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Abstract
Embeddings of the space of barcodes in Euclidean spaces are unstable due to the
permutation of the bars of a barcode. We use tools from geometric group theory to
produce a stratification of the space Bn of barcodes with n bars that takes into account
these permutations. This gives insights in the combinatorial structure of Bn . The top-
dimensional strata are indexed by permutations associated to barcodes as defined by
Kanari, Garin andHess.More generally, the strata correspond tomarked double cosets
of parabolic subgroups of the symmetric group Symn . This subdivides Bn into regions
that consist of barcodes with the same averages and standard deviations of birth and
death times and the same permutation type. We obtain coordinates that form a new
invariant of barcodes, extending the one of Kanari–Garin–Hess. This description also
gives rise to metrics on Bn that coincide with modified versions of the bottleneck and
Wasserstein metrics.

Keywords Barcodes · Topological data analysis · Coxeter complex · Geometric
group theory

Mathematics Subject Classification 51F15 · 55N31 · 20F55 · 57N80

1 Introduction

Barcodes Carlsson (2009); Edelsbrunner et al. (2008); Ghrist (2008) are topological
summaries of the persistent homology of a filtered space. The barcode B associated
to a filtration {Xt }t∈R is a multiset of points (b, d) ∈ R

2. It summarises the creation
and destruction of homology classes while varying the parameter t , which is often
interpreted as “time”. A bar (b, d) ∈ B corresponds to a homology cycle appearing in
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Xb and becoming a boundary in Xd . The first element of the pair (b, d) is called the
birth and the second one the death.

Persistent homology has applications in many fields, from biology Byrne et al.
(2019); Gameiro et al. (2015); Kanari et al. (2018); Reimann et al. (2017) to material
scienceDelgado-Friedrichs et al. (2014); Lee et al. (2018); Robins et al. (2016), astron-
omy Heydenreich et al. (2021) and climate science Muszynski et al. (2019). In many
of these applications, it is necessary to study statistics on barcodes. Unfortunately, the
space of barcodes is not a Hilbert space, which means that it can be difficult to apply
statistical methods to it. Several ways to overcome the issue exist, such as the creation
of kernels to map barcodes into a Hilbert space Bubenik (2015); Carrière et al. (2015);
Adams et al. (2017); Di Fabio et al. (2015).

In this paper, we tackle this issue from a different perspective.We use combinatorial
tools from geometric group theory to define new coordinates for describing barcodes.
These coordinates divide the space of barcodes into regions indexed by the averages
and the standard deviations of births and deaths and by the permutation type of a
barcode as defined in Kanari et al. (2020); Curry et al. (2021). By associating to a
barcode the coordinates of its region, we define a new invariant of barcodes. This opens
the door to doing statistics on barcodes using methods from the field of permutation
statistics.

1.1 Motivation

The motivation for this work is to understand the space of barcodes from a combina-
torial and geometric point of view and to show that it almost has a locally Euclidean
structure.

We call a barcode strict if there are no twopairs in it that have the samebirth or death.
It was observed in Kanari et al. (2020) that to a strict barcode B = {(bi , di )}i∈{1,...,n}
with n bars, one can associate a permutation σB ∈ Symn . It is the permutation such that
the bar with the i-th smallest death has the σB(i)-th smallest birth. This divides the set
of strict barcodes with n bars into n! equivalence classes, one for each element of the
symmetric group Symn . Based on this observation, one can study the combinatorial
properties of strict barcodes by describing these equivalence classes—or equivalently,
the elements of Symn—and the relations between them.

A first approach to this, taken in Kanari et al. (2020); Curry et al. (2021), is to
consider the Cayley graph of the symmetric group with respect to the generating set
given by adjacent transpositions (i, i + 1). This yields a combinatorial representation
of the elements of Symn . It tells us how a pair of permutations can be transformed into
one another using transpositions one step at a time. However, it yields no information
about “higher order relations” that exist among larger sets of permutations.

A way to resolve this is to add higher dimensional cells to the Cayley graph and to
consider it more geometrically as a cell complex instead of as a (combinatorial) graph.
A first approach would be to use that the Cayley graph of Symn is the 1-skeleton of the
permutohedron Postnikov (2009) of order n, see Fig. 1. This observation embeds the
Cayley graph into a polyhedral decomposition of the (n−2)-sphere. As this is a more
geometric object, it allows to continuously “walk” from one permutation to another.
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Stratifying the space of barcodes… 371

Fig. 1 The permutohedron Postnikov (2009) of order 4 is a polyhedral decomposition of the sphere where
each vertex corresponds to an element of the symmetric group Sym4. Its 1-skeleton is the Cayley graph of
Sym4 (see also Fig. 5)

Fig. 2 Two barcodes with the same associated permutation (the identity [1234]) but with large differences
in their birth and death values

The problem is that only the vertices (and not the higher dimensional cells) of the
permutohedron have an interpretation in terms of elements of the symmetric group.
Furthermore, this representation lacks a notion of “size” for barcodes. For instance,
the two barcodes depicted in Fig. 2 lie in the same equivalence class, i.e. have the same
associated permutation.

The alternative that we suggest to overcome these problems is to work withCoxeter
complexes instead of permutohedra. The Coxeter complex associated to Symn is the
dual of the permutohedron of order n (see Fig. 3). It forms a simplicial decomposition
of the (n − 2)-sphere and is well-studied in the context of reflection groups and Tits
buildings.

For us, it has the advantage that its top-dimensional simplices correspond in a natural
way to permutations and only passing through a face of lower dimension changes such
a permutation. This allows for a better description of continuous changes between
different permutations. It also has the advantage that it comes with an embedding in
R
n , where the additional two real parameters that are needed to describe positions
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Fig. 3 The permutohedron of
order 4 (black) is the dual of the
Coxeter complex �(Sym4)

(grey)

relative to this (n − 2)-dimensional space have a natural interpretation in terms of
the “size” of barcodes. Moreover, using the Coxeter complex description for barcodes
allows to define the permutation type of any barcode. For non-strict barcodes, it is
defined only up to parabolic subgroups of Symn , i.e. subgroups that are generated by
sets of adjacent transpositions.

1.2 Contributions

In this paper, we use Coxeter complexes to develop a description of the set Bn of
barcodes with n bars with coordinates that have natural interpretations when doing
statistics with barcodes. These coordinates define a stratification of Bn where the top-
dimensional strata are indexed by the symmetric group Symn . Our main contributions
can be summarised as follows.

Theorem 1.1 Let Bn denote the set of barcodes with n bars.

1. Bn can in a natural way be seen as a subset of a quotient Symn \R2n.
2. Bn is stratified over the poset of marked double cosets of parabolic subgroups of

Symn.
3. Using this description, one obtains a decomposition of Bn into different regions.

Each region is characterised as the set of all barcodes having the same average
birth and death, the same standard deviation of births and deaths and the same
permutation type σB ∈ Symn.

4. This description gives rise to metrics on Bn that coincide with modified versions
of the bottleneck and Wasserstein metrics.

Intuitively, this means that there are two types of small perturbations of a barcode.
One is to perturb it such that one obtains another barcode with the same permutation
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type. Such a perturbation takes place in a Euclidean subspace (a single stratum) of Bn .
The other is to change the permutation type and hence going from one Euclidean area
(i.e. stratum) to another. For more detailed and formal statements of these results, see
Proposition 4.2, Theorem 4.9, Corollary 4.10 and Proposition 5.2.

