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Abstract
We deduce a structurally inductive description of the determinantal probability mea-
sure associated with Kalai’s celebrated enumeration result for higher-dimensional
spanning trees of the (n − 1)-simplex. As a consequence, we derive the marginal
distributions of the simplex links in such random trees. Along the way, we also char-
acterize the higher-dimensional spanning trees of every other simplicial cone in terms
of the higher-dimensional rooted forests of the underlying simplicial complex.We also
apply these new results to random topology, the spectral analysis of random graphs,
and the theory of high dimensional expanders. One particularly interesting corollary
of these results is that the fundamental group of a union of o(log n) determinantal
2-trees has Kazhdan’s property (T) with high probability.

Keywords Random simplicial complexes · Spanning trees · High dimensional
expanders · Determinantal measure

Mathematics Subject Classification 05C05 · 60C05 · 60B99 · 55U05 · 55U15

1 Introduction

Forty years ago, Kalai (1983) introduced, to spectacular effect, a generalization of the
graph-theoretic notion of a tree to higher-dimensional simplicial complexes, called
Q-acyclic simplicial complexes for the triviality of their rational reduced homology
groups in every dimension. However, recent authors (Linial and Peled 2019; Kahle and
Newman 2022; Mészáros 2022) appear to have settled on simply calling these hyper-
trees. For 0 ≤ k < n, letTn,k denote the set of k-dimensional hypertrees on the vertex
set [n] := {1, 2, . . . n}. Kalai noticed, among other things, that H̃k−1(T ) (assume
integer coefficients throughout) is a finite group for all T ∈ Tn,k and moreover that
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402 A. Vander Werf

∑

T ∈Tn,k

|H̃k−1(T )|2 = n(n−2
k ),

which is seen to be a generalization of Caley’s formula by recalling that |H̃0(T )| = 1
for all T ∈ Tn,1, due to trees being connected. This suggests a natural probabil-
ity measure (Lyons 2003, 2009) ν = νn,k , on Tn,k defined on atoms by νn,k(T ) =
n−(n−2

k )|H̃k−1(T )|2.
Seemingly unrelated to this measure, consider the k-dimensional Linial-Meshulam

complex, denoted Yk(n, p) and defined (Linial and Meshulam 2006; Meshulam and
Wallach 2009) to be the random k-dimensional simplicial complex on [n] with full
(k − 1)-skeleton wherein each k-face is included independently and with probability
p. Let μn,k denote the probability density for Yk(n, (n + 1)−1).

Let Tn,k denote a random complex distributed according to νn,k , and letYn,k denote
a random complex distributed according to μn,k . Our main result is the following
structure theorem for random hypertrees distributed according to νn,k (see Sect. 2 for
definitions):

Theorem 1 Assume n > k + 1. Then

Link(n, Tn,k)
L= Tn−1,k−1 ∪ Yn−1,k−1

where Tn−1,k−1,Yn−1,k−1 are statistically independent. Also

{ f ∈ Tn,k : n /∈ f } L= Tn−1,k \ Yn−1,k

where Tn−1,k,Yn−1,k are statistically independent.

The first claim of this theorem states that a vertex link in Tn,k can be simulated by
first sampling Tn−1,k−1 and then adding each missing (k −1)-face independently with
probability 1/n. This effectively gives us the law of the set of faces in Tn,k which
contain the vertex n. The second claim tells us that the remaining faces of Tn,k which
do not contain the vertex n can be simulated by sampling Tn−1,k and then deleting
each of its k-faces independently with probability 1/n.

This simple idea of decomposing a hypertree into two collections of faces—those
which contain a designated vertex and those which do not—turns out to be quite
powerful. However, the idea is nothing new. For example, we can see this decompo-
sition in use by Linial and Peled (2019) at Kalai’s suggestion to inductively construct
collapsible hypertrees.

By iterating our formula for the law of a vertex link, we can also determine a similar
expression for the law of the link of a simplex of arbitrary dimension.

Theorem 2 The law of the link of any ( j −1)-dimensional simplex in Tn,k is equivalent
to that of Tn− j,k− j ∪Yk− j (n− j, j/n) where these two (k− j)-dimensional complexes
are independent.
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Proof We prove this by induction on the dimension of the simplex. By relabeling
vertices, we may assume that the ( j − 1)-simplex we are interested in is {n − j +
1, . . . , n}. The base case j = 1 follows from Theorem 1. Inducting, we have

Link({n − j + 1, . . . , n}, Tn,k)

= Link
(
n − j + 1,Link({n − j + 2, . . . , n}, Tn,k)

)

L= Link(n − j + 1, Tn− j+1,k− j+1 ∪ Yk− j+1(n − j + 1, ( j − 1)/n)).

It is well known and easily verified from the definitions that the law of a vertex link of
a Linial–Meshulam complex is a codimension-1 Linial–Meshulam complex on one
fewer verticeswith the same face probability. So, since the link operation is distributive
over unions of k-complexes (see Sect. 2), this is equivalent to

Link(n − j + 1, Tn− j+1,k− j+1) ∪ Link(n − j + 1,Yk− j+1(n − j + 1, ( j − 1)/n))

L= Tn− j,k− j ∪ Yk− j (n − j, 1/(n − j + 1)) ∪ Yk− j (n − j, ( j − 1)/n))

L= Tn− j,k− j ∪ Yk− j

(
n − j,

1

n − j + 1
+ j − 1

n
− 1

n − j + 1

j − 1

n

)

= Tn− j,k− j ∪ Yk− j

(
n − j,

j

n

)
,

where the last equality in law follows from the independence of the two Linial–
Meshulam complexes and the inclusion–exclusion principle. ��

1.1 Applications to random topology

Theorem 2 has several applications to random topology. Indeed, Garland’s method
(Garland 1973) and its refinements (see Żuk 1996, 2003; Oppenheim 2018, 2020),
Żuk’s criterion among them, have proven to be highly effective tools for extracting
global information about a pure k-dimensional simplicial complex using only infor-
mation found in the (k − 2)-dimensional links of the complex.

Theorem 3 (Garland’s method) Let X be a pure k-dimensional simplicial complex.
Suppose that, for all (k − 2)-faces τ ∈ X, we have λ(0)(Link(τ, X)) ≥ 1 − ε > 0.
Then λ(k−1)(X) ≥ 1 − kε.

Theorem 4 (Żuk’s criterion) Let X be a pure 2-dimensional simplicial complex. Sup-
pose that, for all 0-faces τ ∈ X, we have that λ(0)(Link(τ, X)) > 1/2 and Link(τ, X)

is connected. Then the fundamental group π1(X) has Kazhdan’s property (T ).

The λ(k−1)(X) mentioned in the above statement of Garland’s method refers to the
smallest nonzero eigenvalue of the top-dimensional up-down Laplacian of X under
a particular weighted inner product (see Lubotzky 2018; Gundert and Wagner 2014
for greater detail). This eigenvalue will be referred to as the spectral gap of X . In the
special case where k = 1 and X is a connected graph, λ(0)(X) corresponds to the
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second smallest eigenvalue of the reduced Laplacian of X . Fortunately, the spectral
gap of a random graph, in one form or another, is already quite well studied (Feige and
Ofek 2005; Coja-Oghlan and Lanka 2009; Oliveira 2009; Tikhomirov and Youssef
2019; Hoffman et al. 2019). Combining our characterization of the links in Tn,k with
the best known techniques for the kind of spectral gap estimation we would like to do,
we find the following:

Proposition 5 Let δ > 0 be an arbitrary fixed constant, and let X be the union of
�δ log n	 jointly independent copies of Tn,k with k fixed. Then, for any fixed s > 0,
there exists a constant C > 0 so that |λ(k−1)(X ) − 1| ≤ C√

log n
. with probability

1 − o(n−s).

