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Abstract
We generalize and extend the Conley-Morse-Forman theory for combinatorial mul-
tivector fields introduced in Mrozek (Found Comput Math 17(6):1585–1633, 2017).
The generalization is threefold. First, we drop the restraining assumption in Mrozek
(Found Comput Math 17(6):1585–1633, 2017) that every multivector must have a
unique maximal element. Second, we define the dynamical system induced by the
multivector field in a less restrictive way. Finally, we also change the setting from
Lefschetz complexes to finite topological spaces. Formally, the new setting is more
general, because every Lefschetz complex is a finite topological space, but the main
reason for switching to finite topologcial spaces is because the latter better explain
some peculiarities of combinatorial topological dynamics. We define isolated invari-
ant sets, isolating neighborhoods, Conley index and Morse decompositions. We also
establish the additivity property of the Conley index and the Morse inequalities.
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1 Introduction

The combinatorial approach to dynamics has its origins in two papers byRobin Forman
(Forman 1998a, b) published in the late 1990s. Central to the work of Forman is the
concept of a combinatorial vector field. One can think of a combinatorial vector field
as a partition of the collection of cells of a cellular complex into combinatorial vectors
which may be singletons (critical vectors or critical cells) or doubletons such that one
element of the doubleton is a face of codimension one of the other (regular vectors).
The original motivation of Forman was the presentation of a combinatorial analogue
of classical Morse theory. However, soon the potential for applications of such an
approach was discovered in data science. Namely, the concept of combinatorial vector
field enables direct applications of the ideas of topological dynamics to data and
eliminates the need of the cumbersome construction of a classical vector field from
data.

Recently, Batko et al. (2020), Kaczynski et al. (2016), Mrozek and Wanner (2021),
in an attempt to build formal ties between the classical and combinatorial Morse the-
ory, extended the combinatorial theory of Forman to Conley theory (Conley 1978), a
generalization of Morse theory. In particular, they defined the concept of an isolated
invariant set, the Conley index and Morse decomposition in the case of a combi-
natorial vector field on the collection of simplices of a simplicial complex. Later,
Mrozek (2017) observed that certain dynamical structures, in particular homoclinic
connections, cannot have an analogue for combinatorial vector fields and as a remedy
proposed an extension of the concept of combinatorial vector field, a combinatorial
multivector field. We recall that in the collection of cells of a cellular complex there
is a natural partial order induced by the face relation. Every combinatorial vector in
the sense of Forman is convex with respect to this partial order. A combinatorial mul-
tivector in the sense of Mrozek (2017) is defined as a convex collection of cells with
a unique maximal element, and a combinatorial multivector field is then defined as a
partition of cells into multivectors. The results of Mrozek (2017) were presented in
the algebraic setting of chain complexes with a distinguished basis (Lefschetz com-
plexes), an abstraction of the chain complex of a cellular complex already studied by
Lefschetz (1942). The results of Forman were earlier generalized to the setting of Lef-
schetz complexes in Jöllenbeck andWelker (2009); Kozlov (2005); Sköldberg (2005),
and to the more general setting of finite topological spaces in Minian (2012). Note
that the setting of finite topological spaces is more general, because every Lefschetz
complex is a poset via the face relation, therefore also a finite topological space via
the Alexandrov Theorem (Alexandrov 1937).

The aim of this paper is a threefold advancement of the results of Mrozek (2017).
We generalize the concept of combinatorial multivector field by lifting the assumption
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that a multivector has a unique maximal element. This assumption was introduced
in Mrozek (2017) for technical reasons, but turned out to be a barrier for adapting
the techniques of continuation in topological dynamics to the combinatorial setting
(Dey et al. 2022). We define the dynamics associated with a combinatorial multivector
field following the ideas of Dey et al. (2019). This approach is less restrictive, and
better adjusted to persistence of Conley index (Dey et al. 2022, 2020, 2022). Finally,
we change the setting from Lefschetz complexes to finite topological spaces. Here,
the generalization is not the main motivation. We do so, because the specific nature
of finite topological spaces helps explain the differences between the combinatorial
and the classical theory. For instance, isolated invariant sets are always closed in the
classical theory, but this is not true in its combinatorial counterpart, because separation
in finite topological spaces is only T0.

In this extended and generalized setting we define the concepts of isolated invariant
set and Conley index. We also define attractors, repellers, attractor-repeller pairs and
Morse decompositions, and provide a topological characterization of attractors and
repellers. Furthermore, we prove the Morse equation for Morse decompositions, and
finally deduce from it the Morse inequalities.

We note that, as in the classical case, attractors ofmultivector fields form a bounded,
distributive lattice. Therefore, the algebraic characterization of lattices of attractors
developed by Kalies, Mischaikow, and Vandervorst in Kalies et al. (2014, 2016, 2021)
applies also to the combinatorial case. What unites the two approaches is the combi-
natorial multivalued map. The difference is that the approach in Kalies et al. (2014,
2016, 2021) is purely algebraic whereas our approach is purely topological. The rela-
tion between the algebraic and topological approaches in the case of gradient-like
dynamics is very interesting, but beyond the scope of the present paper. We leave the
study of this relation for future investigation.

The organization of the paper is as follows. In Sect. 2 we present the main results
of the paper. This is an informal section aiming at the presentation of the motiva-
tion, intuition, and main ideas of the paper on the basis of an elementary geometric
example. The reader interested only in the formal results and their correctness may
skip this section. In Sect. 3 we recall basic concepts and facts needed in the paper.
Section 4 is devoted to the study of the dynamics of combinatorial multivector fields
and the introduction of isolated invariant sets. In Sect. 5 we define index pairs and
the Conley index. In Sect. 6 we investigate limit sets, attractors and repellers in the
combinatorial setting. Finally, Sect. 7 is concerned with Morse decompositions and
Morse inequalities for combinatorial multivector fields.

2 Main results

In this section we present the main results of the paper in an informal and intuitive
way, for a simple simplicial example.We also indicate themain conceptual differences
between our combinatorial approach and the classical theory. Precise definitions and
statements are given in the following sections.
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2.1 Combinatorial phase space

In this paper we study dynamics in finite spaces. We also refer to finite spaces as com-
binatorial spaces. In applications, they typically are collections of cells of a simplicial,
a cubical, or a more general cellular complex. All such collections are examples of
Lefschetz complexes. We recall that a Lefschetz complex (see Sect. 3.5 for precise def-
initions) is a distinguished basis of a finitely generated chain complex. By Lefschetz
homology we mean the homology of this chain complex. In a Lefschetz complex, as
in every cellular complex, there is a well defined face relation which makes every Lef-
schetz complex a finite poset and, via the Alexandrov Theorem (Alexandrov 1937), a
finite topological space. The results of this paper apply to any finite topological space,
although from the point of view of applications Lefschetz complexes remain the main
object of interest. However, the viewpoint from the perspective of finite topological
spaces is closer to geometric intuition and, as pointed out in the introduction, helps
explain similarities and differences between the classical and the combinatorial theory.

A Lefschetz complex, as every topological space, has also well defined singular
homology. Note that the singular homology and Lefschetz homology of a Lefschetz
complex need not be the same in general, although they are the same formany concrete
examples of Lefschetz complexes, in particular for cellular complexes. The results of
this paper apply to any homology theory for which the excision and Mayer-Vietoris
theorems hold. In particular, they apply to singular homology of finite topological
spaces and Lefschetz homology of Lefschetz complexes regardless whether they are
the same or not. But, they depend on the specifically chosen homology theory.

For concrete Lefschetz complexes such as simplicial complexes there is also topol-
ogy of its geometric realization which is very different from the finite topology of
a Lefschetz complex. Nevertheless, via McCord’s Theorem (McCord 1966), these
topologies are weakly homotopic and, consequently, their algebraic invariants such
as homotopy and singular homology groups are the same. As an example consider
the family X of all simplices of the simplicial complex in Fig. 1 (top). The associated
face poset which makes X a finite topological space is presented in Fig. 1 (bottom).
Another topological space associated with the simplicial complex is its polytope, that
is the union of all its simplexes with topology induced from the plane. Although the
two topological spaces are clearly very different, in particular the poset is only T0 and
the polytope is T2, they are related. We can see it by identifying the simplices in the
poset with open simplices in the polytope. In this case, the set A ⊂ X is open (respec-
tively closed) in the T0 topology of X if and only if the union of the corresponding
open simplices is open (respectively closed) in the Hausdorff topology of the polytope
of X .

2.2 Combinatorial dynamical systems

Classical dynamical systems, when considered on a finite space, are very restrictive.
On the one hand, as observed in [Chocano et al. 2021, Theorem 2.6], a flow on a
finite T0 topological space necessarily has only stationary trajectories. On the other
hand, it is straightforward to check that in the same setting but for a dynamical system
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Fig. 1 An example of a simplicial complex (top) and the poset (a finite T0 topological space, bottom)
induced by its face relation

with discrete time every trajectory is periodic. Hence, to allow for more interesting
dynamics in finite spaces, we consider combinatorial dynamical systems by which
we mean iterates of a multivalued map acting on the finite space (see Sect. 4.1 for
precise definitions). The question remains whether one can still distinguish a class of
multivalued maps whose dynamics is flow-like. One would expect that for a general
multivalued map trajectories may arbitrarily jump through space, whereas in the case
of flow-like dynamics they should join neighbors in the topological space. We do
not attempt to formalize the flow-like concept. Instead, inspired by Forman (Forman
1998a, b), we study the dynamics of a special class of multivalued maps on finite
spaces, generated by a combinatorial analogue of a vector field. We introduce it in
the next section. Clearly, the dynamics of general multivalued maps in finite spaces,
corresponding to classical discrete time dynamics, is also of interest. However, Conley
theory for generalmultivaluedmaps in finite topological spaces requires different ideas
and is beyond the scope of the present paper and will be presented in [3]

2.3 Combinatorial multivector fields

A combinatorialmultivector field (seeSect. 4.3 for precise definitions andmoredetails)
is a partition of a finite topological space X into locally closed sets (or convex sets
in terms of posets, see Proposition 3.10), that is, sets A ⊂ X such that their mouth
mo A := cl A \ A (the closure of A with A removed) is closed. The elements of the
partition are referred to as multivectors.

123



144 M. Lipiński

Fig. 2 A flow on a torus T represented as a green square with bottom and top as well as left and right faces
identified. A cellular structure T is imposed on T . It consists of 9 squares, 18 edges and 9 vertices. The
flowlines cross the edges transversally. This leads to a multivector field on T . Each multivector consists of
cells intersected by the same orange region. For instance, consider the top right orange region. It represents
a multivector consisting of three cells: square CADF and edges CA,DF , because these are the only cells
in the boundary of CADF crossed by flowlines towards CADF . Similarly, the orange region in bottom
right consists only of square AC IG, because none of its faces is crossed inwards

There are many ways to obtain multivector fields in applications. One of the most
intuitivemethods is via the transversal polygons construction. It consists in the approx-
imation of a flow on a manifold by the decomposition of the manifold into convex
polygonal cells in such a way that the flow lines cross the faces of every cell transver-
sally. The importance of such decompositions was indicated already by Boczko et al.
(2007). The top dimensional cells together with their faces (lower dimensional cells)
form a cellular decomposition of the manifold. The transversality and the convexity
then imply that flowlines originating in the same face enter the same top dimensional
cell. By grouping each top dimensional cell with all its faces entering the cell, one
obtains a combinatorial multivector field (see Mrozek et al. (2022) for details). An
example of such a construction is presented in Fig. 2. A special feature of a multi-
vector field constructed this way is that every multivector contains a cell of maximal
dimension and is contained in the closure of the cell. This need not be the case in
general as the following example shows.

Example 2.1 Consider the partition

V := { {A, AC}, {ABC}, {B, AB}, {C, BC}, {CE}, {D, BD,CD, BCD},
{DE,CDE}, {E, EG}, {EF, DEF, EFG}, {F, DF, FG}, {G} }
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Fig. 3 A partition of a poset into multivectors (convex subsets). Nodes as well as corresponding arrows of
each multivector are highlighted with a distinct color

Fig. 4 A geometric visualization of the combinatorial multivector field in Fig. 3. A multivector may be
considered as a “black box” whose dynamics is known only via splitting its boundary into the exit and
entrance parts

of the set of cells X of the simplicial complex in Fig. 1. It is easy to check that this
partition is a multivector field presented in Fig. 3 with X visualized as a poset, and
in Fig. 4 with X visualized as a simplicial complex. Every multivector in Fig. 3 is
highlighted with a different color and in Fig. 4 it is indicated by an orange region
as in Fig. 2. In terms of the transversal polygons interpretation the dotted part of the
boundary of a multivector indicates the outward-directed flow while the solid part of
the boundary indicates the inward flow.

As this example indicates, a multivector may contain no top dimensional cell but
also more than one top dimensional cell. Such multivectors, in particular, are useful
in constructing multivector fields from clouds of vectors.

Note that in the case of a multivector field constructed from transversal polygons,
the transversality implies that the flow may exit the closure of a multivector V only
through its mouth. Hence, cl V may be interpreted as an isolating block for the flow
with exit set mo V . This allows us to think of a multivector as a black box where
the dynamics is known only at its boundary, but not inside. Moreover, the relative
homology H(cl V ,mo V ) may be interpreted as the Conley index of the invariant set
of the flow isolated by cl V (for the definition of Conley index and isolating block in
the classical setting see Conley 1978; Conley and Easton 1971; Stephens and Wanner
2014).
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Fig. 5 The combinatorial flow �V of the multivector field in Figs. 3 and 4 represented as the digraph GV .
Downward arrows are induced by the closure components of�V . Bi-directional edges and self-loops reflect
dynamics within multivectors. For clarity, we omit edges that can be obtained by between-level transitivity,
e.g., the bi-directional connection between node D and BCD. The nodes of critical multivectors are bolded
in red

2.4 Combinatorial flow associated with amultivector field

With every combinatorial multivector field V on a finite topological space X we asso-
ciate a combinatorial dynamical system induced by themultivaluedmap�V : X � X
given by

�V (x) := cl x ∪ [x]V , (1)

where [x]V denotes the unique multivector in V containing x . Similarly to Forman
(1998a) we often refer to the combinatorial dynamical system given by (1) as the
combinatorial flow associated with the multivector field V .