To obtain this description ofBn we proceed as follows. A barcode is an (unordered)
multiset of n pairs of real numbers (births and deaths). It can hence be seen as a
point in the quotient space Symn \(Rn ×R

n), where the action of Symn permutes the
coordinate pairs. Since the birth is smaller than the death for every barcode, Bn is a
proper subset of this quotient of R2n .

The Coxeter complex �(Symn) associated to Symn is a simplicial complex whose
geometric realisation is homeomorphic to an (n−2)-sphere.Hence,we can decompose
R
n as

R
n ∼= cone(�(Symn)) × R,

where cone(�(Symn)) = (
�(Symn) × [0,∞)

)
/(x, 0) ∼ (y, 0) ∼= R

n−1. This
decomposition allows one to describe each point x ∈ R

n via coordinates xθ , x̄, ‖vx‖,
where xθ specifies a point on the Coxeter complex, ‖vx‖ is the “cone parameter” and
x̄ parametrises the remaining R (for details, see Proposition 3.2, where the naming
becomes clear as well). In summary, this describes Bn as a subset of

Bn ⊂ Symn \( cone(�(Symn)) × R × cone(�(Symn)) × R
)
.

We call the coordinates that we obtain from this description Coxeter coordinates.
It turns out that for each barcode, these coordinates are bθ , b̄, ‖vb‖ and dθ , d̄, ‖vd‖,
where b̄ and d̄ are the averages of the births and deaths, ‖vb‖ and ‖vd‖ are their standard
deviations and the coordinates bθ and dθ describe the permutation equivalence class of
the barcode of Kanari et al. (2020); Curry et al. (2021). The stratification one obtains
is induced by the simplicial structure of �(Symn). Hence, each stratum is Euclidean.

The advantages of these new coordinates are two-fold: Firstly, using points in Cox-
eter complexes, one obtains coordinates that uniquely specify barcodes and are yet
compatible with the combinatorial structure of Bn given by permutation equivalence
classes. Secondly, one resolves the earlier-mentioned problem that permutation equiv-
alence classes themselves carry no notion of “size”: The decomposition of Bn into
regions subdivides these equivalence classes by also taking into account the averages
and standard deviations of births and deaths. This makes these regions a finer invari-
ant than the permutation type. Therefore, they offer a new way to study statistics of
barcodes by using both the average and standard deviation of births and deaths, which
are commonly used summaries in Topological Data Analysis (TDA), and permutation
statistics tools. The latter include the number of descents for instance, or the inversion
numbers, which have proven useful for the study of the inverse problem for trees and
barcodes Kanari et al. (2020); Curry et al. (2021).
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1.3 Related work

This paper is a follow-up of the work started in Kanari et al. (2020); Curry et al.
(2021) to study the space of barcodes from a combinatorial point of view. It extends
the approach of considering permutations to classify barcodes to a finer classification
that also takes into account the average and standard deviation of births and deaths. In
Xu (2020), the author also observes a connection between barcodes and the symmetric
group in a different setting, by studying the space of barcode bases using Schubert
cells. Similarly, Jacquard et al. (2022) also studies the space of barcode bases.

The idea of giving coordinates to the space of barcodes is not new Di Fabio et al.
(2015); Kališnik (Feb 2019). For example, the space of barcodes was given tropical
coordinates in Kališnik (Feb 2019). In Adcock et al. (2013), it is mentioned that the
space of barcodes can be identified with the n-fold symmetric product of R2, and the
authors study the corresponding algebra of polynomials associated to the variety.

Finally, defining a polyhedral structure on a space to study statistics has been done
for spaces of (phylogenetic) trees Billera et al. (2001); Grindstaff and Owen (2018).
The connection between phylogenetic trees, merge trees and barcodes is studied in
Curry et al. (2021). The polyhedral structure defined in this paper and in Billera et al.
(2001) seem to be related, but we leave this as future work.

1.4 Overview

In Sect. 2 we review the necessary background on barcodes and onCoxeter complexes.
We use a standard way of realising Symn as a reflection group to explain what we
mean with “Coxeter coordinates” on R

n in Sect. 3. We then describe the space Bn

of barcodes with n bars in terms of Symn \Rn × R
n in Sect. 4.1, before adapting the

coordinates of Rn to Bn in Sect. 4.2. In Sect. 4.3, we describe the stratification of Bn

induced by these coordinates. Corollary 4.10 decomposes the space of barcodes into
regions indexed by the average and standard deviation of the births and deaths and
the permutation associated to a barcode. Finally, in Sect. 5, we show that Bn can be
given metrics inspired by the bottleneck and Wasserstein distances and that it defines
an isometry between a subset of Symn \Rn × R

n and Bn .

2 Background

2.1 Background on TDA

We start by reviewing the necessary background on TDA. For the reader who is com-
pletely new to this, we refer to the reviews Carlsson (2009); Edelsbrunner et al. (2008);
Ghrist (2008). Even though this work focuses on the space of barcodes and could be
apprehended from a purely combinatorial point of view, we shortly mention where
barcodes arise in the field of TDA. This section is not necessary for the understanding
of this paper, and we will give the combinatorial definition of barcodes that we use in
the next section.
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Barcodes are topological summaries of a filtered topological space, i.e. a sequence
of spaces ordered by inclusion. To obtain a barcode from a filtered space, one computes
homology at each step and considers the maps induced by the inclusions. The output
is called a persistence module, and it summarises the evolution of the homology at
each step of the filtration.

More precisely, let {Xt }t∈R be a filtered topological space, that is, each Xt is a
topological space and Xt ⊆ Xt ′ if t ≤ t ′. The k-th persistence module associated
to {Xt }t∈R is given by Hk({Xt }t∈R), where Hk denotes the k-th homology functor
(over a field k). The Crawley–Bovey Theorem Crawley-Boevey (2015) states that
under mild tameness conditions on {Xt }t∈R, the associated persistence module can
be decomposed as a direct sum of interval modules

⊕
j∈J k

⊕n j
I j

, where the interval
module kI j is the free k-module of rank 1 on the interval I j ⊆ R, with identity maps
internal to I j , and is 0 elsewhere. This decomposition is unique up to reordering.
Each interval represents the lifetime of a cycle in the filtered space. For instance, if a
1-cycle (a loop) appears in the topological space Xbj for the first time and becomes a
boundary (gets “filled in”) in Xdj , then this 1-cycle will be represented by the interval
I j = [b j , d j ). The barcode associated to the persistence module is the multiset

B = {I j } j∈J ,

where each interval I j appears n j times. Usually, each I j is a half open interval
I j = [b j , d j ), where b j is called the birth of the homological feature corresponding
to I j and d j is called its death. If the interval I j is a half infinite interval, i.e. it is of
the form [bi ,∞), it is called an essential class.

In this paper, we will identify such an interval with the pair (b j , d j ), since we
are mostly interested in the combinatorics of the pairs and not the corresponding
persistence module. Moreover, b j and d j will always take finite values in R.

2.1.1 The space of barcodes

We introduce here the main definitions used in this paper. We start by a more combi-
natorial definition of barcodes that we will use in this article.

Definition 2.1 A barcode {(bi , di )}i∈J is a multiset of pairs (bi , di ) ∈ R
2 such that

bi < di for each i ∈ J and |J | < ∞. Each such pair is called a bar; its first coordinate
bi is called the birth (time) and the second one di is called its death (time). A barcode
is called strict if bi �= b j and di �= d j for i �= j . We let Bn denote the set of barcodes
with n bars and Bst

n the set of strict barcodes with n bars.

