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Abstract
When a category C satisfies certain conditions, we define the notion of rank invariant
for arbitrary poset-indexed functors F : P → C from a category theory perspec-
tive. This generalizes the standard notion of rank invariant as well as Patel’s recent
extension. Specifically, the barcode of any interval decomposable persistence mod-
ules F : P → vec of finite dimensional vector spaces can be extracted from the rank
invariant by the principle of inclusion-exclusion. Generalizing this idea allows free-
dom of choosing the indexing poset P of F : P → C in defining Patel’s generalized
persistence diagram of F . Of particular importance is the fact that the generalized
persistence diagram of F is defined regardless of whether F is interval decomposable
or not. By specializing our idea to zigzag persistence modules, we also show that the
zeroth level set barcode of aReeb graph can be obtained in a purely set-theoretic setting
without passing to the category of vector spaces. This leads to a promotion of Patel’s
semicontinuity theorem about type A persistence diagram to Lipschitz continuity
theorem for the category of sets.
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1 Introduction

The notion of persistence diagramofCohen-Steiner et al. (2007)was recently extended
by Patel to the setting of constructible persistence modules F : R → C where C is
an essentially small, symmetric monoidal category with images (Patel 2018). In a
nutshell, the persistence diagram of F : R → C is obtained via Möbius inversion of
the map sending each pair s ≤ t in R to the image of the morphism F(s ≤ t) in C .
This map can be regarded as a generalization of both the rank invariant (Carlsson and
Zomorodian 2009) and the persistent homology group (Cohen-Steiner et al. 2007).

In this paper we further generalize the notions of rank invariant and persistence
diagram to the setting of locally finite poset-indexed functors F : P → C , where,
besides being symmetric, monoidal, essentially small and having images, the target
categoryC is assumed to be bicomplete (see Convention 2.3 for another admissible set
of assumptions about C ). A motivation for considering such level of generality is, as
suggested by Patel, the possibility of studying torsion in data, e.g. persistent homology
groups with integer coefficients. Specifically, we identify an explicit formula for the
generalized persistence diagram of F in terms of the generalized rank invariant of
F that we will define. We in particular prove that, given an interval decomposable
diagramof vector spaces, its rank invariant and its persistence diagramcanbe translated
into each other, and either of them contains enough information to reconstruct the
diagram up to isomorphism.

One consequence of our framework is a novel method for computing the zeroth
level set barcode of a Reeb graph (Sect. 4). This method is obtained by re-interpreting
the barcode of a zigzag module (Carlsson et al. 2009) as the generalized persistence
diagram. Furthermore, since the generalized persistence diagram is defined even for
zigzag modules valued in categories other than the category of vector spaces, our
framework has significant potential to be exploited in the theoretical and algorithmic
study on zigzag persistence (Botnan 2017; Botnan and Lesnick 2018; Carlsson and
De Silva 2010; Carlsson et al. 2019; Curry and Patel 2020; Elchesen and Mémoli
2019; Milosavljević et al. 2011; Oudot and Sheehy 2015), and also in its applica-
tions to mobile sensor networks, image processing, analysis of time-varying metric
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Generalized persistence diagrams for persistence modules… 535

spaces/graphs (Adams andCarlsson 2015; Corcoran and Jones 2016; Kim andMémoli
2017, 2018a; Mata et al. 2015), etc.

1.1 Our contributions

By P denote any connected, locally finite poset (Definitions 2.5 and 2.14), and by C
denote any symmetric monoidal, essentially small, bicomplete category with images
(see Convention 2.3 for another admissible set of assumptions about C ).

(i) We generalize the notion of rank invariant to functors P → C (i.e. generalized
persistence modules (Bubenik and Scott 2014)). In particular, our construction
generalizes Patel’s rank function (Patel 2018): see Definition 3.5 and Exam-
ple 3.6 (i). For any zigzag diagram of vector spaces, we show that our construction
of the rank invariant is not only more faithful than the one introduced by Puuska
(2020), but also becomes a complete invariant: see Example 3.6 (ii), Theorem 3.14,
Remark 3.15, and Appendix C.

In the sequel, we assume that the poset P is connected and essentially finite—a
condition which is slightly stronger condition than being locally-finiteness; cf. Def-
inition 3.10. Also, let vec be the category of finite-dimensional vector spaces over a
fixed field F.

(ii) We extend the notion of generalized persistence diagram by Patel (2018) to arbi-
trary functors P → C . In particular, for any interval decomposable persistence
module F : P → vec, the persistence diagram/barcode of F can be extracted
from the rank invariant by the principle of inclusion-exclusion in combinatorics
(Theorem 3.14). This implies that our construction of rank invariant is complete
invariant for interval decomposable persistence modules. Also, as a by-product,
we obtain a novel necessary condition for the interval decomposability of persis-
tence modules P → vec: See Remark 3.16 and Example 3.20.