Formula (1) says that starting from cell x we can either go to the closure of x or
we can stay in the multivector of x . In the case of a multivector field constructed from
transversal polygons as in Fig. 2 the first case may be interpreted as the flow-like
behaviour, because a flow line cannot leave cell x without crossing the boundary of
x . The second case reflects the black box nature of a multivector: we only know what
happens at the boundary of a multivector, therefore we do not want to exclude any
movement inside a multivector.

2.5 Graph interpretation

Let F : X � X be an arbitrary multivalued map acting on a finite topological space
X . The combinatorial dynamical system induced by F , as in Kalies et al. (2016), may
be interpreted as a directed graph GF whose vertices are the elements of X and there
is a directed arrow from x to y whenever y ∈ F(x). The graph GV := G�V of the
combinatorial flow discussed in Example 2.1 is presented in Fig. 5.

A basic concept of multivalued dynamics, a solution, corresponds to a walk in GF .
We are interested in full solutions, that is, bi-infinite walks, as well as paths by which
we mean finite walks (see Sect. 4.2 for precise definitions and more details).

Translation of problems in combinatorial topological dynamics to the language
of directed graphs facilitates their algorithmic study. However, we emphasize that
combinatorial topological dynamics cannot be reduced just to graph theory, because
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the topology in the set of vertices of the directed graph matters, as we will see in
the following sections, in particular in the concept of essential solution introduced in
the next section. In consequence, combinatorial topological dynamics as a field is a
part of general topological dynamics and not a part of graph theory. The use of the
classical terminology of dynamics also in the combinatorial setting helps focusing on
this difference.

2.6 Essential solutions

As we already explained, formula (1) for the combinatorial dynamical system asso-
ciated with a combinatorial multivector field has a natural geometric interpretation.
However, it also has a drawback, because, as one can easily check, for such a combi-
natorial dynamical system there is a stationary (constant) solution through each point.
This, in particular, is the consequence of the black box nature of a multivector and the
tightness of a finite topological space. We overcome this problem by distinguishing
regular and critical mulltivectors. To define themwe fix a homology theory in the finite
topological space X . For examples based on simplicial complexes we just take sim-
plicial homology which in this case coincides with Lefschetz homology and singular
homology (see Sect. 3.6).

We say that a multivector V is critical if H(cl V ,mo V ) �= 0. Otherwise we call
V regular. There are five critical multivectors in the multivector field presented in
Example 2.1:

{ABC}, {CE}, {DEF, EF, EFG}, {DF, F, FG}, {G}.

In terms of the transversal polygon interpetation a critical multivector may be
considered as an isolating block with a non-trivial Conley index. Therefore, accepting
the existence of a non-empty invariant set inside may be justified by the Ważewski
property of theConley index. In the case of a regularmultivectorwehaveno topological
justification to expect a non-empty invariant set. This motivates the introduction of
essential solutions. An essential solution is a full solution γ such that if γ (t) belongs
to a regular multivector V ∈ V then there exist both a k > 0 and an l < 0 satisfying
the exclusions γ (t + k), γ (t + l) /∈ V (see Sect. 4.4 for precise definition and more
details). An example of an essential solution γ : Z → X for the multivector field in
Fig. 4 is given by:

γ (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CE t < 0,

E t ∈ {0, 2, 3},
EG t ∈ {1, 4},
G t > 4.
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2.7 Isolated invariant sets and Conley index

We say that a set S ⊂ X is invariant if every x ∈ S admits an essential solution through
x in S. We say that an invariant set S is an isolated invariant set if there exists a closed
set N , called an isolating set such that S ⊂ N , �V (S) ⊂ N , and every path in N with
endpoints in S is a path in S (see Sect. 4.5 for precise definitions and more details).
Note that our concept of isolating set is weaker than the classical concept of isolating
neighborhood, because the maximal invariant subset of N may not be contained in
the interior of N . The need of a weaker concept is motivated by the tightness in
finite topological spaces. In particular, an isolated invariant set S may intersect the
closure of another isolated invariant set S′ and be disjoint but not disconnected from
S′. For instance, with respect to Example 2.1 the sets S1 := {A, AC,C, BC, B, AB}
and S2 := {ABC} are both isolated invariant sets isolated respectively by N1 := S1
and N2 := cl S1 = S1 ∪ S2. Observe that S1 ⊂ N2. Thus, the isolating set in the
combinatorial setting of finite topological spaces is a relative concept. Therefore, one
has to specify each time which invariant set is considered as being isolated by a given
isolating set.

Given an isolated invariant set S of a combinatorial multivector field V we define
indexpairs similarly to the classical case (seeDefinition 5.1),weprove that (cl S,mo S)

is one of the possibly many index pairs for S (see Proposition 5.3) and we show that
the homology of an index pair depends only on S, but not on the particular index
pair (see Theorem 5.16). This enables us to define the Conley index of an isolated
invariant set S (see Definition 4.8) and the associated Poincaré polynomial (see (4)).
In Example 2.1 (see Fig. 4), the Poincaré polynomials of the isolated invariant sets
S1 = {A, AC,C, BC, B, AB} and S2 = {ABC} are respectively pS1(t) = 1 + t and
pS2(t) = t2.

2.8 Morse decompositions

The concept of Morse decomposition in combinatorial dynamics is similar in spirit
to the classical case although some details are different (see Definition 7.1). Unlike
the classical case, for a combinatorial multivector field V we prove that the strongly
connected components of the directed graph GV which admit an essential solution
constitute the minimalMorse decomposition of V (see Theorem 7.3). For Example 2.1
the minimal Morse decomposition consists of six isolated invariant sets:

M1 := {A, AC,C, BC, B, AB}, M2 := {ABC}, M3 := {CE},
M4 := {DEF, EF, EFG}, M5 := {DF, F, FG}, M6 := {G}.

We say that an isolated invariant set S is an attractor (respectively a repeller) if
all solutions originating in it stay in S in forward (respectively backward) time (see
Sect. 6.1). There are two attractors in our example: M1 is a periodic attractor, and M6
is an attracting stationary point. Sets M2 and M4 are repellers, while M3 and M5 are
neither attractors nor repellers.

123



Conley-Morse-Forman theory for generalized combinatorial… 149

Fig. 6 The Conley-Morse graph
for the multivector field in
Example 2.1

If there exists a path originating in Mi and terminating in Mj , we say that there is a
connection from Mi to Mj . The connection relation induces a partial order on Morse
sets. The associated poset with nodes labeled with Poincaré polynomials is called the
Conley-Morse graph of the Morse decomposition, see also Arai et al. (2009); Bush
et al. (2012).

TheConley-Morse graph of theminimalMorse decomposition of the combinatorial
multivector field in Fig. 4 is presented in Fig. 6. The Morse equation (see Theorem
7.9) for this Morse decomposition takes the form:

2t2 + 3t + 2 = 1 + (1 + t)(1 + 2t).

As this brief overview of the results of this paper indicates, at least to some extent it is
possible to construct a combinatorial analogue of classical topological dynamics. Such
an analogue may be used to construct algorithmizable models of sampled dynamical
systems aswell as tools for computer-assisted proofs in dynamics (Mrozek et al. 2022).

3 Preliminaries

In this section we recall the background material needed in this paper and we set
notation.

3.1 Sets andmaps

We denote the sets of integers, non-negative integers, non-positive integers, and pos-
itive integers, respectively, by Z, Z

+, Z
−, and N. Given a set A, we write #A for the

number of elements in A and we denote by P(A) the family of all subsets of X . We
write f : X � Y for a partial map from X to Y , that is, a map defined on a subset
dom f ⊂ X , called the domain of f , and such that the set of values of f , denoted
im f , is contained in Y .
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A multivalued map F : X � Y is a map F : X → P(Y ) which assigns to every
point x ∈ X a subset F(x) ⊂ Y . Given A ⊂ X , the image of A under F is defined by
F(A) := ⋃

x∈A F(a). By the preimage of a set B ⊂ Y with respect to F we mean the
large preimage, that is,

F−1(B) := {x ∈ X | F(x) ∩ B �= ∅} . (2)

In particular, if B = {y} is a singleton, we get

F−1({y}) := {x ∈ X | y ∈ F(x)} .

Thus, we have a multivalued map F−1 : Y � X given by F−1(y) := F−1({y}). We
call it the inverse of F .

3.2 Relations and digraphs

Recall that a binary relation or briefly a relation in a space X is a subset E ⊂ X × X .
We write xEy as a shorthand for (x, y) ∈ E . The inverse of E is the relation

E−1 := {(y, x) ∈ X × X | xEy} .

Given a relation E in X , the pair (X , E) may be interpreted as a directed graph
(digraph) with vertex set X , and edge set E .

Relation E may also be considered as a multivalued map E : X � X with
E(x) := {y ∈ X | xEy}. Thus, the three concepts: binary relation, multivalued
map and directed graph are, in principle, the same and in this paper will be used
interchangeably.

We recall that a path in a directed graph G = (X , E) is a sequence x0, x1, . . . , xk
of vertices such that (xi−1, xi ) ∈ E for i = 1, 2, . . . k. The path is closed if x0 = xk .
A closed path consisting of two elements is a loop. Thus, an x ∈ X is a loop if and
only if x ∈ E(x). We note that loops may be present at some vertices of G but at some
other vertices they may be absent.

A vertex is recurrent if it belongs to a closed path. In particular, if there is a loop at
x ∈ X , then x is recurrent. The digraphG is recurrent if all of its vertices are recurrent.
We say that two vertices x and y in a recurrent digraph G are equivalent if there is a
path from x to y and a path from y to x in G. Equivalence of recurrent vertices in a
recurrent digraph is easily seen to be an equivalence relation. The equivalence classes
of this relation are called strongly connected components of digraph G. They form a
partition of the vertex set of G.

We say that a recurrent digraphG is strongly connected if it has exactly one strongly
connected component. A non-empty subset A ⊂ X is strongly connected if (A, E ∩
A × A) is strongly connected. In other words, A ⊂ X is strongly connected if and
only if for all x, y ∈ A there is a path in A from x to y and from y to x .
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3.3 Posets

Let X be a finite set. We recall that a reflexive and transitive relation ≤ on X is a
preorder and the pair (X ,≤) is a preordered set. If ≤ is also antisymmetric, then it is
a partial order and (X ,≤) is a poset. A partial order in which any two elements are
comparable is a linear (total) order.

Given a poset (X ,≤), a set A ⊂ X is convex if x ≤ y ≤ z with x, z ∈ A, y ∈ X
implies y ∈ A. It is an upper set if x ≤ y with x ∈ A and y ∈ X implies y ∈ A.
Similarly, A is a down set with respect to ≤ if x ≤ y with y ∈ A and x ∈ X implies
x ∈ A. A chain is a totally ordered subset of a poset. Finally, for A ⊂ X we write

A≤ := {a ∈ X | ∃b∈A a ≤ b},
A< := A≤ \ A.

One can easily check the following proposition.

Proposition 3.1 ([Lipiński 2021, Proposition 1.3.1]) Let (X ,≤) be a poset and let
A ⊂ X be a convex set. Then the sets A≤ and A< are down sets.

3.4 Finite topological spaces

Given a topology T on X , we call (X , T ) a topological space. When the topology
T is clear from the context we also refer to X as a topological space. We denote the
interior of A ⊂ X with respect to T by intT A and the closure of A with respect to T
by clT A. We define the mouth of A as the set moT A := clT A \ A. We say that X is
a finite topological space if X is a finite set.

If X is finite, we also distinguish the minimal open superset (or open hull) of A as
the intersection of all the open sets containing A. We denote it by opnT A. We note
that when X is finite then the family T op := {X \ U | U ∈ T } of closed sets is
also a topology on X , called dual or opposite topology. The following proposition is
straightforward.

Proposition 3.2 If (X , T ) is a finite topological space then for every set A ⊂ X we
have opnT A = clT op A.

If A = {a} is a singleton, we simplify the notation intT {a}, clT {a}, moT {a} and
opnT {a} to intT a, clT a, moT a and opnT a. When the topology T is clear from
the context, we drop the subscript T in this notation. Given a finite topological space
(X , T ) we briefly write Xop := (X , T op ) for the same space X but with the opposite
topology.

We recall that a subset A of a topological space X is locally closed if every x ∈ A
admits a neighborhood U in X such that A ∩ U is closed in U . Locally closed sets
are important in the sequel. In particular, we have the following characterization of
locally closed sets.

Proposition 3.3 ([Engelking 1989, Problem 2.7.1]) Assume A is a subset of a topo-
logical space X. Then the following conditions are equivalent.
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(i) A is locally closed,
(ii) moT A := clT A \ A is closed in X,
(iii) A is a difference of two closed subsets of X,
(iv) A is an intersection of an open set in X and a closed set in X.

As an immediate consequence of Proposition 3.3(iv) we get the following three
propositions.

Proposition 3.4 The intersection of a finite family of locally closed sets is locally
closed.

Proposition 3.5 If A is locally closed and B is closed, then A \ B is locally closed.

Proposition 3.6 Let (X , T ) be a finite topological space. A subset A ⊂ X is locally
closed in the topology T if and only if it is locally closed in the topology T op .

We recall that the topology T is T2 or Hausdorff if for any two different points
x, y ∈ X , there exist disjoint sets U , V ∈ T such that x ∈ U and y ∈ V . It is T0 or
Kolmogorov if for any two different points x, y ∈ X there exists a U ∈ T such that
U ∩ {x, y} is a singleton.

Finite topological spaces stand out from general topological spaces by the fact that
the only Hausdorff topology on a finite topological space X is the discrete topology
consisting of all subsets of X .

Proposition 3.7 ([Lipiński 2021, Proposition 1.4.7]) Let (X , T ) be a finite topological
space and A ⊂ X. Then cl A = ⋃

a∈A cl a.

A remarkable feature of finite topological spaces is the following theorem.

Theorem 3.8 (Alexandrov 1937) For a preorder≤ on a finite set X, there is a topology
T≤ on X whose open sets are the upper sets with respect to ≤. For a topology T on
a finite set X, there is a preorder ≤T where x ≤T y if and only if x ∈ clT y.
The correspondences T �→ ≤T and ≤ �→ T≤ are mutually inverse. Under these
correspondences continuous maps are transformed into order-preserving maps and
vice versa. Moreover, the topology T is T0 (Kolmogorov) if and only if the preorder
≤T is a partial order.