Proof This follows immediately fromGarland’smethod in combinationwithLemma36
and a union bound on the probability that any one-dimensional link of X fails to meet
the criteria of Garland’s method. ��

Applying Żuk’s criterion in the case k = 2 gives the following corollary:

Corollary 6 Let δ > 0 be an arbitrary fixed constant, and letX be the union of �δ log n	
jointly independent copies of Tn,2. Then, for any fixed s > 0, we have with probability
1 − o(n−s) that π1(X ) has Kazhdan’s property (T ).

Particularly in computer science, there is a growing interest in generating fami-
lies of graphs with large spectral gap, which are usually called expander graphs, and
probabilistic constructions have been offered as a way to do this quickly and success-
fully with exceedingly high probability. For example, the authors of Hoffman et al.
(2019) prove that the Erdős–Rényi random graph G(n, p) (in particular the random
infinite family {G(n, p(n))}n≥1) achieves the same spectral gap as found in Lemma 36
and with equally high probability when np ≥ (1/2 + δ) log n for any fixed δ > 0.
Moreover, they show that the assumption δ > 0 is necessary for this to hold. The best
known expander graph families have been constructed explicitly and have asymptoti-
cally (with respect to vertex count) constant average degree. So,while the Erdős–Rényi
random graph can succeed at being a reliable expander, it is only able to do so if it is
allowed an expected average degree far exceeding 1

2 log n.
Our characterization of the one-dimensional links of a determinantal (n, k)-tree

as the union of a determinantal (n − k + 1, 1)-tree with an independent G(n − k +
1, (k − 1)/n) makes it, or perhaps the union of a small number of independent copies
of it, a potential naturally occurring candidate for a random expander graph with
constant expected average degree. Lemma 36 shows that the number of superimposed
independent copies of this graph required to match the result for G(n, p) is no more
than δ log n for every δ > 0. In particular, the resulting graph has an expected average
degree of around (k + 1)δ log n, improving upon G(n, p)’s required expected average
degree by a factor of arbitrary finite size.

1.2 Outline

Section2 is primarily devoted to establishing notation and basic homological defini-
tions aswell as providing background for the deterministic studyof simplicial spanning
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trees. The only truly novel result of this section is Theorem 18. In Sect. 3 the results
of Sect. 2 are applied to the spanning trees of the (n − 1)-simplex to give Theorem 1.
Section4 establishes the tools required to prove Proposition 5 and Corollary 6.

2 Homological trees: simplicial and relative

A chain complex is a sequence of abelian groups, {C j } j∈Z, called chain groups, linked
by group homomorphisms ∂ j : C j → C j−1 called boundary maps which satisfy
∂ j∂ j+1 = 0 for all j ∈ Z, or equivalently Ker ∂ j ⊇ Im ∂ j+1. The j th homology group
of a chain complex such as this is defined to be the quotient group Ker ∂ j/ Im ∂ j+1.
Since we will only be considering finitely-generated free Z-modules for our chain
groups, we can represent these boundary maps by integer matrices. By the struc-
ture theorem for finitely-generated abelian groups, the j th homology group can be
expressed as the direct sum of a free abelian group, which is isomorphic to Zβ j and
called its free part, and a finite abelian group called its torsion subgroup which is a
direct sum of finite cyclic groups. The rank β j of the free part is called the j th Betti
number. We will require the following standard fact from homological algebra which
gives two equivalent formulas for what is commonly called the Euler characteristic
of a chain complex.

Lemma 7 Suppose (C#, ∂#) is a chain complex such that each chain group is freely
and finitely generated and only finitely many of the chain groups are nontrivial. Let
f j denote the rank of C j for each j ∈ Z. Then

∑

j∈Z
(−1) j f j =

∑

j∈Z
(−1) jβ j .

2.1 Simplicial

Fix an integer n ≥ 1. The set [n] := {1, 2, . . . , n} will be our vertex set. For −1 ≤
j ≤ n − 1, a j -dimensional abstract simplex, or j-face, is a subset of [n] with
cardinality j + 1. We denote the set of all j-faces on [n] by ( [n]

j+1

)
. All faces will

be oriented according to the usual ordering on [n]. As such, we will be denoting
elements of

( [n]
j+1

)
by {τ0, τ1, . . . , τ j }, where it is to be implicitly understood that

1 ≤ τ0 < τ1 < · · · < τ j ≤ n. Let ∂ = ∂
[n]
k be the matrix thats rows and columns are

indexed respectively by
([n]

k

)
and

( [n]
k+1

)
, and for which, given σ ∈ ([n]

k

)
and τ ∈ ( [n]

k+1

)
,

we set

∂(σ, τ ) :=
{

(−1) j , σ = τ \ {τ j }
0, otherwise

(1)

to account for our choice of orientation for each face. In particular, ∂ [n]
0 is the

([n]
0

)×([n]
1

)

all-ones matrix.
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406 A. Vander Werf

An abstract simplicial complex with vertices in [n] is a nonempty subset X ⊆⋃
j≥−1

( [n]
j+1

)
which, for every pair of subsets σ ⊆ τ , satisfies τ ∈ X �⇒ σ ∈ X . Let

An denote the set of all abstract simplicial complexes on [n]. It is easily verified with
this definition thatAn is closed under intersection and union.Wewrite X j := ( [n]

j+1

)∩X
and define the dimension of X to be dim X := sup{k ≥ −1 : Xk �= ∅}. If X has
dimension k, X is said to be pure if, for every −1 ≤ j < k and every j-face σ ∈ X ,
there exists a τ ∈ Xk such that σ ⊂ τ . An important example is K k

n := ⋃k+1
j=0

([n]
j

)
,

the complete k-dimensional complex on [n].
Given a matrix M with entries indexed over the set S × T , for A ⊆ S and B ⊆ T ,

we write MA,B to denote the submatrix of M with rows indexed by A and columns
indexed by B. We will also occasionally write M•,B for the case A = S. As a point
of clarification for this notation, transposes are handled by the convention of writing
Mt

A,B to mean (MA,B)t = (Mt )B,A.

Given X ∈ An , we define its chain complex (C#, ∂#) by C j (X) := ZX j , and
∂ X

j := ∂X j−1,X j . Note then that we have C j (X) = 0 for all j ≥ n and all j <

−1—because |X−1| = |{∅}| = 1. We denote the j th homology group of this chain
complex by H̃ j (X). It is equivalent to the j th reduced simplicial homology group,
hence the notation. Note that, with this chain sequence, it makes sense to consider
H̃−1 = Ker ∂ [n]

−1/ Im ∂
[n]
0 as well, although we can see that this group is always trivial

since ∂
[n]
0 is surjective.

Lemma 8 ∂
[n]
k ∂

[n]t
k + ∂

[n]t
k−1∂

[n]
k−1 = n Id.

Proof This follows by explicit computation of matrix entries via (1) combined with
the chain sequence identity ∂

[n]
k−1∂

[n]
k = 0 which can also be seen to hold by explicit

computation of matrix entries via (1). A more detailed explanation along these lines
for the cases k ≥ 2 can be found in the proof of Lemma 3 in Kalai (1983), and the case
k = 0 is straightforward. For the case k = 1, ∂ [n]