(iii) It is well known that a Reeb graph can be seen as a zigzag persistence in the
category of sets (Curry and Patel 2020; De Silva et al. 2016). In this respect, we
show that the 0-th level set barcode of a Reeb graph can be computed in a purely
set-theoretic setting without passing to the category of vector spaces (Sect. 4).
As a corollary, we partially promote the semicontinuity theorem by Patel to a
Lipschitz continuity theorem (Corollary 4.16) and this continuity theorem further
extends to a certain class of Reeb graphs (Theorem 4.21). These results indicate
that the semicontinuity theorem by Patel is open to further improvement.

1.2 Key ideas: Möbius inversion and a categorical view of the rank invariant

This section aims at highlighting the main ideas of this paper, without discussing
technical details. Specifically, we briefly overview how to generalize the notions of
rank invariant and persistence diagram to the setting of finite poset-indexed diagrams;
strictly speaking, we do not actually require the indexing poset to be finite, but locally
finite (for defining the rank invariant) or essentially finite (for defining the persistence
diagram; Definition 3.10).
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Let P be a finite and connected poset (Definition 2.5). Consider a diagram F : P →
C whereC is a symmetric monoidal, bicomplete category with images (all these terms
are defined in Sect. 2.1). By combining the limit cone of F and the colimit cocone of
F , one obtains the canonical limit-to-colimit map φF : lim←− F → lim−→ F .

Let Con(P) be the collection of all subposets I of P such that the restriction of
the Hasse diagram of P to I is a connected graph (Definition 2.16). For I ∈ Con(P),
we consider the restricted diagram F |I : I → C and define im(F |I ) to be the image
of the canonical map φF |I : lim←− F |I → lim−→ F |I . Let I (C ) denote the collection of
all isomorphism classes of C . Now, as a generalization of the rank invariant (a.k.a.
rank function) in Carlsson and Zomorodian (2009), McCleary and Patel (2020), Patel
(2018), we define the rank invariant of F as the function

rk(F) : Con(P) → I (C ),

which sends I ∈ Con(P) to the isomorphism class of im(F |I ). By the assumptions on
C , the codomainI (C ) is a symmetric monoid.1 LetA (C ) be the group completion
ofI (C ), known as the Grothendieck group of C . We define the persistence diagram
of F as theMöbius inversion of rk(F), which amounts to a functionCon(P) → A (C )

(Definition 3.13). These notions of rank invariant and persistence diagram general-
ize those appearing in Botnan and Lesnick (2018), Carlsson et al. (2009); Carlsson
and Zomorodian (2009), Cohen-Steiner et al. (2007), Patel (2018), Zomorodian and
Carlsson (2005).

When restricted to the case when C = vec, related ideas have been or are cur-
rently being explored by several researchers: Botnan, Oppermann and Steen have
been studying the rank of φF for counting “thin” summands in the indecomposable
decomposition of F : P → Vec. We remark that their work is addressing a version of
Proposition 3.17, see announcement in Botnan (2017). Also, Chambers and Letscher
(2018) define persistent homology for a filtration over a directed graph as the image
of the canonical map between the limit and colimit. Their work also provides a variant
of Proposition 3.17 (Chambers and Letscher 2018, Lemma 3.1).

Botnan and Lesnick exploited the notion of left Kan extensions for addressing sta-
bility of barcode of a zigzagmodule (Botnan and Lesnick 2018).We remark that rk(F)

above can be interpreted as an invariant of F which is obtained by interconnecting
the left and right Kan extensions of F along a certain restriction functor. We refer
the interested readers to the extended version of this paper; (Kim and Mémoli 2018b,
Sections E.2 and E.3).

1.2.1 Organization

In Sect. 2we briefly reviewbasic concepts fromcategory theory and persistence theory,
and we also recall basic terminology from order theory. In Sect. 3 we define the rank
invariant and persistence diagram of a functor P → C . In Sect. 4 we propose a novel
viewpoint on Reeb graphs and their 0-th level set barcodes. This new perspective

1 A symmetric monoid is a set S equipped with a binary operation which is associative and symmetric.
Also, S must contain an identity element.
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provides a new method to compute the 0-th level set barcodes of Reeb graphs without
passing to the category of vector spaces. Also, we establish stability results for the
persistence diagrams ofmerge trees and “untwisted”Reeb graphs. In Sect. 5we discuss
possible extensions.

2 Preliminaries

In Sect. 2.1 we set up terminology and notation relevant to category theory. In Sect. 2.2
we review the notion of poset-indexed persistence modules and their interval decom-
posability. Also, we introduce notation relevant to zigzag persistence modules. In
Sect. 2.3 we introduce the notion of path-connected subposets of a given poset which
will be instrumental in the definitions of generalized rank invariant and persistence
diagram.