Remark 2.2 The reader familiar with persistent homology will notice that we suppose
that the bars corresponding to essential classes have finite values instead of being half-
open intervals. This is usually the case in practical applications, where such essential
classes are given finite values for representing them on a computer. We also assume
that every barcode consists of only finitely many bars.
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Fig. 4 A A barcode with 4 bars. B The same barcode with a different indexing where the bars are ordered
by increasing birth times

Remark 2.3 The definition of strict barcodeswas first introduced inKanari et al. (2020)
to define the bijection between the symmetric group on n elements and some equiv-
alence classes of barcodes that we introduce in the next section. The setting in this
paper is slightly different from Kanari et al. (2020) and Curry et al. (2021), because
all the barcodes considered there are specific to merge trees and arise from their 0-th
persistent homology. This is why the definition of a strict barcode in Kanari et al.
(2020) and Curry et al. (2021) assumes the existence of an essential bar (b0, d0) that
contains all the others. In this paper however, barcodes can come from arbitrary fil-
trations in arbitrary dimension, and such a bar (b0, d0) need not exist. Therefore we
slightly adapt the definition of a strict barcode and the relation to the symmetric group
in the next sections.

In practice, for finite barcodes, the indexing set J is commonly the set {1, ..., n},
giving the bars in the barcode an arbitrary but fixed ordering. We will also adopt
this convention from now on. Note however that reordering the bars might change
the indexing, but not the underlying barcode (see Example 2.4). It can sometimes be
convenient to assume that the indexing is such that the births are ordered increasingly
b1 < b2 < ... < bn , but we do not make this assumption in this paper unless specified.

We often represent a barcode by the set of intervals [bi , di ] ⊂ R (as in Fig. 4).
Another common way to represent barcodes is what is called a persistence diagram,
where the pairs (bi , di ) are represented as points in R2 (as in Fig. 8). These points lie
above the diagonal since bi < di for all i .

Example 2.4 Figure 4 shows an example of a strict barcode with two different indexing
conventions.

To turn the set of barcodes into a topological space, one needs to specify a topology.
One option to do this is by introducing the bottleneck or Wasserstein distances, two
commonly used metrics for barcodes. Intuitively, the bottleneck distance between two
barcodes B and B ′ tries all possible matchings between the bars of B and the bars
of B ′ and chooses the one that minimises the “energy” required to move the matched
pair of bars with maximal separation. However, it does not only consider matching of
bars between B and B ′ but also with points on the diagonal � = {(x, x) | x ∈ R}.
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Definition 2.5 Let B = {(bi , di )}i∈{1,...,n} and B ′ = {(b′
i , d

′
i )}i∈{1,...,m} be two bar-

codes. The bottleneck distance between B and B ′ is

dB(B, B ′) = min
γ

max
x∈B ‖x − γ (x)‖∞,

where γ runs over all possible matchings, i.e. maps that assign to each bar (bi , di ) ∈ B
either a bar in B ′ or a point in the diagonal �, such that no point of B ′ is in the image
more than once. Here, ‖·‖∞ is the l∞-norm on R

2.

Remark 2.6 The permutation γ acts as a “reindexing” of the indices of B and B ′, and
in particular ensures that dB(B, B ′) does not depend on any indexing of the bars.

The Wasserstein distance is defined in a similar way by taking the sum over all
l2-distances between x and γ (x) instead:

dW (B, B ′) = min
γ

√
�x∈B‖x − γ (x)‖22).

Remark 2.7 Note that in general, the barcodes B and B ′ need not have the same number
of bars. The diagonal allows matchings between barcodes with different number of
bars, since “ummatched” bars can be sent to the diagonal. In this paper however, we
study the set of barcodes Bn with exactly n bars (for arbitrary, but fixed n) and restrict
ourselves to this case.

We are mainly interested in Bn as a set and the main results we prove do not depend
on the metric that is chosen on Bn . We will still with a slight abuse of notation mostly
talk of Bn as a space, without specifying a specific metric on it. An exception to that
is Sect. 5, where we explain how a metric d̃B on Bn , which is closely related to the
bottleneck distance, occurs in an alternative description of the set Bn that we work
with later on.

2.1.2 Relation to the symmetric group

Wewrite Symn for the symmetric group on n letters, i.e. the group of all permutations
of {1, . . . , n}.Weusually use the one-line notation for permutations. That is,we specify
σ ∈ Symn by the its image of the ordered set {1, . . . , n}, e.g. we write σ = [132] ∈
Sym3 if σ(1) = 1, σ(2) = 3 and σ(3) = 2. We make an exception for transpositions
to simplify the notation: the transposition that switches i and j is denoted by (i, j).

Definition 2.8 Kanari et al. (2020) Let B = {(bi , di )}i∈{1,...,n} ∈ Bst
n be a strict bar-

code. If we order the births increasingly such that bi1 < · · · < bin , the indexing in
{1, ..., n} gives a permutation τb by τb(k) = ik , i.e. τb is the (unique) permutation such
that

bτb(1) < · · · < bτb(n). (1)

Similarly, ordering the deaths d j1 < · · · < d jn gives rise to a permutation τd with
τd(k) = jk . The permutation σB associated to B is defined as σB = τ−1

b τd ; it tracks
the ordering of the death values with respect to the birth values.
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Fig. 5 (Figure from Kanari et al. (2020)) The Cayley graph of Sym4 generated by the three transpo-
sitions (12), (23), (34). Four barcodes are drawn next to the extremities of the graphs (permutations
[1234], [2134], [2143], [1243]) to illustrate a typical barcode corresponding to each permutation

Remark 2.9 The permutations τb and τd both depend on the indexing choice of the bi
and di . However, the permutation σ does not depend on any indexing of the births
and deaths, it is intrinsic to the multiset B. Indeed, σB can be defined directly as the
permutation that sends the i-th death (in increasing order) to the σ(i)-th birth (idem).
If we assume that the births are ordered increasingly, then τb = id and σB can be
defined directly by σB = [ j1 j2 . . . jn], the indices of the deaths when they are ordered
increasingly.

Example 2.10 Figure 4A shows an example of a strict barcode. Its birth permutation
is τb = [3241], since

b3 < b2 < b4 < b1.

Similarly, its death permutation is τd = [1342], since d1 < d3 < d4 < d2. The
permutation σB associated to the barcode of Fig. 4A is σB = [4132] = τ−1

b τd .
Figure 4B shows the same barcode with the bars ordered by birth times. The corre-
sponding permutations τb = [1234] and τd = [4132] are different, but the product
σB = τ−1

b τd = [4132] is the same, as it does not depend on the indexing of the bars.
Further examples are depicted in Fig. 5.

We extend Definition 2.8 to non-strict barcodes in Sect. 4.3.

2.2 Background on Coxeter groups and complexes

2.2.1 Coxeter groups

Coxeter groups form a family of groups that was defined by Tits in its modern form.
They are abstract versions of reflection groups; in fact, the family of finite Coxeter
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groups coincides with the family of finite reflection groups. Besides their close con-
nections to geometry and topology Davis et al. (2015), Coxeter groups have a rich
combinatorial theory Björner et al. (2005). They appear in many areas of mathemat-
ics, e.g. as Weyl groups in Lie theory. We will view Symn as one of the most basic
examples of a Coxeter group.