1 ∂
[n]t
1 is the combinatorial Laplacian

of the complete graph on [n]. Hence ∂
[n]
1 ∂

[n]t
1 = n Id− J where J is the n × n all-ones

matrix. Noticing that ∂ [n]t
0 ∂

[n]
0 = J then completes the proof. ��

Fix a � ∈ An and set Cn,k(�) := {
X ∈ An : K k−1

n ∩ � ⊆ X ⊆ K k
n ∩ �

}
. We

will call elements of this set the (n, k)-complexes of �, or just k-complexes when
the context is clear. Note this definition makes sense even if dim� > k, but in this
case Cn,k(�) = Cn,k(K k

n ∩ �). Building upon work done by Duval et al. (2008,
2011, 2015), Bernardi and Klivans (2015) define a higher-dimensional forest of � to
be a subset F ⊆ �k such that ∂�k−1,F is injective. Our definition of a forest will be
equivalent to this one except that wewill consider F to be an entire element ofCn,k(�)

by adding to it the (k − 1)-skeleton of �, more similar to the situation in Duval et al.
(2008). That is to say, an F ∈ Cn,k(�) is called a k-forest of� if βk(F) = 0, in which
case we write F ∈ Fn,k(�). It is easily verified that this is equivalent to Definition 3
in Bernardi and Klivans (2015) by noting that H̃k(F) = Ker ∂ F

k is a free group and
thus is 0 if and only if its rank is 0. A k-forest T ∈ Fn,k(�) with |Tk | = rank ∂�

k
(the maximal possible value for a forest) is said to be a k-tree of �. Let Tn,k(�)

denote the set of k-trees of �—(Bernardi and Klivans 2015) calls these the spanning
forests of �. In the case � = K n−1

n , or just � ⊇ K k
n , these are Kalai’s k-dimensional
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Simplex links in determinantal hypertrees 407

Q-acyclic simplicial complexes mentioned in the introduction, and in this case we
will suppress the (�) in all the above notation. The following result from Duval et al.
(2015) generalizes Proposition 2 from Kalai (1983) to general k-trees of � ∈ An :

Lemma 9 For X ∈ Cn,k(�), if any two of the following conditions hold, then so does
the other condition and moreover X ∈ Tn,k(�):

• |Xk | = rank ∂�
k ,

• βk−1(X) = βk−1(�),
• βk(X) = 0.

2.2 Relative

Given a pair (X , Y ) ∈ A 2
n with X ⊇ Y , we can define another chain complex by

C j (X , Y ) := ZX j \Y j with boundary maps ∂
X/Y
j := ∂X j−1\Y j−1,X j \Y j . The homol-

ogy groups of this chain complex are called relative homology groups and denoted
Hj (X , Y ). We can recover ordinary reduced homology from this by taking Y to be {∅}
or any complex with a single 0-face and no larger faces. Moreover, since homology is
homotopy invariant, we also have that Hj (X , Y ) ∼= H̃ j (X) as long as Y is contractible.
An important example of a contractible complex, the simplicial cone of a complex
� ∈ An−1 is defined by

Cone(n,�) := � ∪ {σ ∪ {n} : σ ∈ �} ∈ An .

We also define for any X ∈ Cn,k(Cone(n,�)) the complexes

Proj(n, X) := X ∩ � ∈ Cn−1,k(�) and

Link(n, X) := {σ ∈ � : σ ∪ {n} ∈ X} ∈ Cn−1,k−1(�).

More generally, for any simplex τ of dimension at most k,

Link(τ, X) := {σ ∈ � : σ ∪ τ ∈ X} ∈ Cn−|τ |,k−|τ |(�).

The next lemma defines what we will call the binomial correspondence Cn,k(Cone

(n,�))
∼−→ Cn−1,k(�) × Cn−1,k−1(�) for its relationship to the binomial recurrence

formula
( n

k+1

) = (n−1
k+1

)+ (n−1
k

)
in the special case that Cone(n,�) ⊇ K k

n .

Lemma 10 For � ∈ An−1, the map ϕ(X) := (Proj(n, X),Link(n, X)) is an injection
from Cn,k(Cone(n,�)) into Cn−1,k(�) × Cn−1,k−1(�), and its (left) inverse is given
by ϕ−1(F, R) = F ∪ Cone(n, R) which extends to an injection of Cn−1,k(�) ×
Cn−1,k−1(�) into Cn,k(Cone(n,�)).

Proof For brevity, set �( j) := K j
n ∩ �. Since ϕ−1 is clearly also a right inverse of ϕ,

the only thing to show is that the images of these restrictions lie where we claim they
do. Starting with ϕ, we first recall that

Cn,k(Cone(n,�)) = Cn,k(Cone(n,�)(k)) = Cn,k(�(k) ∪ {σ ∪ {n} : σ ∈ �(k−1)}).
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408 A. Vander Werf

So for X ∈ Cn,k(Cone(n,�)) we have

�(k−1) ∪ {σ ∪ {n} : σ ∈ �(k−2)} ⊆ X ⊆ �(k) ∪ {σ ∪ {n} : σ ∈ �(k−1)}.

Thus �(k−1) ⊆ Proj(n, X) ⊆ �(k) and �(k−2) ⊆ Link(n, X) ⊆ �(k−1) as desired.
As for ϕ−1, we have

Cone(n,�)(k−1) = �(k−1) ∪ Cone(n,�(k−2)) ⊆ F ∪ Cone(n, R) ⊆ Cone(n,�)(k)

due to the assumption that (F, R) ∈ Cn−1,k(�) × Cn−1,k−1(�). ��
Theorem 11 (Excision Theorem) For any A, B ∈ An, we have H∗(A, A ∩ B) ∼=
H∗(A ∪ B, B).

Theorem 12 (Long exact sequence of a triple) For A ⊆ B ⊆ C ∈ An, arrows exist
for which the following sequence is exact:

· · · Hk(B, A) Hk(C, A) Hk(C, B)

Hk−1(B, A) · · · H0(C, B) 0

.

That is, the kernel of each arrow in this diagram is equal to the image of the preceding
arrow.

Lemma 13 For any � ∈ An, X ∈ Cn,k(�), and Y ∈ Cn, j (X) where j ≤ k, any two
of the following conditions imply the other:

• |Xk | − |Yk | = rank ∂
�/Y
k ,

• βk−1(X , Y ) = βk−1(�, Y ),
• βk(X , Y ) = 0.

Proof The long exact sequence of the triple (�, X , Y ) contains the sequence

0 Hk+1(�, Y ) Hk+1(�, X)

Hk(X , Y ) Hk(�, Y ) Hk(�, X)

Hk−1(X , Y ) Hk−1(�, Y ) 0.

The exactness of this sequence implies that

βk(X , Y ) + (
βk+1(�, Y ) − βk+1(�, X) − βk(�, Y ) + βk(�, X)

)

−(βk−1(X , Y ) − βk−1(�, Y )
) = 0. (2)
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It suffices to show that the first bulleted condition is equivalent to the vanishing
of the middle term in (2). Indeed, by the definition of relative homology, the rank-
nullity theorem, dimensional considerations, and the fact that �, X have the same
(k − 1)-skeleton, we have

βk(�, X) − βk+1(�, X)

= dimKer ∂�/X
k − (rank ∂

�/X
k+1 + dimKer ∂�/X

k+1 ) + rank ∂
�/X
k+2

= dimKer ∂�/X
k − |(�/X)k+1| + rank ∂�

k+2

= |(�/X)k | − |�k+1| + rank ∂�
k+2.

By most of the same considerations, βk(�, Y ) − βk+1(�, Y ) = dimKer ∂�/Y
k −

|�k+1| + rank ∂�
k+2. So

βk+1(�, Y ) − βk+1(�, X) − βk(�, Y ) + βk(�, X)

= |�k | − |Xk | − dimKer ∂�/Y
k

= |Yk | + (|(�/Y )k | − dimKer ∂�/Y
k ) − |Xk |

= |Yk | + rank ∂
�/Y
k − |Xk |

is equal to 0 if and only if the first bulleted condition holds. The result therefore follows
from (2). ��

Whenever two, and therefore all three, of the conditions of this lemma hold, we
will call (X , Y ) a relative (n, k)-forest of �. We will denote the set of such pairs
by F rel

n,k(�). In the special case that Y is contractible (or just that dim Y < k − 2)

we get that X ∈ Tn,k(�) if and only if (X , Y ) ∈ F rel
n,k(�). We therefore have the

following corollary which gives the original (Kalai 1983) three equivalent necessary
and sufficient pairs of conditions for a k-complex of a homologically connected �

(i.e. βk−1(�) = 0) to be a k-tree of �:

Corollary 14 For any � ∈ An with βk−1(�) = 0 and X ∈ Cn,k(�), any two of the
following conditions imply the other, and in particular are equivalent to the statement
that X ∈ Tn,k(�):

• |Xk | = (n−1
k

)
,

• βk(X) = 0,
• βk−1(X) = 0.

