and |Lin|.)

For every labeled ball B(i), i = 1, . . . , k, let νi = |B(i)|. Let us rank the vertices
of B(i) arbitrarily from 1 to νi , and let �i be the set of all permutations of {1, . . . , νi }.
To every π ∈ �i corresponds a labeled ball B(i)

π in which the rank of the vertices is
determined by π .

Now, let X be a finite set of IDs with |X | ≥ N (d, t + 1). We lower bound |X | by
N (d, t + 1) and not N (d, t) because we want to consider the behavior of a simplex,
i.e., balls of radius t around a process p0 and around each of its neighbors p1, . . . , pd .
We consider all possible identity-assignments with IDs in X to the nodes of the labeled
balls with ranked vertices, B(i)

π , i = 1, . . . , k, π ∈ �i , as follows.
For every S ⊆ X with |S| = N (d, t), let us order the IDs in S in increasing order.

Given a ranked labeled ball B(i)
π , i.e., a labeled ball B(i) whose vertices are ranked by

some permutation π ∈ �i , the IDs in S are assigned to the nodes of B(i)
π by assigning

the j th smallest ID in S to the node ranked π( j) in B(i)
π , for j = 1, . . . , νi .

By picking all i = 1, . . . , k, all π ∈ �i , and all S ⊆ X , we obtain all possible
views resulting from performing a t-round algorithm in G with IDs taken from X . Let
us order these views as

w(1), . . . , w(h),

where the views induced by B(1) are listed first, then the views induced by B(2), etc.,
until the views induced by B(k). Moreover, for a given i ∈ {1, . . . , k}, the views
corresponding to the labeled ball B(i) are listed according to the lexicographic order
of the permutations in�i . Note that the number h of views depends only on d, t , |Lin|,
and |X |.

Each set S is then “colored” by

c(S) = (δX (p0, w
(1)), . . . , δX (p0, w

(h))) ∈ {1, . . . , |Lout |}h .

In this way, the set
( X

N (d,t)

)
is partitioned into |Lout |h classes. Thanks to Ramsey’s

Theorem (see Theorem 3), by taking set

X = [R] with R = R(a, b, c) for a = |Lout |h, b = N (d, t), and c = N (d, t + 1),

we are guaranteed that there exists a set Y of at least N (d, t + 1) IDs such that every
two sets S and S′ of N (d, t) IDs in Y are given the same color c(S) = c(S′). In other
words, for any ball B of radius t in a graph from G, and for every valid assignment of
input values to the nodes of B, if one assigns the IDs in S and S′ in the same manner
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(i.e., the i th smallest ID of S is assigned to the same node as the i th smallest ID of
S′), then

δX (p0, w) = δX (p0, w
′),

wherew andw′ are the views resulting from assigning IDs from S and S′ to the nodes,
respectively.

Now, let us define the following t-round algorithm alg for T ; in fact, this is precisely
the order-invariant algorithm constructed in Naor and Stockmeyer (1995). To this end,
we assume that the set Y is pre-computed and hard-wired to the algorithm. Every
node v collects the data available in its centered ball B = BG(v, t) of radius t in the
actual graph G ∈ G, where B contains both IDs and input values. Node v reassigns
the IDs to the nodes of B by using the |B| smallest IDs in Y , and assigning these IDs
to the nodes of B in the order respecting the order of the actual IDs assigned to the
nodes of B. Then, node v considers the view w after reassignment of the IDs, and
outputs

alg(w) = δX (p0, w).

Note that δX returns values in Lout , and thus alg is well defined.
To show correctness, let us consider a star v0, . . . , vd centered at v0 in some graph

G ∈ G. Performing alg in G, each of these d + 1 nodes acquires a view of radius t .
These views are mutually compatible. Let us reassign the IDs in the ball of radius t +1
centered at v0 in G, using the at most N (d, t +1) smallest IDs in Y , and assigning these
IDs to the nodes of the ball B of radius t +1 centered at v0, in the order respecting the
order of the actual IDs assigned to the nodes of B. The resulting views w0, . . . , wd of
the d + 1 nodes v0, . . . , vd remain mutually compatible. It follows that if these d + 1
nodes would output δX (p0, w0), . . . , δX (pd , wd), respectively, then the resulting star
would be good. We claim that this is exactly what occurs with alg.