Usually, one does not consider a Coxeter group W by itself but instead a Cox-
eter system (W , S), where S is a generating set of W that consists of involutions
called the simple reflections. In what follows, we will tacitly assume that such a
set of simple reflections is always fixed when we talk about a Coxeter group W . In
the case where W = Symn , we will take S to be the set of adjacent transpositions
S = {(i, i + 1) | 1 ≤ i ≤ n − 1}. A rank-(|S|−1− k) (standard) parabolic subgroup
ofW is a subgroup of the form PT = 〈T 〉, where T ⊂ S is a subset of size (|S|−1−k).

2.2.2 Coxeter complexes

Each Coxeter group W can be assigned a simplicial complex �(W ), the Coxeter
complex, that is equipped with an action ofW . IfW is a finite group with set of simple
reflections S, the complex �(W ) is a triangulation of a sphere of dimension |S| − 1.
Coxeter complexes have nice combinatorial properties and are in particular colourable
flag complexes Abramenko et al. (2008) [Sect. 1.6] that are shellable Björner (1984).

The top-dimensional simplices of�(W ) are in one-to-one correspondence with the
elements of the group W . Furthermore, one recovers the Cayley graph of (W , S) as
the chamber graph of �(W ), i.e. the graph that has a vertex for each top-dimensional
simplex of �(W ) and an edge connecting two vertices if the corresponding simplices
share a codimension-1 face Abramenko et al. (2008) [Corollary 1.75].

More generally, the set of k-simplices in �(W ) is in one-to-one correspondence
with the cosets of rank-(|S| − 1 − k) parabolic subgroups of W :

Definition 2.11 The Coxeter complex �(W ) of the Coxeter system (W , S) is defined
as the simplicial complex

�(W ) =
⋃

T⊆S

W/PT = {τ PT | τ ∈ W , T ⊆ S},

where each simplex τ PT has dimension1 dim(τ PT ) = |S\T |−1 and the face relation
is defined by the partial order

τ PT ≤ τ ′PT ′ ⇔ τ PT ⊇ τ ′PT ′ . (2)

The group W acts simplicially on �(W ) by left multiplication on the cosets, γ ·
(τ P):=γ τ P .

Remark 2.12 With a slight abuse of notation, we will in what follows often use the
cosets τ P to also denote simplices in the geometric realisation of the Coxeter complex.

1 Note that we take the (combinatorial) convention that this simplicial complex has a unique face of
dimension −1. This face does not appear in the geometric realisation.
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Fig. 6 The geometric realisation of the Coxeter complex �(Sym4). The permutation corresponding to
each triangle of the front of the sphere is indicated in black. The hyperplanes xi = x j depicted in colours
correspond to the transpositions (i, j). The hyperplanes corresponding to adjacent transpositions (i, i + 1)
are in boldface. A detailed description of how to obtain such a geometric realisation of the Coxeter complex
can be found in Sect. 3

To be coherent with the definition of a stratification (Definition 2.13), we will always
consider these simplices to be closed.

2.2.3 The Coxeter complex

�(Symn) For the case W = Symn that we are interested in, the Coxeter complex
�(Symn) is of dimension n−2 and is isomorphic to the barycentric subdivision of the
boundary of an (n−1)-simplex. It can be realised geometrically as a triangulation of the
(n− 2)-sphere. This complex is the dual to the permutohedron of order n (see Fig. 3).
Figure 6 depicts the Coxeter complex �(Sym4). The top-dimensional simplices of
�(Symn) are in one-to-one correspondence with the elements of Symn . Two such
simplices share a codimension-1 face if and only if the corresponding permutations
differ by precomposing with an adjacent transposition (i, i + 1), i.e. by exchanging
two neighbouring entries of the permutation. As a consequence, if x lies in the interior
of a maximal simplex of the geometric realisation of �(Symn), it can be assigned a
permutation τ ∈ Symn . If x lies on a face of dimension k, then τ is well-defined only
up to applying an element of a parabolic subgroup P ≤ Symn that is generated by
|S| − 1− k = n − 2− k adjacent transpositions. A concrete embedding of �(Symn)

in Rn will be described in more detail in Sect. 3.
For later reference, we note that the identification Sn−2 ∼= �(Symn) gives a strat-

ification of the sphere by its simplicial decomposition. The strata are the (closed)
simplices of the geometric realisation and the stratification is over the partially ordered
set (poset) specified by Eq. (2).

Definition 2.13 Bridson et al. (1999) A set X is stratified over a posetP if there exists
a collection of subsets {Xi }i∈P of X such that:

123



Stratifying the space of barcodes… 381

1. X = ⋃
i Xi ;

2. i ≤ j if and only if Xi ⊆ X j ;
3. If Xi ∩ X j �= ∅, then it is a union of strata;
4. For every x ∈ X , there exists a unique ix ∈ P such that

⋂
Xi�x Xi = Xix .

Each Xi is called a stratum.

3 Coxeter complex coordinates onR
n

In this section, we describe R
n as the product of a cone over the Coxeter complex

�(Symn) with a 1-dimensional space orthogonal to it. This description is obtained
by describing a standard way for realising Symn as a reflection group Abramenko
et al. (2008) [Example 1.11]. In terms of Coxeter groups, this is often called the “dual
representation”, see e.g. Abramenko et al. (2008) [Sect. 2.5.2]. Example 3.4 below
goes through the following steps in detail for the case n = 3.

In what follows, we will consider Rn with the l2-norm ‖·‖ that is induced by
the standard scalar product 〈·, ·〉. We let e1, . . . , en denote the standard basis. The
symmetric group Symn acts on R

n by permuting this standard basis. This action can
be expressed in coordinates as

γ · (x1, . . . , xn) = (xγ −1(1), . . . , xγ −1(n)). (3)

It is norm-preserving and fixes the 1-dimensional subspace L = 〈e〉 spanned by
e:=e1 + · · · + en = (1, . . . , 1). Hence, there is an induced action on the orthogonal
complement V = e⊥, which can be described as

V = {
(x1, . . . , xn) ∈ R

n
∣∣�n

i=1xi = 0
}
.

Note that L is the subspace consisting of all (x1, . . . , xn) ∈ R
n where xi = x j for all

i, j . So in particular, every (x1, . . . , xn) ∈ R
n \ L has at least two coordinates that are

different from one another.
The subspaceV has a natural structure of a cone over theCoxeter complex�(Symn)

associated to Symn , see Remark 3.3. The transposition (i, j) ∈ Symn acts on V by
orthogonal reflection along the hyperplane

{
(x1, . . . , xn) ∈ R

n
∣
∣ xi = x j

}
,

permuting the i-th and j-th coordinates. Let H be the collection of all these hyper-
planes, and let Sr denote the (n − 2)-sphere of radius r > 0 around the origin in V
(with respect to the norm induced by the restriction of the standard scalar product on
R
n), i.e. Sr = {v ∈ V | ‖v‖ = r}.

Lemma 3.1 (Abramenko et al. (2008) [Examples 1.10, 1.4.7& 1.81)] The hyperplanes
H induce a triangulation of Sr . The resulting simplicial complex � is isomorphic to
the Coxeter complex �(Symn) as Symn-spaces.
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The set of points x ∈ R
n such that all coordinates are different is the configuration

space

Confn(R) = {(x1, . . . , xn) ∈ R
n | i �= j �⇒ xi �= x j }.