An R ∈ Cn,k−1(�) is called a (k − 1)-root of � if ∂
�/R
k is surjective and has full

rank (Bernardi and Klivans 2015, Definition 9). Whenever any two of the conditions
in the following lemma hold for a pair (X , Y ) ∈ Cn,k(�) × Cn,k−1(�), we will call
(X , Y ) a rooted (n, k)-forest of � and write (X , Y ) ∈ F root

n,k (�). Equivalently, a
rooted (n, k)-forest of � is a pair (X , Y ) ∈ Fn,k(�) × Cn,k−1(�) such that Y is a
(k − 1)-root of X (Bernardi and Klivans 2015, Definition 12).
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410 A. Vander Werf

Lemma 15 For X ∈ Cn,k(�) and Y ∈ Cn,k−1(�), any two of the following conditions
imply the other:

• |Xk | = |Xk−1 \ Yk−1|,
• βk−1(X , Y ) = 0,
• βk(X , Y ) = 0.

Proof By Lemma 7, we have
∑k

j=−1(−1) j (|X j\Y j |) = ∑k
j=−1(−1) jβ j (X , Y ),

which simplifies to

|Xk | − |Xk−1 \ Yk−1| = βk(X , Y ) − βk−1(X , Y ).

Indeed, since Y j = X j = � j for all j < k − 1, we have C j (X , Y ) = 0 for all
j < k − 1. As Hj (X , Y ) is a quotient of a subgroup of C j (X , Y ), the former vanishes
with the latter. ��
Corollary 16 For any � ∈ An, we have

F root
n,k (�) =

{
(X , Y ) ∈ F rel

n,k(�) ∩ (
Cn,k(�) × Cn,k−1(�)

) : βk−1(�, Y ) = 0
}

.

Proof Clearly F root
n,k (�) ⊇ {(X , Y ) ∈ F rel

n,k(�) ∩ (
Cn,k(�) × Cn,k−1(�)

) :
βk−1(�, Y ) = 0}. For the other inclusion, suppose that (X , Y ) ∈ F root

n,k (�). Then
the long exact sequence in the proof of Lemma 13 implies that 0 = βk−1(X , Y ) ≥
βk−1(�, Y ) ≥ 0. Thus (X , Y ) ∈ F rel

n,k(�) since βk−1(X , Y ) = 0 = βk−1(�, Y ) and
βk(X , Y ) = 0. ��
Lemma 17 Suppose � ∈ An and that F ∈ Cn,k(�), R ∈ Cn,k−1(�) satisfy |Fk | =
|�k−1 \ Rk−1|, and write R := �k−1 \ Rk−1. Then det ∂R,Fk

�= 0 ⇐⇒ | det ∂R,Fk
| =

|Hk−1(F, R)| ⇐⇒ (F, R) ∈ F root
n,k (�).

Proof The relative chain complex for the pair (F, R) is

0 Ck(F) Ck−1(R) 0 · · ·
∂R,Fk since Rk = ∅, Fk−1\Rk−1 =

�k−1\Rk−1 = R, and Fk−2 = Rk−2.We therefore have Hk−1(F, R) = ZR/∂R,Fk
ZFk

and so, provided det ∂R,Fk
�= 0, we have |Hk−1(F, R)| = | det ∂R,Fk

|—this is
seen most easily by putting ∂R,Fk

in Smith normal form. Having |Hk−1(F, R)| =
| det ∂R,Fk

| clearly implies |Hk−1(F, R)| < ∞which, by the previous lemma, implies
that (F, R) ∈ F root

n,k (�). Finally, (F, R) ∈ F root
n,k (�) �⇒ βk(F, R) = 0 �⇒

Ker ∂R,Fk
= Hk(F, R) = 0 �⇒ det ∂R,Fk

�= 0. ��
Essentially all of the content of this last lemma is proven in greater detail in Lemmas
14 and 17 of Bernardi and Klivans (2015).

Theorem 18 Set T = F ∪ Cone(n, R) where F ∈ Cn−1,k(�) and R ∈ Cn−1,k−1(�)

for any � ∈ An−1. Then H̃∗(T ) ∼= H∗(F, R), and T ∈ Tn,k(Cone(n,�)) if and
only if (F, R) ∈ F root

n−1,k(�). Moreover the binomial correspondence restricts to a

bijection ϕ : Tn,k(Cone(n,�))
∼−→ F root

n−1,k(�).
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Proof Since F has no k-faces containing n and R ⊆ F , we have F ∩Cone(n, R) = R.
Thus, by excision, the pairs (T ,Cone(n, R)) and (F, R) have the same relative homol-
ogy in every dimension. But, since Cone(n, R) is contractible, H̃∗(T ) ∼= H∗(F, R).
Therefore T ∈ Tn,k(Cone(n,�)) if and only if (F, R) ∈ F root

n−1,k(�) by Lemmas 9
and 15. The bijection then follows from Lemma 10. ��
Corollary 19 Set T = F ∪ Cone(n, R), where F ∈ Cn−1,k and R ∈ Cn−1,k−1. Then
H̃∗(T ) ∼= H∗(F, R), and T ∈ Tn,k if and only if (F, R) ∈ F root

n−1,k . Moreover the

binomial correspondence restricts to a bijection ϕ : Tn,k
∼−→ F root

n−1,k .

Proof This follows by recalling thatTn,k(Cone(n,�)) = Tn,k((�∩K k
n−1)∪{σ∪{n} :

σ ∈ �∩ K k−1
n−1}). Thus if� ⊇ K k

n−1, then (�∩ K k
n−1)∪{σ ∪{n} : σ ∈ �∩ K k−1

n−1} =
K k

n . ��

3 Determinantal measure

In this section we will narrow our focus to the case � ⊇ K k
n and begin consider-

ing the probabilistic aspects of k-trees and rooted k-forest of such a �. Specifically,
after defining the measure νn,k mentioned in the introduction, we will show (Corol-
lary 21) that it has an alternative expression in terms of Proj and Link. Following
a brief exploration of determinatal probability measures during which we derive the
containment probabilities for ν (Lemma 22), we leverage our alternative expression
for νn,k to determine the probability densities for Proj Tn,k and Link Tn,k in terms of
of the containment probabilities we just found for ν (Lemma 23). We then use this to
prove Theorem 1.

For ease of reading, we will for this section abuse notation by identifying each
j-complex of K n−1

n with its set of j-dimensional faces. For any X ∈ Cn, j , we also
will let X denote the j-complex thats set of j-faces is the complement (with respect to( [n]

j+1

)
) of X j . Define the submatrix ∂̂ of ∂ by deleting all rows of ∂ that correspond to

elements of
([n]

k

)
which contain the vertex n (thus ∂̂

[n]
0 = ∂

[n]
0 ). We have the following

corollary of Lemma 17:

Corollary 20 Suppose T ∈ Cn,k satisfies |Tk | = (n−1
k

)
. Then det ∂̂•,T �= 0 ⇐⇒

| det ∂̂•,T | = |H̃k−1(T )| ⇐⇒ T ∈ Tn,k .

Proof Let R = Cone
(

n, K k−2
n−1

)
so that |Tk | + |Rk−1| = (n

k

)
, and ∂R,T = ∂̂•,T . This

now follows from Corollary 14 and Lemma 17. ��
This last corollary was originally proven for the cases k ≥ 2 (Kalai 1983, Lemma

2) by Kalai, who combined this with the Cauchy–Binet formula and some deft linear
algebra to show (Kalai 1983, Theorem 1) that

n(n−2
k ) = det ∂̂ ∂̂ t =

∑

T ∈Tn,k

det ∂̂2•,T =
∑

T ∈Tn,k

|H̃k−1(T )|2.
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Recalling Caley’s formula and understanding that ∂̂
[n]
0 = ∂

[n]
0 and H̃−1(T ) = 0, the

cases k = 0, 1 are also seen to hold. This gives us a natural probability measure
ν = νn,k on Tn,k . Namely,

νn,k(T ) := det ∂̂2•,T

det ∂̂ ∂̂ t
= |H̃k−1(T )|2

n(n−2
k )

.