Indeed, first, δX is name-independent, and thus δX (p0, w) = δX (pi , w) for every
i = 1, . . . , d. Second, and more importantly, by the construction of Y , the actual
values of the IDs do not matter, but solely their relative order. The reassignment of
IDs performed at each of the nodes v0, . . . , vd is different from the reassignment
of IDs in the ball B of radius t + 1 around v0, but the relative order of these IDs
is preserved as it is governed by the relative order of the original IDs in B. As a
consequence, the nodes of the star Sd consisting of p0 and its d neighbors correctly
output δX (p0, w0), . . . , δX (pd , wd) in alg, as desired. ��

6 Application to coloring the ring

In this section, we show a concrete application of Theorem 6, by reproving the cele-
brated result by Linial (1992) regarding 3-coloring the n-node ring. This results was
later re-proven in a simplified way (Juhana and Jukka 2014), basically using the origi-
nal arguments but providing a purely combinatorial perspectives on them.Also,Alkida
et al. (2019); Sebastian (2019) recently introduced a general round-reduction opera-
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tional technique for deriving lower bounds in the LOCAL model. In this section, we
provide a topological perspective on lower bounds in the LOCAL model. Specifically,
we prove the following corollary of Theorem 6.

Corollary 7 Let t ≥ 1, k ≥ 2, n ≥ 1, and N ≥ n. If there is a t-round algorithm
for k-coloring Cn = (v1, . . . , vn) when the IDs in [N ] are assigned to consecutive
nodes vi , vi+1, i ∈ {1, . . . , n − 1}, in increasing order of their indices, then there is
a (t − 1)-round algorithm for 22

k
-coloring Cn under the same constraints on the ID

assignment.

Proof Observe first that the value of R in Theorem 6 is non-decreasing with t . There-
fore, we fix the R defined for t , and use the same R for t − 1. Also, since we solely
focus on the ring in the proof, we fix d = 2 and omit it from the notation of the relevant
complexes. By Theorem 6, since there is a t-round algorithm for k-coloring the ring,
there is a name-preserving name-independent simplicial map δ : P(t)

[R] → Ok with
the property that, for every facet F ∈ I[R], δ(�t (F)) ⊆ �(π(F)), where � is the
carrier map specifying k-coloring and Ok is the output complex for k-coloring. Also,
I[R] is the input complex with no inputs to the vertices, apart from their IDs in [R].
More precisely, in I[R], since the IDs are assigned in increasing order, we restrict our
interest to nodes p0 which are neither v1 nor vn and to facets F of the form

F = {
(p−1, x), (p0, y), (p1, z)

}
with x, y, z ∈ [R], and x < y < z.

The same restriction on the IDs applies to the facets of P(t)
[R].

Sketch of the arguments:
Our aim is to find δ′ : P(t−1)

[R] → O
22k where O

22k is output complex for 22
k
-

coloring Cn . For this purpose, we follow the approach illustrated on Fig. 13. That is,
first, we identify a functor 
 on a category corresponding to a subclass of simplicial
complexes. From the simplicial map δ : P(t)

[R] → Ok , we derive the simplicial map


(δ) : 
(P(t)
[R]) → φ(Ok). Then we show that 
(Ok) ⊆ O

22k as sub-complex,

and therefore 
(δ) maps 
(P(t)
[R]) to O

22k . Finally, we identify a simplicial map

f : P(t−1)
[R] → 
(P(t)

[R]) that allows us to conclude that

δ′ : P(t−1)
[R] → O

22k

defined by

δ′ = 
(δ) ◦ f

satisfies the hypotheses of Theorem 6, guaranteeing the existence of a (t − 1)-round
algorithm for 22

k
-coloring the ring.

Detailed arguments:
Let us consider any complex K with vertices (pi , v) with i ∈ {−1, 0, 1}, and

v ∈ V where V is a finite set of values. Note that both Ok and P(t)
[R] are of this form,
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Fig. 13 Commutative diagrams
in the proof of Corollary 7

where the values are respecitively colors in Ok , and views at distance t in P(t)
[R]. We

define the functor 
 as follows. The complex 
(K) is on the set of vertices (pi ,S)

where S = {S1, . . . , S�} for some � ≥ 0, and Si ⊆ V for every i = 1, . . . , �. A set
{(p−1,S−1), (p0,S0), (p1,S1)} forms a facet of 
(K) if for every i ∈ {0, 1},

∃S ∈ Si−1 ∀S′ ∈ Si ∃v′ ∈ S′ ∀v ∈ S : {(pi−1, v), (pi , v
′)} ∈ K. (3)

Given a simplicial map ψ : A → B the map 
(ψ) is defined as


(ψ)(pi ,S) =
(

pi ,
{{

π2 ◦ ψ(pi , v1,1), . . . , π2 ◦ ψ(v1,s1)
}
, . . . ,

{
π2 ◦ ψ(v�,1), . . . ,

π2 ◦ ψ(v�,s� )
}})

for every i = {−1, 0, 1}, and every S = {S1, . . . , S�} with S j = {v j,1, . . . , v j,s j } and
s j ≥ 0, where π2 : B → V is the mere projection π2(pi , v) = v for every value v. By
construction, 
(ψ) : 
(A) → 
(B) is simplicial. Note that if ψ is name-preserving
and name-independent, then so is 
(ψ).