The previous lemma describes how a permutation in Symn can be associated to each
point x ∈ Confn(R). To understand why this is true, observe that if C is a connected
component of Sr\⋃H, then for all (x1, . . . , xn) ∈ C :

• If i �= j , then xi �= x j , i.e. (x1, . . . , xn) ∈ Confn(R);
• If (y1, . . . , yn) ∈ C , then yi < y j if and only if xi < x j .

In particular, there is a unique τ ∈ Symn such that

(x1, . . . , xn) ∈ C ⇐⇒ xτ(1) < xτ(2) < · · · < xτ(n). (4)

In other words, the order of the elements x1, . . . , xn is given by τ((1, . . . , n)), see
Fig. 6 above for the case n = 4. The connected components of Sr\⋃H are exactly
the (interiors of) the maximal simplices of �. Sending each such component C to the
facet of �(Symn) that corresponds to the permutation τ defined by Eq. 4 gives the
desired isomorphism � ∼= �(Symn).

Using spherical coordinates, we can express every point v ∈ V in terms of a radial
component r > 0 and an angular component, which is equivalent to specifying a point
vθ ∈ Sr (i.e. a point in the geometric realisation of �(Symn)). The upshot of this is
that we obtain a new set of coordinates for points in Rn \ L .

Proposition 3.2 Let n ≥ 2. There exist two projection maps

p : Rn −→ R × R≥0 : x �→, (x̄, ‖vx‖),

where x̄ = 1
n

∑n
i=1 xi and ‖vx‖ = (∑n

i=1 |xi − x̄ |2)1/2, and

q : Rn \ L −→ �(Symn)

that define a bijection

( p|Rn\L , q) : Rn \ L −→ R × R>0 × �(Symn).

Let Symn act on R
n by permuting the coordinates (Eq. 3) and on the product

R × R>0 × �(Symn) by extending the action on �(Symn) trivially on the first two
factors. Then the map ( p|Rn\L , q) is Symn-equivariant.

Proof For every x ∈ R
n , the orthogonal decomposition Rn = 〈e〉 ⊕ V gives a unique

way to write x = x̄ · e + vx with x̄ ∈ R and vx ∈ V , where

x̄ = 〈e, x〉
〈e, e〉 =

n∑

i=1

xi/n = 1

n

n∑

i=1

xi .
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We can describe the projection vx = x − x̄ · e ∈ V in spherical coordinates. Its norm
(the radius of the sphere) is

‖vx‖ = ‖x − x̄ · e‖ =
(

n∑

i=1

|xi − x̄ |2
)1/2

,

so vx is determined by this value together with a point xθ on the (n − 2)-sphere S‖vx‖,
or equivalently on the geometric realisation of �(Symn). Notice that x ∈ L if and
only if vx = 0, as the line L intersects V at its origin.

We define the map p : R
n −→ R × R≥0 : x �→ (x̄, ‖vx‖) and the map q :

R
n \ L −→ Sn−2 : x �→ xθ . The point xθ is well-defined since x /∈ L and therefore

there exist i, j such that xi �= x j . It is easy to see that ( p|Rn\L , q) is a bijection,
i.e. that given c1 ∈ R, c2 ∈ R>0 and c3 ∈ �(Symn), there is a unique x ∈ R

n \ L
such that c1 = x̄ , c2 = ‖vx‖ and c3 = xθ .

The fact that ( p|Rn\L , q) is Symn-equivariant follows fromLemma 3.1 and because

permuting the coordinates of x ∈ R
n changes neither the average 1

n

∑
i xi nor the

standard deviation
(∑

i |xi − x̄ |2)1/2. ��
To summarise, every point x = (x1, . . . , xn) ∈ R

n \ L determines the following
three things:

1. Its projection to L , given by x̄ = 1
n

∑n
i=1 xi ∈ R;

2. The norm of its projection to V , given by ‖vx‖ = (∑n
i=1 |xi − x̄ |2)1/2 ∈ R>0;

3. A point xθ in the geometric realisation of the Coxeter complex�(Symn) associated
to Symn .

Furthermore, x is uniquely determined by these three coordinates.

Remark 3.3 There is an isomorphismR>0×�(Symn)
∼= cone(�(Symn))\{∗}, where

cone(�(Symn)) = (
�(Symn) × [0,∞)

)
/(x, 0) ∼ (y, 0)

and ∗ is the cone point, i.e. the equivalence class of (x, 0). Since Rn = R
n \ L � L ,

the above map ( p|Rn\L , q) gives rise to a decomposition Rn ∼= cone(�(Symn)) ×R.
Indeed, the line L ⊂ R

n corresponds to points x ∈ R
n with vx = 0, which could be

seen as “spheres of radius 0” in the projection q.

Example 3.4 We go through the previous construction in detail for the case of R3

equipped with the natural action of the symmetric group Sym3, illustrating the exam-
ple in Fig. 7. Consider R3 = 〈e1, e2, e3〉. The symmetric group Sym3 acts on it by
permuting the coordinates of each vector (x1, x2, x3):

γ · (x1, x2, x3) = (xγ −1(1), xγ −1(2), xγ −1(3)).

Each γ ∈ Sym3 can be written as a product of transpositions (i, j) and its action
on R3 is given by the performing the corresponding sequence of reflections along the
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Fig. 7 Example of the decomposition of R3 in Coxeter coordinates

hyperplanes xi = x j . The three (2-dimensional) planes corresponding to the equations
x1 = x2, x2 = x3 and x1 = x3 are indicated as lines on the left hand side of Fig. 7 to
make the picture clearer. The subspace L that is invariant under this action is spanned
by the vector (1, 1, 1) = e, shown in red in Fig. 7.

We can define new coordinates on R
3, lying in 〈e〉 = L and e⊥ = V , a 2-

dimensional subspace whose affine shift is depicted in green in Fig. 7, reflecting
the decomposition of R3 into a product of 〈e〉 and V . A point x ∈ R

3 can now be
written as x̄ · e + vx , where x̄ ∈ R and vx ∈ V .

We show on the right hand side of Fig. 7 how V , represented asR2, has the structure
of a cone over a Coxeter complex. The figure shows the projections of the planes
x1 = x2, x2 = x3 and x1 = x3 and the intersection of V with the subspace 〈e〉 (red
dot). To obtain the cone structure on V , we give it spherical coordinates (i.e. polar
coordinates in this case). The first coordinate is the radius r , which determines a 1-
sphere centred at the origin (the black circle). On the circle, a point vx is determined
by an angle xθ . Intersecting the circle with the hyperplanes, we decompose it into
|Sym3 | = 6 (coloured) strata indexed by the symmetric group and forget about the
angle xθ . For instance, if v = (v1, v2, v3) with v2 < v3 < v1, the point v lies in
the stratum indexed by [231]; this is the unique region that lies on those sides of the
hyperplanes that satisfy x1 > x2, x2 < x3 and x1 > x3.

Let γ = (12). It acts on v via γ · v = (vγ −1(1), vγ −1(2), vγ −1(3)) = (v2, v1, v3). We
denote its image by vγ :=γ ·v. The order of the coordinates of vγ satisfies v

γ
1 ≤ v

γ
3 ≤

v
γ
2 , so vγ lies in the stratum indexed by the permutation [132]. The image vγ of v

through the action of γ corresponds to the reflection through the hyperplane x1 = x2.