The correspondence resulting from Theorem 3.8 provides a method to translate
concepts and problems between topology and order theory in finite spaces. In partic-
ular, closed sets are translated to down sets in this correspondence and we have the
following straightforward proposition.

Proposition 3.9 Let (X , T ) be a finite topological space. Then, for A ⊂ X we have

clT A = {x ∈ X | ∃a∈A x ≤T a},
opnT A = {x ∈ X | ∃a∈A x ≥T a},
intT A = {a ∈ A | ∀x∈X x ≥T a ⇒ x ∈ A}.
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In other words, clT A is the minimal down set with respect to ≤T containing A,
opnT A is the minimal upper set with respect to ≤T containing A and intT A is the
maximal upper set with respect to ≤T contained in A.

One can easily verify the following proposition.

Proposition 3.10 ([Lipiński 2021, Proposition 1.4.10]) Assume X is a T0 finite topo-
logical space and A ⊂ X. Then A is locally closed if and only if A is convex with
respect to ≤T .

3.5 Lefschetz complexes

We say that (X , κ) is a Lefschetz complex (see [Lefschetz 1942, Chapter III, Sect. 1,
Definition 1.1]) if X = (Xq)q∈Z+ is a finite set with gradation, κ : X × X → R is a
map with values in a ring with unity such that κ(x, y) �= 0 implies both the inclusion
x ∈ Xq and y ∈ Xq−1, and for any x, z ∈ X we have

∑

y∈X
κ(x, y)κ(y, z) = 0. (3)

One easily verifies that by condition (3) we have a free chain complex (R(X), ∂κ)

with ∂κ : R(X) → R(X) defined on generators by ∂κ(x) := ∑
y∈X κ(x, y)y. The

Lefschetz homology of (X , κ), denoted Hκ(X), is the homology of this chain complex.
Note that the elements of X maybe identifiedwith a basis of R(X). Vice versa, every

fixed basis of a finitely generated chain complex constitutes a Lefschetz complex.
Given x, y ∈ X we say that y is a facet of x if κ(x, y) �= 0. It is easily seen

that the facet relation extends uniquely to a minimal partial order. Via the Alexandrov
Theorem (Alexandrov 1937), this partial order makes every Lefschetz complex a finite
topological space.

3.6 Homology in finite topological spaces

In the sequel we need a homology theory in finite topological spaces. Singular homol-
ogy (Munkres 1984) is well defined for any topological space, in particular for a finite
topological space. McCord’s Theorem (McCord 1966) states that every finite topolog-
ical space is weakly homotopy equivalent to the associated order complex K(X), that
is, an abstract simplicial complex consisting of subsets of X linearly ordered by the
partial order associated with the topology via the Alexandrov Theorem (Theorem 3.8).
This is convenient for computational purposes.

For Lefschetz complexes, apart from singular homology we also have the notion
of Lefschetz homology. As we already mentioned in Sect. 2.1 the singular homology
and Lefschetz homology of a Lefschetz complex need not be the same. Nevertheless,
they both satisfy the following theorem which summarizes the features of homology
we need in this paper.
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Theorem 3.11 Let (X , T ) be a finite topological space, and for a closed subset A ⊂ X
let H(X , A) denote the singular homology of the pair (X , A). Then the following
properties hold.

(i) If A, B,C, D are closed subsets of X such that B ⊂ A, D ⊂ C and A\B = C\D,
then H(A, B) ∼= H(C, D).

(ii) If B ⊂ A ⊂ X are closed, then the inclusions induce the exact sequence

. . . → Hn(A, B) → Hn(X , B) → Hn(X , A) → Hn−1(A, B) → . . . .

(iii) If Y0 ⊂ X0 ⊂ X and Y1 ⊂ X1 ⊂ X are closed in X then there is an inclusion
induced exact sequence

. . . → Hn(X0 ∩ X1,Y0 ∩ Y1) → Hn(X0,Y0) ⊕ Hn(X1,Y1) →
Hn(X0 ∪ X1,Y0 ∪ Y1) → Hn−1(X0 ∩ X1,Y0 ∩ Y1) . . . .

Moreover, if X is a Lefschetz complex, then properties (i), (ii), (iii) above also hold
with singular homology replaced by Lefschetz homology.

Proof In the case of a Lefschetz complex and Lefschetz homology all three properties
are easy exercises in homological algebra. Property (ii) for singular homology is stan-
dard [Munkres 1984, Theorem30.2]. Property (i) follows from the excision property of
simplicial homology [Munkres 1984, Theorem 9.1] via McCord’s Theorem (McCord
1966) (compare Lipiński 2021). Similarly, property (iii) for singular homology can
be established in the same way from the relative simplicial Mayer-Vietoris sequence
[Munkres 1984, Chapter 25 Ex.2]. ��

In the sequel we fix a homology theory which satisfies properties (i)-(iii) of Theo-
rem 3.11. This may be singular homology in the case of an arbitrary finite topological
space or the Lefschetz homology in the case of a Lefschetz complex. Clearly, both
Lefschetz homology and singular homology for finite spaces are finitely generated. In
consequence, for a locally closed A ⊂ X the Poincaré formal power series

pA(t) :=
∞∑

i=0

βi (A)t i (4)

with βi (A) := rank Hi (cl A,mo A) denoting i th Betti number, is well defined and a
polynomial.

4 Dynamics of combinatorial multivector fields

In this section we introduce and study the main concepts of combinatorial topological
dynamics studied in this paper: isolated invariant sets of combinatorial multivector
fields.
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4.1 Multivalued dynamical systems in finite spaces

By a combinatorial dynamical system or briefly, a dynamical system in a finite space
X we mean a multivalued map � : X × Z

+ � X such that

�(�(x,m), n) = �(x,m + n) for all m, n ∈ Z
+, x ∈ X . (5)

Let � be a combinatorial dynamical system. Consider the multivalued map �n :
X � X given by �n(x) := �(x, n). We call �1 the generator of the dynamical
system �. It follows from (5) that the combinatorial dynamical system � is uniquely
determined by its generator. Thus, it is natural to identify a combinatorial dynamical
system with its generator. In particular, we consider any multivalued map� : X � X
as a combinatorial dynamical system � : X × Z

+ � X defined recursively by

�(x, 1) := �(x),

�(x, n + 1) := �(�(x, n)),

as well as �(x, 0) := x . We call it the combinatorial dynamical system induced by a
map �. In particular, the inverse �−1 of � also induces a combinatorial dynamical
system. We call it the dual dynamical system.

4.2 Solutions and paths

By aZ-interval wemean a set of the formZ∩ I where I is an interval inR. AZ-interval
is left bounded if it has a minimum; otherwise it is left-infinite. It is right bounded if it
has a maximum; otherwise it is right-infinite. It is bounded if it has both a minimum
and a maximum. It is unbounded if it is not bounded.

A solution of a combinatorial dynamical system � : X � X in A ⊂ X is a
partial map ϕ : Z � A whose domain, denoted dom ϕ, is a Z-interval and for any
i, i +1 ∈ dom ϕ the inclusion ϕ(i +1) ∈ �(ϕ(i)) holds. The solution passes through
x ∈ X if x = ϕ(i) for some i ∈ dom ϕ. The solution ϕ is full if dom ϕ = Z. It
is a backward solution if dom ϕ is left-infinite. It is a forward solution if dom ϕ is
right-infinite. It is a partial solution or simply a path if dom ϕ is bounded.

A full solution ϕ : Z → X is periodic if there exists a T ∈ N such that ϕ(t + T ) =
ϕ(t) for all t ∈ Z. Note that every closed path may be extended to a periodic solution.

If the maximum of dom ϕ exists, we call the value of ϕ at this maximum the right
endpoint of ϕ. If the minimum of dom ϕ exists, we call the value of ϕ at this minimum
the left endpoint of ϕ. We denote the left and right endpoints of ϕ, respectively, by ϕ�
and ϕ�.

By a shift of a solution ϕ we mean the composition ϕ ◦ τn , where the map τn : Z �
m �→ m + n ∈ Z is translation. Given two solutions ϕ and ψ such that ψ� and ϕ�
exist and ψ� ∈ �(ϕ�), there is a unique shift τn such that ϕ ∪ (ψ ◦ τn) is a solution.
We call this union of paths the concatenation of ϕ andψ and we denote it by ϕ ·ψ . We
also identify each x ∈ X with the trivial solution ϕ : {0} → {x}. For a full solution
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ϕ we denote the restrictions ϕ|Z+ by ϕ+ and ϕ|Z− by ϕ−. We finish this section with
the following straightforward proposition.

Proposition 4.1 If ϕ : Z → X is a full solution of a dynamical system � : X � X,
then Z � t → ϕ(−t) ∈ X is a solution of the dual dynamical system induced by �−1.
We call it the dual solution and denote it ϕop.

4.3 Combinatorial multivector fields

Combinatorial multivector fields on Lefschetz complexes were introduced in [Mrozek
2017, Definition 5.10]. In this paper, we generalize this definition as follows. Let
(X , T ) be a finite topological space. By a combinatorial multivector in X we mean
a locally closed and non-empty subset of X . We define a combinatorial multivector
field as a partition V of X into multivectors. Therefore, unlike (Mrozek 2017), we do
not assume that a multivector has a unique maximal element with respect to≤T . Such
an assumption was introduced in Mrozek (2017) for technical reasons but it is very
inconvenient in applications. As an example wemention the following straightforward
proposition which is not true in the setting of Mrozek (2017).

Proposition 4.2 Assume V is a combinatorial multivector field on a finite topological
space X and Y ⊂ X is a locally closed subspace. Then

VY := { V ∩ Y | V ∈ V, V ∩ Y �= ∅ }

is a multivector field in Y . We call it the multivector field induced by V . ��
We say that a multivector V is critical if the relative homology H(cl V ,mo V ) is

non-zero. A multivector V which is not critical is called regular. For each x ∈ X we
denote by [x]V the unique multivector in V which contains x . If the multivector field
V is clear from the context, we write briefly [x] := [x]V .

We say that x ∈ X is critical (respectively regular) with respect to V if [x]V is
critical (respectively regular). We say that a subset A ⊂ X is V-compatible if for each
x ∈ X either [x]V ∩ A = ∅ or [x]V ⊂ A. Note that every V-compatible set A ⊂ X
induces a well-defined multivector field VA := {V ∈ V | V ⊂ A} on A. The next
proposition follows immediately from the definition of a V-compatible set.

Proposition 4.3 The union and the intersection of a family of V-compatible sets is
V-compatible.

We associate with everymultivector fieldV a combinatorial dynamical system on X
induced by the multivalued map �V : X � X given by

�V (x) := [x]V ∪ cl x . (6)

The following proposition is straightforward.

Proposition 4.4 Let V be a multivector field on X. Then

�V (x) = [x]V ∪ mo x .
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Fig. 7 An example of a combinatorial multivector field V = {{A,C,G}, {D}, {H}, {E, I , J }, {B, F}} on a
finite topological space consisting of ten points. There are two regularmultivectors, {A,C,G} and {E, I , J },
the others are critical. Both the nodes and the connecting edges of each multivector are highlighted with a
different color

One can also easily prove the following proposition.

Proposition 4.5 ([Lipiński 2021, Proposition 4.1.5]) Let V be a combinatorial multi-
vector field on (X , T ). If A ⊂ X, then

�−1
V (A) =

⋃

x∈A

[x]V ∪ opn x .

Note that by Proposition 3.6 a multivector in a finite topological space X is also
a multivector in Xop , that is, in the space X with the opposite topology. Thus, a
multivector fieldV in X is also amultivector field in Xop . However, the twomultivector
fields cannot be considered the same, because the change in topology implies the
change of the location of critical and regular multivectors (see Fig. 8). We indicate
this in notation by writing Vop for the multivector field V considered with the opposite
topology.

The multivector field Vop induces a combinatorial dynamical system �Vop :
Xop � Xop given by �Vop (x) := [x]V ∪ clT op x . As an immediate consequence of
Proposition 3.2 and Proposition 4.5 we get following result.

Proposition 4.6 The combinatorial dynamical system�
op
V is dual to the combinatorial

dynamical system �V , that is, we have �
op
V = �−1

V .

4.4 Essential solutions

Given a multivector field V on a finite topological space X by a solution (full solution,
forward solution, backward solution, partial solution or path) of V we mean a corre-
sponding solution type of the combinatorial dynamical system �V . Given a solution
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Fig. 8 An example of a finite topological space X and Xop consisting of four points and with the same
partition into multivectorsV = {{A}, {B}, {C}, {D}}. In X multivectors {B}, {C} and {D} are critical, while
in Xop only {A} is critical

ϕ of V we denote by V(ϕ) the set of multivectors V ∈ V such that V ∩ im ϕ �= ∅. We
denote the set of all paths of V in a set A by PathV (A) and define

PathV (x, A) := {ϕ ∈ PathV (A) | ϕ(0) = x},
PathV (x, y, A) := {ϕ ∈ PathV (A) | ϕ� = x and ϕ� = y}.

We denote the set of full solutions of V in A (respectively backward or forward solu-
tions in A) by SolV (A) (respectively Sol−V (A), Sol+V (A)).We alsowrite SolV (x, A) :=
{ϕ ∈ SolV (A) | ϕ(0) = x}. Observe that by (6) x ∈ �V (x) for every x ∈ X . Hence,
a constant map from an interval to a point is always a solution. This means that every
solution can easily be extended to a full solution. In consequence, every point is recur-
rent which is not typical. To remedy this we introduce the concept of an essential
solution.

A full solution ϕ : Z → X is left-essential (respectively right-essential) if for
every regular x ∈ im ϕ the set { t ∈ Z | ϕ(t) /∈ [x]V } is left-infinite (respectively
right-infinite). We say that ϕ is essential if it is both left- and right-essential. We say
that a point x ∈ X is essentially recurrent if an essential periodic solution passes
through x . Note that a periodic solution ϕ is essential either if #V(ϕ) ≥ 2 or if the
unique multivector in V(ϕ) is critical.

We denote the set of all essential solutions in A ⊂ X (respectively left- or right-
essential solutions in A) by eSolV (A) (respectively eSol+V (A), eSol−V (A)) and the set
of all essential solutions in a set A ⊂ X passing through a point x by eSolV (x, A) :=
{ϕ ∈ eSol(A) | ϕ(0) = x} and we define the invariant part of A ⊂ X by

InvV A := {x ∈ A | eSol(x, A) �= ∅} . (7)

In particular, if InvV A = A then we say that A is an invariant set for V . We drop the
subscript V in SolV , eSolV and InvV whenever V is clear from the context.
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Proposition 4.7 Let A, B ⊂ X be invariant sets. Then A ∪ B is also an invariant set.