This measure was originally formulated in greater generality by Lyons ( Lyons (2003),
Section 12) and was further expanded upon in Lyons (2009). This version of the
measure has also been considered again recently by authors such asKahle andNewman
(2022) and Mészáros (2022).

Corollary 21 Suppose T ∈ Tn,k , and let F = Proj(n, T ) and E = Link(n, T ). Then

νn,k(T ) = νn,k(F ∪ Cone(n, E)) =
det ∂2

E,F

n(n−2
k )

= |Hk−1(F, E)|2
n(n−2

k )
.

Proof The first equality follows from Lemma 10. The rest follows from Corollary 19,

the original definition νn,k(T ) = |H̃k−1(T )|2
n(

n−2
k )

, and Lemma 17. ��

Probability measures defined in the above manner are said to be determinantal
(Lyons 2003), as are the random variables associated to them. The following lemma
is a special case of Theorem 5.1 from Lyons (2003):

Lemma 22 Let R, S be finite sets and let M be an R × S matrix of rank |R|. Let μ be

the determinantal measure on S which is defined by μ(T ) = det M2•,T
det(M Mt )

for all T ⊆ S

of size |R|. Let P := Mt (M Mt )−1M (this is the matrix of the projection onto the
rowspace of M). Then, for any B ⊆ S,

μ(T : T ⊇ B) = det PB,B and μ(T : T ⊆ S \ B) = det(Id−P)B,B .

Determinantal randomvariables enjoy the negative associations property (Lyons 2003,
Theorem 6.5), which can be stated for random variables onCn,k as follows: A function
f : Cn,k → R is called increasing if f (X) ≤ f (X ∪ Y ) for every X , Y ∈ Cn,k . The
k-faces of a random variable X ∈ Cn,k are said to be negatively associated if, for
every pair of increasing functions f1, f2 and every Y ∈ Cn,k , we have

E
[

f1(X ∩ Y ) f2(X ∩ Y )
] ≤ E

[
f1(X ∩ Y )

]
E
[

f2(X ∩ Y )
]
.

We will make use of negative associations when we go to prove our applications to
random topology.

As we see from Lemma 22, for any B ∈ Cn,k and A ∈ Cn,k−1, we have

νn,k (T : T ⊇ B) = det(Pn,k)B,B and νn,k−1
(
T : T ⊆ A

)=det(Id−Pn,k−1)A,A

(3)
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where Pn,k := ∂̂ t (̂∂∂̂ t )−1∂̂ . Our use of ∂̂ is actually a choice of basis for the rowspace
of ∂ , and an arbitrary one at that. Let A be any (k − 1)-root of K n−1

n —this implies
that |Ak−1| = (n−1

k

)
(Kalai 1983, Lemma 1). Then, by applying a change of basis, we

also have the equivalent definition(s)

νn,k(T ) := det ∂2A,T

det(∂∂ t )A,A
,

all of which correspond to the same Pn,k . Mészáros (2022, Lemma 14) determined
that

Pn,k := 1

n
∂

[n]t
k ∂

[n]
k .

By Lemma 8, we also have Id−Pn,k = 1
n ∂

[n]
k+1∂

[n]t
k+1 =: Qn,k . By Lemma 17 and

Cauchy–Binet, we therefore have the following lemma:

Lemma 23 Suppose B ∈ Cn,k and A ∈ Cn,k−1. Then

νn,k−1
(
T : T ⊆ A

) = det(Qn,k−1)A,A = n−|A| ∑

B:(B,A)∈T root
n,k

det ∂2A,B,

and νn,k (T : T ⊇ B) = det(Pn,k)B,B = n−|B| ∑

A:(B,A)∈T root
n,k

det ∂2A,B .

Lemma 24 For all F ∈ Cn−1,k and E ∈ Cn−1,k−1, we have

νn,k(T : Proj(n, T ) = F) = νn−1,k(T
′ : T ′ ⊇ F)(1 − 1/n)|F |n|F |−(n−2

k )

and

νn,k(T : Link(n, T ) = E) = νn−1,k−1(T
′′ : T ′′ ⊆ E)(1 − 1/n)|E |n|E |−(n−2

k ).

Proof By Lemma 23, Corollary 21, and the Cauchy–Binet formula, we have

(n − 1)|F |νn−1,k (T : T ⊇ F) = det(∂ t∂)F,F = n(n−2
k )νn,k(T : Proj(n, T ) = F)

and

(n − 1)|E |νn−1,k−1 (T : T ⊆ E) = det(∂∂ t )E,E = n(n−2
k )νn,k(T : Link(n, T ) = E)

as desired. ��
Theorem 1makes the claim that there exist certain relationships between the laws of

certain random variables. An equivalent way of saying this is that there are couplings
of these random variables for which these relationships hold with probability 1. In this
sense, the following corollary is just a more detailed restatement of Theorem 1:
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Corollary 25 Using the notation from Theorem 1, there are couplings πn,k and λn,k of
Tn,k , Tn−1,k , Yn−1,k and Tn,k , Tn−1,k−1, Yn−1,k−1 respectively such that, marginally,
Tn−1,k, Tn−1,k−1 are independent of Yn−1,k,Yn−1,k−1 respectively, and

πn,k
(
(T , T ′, Y ′) : Proj(n, T ) = T ′ \ Y ′)

=λn,k
(
(T , T ′′, Y ′′) : Link(n, T ) = T ′′ ∪ Y ′′) = 1.

Namely,

πn,k(T , T ′, Y ′) := μn−1,k(Y
′)νn−1,k(T

′)νn,k(T )1{Proj(n, T ) = T ′ \ Y ′}
νn,k(S : Proj(n, S) = T ′ \ Y ′)

and

λn,k(T , T ′′, Y ′′) := μn−1,k−1(Y
′′)νn−1,k−1(T

′′)νn,k(T )1{Link(n, T ) = T ′′ ∪ Y ′′}
νn,k(S : Link(n, S) = T ′′ ∪ Y ′′)

.

Proof It suffices to show that πn,k has the correct marginal densities, as the proof for
λn,k is practically identical. Summingπn,k over all T clearly produces the independent
coupling of Tn−1,k , Yn−1,k . For the remaining marginal, Lemma 24 gives us that

1{Proj(n, T ) = T ′ \ Y ′}
νn,k(S : Proj(n, S) = T ′ \ Y ′)

= 1{T ′ ⊇ Proj(n, T )}1{Proj(n, T ) = T ′ \ Y ′}
νn−1,k(S : S ⊇ T ′ \ Y ′)(1 − 1/n)|T ′\Y ′|n|T ′\Y ′|−(n−2

k )

= 1{T ′ ⊇ Proj(n, T )}1{T ′ \ Y ′ = Proj(n, T )}
νn−1,k(S : S ⊇ T ′ \ Y ′)(1 − 1/n)| Proj(n,T )|n−|T ′\Proj(n,T )|

= 1{T ′ ⊇ Proj(n, T )}1{T ′ \ Y ′ = Proj(n, T )}
νn−1,k(S : S ⊇ T ′ \ Y ′)μn−1,k(S : T ′ \ S = Proj(n, T ))

,

where in the last line we used that μn−1,k(S : T ′\S = Proj(n, T )) is the probability
that |Proj(n, T )| faces from T ′ were not chosen to be included in Yk(n − 1, 1/n),
which occurs with probability (1 − 1/n)| Proj(n,T )|, and |T ′ \ Proj(n, T )| faces were
chosen to be included inYk(n−1, 1/n), which occurs with probability n−|T ′\Proj(n,T )|.
Thus

πn,k(T , T ′, Y ′) = νn,k(T )
νn−1,k(T ′)1{T ′ ⊇ Proj(n, T )}
νn−1,k(S : S ⊇ Proj(n, T ))

μn−1,k(Y ′)1{T ′ \ Y ′ = Proj(n, T )}
μn−1,k(S : T ′ \ S = Proj(n, T ))

which, summed over Y ′ and then T ′, gives the desired marginal. ��
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4 Spectral estimates

All of this section is in service of proving our applications to random topology, Propo-
sition 5 and Corollary 6. Lemma 36 at the end of this section is sufficient to do just
that. Corollary 27 allows us to prove Lemma 36 by connecting it to a different problem
which is solved by the Kahn–Szemerérdi argument. In Sects. 4.1 and 4.2 below, we
go into detail about this argument and generalize it to a slightly larger class of random
graph that includes the kinds described in Sect. 4.3 which are used to prove Lemma
36.