Remark 3.5 There are two special cases in Proposition 3.2, when xi = x j for all i, j ,
i.e. (x1, . . . , xn) ∈ L and when xi �= x j for all i �= j , i.e. (x1, . . . , xn) ∈ Confn(R).
For the former, we have p(x) = (x̄, ‖vx‖) = (xi , 0) and xθ is not defined. For the
latter, q(x) = xθ lies in the interior of a top-dimensional simplex of�(Symn). Hence,
it determines a unique element τx ∈ Symn . In fact, these are just the two extremes of
a family of situations that can occur:
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If xi = x j for some i �= j , then xθ lies on the corresponding hyperplane in H and
hence on a lower-dimensional face of�(Symn). There exists a permutation τ ∈ Symn
such that

xτ(1) ≤ xτ(2) ≤ · · · ≤ xτ(n),

but τ is not unique. It is defined only up to multiplication by the subgroup

P = {
γ ∈ Symn

∣∣ xτ(i) = xτγ (i)
}
.

Note that P is generated by adjacent transpositions (i, i + 1), i.e. it is of the form
〈T 〉, where T ⊂ S is a subset of the set S of simple reflections of Symn . Hence, it is
a parabolic subgroup of Symn (see Sect. 2.2). The number of adjacent transpositions
in P depends on how many coordinates of (x1, . . . , xn) agree, or, equivalently, the
number of hyperplanes in H it lies on. Intuitively speaking, one could phrase this as
“the more of the xi ’s take the same value, the less ‘permutation information’ is left”.
The coset

τ P = {ρ ∈ Symn | xρ(1) ≤ · · · ≤ xρ(n)},

corresponds to the lowest dimensional face of �(Symn) that x lies on. It depends
only on the values of the xi , not on the choice of τ . If x ∈ L , we have τ P = Symn .
This could be interpreted as the degenerate case where xθ lies on the unique (−1)-
dimensional face of �(Symn) (see Definition 2.11).

4 Coxeter coordinates for the space of barcodes

We are finally ready to turn to our main goal, namely to describe a stratification of
Bn . Recall that this will decompose Bn into different regions, where each region is
characterised as the set of all barcodes having the same average birth and death, the
same standard deviation of births and deaths and the same permutation type.

4.1 DescribingBn as a quotient

In this section, we describe Bn as a subset of a quotient of R2n . This will be used in
the next section to equip this space with Coxeter complex coordinates.

Let X :=Symn \Rn × R
n , where Symn acts diagonally by permuting the coordi-

nates, i.e. for γ ∈ Symn , we set

γ · (x1, . . . , xn, y1, . . . , yn) = (xγ −1(1), . . . , xγ −1(n), yγ −1(1), . . . , yγ −1(n)).

The elements of X are equivalence classes of tuples (x1, . . . , xn, y1, . . . , yn) ∈ R
n ×

R
n , which are denoted by [x1, . . . , xn, y1, . . . , yn].
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Remark 4.1 We write X := Symn \Rn ×R
n to emphasise that Symn acts from the left

on this space. The reason we stress this is that later on, we will combine the statements
herewith descriptions of the Coxeter complex. There, the simplices are given by cosets
τ P and the symmetric group acts on them by left multiplication.

There is a map φ from the space of barcodes with n bars to X given by

φ : Bn → X = Symn \Rn × R
n

{(bi , di )}i∈{1,...,n} �→ [b1, . . . , bn, d1, . . . , dn].

The image of φ is independent of the choice of indices for the bars of the barcode
because the action of Symn is factored out. The map φ is clearly injective, but it is not
surjective as the birth time of a homology class is always smaller than its death time.
The image of φ is the subspace Y of X given by

Y :=Symn \ {
(x1, . . . , xn, y1, . . . , yn) ∈ R

n × R
n
∣
∣ xi < yi ∀ i

}
.

For later reference, we note this observation in the following.

Proposition 4.2 The map φ defines a bijection Bn → Y ⊂ Symn \Rn × R
n.

In Sect. 5, we equip Bn with metrics inspired by the bottleneck and Wasserstein
distances. The map φ is an isometry with respect to these metrics.

4.2 Coxeter complexes for birth and death

We now introduce the Coxeter complex coordinates for Bn . These coordinates are
obtained by applying the map ( p|Rn\L , q) of Proposition 3.2 to the two copies of Rn

in Y .

Theorem 4.3 Every barcode B = {(bi , di )}i∈{1,...,n} ∈ Bn such that at least two of the
bi and two of the di are different from each other determines the following five data:

1. Its average birth time b̄ = ∑n
i=1 bi/n ∈ R;

2. Its average death time d̄ = ∑n
i=1 di/n ∈ R;

3. Its birth standard deviation ‖vb‖ = (∑n
i=1 |bi − b̄|2)1/2 ∈ R>0;

4. Its death standard deviation ‖vd‖ = (∑n
i=1 |di − d̄|2)1/2 ∈ R>0;

5. An orbit Symn ·(bθ , dθ ) ∈ Symn \�(Symn) × �(Symn).

Furthermore, these five data uniquely determine B.

Proof Let B = {(bi , di )}i∈{1,...,n} be such that at least two bi and two di are different.
By assumption, both (b1, . . . , bn) and (d1, . . . , dn) are points in R

n \ L . The image
of B under φ (Proposition 4.2) is

φ(B) = [b1, ..., bn, d1, ..., dn] ∈ Symn \(Rn \ L × R
n \ L).
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Since themap ( p|Rn\L , q) is Symn-equivariant (Proposition 3.2), it induces a bijection

Symn \(Rn \ L × R
n \ L

)

∼= Symn \((R × R>0 × �(Symn)) × (R × R>0 × �(Symn))
)
.

The image of [b1, ..., bn, d1, ..., dn] under this bijection is the Symn-orbit of

( p|Rn\L , q)2(b1, ..., bn, d1, ..., dn) = (b̄, ‖vb‖, bθ , d̄, ‖vd‖, dθ ).

The claim now follows since the action of Symn on (b̄, ‖vb‖, bθ , d̄, ‖vd‖, dθ ) is
trivial on b̄, ‖vb‖, d̄ , ‖vd‖ and is given by the action of Symn on the Coxeter complex
�(Symn) for bθ , dθ . ��

4.3 A stratification ofBn

In this section, we describe the stratification that we obtain from the description of Bn

in terms of Coxeter complexes.
We start by extending Definition 2.8, the permutation assigned to a strict barcode,

to the general case of Bn . For non-strict barcodes, we cannot uniquely assign a permu-
tation. However, there is a nice description of the set of all possible such permutations
in terms of double cosets of parabolic subgroups:

Definition 4.4 For a barcode B = {(bi , di )}i∈{1,...,n} ∈ Bn , let τb and τd be elements
of Symn such that bτb(1) ≤ · · · ≤ bτb(n) and dτd (1) ≤ · · · ≤ dτd (n). Let

PB
b = {

γ ∈ Symn

∣∣ bτb(i) = bτbγ (i)
}
, PB

d = {
γ ∈ Symn

∣∣ dτd (i) = dτdγ (i)
}
.

The double coset DB associated to B is defined as DB :=PB
b τ−1

b τd PB
d .