Proof Let x ∈ A. By the definition of an invariant set there exists an essential solution
ϕ ∈ eSol(x, A). It is clear thatϕ is also an essential solution in A∪B. Thus eSol(x, A∪
B) �= ∅. The same holds for B. Hence Inv(A ∪ B) = A ∪ B. ��

4.5 Isolated invariant sets

In this subsection we introduce the combinatorial counterpart of the concept of an
isolated invariant set. In order to emphasize the difference, we say that an isolated
invariant set is isolated by an isolating set, not by an isolating neighborhood. In com-
parison to the classical theory of dynamical systems, the crucial difference is that
we cannot guarantee the existence of disjoint isolating sets for two disjoint isolated
invariant sets. This is caused by the tightness of the finite topological space.

Definition 4.8 A closed set N isolates an invariant set S ⊂ N , if the following two
conditions hold:

(a) Every path in N with endpoints in S is a path in S,
(b) �V (S) ⊂ N .

In this case, we also say that N is an isolating set for S. An invariant set S is isolated
if there exists a closed set N meeting the above conditions.

An important example is given by the following straightforward proposition.

Proposition 4.9 The whole space X isolates its invariant part Inv X. In particular,
Inv X is an isolated invariant set. ��
Proposition 4.10 If S ⊂ X is an isolated invariant set, then S is V-compatible.

Proof Suppose the contrary. Then there exists an x ∈ S and a y ∈ [x]V \ S. Let N
be an isolating set for S. It follows from Definition 4.8(b), that y ∈ �V (x) ⊂ N . It is
also clear that x ∈ �V (y). Thus the path x · y · x is a path in N with endpoints in S,
but it is not contained in S, and this in turn contradicts Definition 4.8(a). ��

The finiteness of the space allows us to construct the smallest possible isolating set.
More precisely, we have the following straightforward proposition.

Proposition 4.11 Let N be an isolating set for an isolated invariant set S. If M is a
closed set such that S ⊂ M ⊂ N, then S is also isolated by M. In particular, cl S is
the smallest isolating set for S. ��
Proposition 4.12 Let S ⊂ X. If S is an isolated invariant set, then S is locally closed.

Proof By Proposition 4.11 the set N := cl S is an isolating set for S. Assume that S
is not locally closed. By Proposition 3.10 there exist x, z ∈ S and a y /∈ S such that
x ≤T y ≤T z. Hence, it follows from Theorem 3.8 that x ∈ clT y and y ∈ clT z.
In particular, x, y, z ∈ cl S. It follows that ϕ := z · y · x is a solution in cl S with
endpoints in S. In consequence, y ∈ S, a contradiction. ��
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In particular, it follows from Proposition 4.12 that if S is an isolated invariant set,
then we have the induced multivector field VS on X .

Proposition 4.13 Let S be a locally closed, V-compatible invariant set. Then S is an
isolated invariant set.

Proof Assume that S is a V-compatible and locally closed invariant set. We will show
that N := cl S isolates S. We have

�V (S) =
⋃

x∈S
cl x ∪

⋃

x∈S
[x]V = cl S ∪ S = cl S ⊂ N .

Therefore condition (b) of Definition 4.8 is satisfied.
We will now show that every path in N with endpoints in S is a path in S. Let

ϕ := x0 · x1 · ... · xn be a path in N with endpoints in S. Thus, x0, xn ∈ S. Suppose that
there is an i ∈ {0, 1, ..., n} such that xi /∈ S. Without loss of generality wemay assume
that i is maximal such that xi /∈ S. Then xi+1 �= xi and i < n, because xn ∈ S. We
have xi+1 ∈ �V (xi ) = [xi ]V ∪ cl xi . Since xi /∈ S, xi+1 ∈ S and S is V-compatible,
we cannot have xi+1 ∈ [xi ]V . Therefore, xi+1 ∈ cl xi . Since ϕ is a path in N = cl S,
we have xi ∈ cl S. Hence, xi ∈ cl z for a z ∈ S. It follows from Proposition 3.10 that
xi ∈ S, because xi+1, z ∈ S, xi+1 ∈ cl xi , xi ∈ cl z and S is locally closed. Thus,
we get a contradiction proving that also condition (a) of Definition 4.8 is satisfied. In
consequence, N isolates S and S is an isolated invariant set. ��

4.6 Multivector field as a digraph

LetV be amultivector field in X .Wedenote byGV themultivaluedmap�V interpreted
as a digraph.

Proposition 4.14 Assume A ⊂ X is strongly connected in GV . Then the following
conditions are pairwise equivalent.

(i) There exists an essentially recurrent point x in A, that is, there exists an essential
periodic solution in A through x,

(ii) A is non-empty and every point in A is essentially recurrent in A,
(iii) Inv A �= ∅.

Proof Assume (i). Then A �= ∅. Let x ∈ A be an essentially recurrent point in A and
let y ∈ A be arbitrary. Since A is strongly connected, we can find a periodic solution
ϕ in A passing through x and y. If #V(ϕ) ≥ 2, then ϕ is essential and y is essentially
recurrent in A. Otherwise [x]V = [y]V andwemay easilymodify the essential periodic
solution in A through x to an essential periodic solution in A through y. This proves
(ii). Implication (ii)⇒(iii) is straightforward. To prove that (iii) implies (i) assume that
ϕ is an essential solution in A, If #V(ϕ) = 1, then the unique multivector V ∈ V(ϕ)

is critical and every x ∈ V ⊂ A is essentially recurrent in A. Otherwise we can find
points x, y ∈ A such that [x]V �= [y]V . Since A is strongly connected, we can find
paths ψ1 ∈ PathV (x, y, A) and ψ2 ∈ PathV (y, x, A). Then ψ1 · ψ2 extends to an
essential periodic solution in A through x proving that x ∈ A is essentially recurrent
in A. ��
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The above result considered the situation of a strongly connected set in GV . If in
addition we assume that this set is maximal, that is, a strongly connected component
in GV , we obtain the following result.

Proposition 4.15 Let V be a multivector field on X and let GV be the associated
digraph. If C ⊂ X is a strongly connected component of GV , then C is V-compatible
and locally closed.

Proof Let x ∈ C and y ∈ [x]V . It is clear that x · y ∈ PathV (x, y, X) and y · x ∈
PathV (y, x, X). Hence C is V-compatible.

Let x, z ∈ C , y ∈ X be such that x ≤T y ≤T z. Since C is strongly connected we
can find a path ρ from x to z. Clearly, by Proposition 3.9 and (6) we have y ∈ �V (z)
and x ∈ �V (y). Thus y · ρ ∈ PathV (y, z, X) and z · y ∈ PathV (z, y, X). It follows
that y ∈ C . Hence, C is convex and, by Proposition 3.10, C is locally closed. ��

The following theorem shows that some isolated invariant sets of combinatorial
multivector fields may be characterized in purely graph-theoretic terms. However, it is
not difficult to give examples of isolated invariant sets which cannot be characterized
this way (see [25]).

Theorem 4.16 Let V be a multivector field on X and let GV be the associated digraph.
If C ⊂ X is a strongly connected component of GV such that eSol(C) �= ∅, then C
is an isolated invariant set.

Proof According to Proposition 4.13 it suffices to prove that C is a V-compatible,
locally closed invariant set. It follows from Proposition 4.15 that C is V-compatible
and locally closed. Thus, we only need to show that C is invariant. Since InvC ⊂ C ,
we only need to prove that C ⊂ InvC . Let y ∈ C . Since eSol(C) �= ∅, we may take
an x ∈ C and a ϕ ∈ eSol(x,C). SinceC is strongly connected we can find paths ρ and
ρ′ in C from x to y and from y to x respectively. Then the solution ϕ− ·ρ ·ρ′ ·ϕ+ is a
well-defined essential solution through y in C . Thus, eSol(y,C) �= ∅, which proves
that we have y ∈ InvC . ��

5 Index pairs and Conley index

In this section we construct the Conley index of an isolated invariant set of a combi-
natorial multivector field. As in the classical case we define index pairs, prove their
existence and prove that the homology of an index pair depends only on the isolated
invariant set and not on the choice of index pair.

5.1 Index pairs and their properties

Definition 5.1 Let S be an isolated invariant set. A pair P = (P1, P2) of closed subsets
of X such that P2 ⊂ P1, is called an index pair for S if

(IP1) x ∈ P2, y ∈ �V (x) ∩ P1 ⇒ y ∈ P2 (positive invariance),
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Fig. 9 DigraphGV for amultivector field fromFig. 7. Black edges are induced by closure relation, while the
red bi-directional edges represent connections within a multivector. For clarity, we omit the edges that can
be obtained by the between-level transitivity (e.g., from A toG). Nodes that are part of a critical multivector
are additionally bolded in red

(IP2) x ∈ P1, �V (x) \ P1 �= ∅ ⇒ x ∈ P2 (exit set),
(IP3) S = Inv(P1 \ P2) (invariant part).

An index pair P is said to be saturated if S = P1 \ P2.

Proposition 5.2 Let P be an index pair for an isolated invariant set S. Then P1 isolates
S.

Proof According to our assumptions, the set P1 is closed, and we clearly have S =
Inv(P1 \ P2) ⊂ P1 \ P2 ⊂ P1. Thus, it only remains to be shown that conditions (a)
and (b) in Definition 4.8 are satisfied.

Suppose there exists a path ψ := x0 · x1 · . . . · xn in P1 such that x0, xn ∈ S and
xi ∈ P1 \ S for some i ∈ {1, 2, . . . , n − 1}. First, we will show that imψ ⊂ P1 \ P2.
To this end, suppose the contrary. Then, there exists an i ∈ {1, 2, . . . , n− 1} such that
xi ∈ P2 and xi+1 ∈ P1 \ P2. Since ψ is a path we have xi+1 ∈ �V (xi ). But, (IP1)
implies xi+1 ∈ P2, a contradiction.

Since S is invariant and x0, xn ∈ S, we may take a ϕ0 ∈ eSol(x0, S) and a ϕn ∈
eSol(xn, S). The solution ϕ−

0 · ψ · ϕ+
n is an essential solution in P1 \ P2 through xi .

Thus, xi ∈ Inv(P1 \ P2) = S, a contradiction. This proves that every path in P1 with
endpoints in S is contained in S, and therefore Definition 4.8(a) is satisfied.

In order to verify (b), let x ∈ S be arbitrary. We have already seen that then
x ∈ P1 \ P2 ⊂ P1. Now suppose that �V (x) \ P1 �= ∅. Then (IP2) implies x ∈ P2,
which contradicts x ∈ P1 \ P2. Therefore, we necessarily have �V (x) \ P1 = ∅, that
is, �V (x) ⊂ P1, which immediately implies (b). Hence, P1 isolates S. ��

One can easily see from the above proof that in Definition 5.1 one does not have to
assume that S is an isolated invariant set. In fact, the proof of Proposition 5.2 implies
that any invariant set which admits an index pair is automatically an isolated invariant
set. Furthermore, the following result shows that every isolated invariant set S does
indeed admit at least one index pair.
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Fig. 10 Schematic depiction of the two cases of a set A(P, Q)

Proposition 5.3 Let S be an isolated invariant set. Then (cl S,mo S) is a saturated
index pair for S.

Proof To prove (IP1) assume that x ∈ mo S and y ∈ �V (x) ∩ cl S. Since S is V-
compatible we have [x]V ∩ S = ∅. Therefore, [x]V ∩cl S ⊂ cl S \ S = mo S. Clearly,
due to Propositions 3.3 and 4.12, cl x ⊂ mo S ⊂ cl S. Hence,

y ∈ �V (x) ∩ cl S = ([x]V ∪ cl x) ∩ cl S = ([x]V ∩ cl S) ∪ (cl x ∩ cl S) ⊂ mo S.

To see (IP2) note that by Proposition 4.10 the set S is V-compatible and

�V (S) =
⋃

x∈S
cl x ∪ [x]V =

⋃

x∈S
cl x ∪ S = cl S.

Thus, if x ∈ S, then�V (x)\cl S = ∅. Therefore,�V (x)\cl S �= ∅ for x ∈ P1 = cl S
implies x ∈ cl S \ S = mo S.

Finally, directly from the definition of mouth we have cl S \ mo S = S, which
proves (IP3), as well as the fact that (cl S,mo S) is saturated. ��

We write P ⊂ Q for index pairs P , Q meaning Pi ⊂ Qi for i = 1, 2. We say that
index pairs P , Q of S are semi-equal if P ⊂ Q and either P1 = Q1 or P2 = Q2. For
semi-equal pairs P , Q, we let

A(P, Q) :=
{
Q1 \ P1 if P2 = Q2,

Q2 \ P2 if P1 = Q1.

Proposition 5.4 Let P and Q be semi-equal index pairs for S. Then there is no essential
solution in the set A(P, Q).

Proof First note that the definition of A(P, Q) implies either

A(P, Q) = Q1 \ P1 ⊂ Q1 \ P2 = Q1 \ Q2 and A(P, Q) ∩ (P1 \ P2) = ∅,

or

A(P, Q) = Q2 \ P2 ⊂ Q1 \ P2 = P1 \ P2 and A(P, Q) ∩ (Q1 \ Q2) = ∅.
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Therefore, by (IP3) and the first inclusions in the above two statements we get
Inv A(P, Q) ⊂ S. Yet, the second identities above clearly show that A(P, Q) is
disjoint from S. Thus, Inv A(P, Q) = ∅, and by the definition of the invariant part
(see (7)) there is no essential solution in A(P, Q). ��
Lemma 5.5 Assume S is an isolated invariant set. Let P and Q be saturated index
pairs for S.

Then H(P1, P2) ∼= H(Q1, Q2).

Proof By the definition of a saturated index pair Q1 \ Q2 = S = P1 \ P2. Hence,
using Theorem 3.11(i) we get H(P1, P2) ∼= H(Q1, Q2). ��
Proposition 5.6 Assume S is an isolated invariant set. Let P be an index pair for S.
Then the set P1 \ P2 is V-compatible and locally closed.