Before we can do this any of this, we need to introduce notation for this slightly
larger class of random graphs and find suitable analogs for the inequalities of Bernstein
and Chernoff which are necessary for the Kahn–Szemerérdi argument.

Let A be the adjacency matrix of a random graph G = G(n, p, E, M) on [n]
satisfying the following:

1. P[e ∈ G] = p ∈ (0, 1) for all e ∈ ([n]
2

)
.

2. There is a fixed constant E ≥ 1 and an M = M(n) > 0 such that, for every

t ∈ [0, M]([n]
2 ), we have

E exp

⎛

⎝
∑

1≤i< j≤n

ti j Ai j

⎞

⎠ ≤ E
∏

1≤i< j≤n

(
1 − p + peti j

)
.

The choice to make E a fixed constant is just for convenience. All of the results of this
section can be easily adapted to work for E = E(n) an arbitrary fixed polynomial in
the variable n.

For this section, we use asymptotic notation, o() and O(), to describe the behavior
of a function of n as n → ∞.

Proposition 26 Let G be defined as above with p = δ log n
n (δ an arbitrary constant),

and M ≥ 3
5 (n/p)

1
2 . Then, for any fixed s > 0, we have with probability at least

1 − o(n−s) that

vt Av = O(
√

np) for all unit vectors v ⊥ 1.

Proof This will follow from Lemmas 30, 31, 32, and 33. ��

Corollary 27 Let L := Id−D− 1
2 AD− 1

2 where D is the degree matrix of G =
G
(

n,
δ log n

n , O(1), 3n
5
√

δ log n

)
. Suppose there are positive integers s = O(1) and

m = m(n) such that P[mini∈[n] degG(i) ≥ m] = 1 − o(n−s). Let λ1(L) ≤ λ2(L) ≤
· · · ≤ λn(L) denote the eigenvalues of L. Then, with probability 1− o(n−s), we have
λ1(L) = 0 and

|λ2(L) − 1| = O

(√
log n

m

)
.
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Proof SinceG is connected with sufficiently high probability, wewill treatG as though
it were connected almost surely. As such, we know that L has minimal eigenvalue 0

with multiplicity one, and the corresponding eigenvector is D
1
2 1. Thus we are inter-

ested in bounding the quantity

sup

{
yt D− 1

2 AD− 1
2 y

yt y
: 0 �= y ⊥ D

1
2 1

}

from above by some λ := O(
√
log n/m). Equivalently, we would like to show that

xt Ax ≤ λxt Dx for all x ⊥ D1.

Without loss of generality, we can assume that x is a unit vector. Let

x = cos θu + sin θv where u = 1√
n
1, v ⊥ 1, and |v| = 1.

Noting that ut Ax = ut Dx = 0 and cos θ tr D√
n

= − sin θvt D1 (both of these follow
from the assumption that x ⊥ D1), we have

xt Ax = sin2 θvt Av − cos2 θ
tr D

n
and xt Dx = sin2 θvt Dv − cos2 θ

tr D

n
.

So we have

xt (λD − A)x = vt (λD − A)v sin2 θ + (1 − λ) tr D

n
cos2 θ

= vt (λD − A)v
(tr D)2

(tr D)2 + n(vt D1)2
+ (1 − λ) tr D

n

n(vt D1)2

(tr D)2 + n(vt D1)2

which we would like to show is positive. Solving for vt Av, it suffices to show that

vt Av ≤ (1 − λ)
(vt D1)2

tr D
+ λvt Dv for all unit vectors v ⊥ 1.

By our minimum degree assumption, it would even suffice to show that vt Av ≤ λm.
The result now follows from Proposition 26. ��

In order to proveLemma31,we are going to need a version of Bernstein’s inequality
that works on weighted sums of centered edge indicators of G.

Theorem 28 (Bernstein’s inequality) Let G be as above. Suppose |ci j | ≤ c for some
fixed c and all i < j , and that ε ≥ 0 is such that M ≥ ε

p
∑

i< j c2i j +2cε/3
. Then, for any
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H ⊆ ([n]
2

)
, we have

P

⎡

⎣
∑

(i, j)∈H

ci j (Ai j − p) ≥ ε

⎤

⎦ ≤ E exp

(
− ε2

2p
∑

(i, j)∈H c2i j + 2cε/3

)
.

Proof By a Chernoff bound, the numerical bounds 1 + x ≤ ex ≤ 1 + x + 3x2
6−2x for

x ≤ 3, and our assumptions about G, we have for t ≤ 3
c that

P

⎡

⎣
∑

(i, j)∈H

ci j (Ai j − p) ≥ ε

⎤

⎦ ≤ E inf
t∈(0,M] e−tε

∏

(i, j)∈H

(
1 + E

3t2c2i j (Ai j − p)2

6 − 2ct

)

≤ E inf
t∈(0,M] exp

⎛

⎝−tε +
∑

(i, j)∈H

E
3t2c2i j (Ai j − p)2

6 − 2ct

⎞

⎠

≤ E inf
t∈(0,M] exp

(
(p
∑

(i, j)∈H c2i j + 2cε/3)t2 − 2εt

2 − 2ct/3

)

= E inf
t∈(0,M] exp

(
(σ 2 + 2cε/3)t2 − 2εt

2 − 2ct/3

)
,

where σ 2 := p
∑

(i, j)∈H c2i j . Taking t = ε
σ 2+2cε/3

, we have 2 − 2ct/3 = 2σ 2+2cε/3
σ 2+2cε/3

,
and thus

(σ 2 + 2cε/3)t2 − 2εt

2 − 2ct/3
= ((σ 2 + 2cε/3)t − 2ε)

ε

σ 2 + 2cε/3

σ 2 + 2cε/3

2σ 2 + 2cε/3

= − ε2

2σ 2 + 2cε/3
.

Recalling that we were required to assume that t ≤ 3
c , what we have shown holds for

our choice of t as long as ε ≥ −3σ 2c−1. ��

We will also want to be able to apply a near-optimal Chernoff bound to uniformly
weighted sums of edge indicators.

Lemma 29 For G as above with M ≥ log (1−p)ε
1−pε

where ε ≥ 3, we have

P

⎡

⎣
∑

(i, j)∈H

Ai j ≥ εp|H |
⎤

⎦ ≤ E exp

(
−ε log ε

3
p|H |

)
.
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Proof As with the previous proof,

P

⎡

⎣
∑

(i, j)∈H

Ai j ≥ εp|H |
⎤

⎦ ≤ E inf
t∈(0,M] e−tεp|H |(1 − p + pet )|H |

= E

(
(1 − p)ε

1 − pε

)−εp|H | ( 1 − p

1 − pε

)|H |

= Eε−εp|H |
(
1 + (ε − 1)p

1 − pε

)(1−pε)|H |

≤ E exp (−(ε log ε − ε + 1)p|H |) .

For ε ≥ 3, this is bounded above by E exp
(
− ε log ε

3 p|H |
)
. ��

To prove Proposition 26, we will adapt the Kahn–Szemerérdi argument. Let

S := {
v ∈ Rn : |v| = 1 and v ⊥ 1

}
and

T :=
{

x ∈ 1√
4n

Zn : |x | ≤ 1 and x ⊥ 1
}

.