Remark 4.5 Note that while τb and τd depend on the ordering of the barcode, PB
b and

PB
d do not. The groups PB

b and PB
d are parabolic subgroups of Symn , as was observed

in Remark 3.5. The cosets

τb P
B
b = {ρ ∈ Symn | bρ(1) ≤ · · · ≤ bρ(n)}

and

τd P
B
d = {ρ ∈ Symn | dρ(1) ≤ · · · ≤ dρ(n)},

which are the sets of permutations that preserve the order of the bi and di respectively,
do not depend on the indexing of B either. Hence, the double coset DB = (τb PB

b )−1 ·
τd PB

d is indeed an invariant of the barcode B. Furthermore, if B is a strict barcode,

then PB
b = {id} = PB

d , so DB =
{
τ−1
b τd

}
= {σB} and we recover the definition of

Kanari et al. (2020) as given in Definition 2.8.
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Example 4.6 Let

B = {(b1, d1) = (1, 10), (b2, d2) = (2, 5), (b3, d3) = (4, 5), (b4, d4) = (4, 7)} ∈ B4.

One has b1 < b2 < b3 = b4 and d2 = d3 < d4 < d1. Let τb = [1234] and
τd = [2341]. They satisfy bτb(1) ≤ · · · ≤ bτb(4) and dτd (1) ≤ · · · ≤ dτd (4) respectively,
but so do τ ′

b = [1243] and τ ′
d = [3241]. In this case, one has PB

b = {id, (34)},
PB
d = {id, (12)} and τb PB

b = {[1234], [1243]}, τd PB
d = {[2341], [3241]}. Thedouble

coset

DB = {γbτ−1
b τdγd | γb ∈ PB

b , γd ∈ PB
d }

= {τ−1
b τd , τ

′−1
b τd , τ

−1
b τ ′

d , τ
′−1
b τ ′

d}
= {[2341], [2431], [3241], [4231]}

is the set of all the permutations σ that satisfy that the j-th death (in increasing order)
is paired with the σ( j)-th birth.

Recall that the Coxeter complex �(Symn) is a simplicial complex with simplices
given by cosets of parabolic subgroups τ P . This simplicial decomposition gives it the
structure of a stratified space over the poset of cosets of parabolic subgroups equipped
with reverse inclusion (see Sect. 2.2). Taking the cone and products of these simplices
yields a decomposition of

R
2n ∼= cone(�(Symn)) × R × cone(�(Symn)) × R (5)

into strata that are compatible with the action of Symn , i.e. each stratum is sent
to another stratum of same dimension by the action of Symn . This follows from
Remark 3.3 and the fact that �(Symn) is stratified and the map ( p|Rn\L , q) of Propo-
sition 3.2 is Symn-equivariant. The strata in Eq. (5) are indexed by pairs of cosets
(τ1P1, τ2P2), where τ1, τ2 ∈ Symn and P1, P2 ≤ Symn are parabolic subgroups2.
The partial ordering on these pairs is given component-wise by reverse inclusion
[cf. Eq. (20].

It follows that the quotient X = Symn \R2n is stratified over the quotient P of this
poset by the action of Symn . More concretely, P can be described as follows: The
elements of P are orbits of the form Symn ·(τ1P1, τ2P2), where τ1, τ2 ∈ Symn and
P1, P2 ≤ Symn are parabolic subgroups. The partial ordering is given by

Symn ·(τ1P1, τ2P2) ≤ Symn ·(τ ′
1P

′
1, τ

′
2P

′
2)

if there is γ ∈ Symn such that

τ1P1 ⊇ γ τ ′
1P

′
1 and τ2P2 ⊇ γ τ ′

2P
′
2.

2 Note that, following Remark 3.5, the points in Confn(R) × Confn(R) ⊂ R
n × R

n are exactly the ones
that belong to the top-dimensional strata. Similarly, the points of L × L ⊂ R

n × R
n belong to the lowest

dimensional strata, corresponding to the cone points in Eq. (5).
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This quotient poset P has a more explicit description in terms of another poset Q,
which consists of “marked” double cosets of parabolic subgroups:

Definition 4.7 Let Q be the poset consisting of all triples (P1, P1σ P2, P2), where
σ ∈ Symn and P1, P2 ≤ Symn are parabolic subgroups and where

(P1, P1σ P2, P2) ≤ (P ′
1, P

′
1σ P ′

2, P
′
2)

if and only if there is component-wise containment in the reverse direction,

P1 ⊇ P ′
1, P2 ⊇ P ′

2 and P1σ P2 ⊇ P ′
1σ P ′

2.

A very similar poset is also studied as a two-sided version of the Coxeter complex by
Hultman Hultman (2007) and Petersen Petersen (2018). We remark thatQ is different
from the poset of all double cosets of the form P1σ P2: There can be P1 �= P ′

1, P2 �= P ′
2

such that P1σ P2 = P ′
1σ P ′

2 (see Petersen (2018)[Remark 4]).

Lemma 4.8 The map

φ : P → Q
Symn ·(τ1P1, τ2P2) �→ (P1, P1τ

−1
1 τ2P2, P2)

is an isomorphism of posets.

Proof To see that φ is a bijection of the underlying sets, consider the following map:

ψ : Q → P
(P1, P1σ P2, P2) �→ Symn ·(P1, σ P2).

It is easy to verify that φ and ψ are independent of the choices of representatives and
are inverse to one another. That φ is indeed a map of posets, i.e. that it preserves the
partial ordering, follows from elementary manipulations of cosets. ��
Theorem 4.9 The set Bn of barcodes with n bars is stratified over the poset Q. The
lowest dimensional stratum containing the barcode B is the stratum corresponding to
(PB

b , DB, PB
d ) ∈ Q. It is of the form

B(PB
b ,DB ,PB

d )
n =

(
Symn ·(cone(τb PB

b ) × R × cone(τd P
B
d ) × R)

)
∩ Y .

Proof Recall that Bn ∼= Y is a subset of X = Symn \R2n (Proposition 4.2). As
observed above, X is stratified over the poset P and, by Lemma 4.8, this poset is
isomorphic to Q. It follows that Bn is also stratified over Q. The strata are obtained
by taking the intersection with Y .

This stratification is induced by the simplicial structure of the Coxeter complexes
in

X ∼= Symn \( cone(�(Symn)) × R × cone(�(Symn)) × R
)
.
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Hence, the strata that contain a barcode B ∈ Bn only depend on the coordinate
Symn ·(bθ , dθ ) ∈ Symn \�(Symn) × �(Symn) that B determines by Theorem 4.3.
As explained in Remark 3.5, the associated points bθ , dθ ∈ �(Symn) lie in the interior
of the simplices τb PB

b , τd PB
d . Hence, the lowest dimensional stratum that contains B

corresponds to the Symn-orbit of (τb PB
b , τd PB

d ). ��

Let B be a strict barcode, that is, bi �= b j and di �= d j for i �= j . Then B is
contained in the top-dimensional stratum

B({id},{id}τ−1
b τd {id},{id})

n = (
Symn ·(cone(τb {id}) × R × cone(τd {id}) × R)

) ∩ Y .

Changing the representative of the Symn-orbit, this can be rewritten as

B({id},{σB },{id})
n = (

Symn ·(cone({id}) × R × cone(σB {id}) × R)
) ∩ Y ,

where σB = τ−1
b τd is the permutation associated to B as in Definition 2.8. In partic-

ular, the strata containing strict barcodes are in one-to-one correspondence with the
elements of Symn .

When one considers the cone and real line parameters in the stratification of The-
orem 4.9, one obtains regions that are determined by the averages and standard
deviations of Theorem 4.3 and by parabolic subgroups.