Proof Assume that P1 \ P2 is not V-compatible. This means that for some x ∈ P1 \ P2
there exists a y ∈ [x]V \ (P1 \ P2). Then y ∈ P2 or y /∈ P1. Consider the case
y ∈ P2. Since [x]V = [y]V , we have x ∈ �V (y). It follows from (IP1) that x ∈ P2,
a contradiction. Consider now the case y /∈ P1. Then from (IP2) one obtains x ∈ P2,
which is again a contradiction. Together, these cases imply that P1\P2 isV-compatible.

Finally, the local closedness of P1 \ P2 follows immediately from Proposition
3.3(iii). ��
Proposition 5.7 Assume S is an isolated invariant set. Let P ⊂ Q be semi-equal index
pairs for S. Then A(P, Q) is V-compatible and locally closed.

Proof First note that our assumptions give P2, Q2 ⊂ P1 and P2, Q2 ⊂ Q1. If P2 =
Q2, then

A(P, Q) = Q1 \ P1 = (Q1 \ P2) \ (P1 \ P2) = (Q1 \ Q2) \ (P1 \ P2).

If P1 = Q1, then

A(P, Q) = Q2 \ P2 = Q2 ∩ Pc
2 = (P1 ∩ Pc

2 ) ∩ Q2

= (P1 ∩ Pc
2 ) ∩ (Q1 ∩ Qc

2)
c = (P1 \ P2) \ (Q1 \ Q2),

where the superscript c denotes the set complement in X . Thus, by Proposition 5.6,
in both cases, A(P, Q) may be represented as a difference of V-compatible sets.
Therefore, it is also V-compatible.

The local closedness of A(P, Q) follows from Proposition 3.3. ��
Lemma 5.8 Let A be a V-compatible, locally closed subset of X such that there is no
essential solution in A. Then H(cl A,mo A) = 0.

Proof Let A := {V ∈ V | V ⊂ A}. Since A is V-compatible, we have A = ⋃
A. Let

�A denote the transitive closure of the relation �A in A given for V ,W ∈ A by

V �A W ⇔ V ∩ clW �= ∅. (8)
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We claim that �A is a partial order in A. Clearly, �A is reflective and transitive.
Hence, we only need to prove that �A is antisymmetric. To verify this, suppose the
contrary. Then there exists a cycle Vn �A Vn−1 �A · · · �A V0 = Vn with n > 1 and
Vi �= Vj for i �= j and i, j ∈ {1, 2, . . . n}. Since Vi ∩ cl Vi−1 �= ∅ we can choose
vi ∈ Vi ∩ cl Vi−1 and v′

i−1 ∈ Vi−1 such that vi ∈ cl v′
i−1. Then vi ∈ �V (v′

i−1) and
v′
i−1 ∈ �V (vi−1). Thus, we can construct an essential solution

. . . · v′
n · v1 · v′

1 · v2 · v′
2 · . . . · v′

n−1 · vn · v′
n · v1 · . . . .

This contradicts our assumption and proves that �A is a partial order.
Moreover, since a constant solution in a critical multivector is essential, all multi-

vectors in A have to be regular. Thus,

H(cl V ,mo V ) = 0 for every V ∈ A. (9)

Since �A is a partial order, we may assume that A = {Vi }mi=1 where the numbering
of Vi extends the partial order �A to a linear order ≤A, that is,

V1 ≤A V2 ≤A · · · ≤A Vm .

We claim that

i < j ⇒ cl Vi \ Vj = cl Vi . (10)

Indeed, if this is not satisfied, then Vj ∩ cl Vi �= ∅ which, by the definition (8) of
�A gives Vj �A Vi as well as Vj �A Vi , and therefore j ≤ i , a contradiction. For
k ∈ {0, 1, . . .m} define set Wk := ⋃k

j=1 Vj . Then W0 = ∅ and Wm = A. Now fix a
k ∈ {0, 1, . . .m}. Observe that by (10) we have

clWk \ A =
k⋃

j=1

cl Vj \
m⋃

j=1

Vj =
k⋃

j=1

cl Vj \
k⋃

j=1

Vj = clWk \ Wk = moWk .

Therefore,

moWk = clWk \ A ⊂ cl A \ A = mo A.

It follows thatWk ∪mo A = clWk ∪mo A. Hence, the set Zk := Wk ∪mo A is closed.
For k > 0 we have

Zk \ Zk−1 = Wk \ Wk−1 \ mo A = Vk ∩ A = Vk = cl Vk \ mo Vk .

Hence, we get from Theorem 3.11(i) and (9)

H(Zk, Zk−1) = H(cl Vk,mo Vk) = 0.
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Now it follows from the exact sequence of the triple (Zk−1, Zk, cl A) that

H(cl A, Zk) ∼= H(cl A, Zk−1).

Note that Z0 = W0 ∪ mo A = mo A and Zm = Wm ∪ mo A = A ∪ mo A = cl A.
Therefore, we finally obtain

H(cl A,mo A) = H(cl A, Z0) ∼= H(cl A, Zm) = H(cl A, cl A) = 0,

which completes the proof of the lemma. ��

Lemma 5.9 Let P ⊂ Q be semi-equal index pairs of an isolated invariant set S. If
P1 = Q1, then H(Q2, P2) = 0, and analogously, if P2 = Q2, then H(Q1, P1) = 0.

Proof By Theorem 5.7 the set A(P, Q) is locally closed and V-compatible. Hence,
the conclusion follows from Proposition 5.4 and Lemma 5.8. ��

Lemma 5.10 Let P ⊂ Q be semi-equal index pairs of an isolated invariant set S.
Then H(P1, P2) ∼= H(Q1, Q2).

Proof Assume P2 = Q2. We get from Lemma 5.9 that H(Q1, P1) = 0. Using Theo-
rem 3.11(ii) for the triple P2 ⊂ P1 ⊂ Q1 then implies

H(P1, P2) ∼= H(Q1, P2) = H(Q1, Q2).

Similarly, if P1 = Q1 we consider the triple P2 ⊂ Q2 ⊂ Q1 and obtain

H(P1, P2) = H(Q1, P2) ∼= H(Q1, Q2).

��

In order to show that two arbitrary index pairs carry the same homological informa-
tion, we need to construct auxiliary, intermediate index pairs. To this end, we define
the push-forward and the pull-back of a set A in B.

π+
V (A, B) := {x ∈ B | ∃ϕ∈PathV (B) ϕ� ∈ A, ϕ� = x}, (11)

π−
V (A, B) := {x ∈ B | ∃ϕ∈PathV (B) ϕ� = x, ϕ� ∈ A} (12)

Proposition 5.11 Let A ⊂ X then π+
V (A, X) (π−

V (A, X)) is closed (open) and V-
compatible.

Proof Let x ∈ π+
V (A, X) be arbitrary. Then there exists a point a ∈ A and a ϕ ∈

PathV (a, x, X). For any y ∈ [x]V the concatenationϕ·y is also a path. Thus,π+
V (A, X)

is V-compatible.
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To show closedness, take an x ∈ π+
V (A, X) and y ∈ cl x . By (11) there exists an

a ∈ A and a ϕ ∈ PathV (a, x, X). Then the path ϕ · y is a path from A to y, implying
that y ∈ π+

V (A, X). Since X is finite one obtains

clπ+
V (A, X) =

⋃

x∈�+
V (A,X)

cl x = π+
V (A, X),

and therefore π+
V (A, X) is closed. The proof for π−

V (A, X) is symmetric. ��

Let P be an index pair for S. Define the set P̂ ⊂ P1 of all points x ∈ P1 for which
there exists no path in P1 which starts in x and ends in S, that is,

P̂ := {x ∈ P1 | π+
V (x, P1) ∩ S = ∅}. (13)

Proposition 5.12 If P is an index pair for an isolated invariant set S, then S∩ P̂ = ∅

and P2 ⊂ P̂.

Proof The first assertion is obvious. In order to see the second take an x ∈ P2 and
suppose that x /∈ P̂ . This means that there exists a path ϕ in P1 such that ϕ� = x and
ϕ� ∈ S. The condition (IP1) of Definition 5.1 implies im ϕ ∈ P2. Therefore, ϕ� ∈ P2
and P2 ∩ S �= ∅ which contradicts S ⊂ P1 \ P2. ��
Proposition 5.13 If P is an index pair for an isolated invariant set S, thenmo S ⊂ P̂.
Moreover, �V (S) ⊂ S ∪ P̂.

Proof To prove that mo S ⊂ P̂ assume the contrary. Then there exists an x ∈ mo S,
such that π+

V (x, P1) ∩ S �= ∅. It follows that there exists a path ϕ in P1 from x to S.
Since x ∈ mo S ⊂ cl S, we can take a y ∈ S such that x ∈ cl y ⊂ �V (y). It follows that
ψ := y ·ϕ is a path in P1 through x with endpoints in S. Since, by Proposition 5.2, P1
isolates S, we get x ∈ S, a contradiction. Finally, by V-compatibility of S guaranteed
by Proposition 4.10, we have the inclusion �V (S) = cl S ⊂ S ∪ mo S ∪ P̂ = S ∪ P̂ ,
which proves the remaining assertion. ��
Proposition 5.14 Let P be an index pair for an isolated invariant set S. Then the sets
P̂ and P̂ ∪ S are closed.

Proof Let x ∈ P̂ and let y ∈ cl x . Then y ∈ �V (x). Moreover, y ∈ P1, because
P1 is closed. Clearly, if ϕ ∈ PathV (y, P1), then x · ϕ ∈ PathV (x, P1). Therefore
π+
V (y, P1) ⊂ π+

V (x, P1). Since, by (13), the latter set is disjoint from S, so is the

former one. Therefore, y ∈ P̂ . It follows that P̂ is closed.
Proposition 5.13 implies that cl(S ∪ P̂) = cl S ∪ P̂ = S ∪ mo S ∪ P̂ = S ∪ P̂ ,

which proves the closedness of S ∪ P̂ . ��
Lemma 5.15 If P is an index pair for an isolated invariant set S, then P∗ := (S ∪
P̂, P2) is an index pair for S and P∗∗ := (S ∪ P̂, P̂) is a saturated index pair for S.
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Proof First consider P∗. By Proposition 5.14 set P∗
1 = S∪ P̂ is closed. By Proposition

5.12 we have P2 ⊂ P̂ ⊂ S ∪ P̂ .
Let x ∈ P∗

2 = P2 and let y ∈ �V (x) ∩ P∗
1 . Then y ∈ �V (x) ∩ P1. It follows from

(IP1) for P that y ∈ P2. Thus, (IP1) is satisfied for P∗.
Now, let x ∈ P∗

1 = S ∪ P̂ and suppose that there is a y ∈ �V (x) \ P∗
1 �= ∅. We

have x /∈ S, because otherwise �V (x) ⊂ mo S ∪ S = cl S ⊂ cl(S ∪ P̂) and then
Proposition 5.14 implies �V (x) ⊂ S ∪ P̂ ⊂ P∗

1 which contradicts �V (x) \ P∗
1 �= ∅.

Hence, x ∈ P̂ . We have y /∈ P1 because otherwise y ∈ π+
V (x, P1) ⊂ P̂ ⊂ P∗

1 , a
contradiction. Thus �V (x) \ P1 �= ∅. Since x ∈ P∗

1 ⊂ P1, by (IP2) for P we get
x ∈ P2 = P∗

2 . This proves (IP2) for P
∗.

Clearly, P∗
1 \ P∗

2 = P∗
1 \ P2 ⊂ P1 \ P2, and therefore we have the inclusion

Inv
(
P∗
1 \ P∗

2

) ⊂ Inv (P1 \ P2) = S. To verify the opposite inclusion, let x ∈ S be
arbitrary. Since S is an invariant set, there exists an essential solution ϕ ∈ eSol(x, S).
We have im ϕ ⊂ S ⊂ (P̂ ∪ S) \ P2 = P∗

1 \ P∗
2 , because P2 ∩ S = ∅. Consequently,

x ∈ Inv(P∗
1 \ P∗

2 ) and S = Inv(P∗
1 \ P∗

2 ). Hence, P∗ also satisfies (IP3), which
completes the proof that P∗ is an index pair for S.

Consider now the second pair P∗∗. Let x ∈ P∗∗
2 = P̂ be arbitrary and choose y ∈

�V (x)∩ P∗∗
1 = �V (x)∩(P̂∪S). Since x ∈ P̂ we get from (13) that�V (x)∩S = ∅.

Thus, y ∈ �V (x) ∩ P̂ ⊂ P̂ = P∗∗
2 . This proves (IP1) for the pair P∗∗.

To see (IP2) take an x ∈ P∗∗
1 = P̂ ∪ S and assume �V (x) \ P∗∗

1 �= ∅. We
cannot have x ∈ S, because then �V (x) ⊂ �V (S) and Proposition 5.13 implies
�V (x) ⊂ S ∪ P̂ = P∗∗

1 , a contradiction. Hence, x ∈ P̂ = P∗∗
2 which proves (IP2)

for P∗∗.
Finally, we clearly have S ∩ P̂ = ∅. Therefore, (S ∪ P̂) \ P̂ = S and

Inv(P∗∗
1 \ P∗∗

2 ) = Inv((S ∪ P̂) \ P̂) = Inv S = S.

This proves that P∗∗ satisfies (IP3) and that it is saturated. ��

Theorem 5.16 Let P and Q be two index pairs for an invariant set S. Then
H(P1, P2) ∼= H(Q1, Q2).

Proof It follows from Lemma 5.15 that P∗ ⊂ P as well as P∗ ⊂ P∗∗ are semi-equal
index pairs. Hence, we get from Lemma 5.10 that

H(P1, P2) ∼= H(P∗
1 , P∗

2 ) ∼= H(P∗∗
1 , P∗∗

2 ).

Similarly, one obtains

H(Q1, Q2) ∼= H(Q∗
1, Q

∗
2)

∼= H(Q∗∗
1 , Q∗∗

2 ).

Since both pairs P∗∗ and Q∗∗ are saturated, it follows from Lemma 5.5 that
H(P∗∗

1 , P∗∗
2 ) ∼= H(Q∗∗

1 , Q∗∗
2 ). Therefore, H(P1, P2) ∼= H(Q1, Q2). ��
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5.2 Conley index

We define the homology Conley index of an isolated invariant set S as H(P1, P2)
where (P1, P2) is an index pair for S. We denote the homology Conley index of S by
Con(S). Proposition 5.3 and Theorem 5.16 guarantee that the homology Conley index
is well-defined.