The following lemma is a special case of Claim 2.4 in Feige and Ofek (2005).

Lemma 30 Suppose |xt Ay| ≤ c for all x, y ∈ T . Then |vt Av| ≤ 4c for all v ∈ S.

We now write
∑

(i, j)∈[n]2
|xi Ai j yi | =

∑

(i, j)∈L
|xi Ai j y j | +

∑

(i, j)∈H
|xi Ai j y j |

where L := {
(i, j) ∈ [n]2 : (xi y j )

2 ≤ p
n

}
and H := [n]2 \ L.

4.1 Light couples

Lemma 31 Suppose M ≥ 3
5 (n/p)

1
2 in the definition of G. For any constant s > 0, we

have

P

⎡

⎣
∑

(i, j)∈L
|xi Ai j y j | ≥ 7

√
np for some x, y ∈ T

⎤

⎦ ≤ E(18e−3)n = o(n−s).

Proof We can bound the contribution from the light couples as follows: It is known
(Feige and Ofek 2005, Claim 2.9) that |T | ≤ 18n . So, by applying a union bound, we
have

P

⎡

⎣
∑

(i, j)∈L
|xi Ai j y j | ≥ 7

√
np for some x, y ∈ T

⎤

⎦
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≤ 18n sup
x,y∈T

P

⎡

⎣
∑

(i, j)∈L
|xi Ai j y j | ≥ 7

√
np

⎤

⎦ .

Towards applying Bernstein’s inequality, define centered random variables

Bi j := (|xi y j |1{(i, j) ∈ L} + |x j yi |1{( j, i) ∈ L}) (Ai j − p)

so that

∑

{i, j}:(i, j)∈L or ( j,i)∈L
Bi j =

∑

(i, j)∈L
|xi Ai j y j | − E

∑

(i, j)∈L
|xi Ai j y j |.

Note that each B2
i j ≤ 4p

n a.s., and
∑

i< j EB2
i j ≤ p

∑
i< j 2

(
(xi y j )

2 + (x j yi )
2
) ≤ 2p

by taking advantage of the fact that |x |, |y| ≤ 1. Thus, by Bernstein’s inequality,

P

⎡

⎣
∑

{i, j}:(i, j)∈L or ( j,i)∈L
Bi j ≥ 6ε

√
np

⎤

⎦ ≤ E exp

⎛

⎝− (6ε)2np

4p + 6
4
√

p
3
√

n

√
npε

⎞

⎠

= E exp

( −9ε2

1 + 2ε
n

)
.

Taking ε = 1, this shows that
∑

(i, j)∈L |xi Ai j y j | < 6
√

np + E
∑

(i, j)∈L |xi Ai j y j |
with probability at least 1 − Ee−3n . By Lemma 2.6 of Feige and Ofek (2005), we
also have E

∑
(i, j)∈L |xi Ai j y j | ≤ √

np, thus giving us the desired bound. Our use of

Bernstein’s inequality requires us to have M ≥ 6
√

np

2p+ 8
√

p√
n

√
np

= 3
5 (n/p)

1
2 . ��

4.2 Heavy couples

For B, C ⊆ [n], let e(B, C) := |{(i, j) ∈ G : i ∈ B, j ∈ C}| and μ(B, C) :=
p|B||C |. The following is a weakened form of Lemma 9.1 in Hoffman et al. (2019).

Lemma 32 Suppose we have constants c0, c1, c2 > 1 and a graph G on [n] with
maxi∈[n] degG(i) ≤ c0np, and, for all B, C ⊆ [n], one or more of the following hold:

• e(B, C) ≤ c1μ(B, C)

• e(B, C) log e(B,C)
μ(B,C)

≤ c2(|B| ∨ |C |) log n
|B|∨|C|

Then
∑

(i, j)∈H |xi Ai j y j | = O(
√

np).

Lemma 33 Suppose that p = δ log n
n for some fixed but arbitrary δ > 0, and M ≥

3
5 (n/p)

1
2 . For any s > 0, there are fixed constants c0, c1, c2 > 1 so that the conditions

of Lemma 32 hold for G with probability at least 1 − o(n−s).
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In terms of probabilistic bounds, the proof of this will only rely on Lemma 29.We note

then that the condition M ≥ 3
5 (n/p)

1
2 is overkill since Lemma 29 only ever requires

that we have M be greater than a fixed constant.

Proof Assume without loss of generality that c0 ≥ 3. First note that, due to the
monotonicity of x log x for x ≥ 1, the second bulleted condition is equivalent to the

statement e(B, C) ≤ r1μ(B, C) where r1 ≥ 1 solves r1 log r1 = c2(|B|∨|C|) log n
|B|∨|C |

μ(B,C)
.

So we can rewrite the two bulleted conditions as the single condition e(B, C) ≤
rμ(B, C) where r := r1 ∨ c1. By Lemma 29 and a union bound, we have

P[max
i∈[n] degG(i) > c0np] ≤ nP[degG(n) ≥ c0np] ≤ En exp

(
−δc0 log c0

3
log n

)

and

P[e(B, C) > rμ(B, C)] ≤ P[e(B, C) > r1μ(B, C)]

≤ E exp

(
−c2(|B| ∨ |C |) log n

|B|∨|C|
3

)
.

Thuswecan choose a constant c0 large enough tomakeP[maxi∈[n] degG(i) > c0np] =
o(n−s). Using this fact and the resulting (high probability) inequality

e(B, C)

μ(B, C)
≤ c0(|B| ∧ |C |)np

p|B||C | = c0n

|B| ∨ |C | ,

we have, in the case |B| ∨ |C | ≥ n/e, that

P[∃B, C s.t. e(B, C) > ec0μ(B, C) and |B| ∨ |C | ≥ n/e]
≤ P[max

i∈[n] degG(i) > c0np] = o(n−s).

So suppose that |B| ∨ |C | < n/e. By a union bound over all possible pairs {i, j} ⊂
[�n/e�] (i ≤ j , without loss of generality) of sizes for the sets B, C , it suffices to show
that

(
n

i

)(
n

j

)
exp

(
−c2 j log n

j

3

)
≤ n−s−3.

Recalling that
(n

j

) ≤
(

ne
j

) j
for all j ∈ [n], this can be done by showing that

(s + 3) log n + j

(
1 + log

n

j

)
+ i

(
1 + log

n

i

)
≤ c2

3
j log

n

j
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for all 1 ≤ i ≤ j < n/e. Indeed, since j log n
j ismonotone increasing for 1 ≤ j < n/e

(Feige and Ofek 2005, Lemma 2.12), we have

(s + 3) log n + j

(
1 + log

n

j

)
+ i

(
1 + log

n

i

)

≤(s + 3) log n + 4 j log
n

j
≤ (s + 7) j log

n

j
.

Taking c2 ≥ 3s + 21 therefore gives the desired bound. ��

4.3 Link unions

Let T1, T2, . . . , Tm be jointly independent copies of Tn,k− j with k fixed. Then, if
T ′
1, T ′

2, . . . , T ′
m are jointly independent copies of Tn+ j,k , we can use Theorem 2 to

couple these random trees so that

Lk, j
m (n) : = Link

⎛

⎝{n + 1, . . . , n + j},
⋃

i∈[m]
T ′

i

⎞

⎠

=
⋃

i∈[m]
Link

({n + 1, . . . , n + j}, T ′
i

)

= Yk− j (n, p) ∪
⋃

i∈[m]
Ti ,

where p := 1 −
(
1 − j

n+ j

)m ∼ jm
n . Since each Ti is determinantal, the k-faces of

each Ti are negatively associated (to be abbreviatedNA)—see the discussion following
Lemma 22 for the definition of NA. Moreover, the k-faces in T := ⋃

i∈[m] Ti are also
NA, as

1{ f ∈ T } = 1 −
∏

i∈[m]
(1 − 1{ f ∈ Ti })

is increasing in T as a functionCn,k → R, and any set of increasing functions evaluated
over disjoint subsets of a set of NA objects is itself a set of NA objects (Joag-Dev and
Proschan 1983). By the same reasoning and the fact that sets of jointly independent
random variables are NA sets, we also have that the set of (k − j)-faces of Lk, j

m (n) is
NA. We now narrow our focus to the case j = k − 1, in which

G := Lk,k−1
m (n)

is a graph with negatively associated edges each appearing with probability q :=
1− (1− p)(1− 2

n )m ∼ (k+1)m
n . This implies that G is of type G (n, q, 1,∞). Toward

applying Corollary 27 to this G, we will assume that m = �δ log n	 for some arbitrary
constant δ > 0. In order to get a sufficiently strong lower bound on the minimum
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degree of G, we need to have a very strong bound on the moment generating function
of degG(n) for negative inputs.