Corollary 4.10 The Coxeter coordinates of Theorem 4.3 decompose the space Bn of
barcodes with n bars into disjoint regions. The region containing the barcode B =
{(bi , di )}i∈{1,...,n} ∈ Bn is defined as the set of all barcodes B ′ such that:

1. Its average birth time is the same as that of B, i.e. b̄′ = b̄;
2. Its average death time is the same as that of B, i.e. d̄ ′ = d̄;
3. Its birth standard deviation is the same as that of B, i.e. ‖vb′ ‖ = ‖vb‖;
4. Its death standard deviation is the same as that of B, i.e. ‖vd ′ ‖ = ‖vd‖;
5. PB′

b = PB
b , PB′

d = PB
d and DB = DB′ .

For strict barcodes, the information of the last Item 5 is equivalent to specifying σB,
the permutation associated to barcodes in Definition 2.8.

5 Ametric onBn

In this section, we explain how the description of Bn given in Sect. 4.1 with R
n

equipped with the l∞-norm gives rise to a naturally defined metric d̃B on Bn that
is closely related to the bottleneck distance. Similarly, the l2-norm on R

n leads to a
modified Wasserstein distance d̃W on Bn .

To describe d̃B , we equip R
2n with the metric d∞ induced by the l∞-norm. This

metric induces a map X × X → R on the quotient by taking the minimum value over
all representatives of the corresponding equivalence classes:
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d : X × X → R
([x, y], [x ′, y′]) �→ min

(x̃,ỹ)∈[x,y],
(x̃ ′,ỹ′)∈[x ′,y′]

d∞( (x̃, ỹ), (x̃ ′, ỹ′) ). (6)

We will show that this map restricted to Y agrees with a modified version of the
bottleneck distance.

Definition 5.1 Let B = {(bi , di )}i∈{1,...,n} and B ′ = {(b′
i , d

′
i )}i∈{1,...,n} be twobarcodes

in Bn . The modified bottleneck distance between B and B ′ is

d̃B(B, B ′):= min
γ∈Symn

max
i∈{1,...,n}‖(bi , di ) − (b′

γ (i), d
′
γ (i))‖∞.

where ‖·‖∞ is the l∞-norm on R
2.

Note that the difference between the modified bottleneck distance and the original
bottleneckdistance as defined inDefinition2.5 is that for themodifiedversion, onedoes
not allow to match points of the barcodes to the diagonal � (see Fig. 8). Furthermore,
d̃B(B, B ′) is well-defined only if both B and B ′ contain the same number of bars,
i.e. if they are both elements of the same Bn . This is not necessary for the definition
of the regular bottleneck distance, cf. Remark 5.3.

Proposition 5.2 The map d defines a metric on Y with respect to which φ :
(Bn, d̃B) −→ (Y , d) is an isometry.

Proof As observed before in Proposition 4.2, φ maps Bn bijectively onto Y . Hence, it
is sufficient to show that for arbitrary barcodes B and B ′,

d̃B(B, B ′) = d(φ(B), φ(B ′)).

This follows from simply spelling out the definitions. For points (x, y) and (x ′, y′)
in Rn × R

n ,

d∞((x, y), (x ′, y′)) = max
{|x1 − x ′

1|, . . . , |xn − x ′
n|, |y1 − y′

1|, . . . , |yn − y′
n|

}

= max
i=1,...,n

max
{|xi − x ′

i |, |yi − y′
i |
}

= max
i=1,...,n

‖(xi , yi ) − (x ′
i , y

′
i )‖∞,

where ‖·‖∞ is the l∞-norm on R2. Combining this with the definition of d on X [see
Eq. (6)], we obtain

d(φ(B), φ(B ′)) = min
γ∈Symn

d∞( φ(B), γ · φ(B ′) )

= min
γ∈Symn

max
i=1,...,n

‖(bi , di ) − (b′
γ −1(i), y

′
γ −1(i))‖∞.

This is the same as the modified bottleneck distance of Definition 5.1. ��
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Fig. 8 Two barcodes (red and blue) represented as persistence diagrams in R
2. A. The matching that

minimises the bottleneck or Wasserstein distance matches all the bars to the diagonal, as they are all
very close to it. B. If bars are not allowed to be matched with the diagonal, the matching that minimises
‖(bi , di ) − (b′

γ (i), y
′
γ (i))‖∞ for the bottleneck distance or

∑
i‖(bi , di ) − (b′

γ (i), y
′
γ (i))‖2 respectively for

the Wasserstein distance is different (color figure online)

Similarly, starting with R2n equipped with the l2-norm, one can establish an isom-
etry between Y and Bn equipped with a modified Wasserstein distance instead.

Remark 5.3 Forgetting about the diagonal as done aboveopens the door to definingnew
metrics on barcodes by considering distances onRn ×R

n and then taking the quotient
as was done in this section. It could potentially be extended to barcodes with different
number of bars. One could for instance imagine a map that forces matchings between
as many bars as possible and then adds a positive weight equal to their distance to the
diagonal to the unmatched bars if there are any. This is different from the bottleneck
distance (or Wasserstein distance), which allows as many matchings as needed with
the diagonal, see Fig. 8. When using barcodes to study data, bars close to the diagonal
are usually considered as related to noise. However, there are cases where all the bars
matter, for instance when the barcode is the one of a merge tree Kanari et al. (2020);
Curry et al. (2021). In such a case, a new metric that does not take the diagonal into
account could turn out useful. We leave this for future work.

6 Future directions

In this paper, we showed that the space Bn of barcodes with n bars is stratified over
the poset of marked double cosets of parabolic subgroups of Symn . A question that
arises is how this could be extended to the whole space of barcodes, i.e. to the union⋃

n∈N Bn . An approach here would be to use appropriate inclusions Bm ↪→ Bn for
m ≤ n. Note that on the group level, there are natural injections Symm ↪→ Symn .
On the level of simplicial complexes, �(Symn) also contains copies of �(Symm) for
m ≤ n.

It was shown in Kanari et al. (2020); Curry et al. (2021) that the permutation σB

associated to a strict barcode B gives nice combinatorial insight on the number of
merge trees that have the same barcode. This number, called the tree-realisation num-
ber (TRN), is derived directly from the permutation. It can also be used to do statistics
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on barcodes. Our coordinates (Corollary 4.10) firstly extend this work to any (possibly
non-strict) barcode and secondly return a finer invariant than just the permutation. A
future directionwould be to study this finer invariant defined by (b̄, d̄, ‖vb‖, ‖vd‖, σB).
Itmight bewell-suited for studying statistical questions: Thefirst four elements already
have descriptions as averages and standard deviations. The behaviour of the permuta-
tion σB could be studied using tools from permutation statistics, such as the number
of inversions or descents.

In a different direction, the description ofBn in termsofCoxeter complexes allows to
rephrase these combinatorial questions in more geometric terms. Using this geometric
perspective might give new ways for studying invariants and statistics on barcodes.

It would be interesting to see if the geometric and combinatorial tools developed
here can help to understand inverse problems in TDA as the ones in Kanari et al.
(2020); Curry et al. (2021); Curry (2018); Leygonie et al. (2022). Since the merge tree
to barcode problem is related to the symmetric group Kanari et al. (2020); Curry et al.
(2021), it is also natural to ask whether the stratification that we obtain in Theorem 4.9
can be extended to the space of merge trees with n leaves.

Lastly, the modified bottleneck and Wasserstein distances seem to have a different
behaviour than the usual ones. A deeper study of their properties and their potential
extension to the space of barcodes (see Remark 5.3) is a natural next step to consider.
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