Given a locally closed set A ⊂ X we define its i th Betti number βi (A) and Poincaré
polynomial pA(t), respectively, as the i th Betti number and the Poincaré polynomial
of the pair (cl A,mo A), that is, βi (A) := βi (cl A,mo A) and pA(t) := pcl A,mo A(t)
(see (4)).

The theorem used in the following Proposition originally comes from Rybakowski
and Zehnder (1985), but we use its more general version that was stated in Mrozek
(2017).

Proposition 5.17 If (P1, P2) is an index pair for an isolated invariant set S, then

pS(t) + pP2(t) = pP1(t) + (1 + t)q(t), (14)

where q(t) is a polynomial with non-negative coefficients. Moreover, if

H(P1) = H(P2) ⊕ H(cl S,mo S)

then q(t) = 0.

Proof An index pair (P1, P2) induces a long exact sequence of homology modules

. . . → Hn(P2) → Hn(P1) → Hn(P1, P2) → Hn−1(P2) → . . . . (15)

By Proposition 5.3 and Theorem 5.16 we have H(P1, P2) ∼= H(cl S,mo S). Thus, we
can replace (15) with

. . . → Hn(P2) → Hn(P1) → Hn(cl S,mo S) → Hn−1(P2) → . . . .

In view of [Mrozek 2017, Theorem 4.6] we further get

pS(t) + pP2(t) = pP1(t) + (1 + t)q(t).

for some polynomial q with non-negative coefficients. The second assertion follows
directly from the second part of [Mrozek 2017, Theorem 4.6] (see also Rybakowski
and Zehnder 1985). ��

We say that an isolated invariant set S decomposes into the isolated invariant sets
S′ and S′′ if cl S′ ∩ S′′ = ∅, S′ ∩ cl S′′ = ∅, as well as S = S′ ∪ S′′.

Proposition 5.18 Assume an isolated invariant set S decomposes into the isolated
invariant sets S′ and S′′. Then Sol(S) = Sol(S′) ∪ Sol(S′′).
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Proof The inclusion Sol(S′) ∪ Sol(S′′) ⊂ Sol(S) is trivial. To see the opposite inclu-
sion, let ϕ ∈ Sol(S). We have to prove that im ϕ ⊂ S′ or im ϕ ⊂ S′′. If this were
not the case, then without loss of generality we can assume that there exists a j ∈ Z

such that both ϕ( j) ∈ S′ and ϕ( j + 1) ∈ S′′ are satisfied. This immediately implies
ϕ( j + 1) ∈ cl ϕ( j) ∪ [ϕ( j)]V . We have ϕ( j + 1) /∈ [ϕ( j)]V , because otherwise the
V-compatibility of S′ (see Propostition 4.10) implies ϕ( j + 1) ∈ S′ and, in conse-
quence, S′ ∩ S′′ �= ∅, a contradiction. Hence, ϕ( j +1) ∈ cl ϕ( j) ⊂ cl S′ which yields
cl S′ ∩ S′′ �= ∅, another contradiction, proving that ϕ ∈ Sol(S′) ∪ Sol(S′′). ��
Theorem 5.19 Assume an isolated invariant set S decomposes into the isolated invari-
ant sets S′ and S′′. Then we have

Con(S) = Con(S′) ⊕ Con(S′′).

Proof In view of Proposition 5.3, the two pairs P = (cl S′,mo S′) and Q =
(cl S′′,mo S′′) are saturated index pairs for S′ and S′′, respectively. Consider the fol-
lowing exact sequence given by Theorem 3.11(iii):

. . . →Hn(P1 ∩ Q1, P2 ∩ Q2) → Hn(P1, P2) ⊕ Hn(Q1, Q2)

→Hn(P1 ∪ Q1, P2 ∪ Q2) → Hn−1(P1 ∩ Q1, P2 ∩ Q2) → . . . .
(16)

Note that S′ ∩ Q2 ⊂ S′ ∩ cl S′′ = ∅ and similarly S′′ ∩ P2 = ∅. Since both P and Q
are saturated and S′ ∩ S′′ = ∅ we get

P1 ∩ Q1 = (S′ ∪ P2) ∩ (S′′ ∪ Q2)

= (S′ ∩ S′′) ∪ (S′ ∩ Q2) ∪ (P2 ∩ S′′) ∪ (P2 ∩ Q2) = P2 ∩ Q2.

Thus, H(P1∩Q1, P2∩Q2) = 0, which together with the exact sequence (16) implies

H∗(P1 ∪ Q1, P2 ∪ Q2) ∼= H∗(P1, P2) ⊕ H∗(Q1, Q2). (17)

Notice further that S′ ∩ cl S′′ = ∅ implies S′ \ Q2 = S′. Similarly S′′ \ P2 = S′′.
Therefore, one obtains the identity

(P1 \ P2 \ Q2) ∪ (Q1 \ Q2 \ P2) = (S′ \ Q2) ∪ (S′′ \ P2) = S′ ∪ S′′ = S.

Hence, by Theorem 3.11(i),

H(cl S,mo S) ∼= H(P1 ∪ Q1, P2 ∪ Q2). (18)

Finally, from (17) and (18) we get

Con(S) = H(cl S,mo S) ∼= H(P1 ∪ Q1, P2 ∪ Q2)

∼= H(P1, P2) ⊕ H(Q1, Q2) = Con(S′) ⊕ Con(S′′),

which completes the proof of the theorem. ��

123



Conley-Morse-Forman theory for generalized combinatorial… 171

6 Attractors, repellers and limit sets

In the rest of the paper we assume that the finite topological space X is invariant with
respect to a given combinatorial multivector field V on X . We need the invariance
assumption to guarantee the existence of an essential solution through every point
in X . This assumption is not very restrictive, because if X is not invariant, then we
can replace the space X by its invariant part Inv X and the multivector field V by its
restriction VInv X (see Propositions 4.2 and 4.9).

6.1 Attractors, repellers and indecomposable sets

We say that an invariant set A ⊂ X is an attractor if �V (A) = A. In addition, an
invariant set R ⊂ X is a repeller if �−1

V (R) = R.
The following proposition shows that we can also express the concepts of attractor

and repeller in terms of push-forward and pull-back.

Proposition 6.1 Let A be an invariant set. Then A is an attractor (a repeller) in X if
and only if π+

V (A, X) = A (π−
V (A, X) = A).

Proof Let A be an attractor. The inclusion S ⊂ π+
V (S, X) is true for an arbitrary set.

Suppose that there exists a y ∈ π+
V (A, X)\ A. Then by (11) we can find an x ∈ A and

ϕ ∈ PathV (x, y, X). This implies that there exists a k ∈ Z such that ϕ(k) ∈ A and
ϕ(k + 1) /∈ A. But ϕ(k + 1) ∈ �V (ϕ(k)) ⊂ �V (A) = A, a contradiction. Therefore,
π+
V (A, X) = A.
Now assume that π+

V (A, X) = A. Again, by (11), we get A = π+
V (A, X) =

�V (π+
V (A, X)) = �V (A).

The proof for a repeller is analogous. ��
Theorem 6.2 The following conditions are equivalent:

(1) A is an attractor,
(2) A is closed, V-compatible, and invariant,
(3) A is a closed isolated invariant set.

Proof Let A be an attractor. It follows immediately from Propositions 6.1 and 5.11
that condition (1) implies condition (2).

Moreover, Proposition 4.13 shows that (2) implies (3). Finally, suppose that (3)
holds. By Proposition 4.10 set A is V-compatible. It is also closed. Therefore, we
have

�V (A) =
⋃

x∈A

cl x ∪ [x]V =
⋃

x∈A

cl x ∪
⋃

x∈A

[x]V = cl A ∪ A = A,

which proves that A is an attractor. ��
Theorem 6.3 The following conditions are equivalent:

(1) R is a repeller,
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(2) R is open, V-compatible, and invariant,
(3) R is an open isolated invariant set.

Proof Assume R is a repeller. It follows from Propositions 6.1 and 5.11 that condition
(1) implies condition (2), and Proposition 4.13 shows that (2) implies (3). Finally,
assume that condition (3) holds. Then R is V-compatible by Proposition 4.10. The
openness of R and Proposition 4.5 imply

�−1
V (R) =

⋃

x∈R

opn x ∪ [x]V =
⋃

x∈R

opn x ∪
⋃

x∈R

[x]V = R,

which proves that R is a repeller. ��
Let ϕ be a full solution in X . We define the ultimate backward and forward image

of ϕ respectively by

uim− ϕ :=
⋂

t∈Z−
ϕ ((−∞, t]) ,

uim+ ϕ :=
⋂

t∈Z+
ϕ ([t,+∞)) .

Note that in a finite space a descending sequence of sets eventually must become
constant. Therefore, we get the following result.

Proposition 6.4 There exists a k ∈ N such that uim− ϕ = ϕ((−∞,−k]) and
uim+ ϕ = ϕ([k,+∞)). In particular, the sets uim− ϕ and uim+ ϕ are always non-
empty.

Proposition 6.5 If ϕ is a left-essential (a right-essential) solution, then we can find an
essential solution ψ such that imψ ⊂ uim− ϕ (imψ ⊂ uim+ ϕ).

Proof We only consider the case of a right-essential solution ϕ. By Proposition 6.4
there exists a k ∈ Z such that uim+ ϕ = ϕ([k,+∞)). We consider two cases. If
uim+ ϕ passes through a critical multivector, then we can easily build a stationary
essential solution. In the second case, we have at least two different multivectors
V ,W ∈ V such that V ∩ uim+ ϕ �= ∅ �= W ∩ uim+ ϕ. Then there exist t, s, u ∈ Z

with k < t < s < u and ϕ(t) ∈ V , ϕ(s) ∈ W , and ϕ(u) ∈ V . But then the
concatenation · · · · ϕ([t, u]) · ϕ([t, u]) · . . . is clearly essential. ��
Definition 6.6 Wesay that a non-empty invariant set A ⊂ X isMorse indecomposable,
or briefly indecomposable, if the only non-empty attractor in A is the entire set A.

Proposition 6.7 Let A ⊂ X be a non-empty invariant set. Then A is indecomposable
if and only if A is a strongly connected set in GV .

Proof Let A be an indecomposable invariant set. Suppose it is not strongly connected.
Then we can find points x, y ∈ A such that PathV (x, y, A) = ∅. Define A′ :=
Invπ+

V (x, A). Clearly, y /∈ A′. We will show that A′ is a non-empty attractor in A.

123



Conley-Morse-Forman theory for generalized combinatorial… 173

Let z ∈ π+
V (x, A). Since A is invariant there existsϕ ∈ eSol+V (z, A). By Proposition

6.5 we can construct an essential solution ψ such that imψ ⊂ uim+ ϕ ⊂ π+
V (x, A).

Thus, A′ is non-empty.
Now suppose that π+

V (A′, A) �= A′. Then there exists an a ∈ π+
V (A′, A) \ A′. It

follows from (11) that for every b ∈ A′ we have PathV (a, b, A) = ∅, since otherwise
we could construct an essential solution through a which lies in π+

V (x, A). Using
exactly the same reasoning as above, one can further show that Inv(π+

V (A′, A)\ A′) �=
∅. But since we clearly have the inclusion Inv(π+

V (A′, A) \ A′) ⊂ Inv(π+
V (x, A)) =

A′, this leads to a contradiction. Thus, Proposition 6.1 shows that the set A′ is indeed
an attractor, which is non-empty and a proper subset of A. Since this contradicts the
minimality of A, we therefore conclude that A is strongly connected.

Now assume conversely that A is strongly connected. It is clear that for any point
x ∈ A we get π+

V (x, A) = A. It follows by Proposition 6.1 that the only non-empty
attractor in A is the entire set A. ��

The duality allows us to adapt the proof of Proposition 6.7 to get the following
proposition.

Proposition 6.8 An invariant set R is an indecomposable invariant set if and only if
the only non-empty repeller in R is the entire set R.

Proposition 6.9 Let S ⊂ X be an indecomposable invariant set and let A ⊂ X be an
attractor (a repeller). If A ∩ S �= ∅ then S ⊂ A.

Proof Let x ∈ A ∩ S and let y ∈ S. There exists ϕ ∈ PathV (x, y, S). Now define
t = min dom ϕ and s = max dom ϕ. Clearly

ϕ(t + 1) ∈ �V (ϕ(t)) = �V (x) ⊂ �V (A) = A.

Now, by induction let k ∈ {t, t + 1, . . . , s − 1} and ϕ(k) ∈ A then

ϕ(k + 1) ∈ �V (ϕ(k)) ⊂ �V (A) = A.

Therefore, y = ϕ(k + 1) ∈ A, and this implies S ⊂ A. ��
For a full solution ϕ in X , define the sets

V−(ϕ) := {
V ∈ V | V ∩ uim− ϕ �= ∅

}
, (19)

V+(ϕ) := {
V ∈ V | V ∩ uim+ ϕ �= ∅

}
. (20)

We refer to amultivectorV ∈ V−(ϕ) (respectivelyV+(ϕ)) as a backward (respectively
forward) ultimate multivector of ϕ. The families V−(ϕ) and V+(ϕ) will be used in
the sequel, in particular in the proof of the following theorem.

Theorem 6.10 Let A ⊂ X be an attractor. Then A� := Inv (X \ A) is a repeller in
X, which is called the dual repeller of A. Conversely, if R is a repeller, then R� :=
Inv (X \ R) is an attractor in X, called the dual attractor of R. Moreover, the dual
repeller (or the dual attractor) is non-empty, unless we have A = X (or R = X).
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Proof We will show that A� is open. Let x ∈ A� and let y ∈ opn x . Then one has
x ∈ cl y by Proposition 3.9. Since A is closed as an attractor (Proposition 6.2), we
immediately get y /∈ A. The invariance of X lets us select a ϕ ∈ eSol(y, X). Then
im ϕ− ∩ A = ∅, because otherwise there exists a t ∈ Z

− such that ϕ(t) ∈ A and
ϕ(t + 1) /∈ A, which gives

ϕ(t + 1) ∈ �V (ϕ(t)) ⊂ �V (A) = A,

a contradiction. Now, let ψ ∈ eSol(x, A�). Clearly, x ∈ cl y ⊂ �V (y). Thus, ϕ− ·
ψ+ ∈ eSol(y, X \ A). It follows that y ∈ Inv(X \ A) = A� which proves that
opn A� ⊂ A�. Therefore, the set A� is open.