2.1 Category theory elements

2.1.1 Categories

Consult (Awodey 2010; Mac Lane 2013) for general definitions related to category
theory. For any category C , let ob(C ) and hom(C ) denote the class/set of all objects
and that of all morphisms in C , respectively. Let I be a small category, i.e. ob(I ) and
hom(I ) are sets. For any two functors F,G : I → C , we write F ∼= G if F and
G are naturally isomorphic. A functor F : I → C will sometimes be referred to as
a diagram. Since the domain I is small, we also refer to F as a small diagram. In
particular, if ob(I ) and hom(I ) are finite sets, then F : I → C will be called a finite
diagram. A sub-diagram of F means the restriction F |J to a full subcategory J of I .
The following categories will be of main interest in this paper.

(i) By Vec and vec, we mean the category of vector spaces and finite dimensional
vector spaces, respectively with linear maps over a fixed field F.

(ii) By Set and set, we mean the category of sets and finite sets, respectively with set
maps.

Most of the following concepts can be found in Mitchell (1965), Patel (2018),
Weibel (2013).

2.1.2 Symmetric monoidal category with images

A symmetric monoidal category (C ,�) is, in brief, a category C with a binary opera-
tion�on its object and an identity object e ∈ ob(C) satisfying the followingproperties:

– (Symmetry) a�b ∼= b�a, for all a, b ∈ ob(C).
– (Associativity) a�(b�c) ∼= (a�b)�c, for all a, b, c ∈ ob(C).
– (Identity) a�e ∼= a, for all a ∈ ob(C).

We refer the reader to Weibel (2013, p. 114) for the precise definition of a symmetric
monoidal category.

123
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A morphism f : a → b is said to be a monomorphism if f is left-cancellative: for
any morphisms k1, k2 : c → a, if f ◦ k1 = f ◦ k2, then k1 = k2. Such f is often
written as f : a ↪→ b. On the other hand, a right-cancellative morphism g : a → b is
said to be an epimorphism, and often written as g : a � b.

Definition 2.1 (Images and epimorphic images) A morphism f : a → b has an image
if there exist a monomorphism h : im( f ) ↪→ b and a morphism g : a → im( f )
such that f = h ◦ g, satisfying the following property: For any monomorphism
h′ : z ↪→ b and a morphism g′ : a → z with f = h′ ◦ g′, there is a unique morphism
u : im( f ) → z such that the following diagram commutes:

a b

im( f )

z

f

g

g′

h

u
h′

If, moreover, the morphism g is an epimorphism, then f is said to have an epimorphic
image.

Remark 2.2 The morphism u in the diagram above is a monomorphism: Assume that
there exist two morphisms k1, k2 : c → im( f ) with u ◦ k1 = u ◦ k2. Then,

u ◦ k1 = u ◦ k2 	⇒ h′ ◦ (u ◦ k1) = h′ ◦ (u ◦ k2)

	⇒ (h′ ◦ u) ◦ k1 = (h′ ◦ u) ◦ k2
	⇒ h ◦ k1 = h ◦ k2
	⇒ k1 = k2 since h is a monomorphism.

A category in which every morphism has an image (resp. epimorphic image) is said
to be a category with images (resp. category with epimorphic images). See Mitchell
(1965, p.12) for more about images.

2.1.3 Complete, cocomplete, essentially small categories (Mac Lane 2013)

A category C is called complete if every small diagram F : I → C has a limit in C .
Likewise, a category C is called cocomplete if every small diagram has a colimit in
C . If a category C is both complete and cocomplete, then C is called bicomplete.2

A category C is called essentially small if the collection of isomorphism classes of
objects in C is a set.

Convention 2.3 Throughout this paper, unless otherwise stated, we always assume
that (C ,�) (or simply C ) is essentially small and symmetric monoidal. Also, we
always assume that at least one of conditions (a) and (b) below hold:

2 BesidesSet andVec, examples include the category of groups, the category of abelian groups, the category
of topological spaces.
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(a) C is bicomplete and has images.
(b) C is a full subcategory3 of a bicomplete category D , where

– D has epimorphic images
– for any monomorphism f : a ↪→ b in D , if b ∈ ob(C ), then a ∈ ob(C ).
– for any epimorphism g : c � d in D , if c ∈ ob(C ), then d ∈ ob(C ).

For example, the categories (set,�) (where � stands for disjoint union), (vec,⊕)

(where⊕ stands for direct sum), and (ab,⊕) (the category of finitely generated abelian
groups) all conformwithConvention2.3. In particular, they are full subcategories of the
bicomplete categories Vec, Set, and Ab (the category of abelian groups) respectively
whose images are epimorphic.