Next, we observe that 
(Ok) is a sub-complex of O
22k . To see why, note

first that 
 maps vertices of Ok to vertices of O
22k . Moreover, a facet F =

{(p−1,S−1), (p0,S0), (p1,S1)} of 
(Ok) is a facet of O
22k . Indeed, Eq. (3) guar-

antees the existence of a set S in S−1 such that for every set S′ in S0, there exists a
color v′ in S′ that is different from all the colors in S. It follows that S /∈ S0, and
therefore S−1 	= S0. By the same argument, S0 	= S1, and thus F is a facet of O

22k ,
as claimed.

Finally, we define the simplicial map f : P(t−1)
[R] → 
(P(t)

[R]) as follows. Let us
consider a vertex (pi , w) ∈ P(t−1)

[R] , with

w = (z−(t−1), . . . , z−1, z0, z1, . . . , zt−1) ∈ [R]2t−1 with z−(t−1) < · · · < zt−1.

For every b ∈ [R] with b > zt−1, let W b
i = {awb : a ∈ [R], a < z−(t−1)}, and let

Wi = {W b
i : b ∈ [R], b > zt−1}.

We set f (pi , w) = (pi ,Wi ). This mapping maps every vertex of P(t−1)
[R] to a vertex

of 
(P(t)
[R]). Let us show that f is simplicial. For this purpose, let us consider a facet

F = {(p−1, x ′xw), (p0, xwy), (p1, wyy′)}
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of P(t−1)
[R] . Here w = (z−(t−2), . . . , z−1, z0, z1, . . . , zt−2) ∈ [R]2t−3 with x ′ < x <

z−(t−2) < · · · < zt−2 < y < y′. We now show that the two sets W y
−1 ∈ W−1 and

W y′
0 ∈ W0 witness the validity of Eq. (3), from which we conclude that f (F) is a

facet of 
(P(t)
[R]). Consider W y

−1 ∈ W−1, let W b
0 ∈ W0, and let x ′xwyb ∈ W b

0 . The
view ax ′xwy for p−1 is compatible with the view x ′xwyb for p0, for every a < x ′.
Therefore, for every set W b

0 ∈ W0, there exists a view x ′xwyb ∈ W b
0 such that, for

every view ax ′xwy ∈ W y
−1,

{(p−1, ax ′xwy), (p0, x ′xwyb)} ∈ P(t)
[R].

Hence Eq. (3) is satisfied for p−1 and p0. By the same arguments, using W y′
0 instead

of W y
−1, Eq. (3) is satisfied for p−1 and p0, from which it follows that f (F) is a facet

of 
(P(t)
[R]). We conclude that f is simplicial.

Since both f and 
(δ) are simplicial, the map δ′ = 
(δ) ◦ f is simplicial too,
which completes the proof by application of Theorem 6. ��

By iterating Corollary 7, we obtain that if there exists a t-round algorithm for 3-
coloring Cn , then there is a zero-round algorithm for coloring Cn with a color pallet
of 2t+22 colors, where h2 denotes the tower of exponentiels of height h, from which
the lower bound of 1

2 log
∗ n − 1 rounds for 3-coloring Cn follows.

7 Conclusion and further work

This paper shows that the study of algorithms for solving LCL tasks in the LOCAL
model can be achieved by considering simplicial complexes whose sizes are indepen-
dent of the number of nodes, and independent of the number of possible IDs that could
be assigned to these nodes. We provide an application of our framework by providing
a topological perspective of the lower bound proof for 3-coloring the n-node ring. Two
main directions for further work can be identified.

A first direction is understanding topological properties of the carrier map �t :
Id,X → P(t)

d,X occurring in the LOCAL model. This map governs the topology of the

t-round protocol complexesP(t)
d,X . It is known from the preliminary study in Castañeda

et al. (2021) that this topology heavily depends on the structure of the (class of) graph(s)
G in which the algorithm is supposed to be executed. However, still very little is known
about how the elementary topological properties of the protocol complexes evolves
from one round to the next.

Another direction of research is understanding what governs the existence of the
simplicial map δ : P(t)

d,X → O in Theorem 6 (see also Fig. 3). In the shared memory
setting, it is known that the existence of such a map for consensus or k-set agreement
tasks under the wait-free model is governed by the level of connectivity of the protocol
complexes (i.e., the ability to contract high dimensional spheres). Would it be possible
to provide similar types of characterization in the LOCAL model, say for tasks such as
coloring or MIS?
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