Since A is V-compatible, also X \ A is V-compatible. Let x ∈ A� and let y ∈
[x]V . Since x ∈ A� ⊂ X \ A, V-compatibility of X \ A implies y /∈ A. Select a
ϕ ∈ eSol(x, A�) Thus, ϕ− · y ·ϕ+ is a well-defined essential solution in X \ A, that is,
eSol(y, X \ A) �= ∅. It follows that y ∈ Inv(X \ A) = A�. Hence, A� is V-compatible.
Altogether, the set A� is invariant, open and V-compatible. Thus, by Theorem 6.3 it
is a repeller.

Finally, we will show that A� �= ∅ unless A = X . Suppose that X \ A �= ∅, and
let x ∈ X \ A. Since X is invariant, there exists a ϕ ∈ eSol(x, X). As in the first part
of the proof one can show that im ϕ− ∩ A = ∅, that is, we have im ϕ− ⊂ X \ A.
According to Proposition 6.5 there exists an essential solution ψ such that imψ ⊂
uim− ϕ ⊂ im ϕ− ⊂ X \ A, and this immediately implies A� = Inv (X \ A) �= ∅. ��

6.2 Limit sets

We define the V-hull of a set A ⊂ X as the intersection of all V-compatible, locally
closed sets containing A, and denote it by 〈A〉V . As an immediate consequence of
Proposition 3.4 and Proposition 4.3 we get the following result.

Proposition 6.11 For every A ⊂ X its V-hull is V-compatible and locally closed.

We define the α- and ω-limit sets of a full solution ϕ respectively by

α(ϕ) := 〈
uim− ϕ

〉

V ,

ω(ϕ) := 〈
uim+ ϕ

〉

V .

The following proposition is an immediate consequence of Proposition 3.6.

Proposition 6.12 Assume ϕ is a full solution of V and ϕop is the associated dual
solution of Vop. Then α(ϕ) = ω(ϕop) and ω(ϕ) = α(ϕop).

Proposition 6.13 Let ϕ be an essential solution. Then

α(ϕ) =
〈⋃

V−(ϕ)
〉

V

and

ω(ϕ) =
〈⋃

V+(ϕ)
〉

V
.
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Proof Clearly

uim− ϕ ⊂
⋃{

V ∈ V | V ∩ uim− ϕ �= ∅
} =

⋃
V−(ϕ)

and therefore

α(ϕ) = 〈
uim− ϕ

〉

V ⊂
〈⋃

V−(ϕ)
〉

V
.

Now let x ∈ ⋃
V−(ϕ). Then there exists a y ∈ [x]V such that y ∈ uim− ϕ. Then

y ∈ α(ϕ) and, since α(ϕ) is V-compatible, [y]V = [x]V ⊂ α(ϕ). Thus, we have⋃
V−(ϕ) ⊂ α(ϕ). Since α(ϕ) is locally closed and V-compatible, the set α(ϕ) is a

superset of the V-hull of
⋃

αV (ϕ). Hence,

〈⋃
V−(ϕ)

〉

V
⊂ α(ϕ).

The proof for ω(ϕ) is analogous. ��
Lemma 6.14 Assume ϕ : Z → X is a full solution of V and V−(ϕ) (respectively
V+(ϕ)) contains at least two different multivectors. Then for every V ∈ V such that
V ⊂ α(ϕ) (respectively V ⊂ ω(ϕ)) we have

(�V (V ) \ V ) ∩ α(ϕ) �= ∅ (respectively (�V (V ) \ V ) ∩ ω(ϕ) �= ∅) (21)

and
(
�−1

V (V ) \ V
)

∩ α(ϕ) �= ∅ (respectively
(
�−1

V (V ) \ V
)

∩ ω(ϕ) �= ∅). (22)

Proof Assume V ∈ V is such that V ⊂ α(ϕ). This happens if V ∈ V−(ϕ), but might
also happen for some V /∈ V−(ϕ).

Assume first that V ∈ V−(ϕ). Since there are at least two different multivectors
in the set V−(ϕ) there exists a strictly decreasing sequence k : N → Z

− such that
ϕ(kn) ∈ V and ϕ(kn + 1) /∈ V . Since the set {ϕ(kn + 1) | n ∈ N} ⊂ X is finite,
after taking a subsequence, if necessary, we may assume that ϕ(kn + 1) = y /∈ V . Let
W := [y]V . Then W �= V and y ∈ W ∩ uim− ϕ ∩ �V (V ). This implies W ∈ V−(ϕ)

and �V (V ) ∩ W �= ∅.
By Proposition 6.13 we have

∅ �= �V (V ) ∩ W ⊂ (�V (V ) \ V ) ∩ W ⊂ (�V (V ) \ V ) ∩ α(ϕ).

Thus, (21) is satisfied.
Now assume that V /∈ V−(ϕ).
We have �V (V ) = cl V ∪ V = cl V . Suppose that (21) does not hold. Then

∅ = (�V (V ) \ V ) ∩ α(ϕ) = (cl V \ V ) ∩ α(ϕ) = mo V ∩ α(ϕ)
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and therefore

α(ϕ) \ V = (cl α(ϕ) \ moα(ϕ)) \ (V ∪ mo V )

= (cl α(ϕ) \ moα(ϕ)) \ cl V = cl α(ϕ) \ (moα(ϕ) ∪ cl V ) .

By Proposition 3.10 the set α(ϕ) \ V is locally closed as a difference of closed sets.
Clearly, α(ϕ) \ V is V-compatible. This shows that α(ϕ) is not a minimal locally
closed and V-compatible set containing

⋃
V−(ϕ). This contradicts Proposition 6.13.

Hence (21) holds for V ⊂ α(ϕ).
The proof of (21) for V ∈ V+(ϕ) is a straightforward adaptation of the proof for

V ⊂ α(ϕ). To see (22) observe that since ϕop is a full solution of Vop , ω(ϕop ) =
α(ϕ) by Proposition 6.12 and, clearly, V+(ϕop ) = V−(ϕ), we may apply (21) to

Vop , ϕop and ω(ϕop ). Thus, by Proposition 4.6 we get
(
�−1

V (V ) \ V
)

∩ α(ϕ) =
(�Vop (V ) \ V ) ∩ ω(ϕop ) �= ∅, and the claim for ω(ϕ) follows similarly. ��
Theorem 6.15 Let ϕ be an essential solution in X. Then both limit sets α(ϕ) and ω(ϕ)

are non-empty strongly connected isolated invariant sets.

Proof The nonemptiness of α(ϕ) and ω(ϕ) follows from Proposition 6.4.
The sets α(ϕ) and ω(ϕ) are V-compatible and locally closed by Proposition 6.11.

In order to prove that they are isolated invariant sets it suffices to apply Proposition
4.13 as long as we prove that α(ϕ) and ω(ϕ) are also invariant.

We will first prove that α(ϕ) is invariant. Let x ∈ α(ϕ). Suppose that V−(ϕ) is a
singleton. Then by Proposition 6.13, α(ϕ) = [x]V . Since ϕ is essential, this is possible
only if [x]V is critical. It follows that the stationary solution ψ(t) = x is essential.
Hence α(ϕ) is an isolated invariant set.

Assume now that there are at least two different multivectors in V−(ϕ). Then
the assumptions of Lemma 6.14 are satisfied and, as a consequence of (21), for every
x ∈ α(ϕ) there exist a point x ′ ∈ [x]V and a y ∈ α(ϕ) such that y ∈ (

�V (x ′) \ [x]V
)∩

α(ϕ). Hence, we can construct a right-essential solution

x0 · x ′
0 · x1 · x ′

1 · x2 · x ′
2 · . . . ,

where x0 = x , x ′
i ∈ [xi ]V , and xi+1 ∈ (

�V (x ′
i ) \ [xi ]V

)∩α(ϕ). Property (22) provides
a complementary left-essential solution. Concatenation of both solutions gives an
essential solution in α(ϕ). Hence, we proved that α(ϕ) is invariant and consequently
an isolated invariant set.

Finally, we prove that α(ϕ) is strongly connected. To this end consider points x, y ∈
α(ϕ). We will show that then PathV (x, y, α(ϕ)) �= ∅. Using the two abbreviations
Vx := [x]V and Vy := [y]V it is clear that

Vx , Vy ∈ V−(ϕ) ⇒ PathV (x, y, α(ϕ)) �= ∅. (23)

Assume now that Vx ⊂ α(ϕ) \ ⋃
V−(ϕ) and Vy ∈ V−(ϕ). By (23) it is enough to

show that there exists at least one point z ∈ ⋃
V−(ϕ) such that PathV (x, z, α(ϕ)) �= ∅.

Suppose the contrary.
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The set π+
V (Vx , α(ϕ)) is closed and V-compatible in α(ϕ) by Proposition 5.11.

By Proposition 3.5 set A := α(ϕ) \ π+
V (Vx , α(ϕ)) is locally closed. Clearly, it is

V-compatible and contains
⋃

V−(ϕ). Yet this results in a contradiction, because we
have now found a smaller V-hull for

⋃
V−(ϕ).

Now, consider the case when Vx ∈ V−(ϕ) and Vy ⊂ α(ϕ) \ ⋃
V−(ϕ). The set

π+
V (Vx , α(ϕ)) is V-compatible and locally closed by Proposition 5.11. In view of (23)

we have
⋃

V−(ϕ) ⊂ π+
V (Vx , α(ϕ)). Thus, one either has Vy ⊂ π+

V (Vx , α(ϕ)) or
π+
V (Vx , α(ϕ)) is a smaller V-compatible, locally closed set containing

⋃
V−(ϕ). In

both cases we get a contradiction.
Finally, let Vx , Vy ⊂ α(ϕ) \ ⋃

V−(ϕ) and let z ∈ ⋃
V−(ϕ). Using the previous

caseswe canfindψ1 ∈ PathV (x, z, α(ϕ)) andψ2 ∈ PathV (z, y, α(ϕ)). Then,ψ1·ψ2 ∈
PathV (x, y, α(ϕ)). This finishes the proof that α(ϕ) is strongly connected.

The proof for ω(ϕ) is analogous. ��
Let ϕ be an essential solution. We say that an isolated invariant set S absorbs ϕ in

positive (respectively negative) time if ϕ(t) ∈ S for all t ≥ t0 (for all t ≤ t0) for some
t0 ∈ Z. We denote by �(ϕ) (respectively by A(ϕ)) the family of isolated invariant
sets absorbing ϕ in positive (respectively negative) time.

Proposition 6.16 For an essential solution ϕ we have

α(ϕ) =
⋂

A(ϕ), (24)

ω(ϕ) =
⋂

�(ϕ). (25)

Proof Let ϕ be an essential solution. It follows from Proposition 6.4 that there exists
a k ∈ Z

− such that ϕ((−∞, k]) = uim− ϕ ⊂ α(ϕ). Moreover, by Proposition 6.15
we have α(ϕ) ∈ A(ϕ). Hence

⋂
A(ϕ) ⊂ α(ϕ). To see the opposite inclusion take an

S ∈ A(ϕ). Then, there exists a t0 ∈ Z
− such that ϕ((−∞, t0]) ⊂ S. It follows that

α(ϕ) = 〈uim− ϕ〉V ⊂ 〈ϕ((−∞, t0])〉V ⊂ 〈S〉V = S.

Hence, α(ϕ) ⊂ A(ϕ). This proves (24). The proof of (25) is analogous. ��
Let A, B ⊂ X . We define the connection set from A to B by:

C(A, B) := {
x ∈ X | ∃ϕ∈eSol(x,X) α(ϕ) ⊂ A and ω(ϕ) ⊂ B

}
. (26)

Proposition 6.17 Assume A, B ⊂ X. Then the connection set C(A, B) is an isolated
invariant set.

Proof To prove that C(A, B) is invariant, take an x ∈ C(A, B) and choose a ϕ ∈
eSol(x, X) as in (26). It is clear that ϕ(t) ∈ C(A, B) for every t ∈ Z. Thus, ϕ ∈
eSol(x,C(A, B)), and this in turn implies x ∈ InvC(A, B) and shows that C(A, B)

is invariant. Now consider a point y ∈ [x]V . Then the solution ρ = ϕ− · y · ϕ+ is a
well-defined essential solution through y such that α(ρ) ⊂ A and ω(ρ) ⊂ B. Thus,
C(A, B) is V-compatible.
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In order to prove that C(A, B) is locally closed, consider x, z ∈ C(A, B), and a
y ∈ X such that z ≤T y ≤T x . Select essential solutions ϕx ∈ eSol(x,C(A, B)) and
ϕz ∈ eSol(z,C(A, B)). Then ψ := ϕ−

x · y · ϕ+
z is a well-defined essential solution

through y such that α(ψ) ⊂ A and ω(ψ) ⊂ B. It follows that y ∈ C(A, B). Thus,
by Proposition 3.10, C(A, B) is locally closed. Finally, Proposition 4.13 proves that
C(A, B) is an isolated invariant set. ��
Proposition 6.18 Assume A is an attractor. Then C(A, A�) = ∅. Similarly, if R is a
repeller, then C(R�, R) = ∅.

Proof Suppose there exists an x ∈ C(A, A�). Then by (26) we can choose a ϕ ∈
eSol(x, X) and a t ∈ Z such that ϕ(t) ∈ A and ϕ(t + 1) /∈ A. However, since A is an
attractor, ϕ(t) ∈ A implies ϕ(t + 1) ∈ A, a contradiction. The proof for a repeller is
analogous. ��

7 Morse decomposition, Morse equation, Morse inequalities

In this final section we define Morse decompositions and prove the Morse inequali-
ties for combinatorial multivector fields. We recall the general assumption that X is
invariant with respect to a fixed combinatorial multivector field V on X .

7.1 Morse decompositions

Definition 7.1 Assume X is invariant and (P,≤) is a finite poset. Then the collection
M = { Mp | p ∈ P } is called aMorse decomposition of X if the following conditions
are satisfied:

(i) M is a family of mutually disjoint, isolated invariant subsets of X .
(ii) For every essential solution ϕ in X either im ϕ ⊂ Mr for an r ∈ P or there exist

p, q ∈ P such that q > p and

α(ϕ) ⊂ Mq and ω(ϕ) ⊂ Mp.