Lemma 34 Let p0 := 1−
(
1 − k−1

n+k−1

)m (
1 − 1

n

)m ∼ km
n . Then for all t < 0 we have

E
[
exp

(
t degG(n)

)] ≤ emt (1 + p0(e
t − 1)

)n−1−m exp

(
m2e1−t

2n

)
.

Proof Let � := Link(n,∪i∈[m]Ti ), and let Bi := 1{(i, n) ∈ G(n, p)}, where G(n, p)

is as above and, in particular, independent of �. Then

E
[
exp

(
t degG(n)

) ∣∣�
] =

∏

i∈[n−1]
E
[
exp (t (1{i ∈ �} + 1{i /∈ �}Bi ))

∣∣�
]

=
∏

i∈[n−1]

(
(1 − p) exp (t1{i ∈ �}) + pet) .

Note that �
L= Binom

([n − 1], p′)∪ R where p′ := 1− (1− 1
n )m , and R is a random

subset of [n−1] formed by independently and uniformly choosing (with replacement)
m vertices from [n − 1]—this follows from the k = 1 case of Theorem 1. Thus

E
[
exp

(
t degG(n)

) ∣∣R
] =

∏

i∈[n−1]
E
[
(1 − p) exp (t1{i ∈ �}) + pet

∣∣R
]
.

Now note that

E
[
exp (t1{i ∈ �}) |R] = E

[
exp

(
t(1{i ∈ R} + 1{i /∈ R}Bernoulli(p′))

) |R]

= exp (t1{i ∈ R}) (1 − p′ + p′ exp (t1{i /∈ R}))
= (1 − p′) exp (t1{i ∈ R}) + p′et .

Thus

E
[
exp

(
t degG(n)

) ∣∣R
] =

∏

i∈[n−1]

(
(1 − p)

(
(1 − p′) exp (t1{i ∈ R}) + p′et)+ pet)

=
∏

i∈[n−1]

(
(1 − p0) exp (t1{i ∈ R}) + p0et) .

We therefore have

E
[
exp

(
t degG(n)

)]

=
∑

j∈[m]
e jt (1 − p0 + p0et)n−1− j

P[|R| = j]

= emt (1 − p0 + p0et)n−1−m ∑

j∈[m]
e( j−m)t (1 − p0 + p0et)m− j

P[|R| = j].
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Since t < 0, we have 1 − p0 + p0et ≤ 1, and thus

E
[
exp

(
t degG(n)

)] ≤ emt (1 − p0 + p0et)n−1−m ∑

j∈[m]
e−t(m− j)P[|R| = j].

Toward controlling the size of R, let R = Rm , and let R j be defined as R after
only the first j independent samplings of [n − 1]. Then, letting v1, v2, . . . , vm be the
random vertex selections, we have

|R j+1| = |R j | + 1{v j+1 /∈ R j }.

Thus, for s > 0,

E
[
exp

(−s|R j+1|
) ∣∣R j

] = exp
(−s|R j |

) ( |R j |
n − 1

+ n − 1 − |R j |
n − 1

e−s
)

≤ exp
(−s|R j |

) ( j

n − 1
+ n − 1 − j

n − 1
e−s

)

= exp
(−s|R j | − s

) (
1 + j(es − 1)

n − 1

)
.

Taking expectations and iterating then gives

E exp (−s|Rm |) ≤ e−ms
m−1∏

i=1

(
1 + i(es − 1)

n − 1

)
.

Thus, by Chernoff’s inequality, we have

P[|Rm | ≤ m − j] ≤ e− js
m−1∏

i=1

(
1 + i(es − 1)

n − 1

)
≤ exp

(
− js +

(
m

2

)
es − 1

n − 1

)

for any s > 0. Taking s = log 2 j(n−1)
m(m−1) , gives

P[|Rm | ≤ m − j] ≤ exp

(
j − m(m − 1)

2(n − 1)

)(
m(m − 1)

2 j(n − 1)

) j

≤
(

em2

2 jn

) j

.

Thus |R| ≥ m − j + 1 with probability at least 1−
(

em2

2 jn

) j
. Recall the summation by

parts formula:

∑

j∈[m]
f j g j = fm

∑

j∈[m]
g j −

∑

j∈[m]
( f j − f j−1)

∑

i∈[ j−1]
gi .
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Setting f j = e−t(m− j) and g j = P[|R| = j], we have
∑

j∈[m]
e−t(m− j)P[|R| = j] = 1 + (

e−t − 1
) ∑

j∈[m]
P[|R| < j]e−t(m− j)

≤ 1 + (
e−t − 1

) ∑

j∈[m]

(
em2

2(m − j + 1)n

)m− j+1

e−t(m− j)

= 1 + (
1 − et) ∑

j∈[m]

(
e1−t m2

2 jn

) j

≤ 1 + (
1 − et)

(
exp

(
m2e1−t

2n

)
− 1

)
,

where the last inequality uses the bound j j ≥ j !. Thus, for t < 0 we have

E
[
exp

(
t degG(n)

)]

≤ emt (1 − p0 + p0et)n−1−m ∑

j∈[m]
e−t(m− j)P[|R| = j]

≤ emt (1 + p0(e
t − 1)

)n−1−m
(
1 + (1 − et )

(
exp

(
m2e1−t

2n

)
− 1

))

≤ emt (1 + p0(e
t − 1)

)n−1−m exp

(
m2e1−t

2n

)
.

��
Lemma 35 For 0 ≤ j ≤ m, we have P[mini∈[n] degG(i) ≤ m − j] ≤ (1 +
o(1))n1− j e−km.

Proof For any t > 0, we have by a union bound that

P[min
i∈[n] degG(i) ≤ m − j] ≤ nP[exp (−t degG(n)

) ≥ e( j−m)t ]

≤ ne− j t (1 + p0(e
−t − 1)

)n−1−m
exp

(
m2e1+t

2n

)

≤ exp

(
log n − j t + (n − 1 − m)p0(e

−t − 1) + m2e1+t

2n

)
.

Letting t = r log n for any r ∈ (0, 1) gives

P[min
i∈[n] degG(i) ≤ m − j] ≤ exp

(
(1 − jr) log n − (n − 1 − m)p0(1 − n−r ) + em2

2n1−r

)

≤ (1 + o(1)) exp ((1 − jr) log n − km) .

Taking r → 1 from the left then gives (1 + o(1))n1− j e−km . ��
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Simplex links in determinantal hypertrees 425

Lemma 36 Let L be the reduced Laplacian of G as defined above with m = �δ log n	
and δ > 0 an arbitrary constant (so that P[mini∈[n] degG(i) ≥ m − s + 2] = 1 −
o(n−s) for any fixed s). Then for any fixed s, we have λ1(L) = 0 and λ2(L) =
1 − O

(
1/

√
log n

)
with probability 1 − o(n−s).

Proof This follows from the previous lemma and Corollary 27. ��
On behalf of all authors, the corresponding author states that there is no conflict of

interest.
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