We refer to the elements of M as Morse sets.

Note that in the classical definition of Morse decomposition the analogue of con-
dition (ii) is formulated in terms of trajectories passing through points x /∈ ⋃

M. In
our setting we have to consider all possible solutions. There are two reasons for that:
the non-uniqueness of a solution passing through a point and the tightness of finite
topological spaces. In particular, in the finite topological space setting it is possible to
have a non-trivial Morse decomposition such that every point is contained in a Morse
set. Without our modification of the definition of Morse decomposition, recurrent
behavior spreading into several sets is a distinct possibility. Figure 11 illustrates such
an example.

Proposition 7.2 Let X be an invariant set, let A ⊂ X be an attractor, and let A�

denote its non-empty dual repeller. Furthermore, define M1 := A, M2 := A�, and let
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Fig. 11 A sample combinatorial multivector field V = {{A, D, F,G}, {B,C, E, H}} on the finite topolog-
ical space X = {A, B,C, D, E, F,G, H}with Alexandroff topology induced by the partial order indicated
by arrows. If we considerM = V , then one obtains a partition into isolated invariant sets with X \M = ∅.
Note that . . . D · H · B · F · D · . . . is a periodic trajectory which passes through both “Morse sets”

P := {1, 2} be an indexing set with the order induced from N. Then M = {M1, M2}
is a Morse decomposition of X.

Proof By Theorems 6.2 and 6.3 both A and A� are isolated invariant sets which are
clearly disjoint. Let x ∈ X and let ϕ ∈ eSolV (x, X). By Theorem 6.15 the set ω(ϕ)

is strongly connected and invariant. It is also indecomposable by Proposition 6.7. By
Proposition 6.9 it is either a subset of A or a subset of Inv(X \ A) = A�. The same
holds for α(ϕ).

We therefore have four cases. The situation α(ϕ) ⊂ M2 and ω(ϕ) ⊂ M1 is consis-
tent with the definition. The case α(ϕ) ⊂ M1 and ω(ϕ) ⊂ M2 is clearly in conflict
with the definition of an attractor and a repeller. Now suppose that we have α(ϕ) ⊂ M1
and ω(ϕ) ⊂ M1. It follows that there exists a t ∈ Z such that ϕ((−∞, t])) ⊂ A. Since
A is an attractor we therefore have ϕ(t + 1) ∈ �V (ϕ(t)) ⊂ A, and induction easily
implies im ϕ ⊂ A = M1. The same argument holds for M2. ��

7.2 Strongly connected components as Morse decomposition

We recall that GV stands for the digraph interpretation of the multivalued map �V
associated with the multivector field V on X .

Theorem 7.3 Assume X is invariant. Consider the familyM of all strongly connected
components M of GV with eSol(M) �= ∅. ThenM is a minimal Morse decomposition
of X.

Proof For convenience, assume that M = {Mi | i ∈ P} is bijectively indexed by a
finite set P. Any two strongly connected components Mi , Mj ∈ M are clearly disjoint
and by Theorem 4.16 they are isolated invariant sets. Hence, condition (i) of a Morse
decomposition is satisfied.

Define a relation ≤ on the indexing set P by

i ≤ j ⇔ ∃ϕ∈PathV (X) ϕ� ∈ Mj and ϕ� ∈ Mi .
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It is clear that ≤ is reflexive. To see that it is transitive consider Mi , Mj , Mk ∈ M
such that k ≤ j ≤ i . It follows that there exist paths ϕ and ψ such that ϕ� ∈ Mi ,
ϕ�, ψ� ∈ Mj and ψ� ∈ Mk . Since Mj is strongly connected we can find ρ ∈
PathV (ϕ�, ψ�, X). The path ϕ · ρ · ψ clearly connects Mi with Mk proving that
k ≤ i .

In order to show that≤ is antisymmetric consider setsMi , Mj with i ≤ j and j ≤ i .
It follows that there exist paths ϕ and ψ such that ϕ�, ψ� ∈ Mi and ϕ�, ψ� ∈ Mj .
Since the sets Mi , Mj are strongly connected we can find paths ρ and ρ′ from ϕ� to
ψ� and from ψ� to ϕ� respectively. Clearly, ϕ ∈ PathV (ϕ�, ϕ�, X) and ρ ·ψ ·ρ′ ∈
(ϕ�, ϕ�, X). This proves thatMi andMj are the same strongly connected component.

Let x ∈ X and let ϕ ∈ eSol(x, X). We will prove that α(ϕ) ⊂ Mq and ω(ϕ) ⊂ Mp

for some Mp, Mq ∈ M. Note that ϕ−1(V ) is right-infinite for any V ∈ V+(ϕ).
It follows that for any V ,W ∈ V+(ϕ) we can find 0 < t0 < t1 < t2 such that
ϕ(t0), ϕ(t2) ∈ V and ϕ(t1) ∈ W . Thus, points in

⋃
V+(ϕ) are in the same strongly

connected component and therefore
⋃

ωV (ϕ) ⊂ C for some strongly path connected
component of GV . Moreover, . . . ·ϕ|[t0,t2] ·ϕ|[t0,t2] · . . . is clearly an essential solution
in C . Thus C = Mp ∈ M for some p ∈ P. By Proposition 4.15 the set Mp is V-
compatible and locally closed. Hence, Mp is a superset of the V-hull of

⋃
V+(ϕ) and

from Proposition 6.13 we get ω(ϕ) ⊂ Mp. A similar argument gives α(ϕ) ⊂ Mq for
some q ∈ P. It is clear from the definition of ≤ that p ≤ q.

Next, we show that α(ϕ) ⊂ M ∈ M and ω(ϕ) ⊂ M implies im ϕ ⊂ M . Thus,
take a y ∈ im ϕ. Then y = ϕ(t1) for some t1 ∈ Z. Since α(ϕ) and ω(ϕ) are subsets of
M , we can find t0 < t1 and t2 > t1, such that x := ϕ(t0) ∈ M and z := ϕ(t2) ∈ M .
Since M is strongly connected there exists a path ρ from z to x . Then ϕ|[t1,t2] · ρ ∈
PathV (y, x, X). Since ϕ|[t0,t1] ∈ PathV (x, y, X), we conclude that y belongs to the
strongly connected component of x , that is, y ∈ M . This completes the proof thatM
is a Morse decomposition.

To show thatM is a minimal Morse decomposition assume the contrary. Then we
can find a Morse decomposition M′ of an M ∈ M with at least two different Morse
sets M1 and M2 in M′. Since M1 and M2 are disjoint and V-compatible we can find
disjoint multivectors V1 ⊂ M1 and V2 ⊂ M2. Since the setM is strongly connectedwe
can find paths ϕ ∈ PathV (x, y, M) and ρ ∈ PathV (y, x, M) with x ∈ V1 and y ∈ V2.
The alternating concatenation of these pathsψ := . . . ·ϕ ·ρ ·ϕ ·ρ . . . is a well-defined
essential solution. Then ∅ �= imψ ⊂ α(ψ)∩ω(ψ) which implies imψ ⊂ M3 for an
M3 ∈ M′. However, imψ ∩ M1 �= ∅ �= imψ ∩ M2, a contradiction. ��

7.3 Morse sets

For a subset I ⊂ P we define the Morse set of I by

M(I ) :=
⋃

i, j∈I
C(Mi , Mj ).

Theorem 7.4 The set M(I ) is an isolated invariant set.
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Proof Observe that M(I ) is invariant, because, by Proposition 6.17, every connection
set is invariant, and by Proposition 4.7 the union of invariant sets is invariant. We
will prove that M(I ) is locally closed. To see that, suppose the contrary. Then, by
Proposition 3.10, we can choose a, c ∈ M(I ) and a point b /∈ M(I ) such that c ≤T
b ≤T a. There exist essential solutions ϕa ∈ eSol(a, X) and ϕc ∈ eSol(c, X) such
that α(ϕa) ⊂ Mq and ω(ϕc) ⊂ Mp for some p, q ∈ I . It follows thatψ := ϕ−

a ·b ·ϕ+
c

is a well-defined essential solution such that α(ψ) ⊂ Mq and ω(ψ) ⊂ Mp. Hence,
b ∈ C(Mq , Mp) ⊂ M(I ) which proves that M(I ) is locally closed. Moreover, M(I )
is V-compatible as a union of V-compatible sets. Thus, the conclusion follows from
Proposition 4.13. ��
Theorem 7.5 If I is a down set in P, then M(I ) is an attractor in X.

Proof We will show that M(I ) is closed. For this, let x ∈ cl(M(I )). By Proposition
3.7 we can choose a y ∈ M(I ) such that x ∈ cl y. Consider essential solutions
ϕx ∈ eSol(x, X) and ϕy ∈ eSol(y, M(I )) with α(ϕy) ⊂ Mi for some i ∈ I . The
concatenated solution ϕ := ϕ−

y · ϕ+
x is well-defined and satisfies α(ϕ) ⊂ Mi and

ω(ϕ) ⊂ Mj for some j ∈ P. Definition 7.1 implies that i > j . Since I is a down
set, we get j ∈ I . It follows that x ∈ C(Mi , Mj ) ⊂ M(I ). Thus, clM(I ) ⊂ M(I ),
which proves that M(I ) is closed. Finally, Theorem 6.2 implies that the set M(I ) is
an attractor. ��
Theorem 7.6 If I ⊂ P is convex, then (M(I≤), M(I<)) is an index pair for the isolated
invariant set M(I ).

Proof By Proposition 3.1 the sets I≤ and I< are down sets. Thus, by Theorem 7.5
both M(I≤) and M(I<) are attractors. It follows that �V (M(I≤)) ⊂ M(I≤) and
�V (M(I<)) ⊂ M(I<). Therefore, conditions (IP1) and (IP2) of an index pair are
satisfied.

Let A := M(I≤) \ M(I<). The set A is V-compatible as a difference of V-
compatible sets.ByProposition3.3 it is also locally closed, becauseM(I≤) andM(I<)

are closed as attractors (see Theorems 6.2 and 6.3). We claim that M(I ) ⊂ A. To see
this, assume the contrary and select an x ∈ M(I ) \ A. By the definition of M(I ) we
can find an essential solution ϕ through x such thatω(ϕ) ⊂ Mp for some p ∈ I . Since
M(I ) ⊂ M(I≤) and x /∈ A we get x ∈ M(I<). But M(I<) is an attractor. Therefore
ω(ϕ) ⊂ M(I<), which in turn implies p /∈ I , a contradiction.

To prove the opposite inclusion take an x ∈ Inv(M(I≤) \ M(I<)). Then we can
find an essential solution ϕ ∈ eSol(x, M(I≤) \ M(I<)), and clearly one has im ϕ ⊂
M(I≤) \ M(I<). In particular,

uim− ϕ ∩ M(I<) = ∅ and uim+ ϕ ∩ M(I<) = ∅. (27)

We also have ϕ ∈ eSol(x, M(I≤)), which means that there exist p, q ∈ I≤ such that
p ≥ q, α(ϕ) ⊂ Mp, ω(ϕ) ⊂ Mq . We cannot have p ∈ I<, because then we get ∅ �=
uim− ϕ ⊂ α(ϕ) ⊂ Mp ⊂ M(I<)which contradicts (27). Therefore, p ∈ I≤\I< = I .
By an analogous argument we get q ∈ I . It follows that x ∈ C(Mp, Mq) ⊂ M(I ). ��
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Since for a down set I ⊂ Pwe have I≤ = I , I< = ∅, as an immediate consequence
of Theorem 7.6 we get the following corollary.

Corollary 7.7 If I is a down set in P, then I≤ = I , I< = ∅, (M(I ), ∅) is an index
pair for M(I ).

Theorem 7.8 Assume X is invariant, A ⊂ X is an attractor and A� is its dual repeller.
Then we have

pA(t) + pA� (t) = pX (t) + (1 + t)q(t) (28)

for a polynomial q(t) with non-negative coefficients. Moreover, if q �= 0, then
C(A�, A) �= ∅.

Proof Let P := {1, 2} with order induced from N, M1 := A and M2 := A�. Then
M := {M1, M2} is a Morse decomposition of X by Proposition 7.2. For I := {2} one
obtains I≤ = {1, 2} and I< = {1}. Yet, this immediately implies both M(I≤) = X
and M(I<) = M({1}) = A.

We have

pX (t) = pM(I≤)(t) and pA(t) = pM(I<)(t). (29)

By Theorem 7.6 the pair (M(I≤), M(I<)) is an index pair for M(I ) = A�. Thus, by
substituting P1 := M(I≤), P2 := M(I<), S := A� into (14) in Corollary 5.17 we get
(28) from (29). By Proposition 6.18 we have the identity C(A, A�) = ∅. Therefore,
if in addition C(A�, A) = ∅, then X decomposes into A and A�, and Theorem 5.19
implies

H(P1) = Con(X) = Con(A) ⊕ Con(A�) = H(P2) ⊕ H(A�),

as well as q = 0 in view of Proposition 5.17. This finally shows that q �= 0 implies
C(A�, A) �= ∅. ��

7.4 Morse equation andMorse inequalities

The following two theorems follow from the results of the preceding section by adapt-
ing the proofs of the corresponding results in Mrozek (2017).

Theorem 7.9 Assume X is invariant and P = {1, 2, ..., n} is ordered by the linear
order of the natural numbers. Let M := {Mp | p ∈ P} be a Morse decomposition of
X and set Ai := M({i}≤), A0 := ∅. Then (Ai−1, Mi ) is an attractor-repeller pair in
Ai . Moreover,

n∑

i=1

pMi (t) = pX (t) + (1 + t)
n∑

i=1

qi (t)

for some polynomials qi (t) with non-negative coefficients and such that qi (t) �= 0
implies C(Mi , Ai−1) �= ∅ for i = 2, 3, ..., n.
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As before, for a locally closed set A ⊂ X we define its kth Betti number by
βk(A) := rank Hk(cl A,mo A).

Theorem 7.10 Assume X is invariant. For a Morse decomposition M of X define

mk(M) :=
∑

r∈P
βk(Mr ).

Then for any k ∈ Z
+ we have the following inequalities.

(i) The strong Morse inequalities:

mk(M) − mk−1(M) + ... ± m0(M) ≥ βk(X) − βk−1(X) + ... ± β0(X),

(ii) The weak Morse inequalities:

mk(M) ≥ βk(X).
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