2.1.4 Grothendieck groups

We review the notion of Grothendieck groups from Weibel (2013, Chapter II) and
Patel (2018, Sect. 6). Fix a category (C ,�). Let I (C ) be the set of all isomorphism
classes ofC . For anyC ∈ ob(C ), let [C] denote the isomorphism class ofC inI (C ).

The binary operation inI (C ) is defined as [a]+[b] := [a�b]. The group completion
A (C ) ofI (C ) with respect to + is said to be the Grothendieck group of C . Hence,
the notions of addition + and subtraction − are well-defined inA (C ). When C is an
abelian category, there is another type of Grothendieck group B(C ).4 However, it is
beyond the scope of this paper to give a complete treatment of B(C ).

Remark 2.4 For the monoid (I (vec),
⊕

) (resp. (I (set),
⊔

)) of isomorphism
classes, we have the isomorphism

(
I (vec),

⊕) ∼= (Z+,+) (resp.
(
I (set),

⊔) ∼= (Z+,+)),

which sends each isomorphism class [V ] ∈ I (vec) to dim(V ) (resp. [A] ∈ I (set)
to |A|). Extending this isomorphism, we obtain the group isomorphism (A (vec),

⊕
)

∼= (Z,+) (resp. (A (set),
⊔

) ∼= (Z,+).).

2.2 Interval decomposability and barcodes

Given any poset P, we regard P as the category: Objects are elements of P. For any
p, q ∈ P, there exists a unique morphism p → q if and only if p ≤ q.

For P a poset and C an arbitrary category, F : P → C a functor, and s ∈ P, let
Fs := F(s). Also, for any pair s ≤ t in P, let ϕF (s, t) : Fs → Ft denote the morphism
F(s ≤ t). Any functor F : P → vec is said to be a P-indexed module.

3 A subcategory C ′ of a category C is full if for all a, b ∈ ob(C ′), homC ′ (a, b) = homC (a, b).
4 Define the relation ∼ on A (C ) as [b] ∼ [a] + [c] if there exists a short exact sequence 0 → a → b →
c → 0. Then,B(C) is defined as the quotient groupA (C )/ ∼. The category vec is an instance of abelian
categories, and it holds that A (vec) = B(vec) (Patel 2018, Example 6.2.1).
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2.2.1 Interval modules and direct sums

We mostly follow the notation and definitions from Botnan and Lesnick (2018).

Definition 2.5 (Connected posets) A posetP is said to be connected, if for all p, q ∈ P,
there exists a sequence p = p0, . . . , pn = q inP such that pi and pi+1 are comparable,
i.e. pi ≤ pi+1 or pi+1 ≤ pi , for i = 0, . . . , n − 1.

For a poset P, non-empty convex connected subposets of P are said to be intervals
of P:

Definition 2.6 (Intervals) Given a posetP, an intervalJ ofP is any non-empty subset
J ⊂ P such that (1)J is connected, and (2) if r , t ∈ J and r ≤ s ≤ t , then s ∈ J .

By Int(P), we denote the collection of all intervals of P.

For J an interval of P, the interval module IJ : P → vec is the P-indexed
module where

I
J
t =

{
F if t ∈ J ,

0 otherwise.
ϕIJ (s, t) =

{
idF if s, t ∈ J , s ≤ t,

0 otherwise.

Let F,G be P-indexed modules. The direct sum F
⊕

G of F and G is the P-
indexed module defined as follows: for all s ∈ P, (F

⊕
G)s := Fs

⊕
Gs and for all

s ≤ t in P, the linear map ϕF
⊕

G(s, t) : (F
⊕

G)s → (F
⊕

G)t is defined by

ϕF
⊕

G(s, t)(v,w) := (
ϕF (s, t)(v), ϕG(s, t)(w)

)

for all (v,w) ∈ (F
⊕

G)s . We say that a P-indexed module F is decomposable if F
is (naturally) isomorphic toG1

⊕
G2 for some non-trivial P-indexed modulesG1 and

G2, and we denote it by F ∼= G1
⊕

G2. Otherwise, we say that F is indecomposable.

Proposition 2.7 (Botnan and Lesnick 2018, Proposition 2.2) IJ is indecomposable.

2.2.2 Barcodes

Recall that a multiset is a collection of objects (called elements) in which elements
may occur more than once. We call the number of instances of an element in a specific
multiset the multiplicity of the element. For example, A = {{x, x, y}} is a multiset and
the multiplicity of x is two. Also, this multiset A is distinct from the multiset {{x, y}}.
Definition 2.8 (Interval decomposability) A P-indexed module F is interval decom-
posable if there exists a multiset barcP(F) of intervals (Definition 2.6) of P such
that

F ∼=
⊕

J ∈barcP(F)

IJ
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Fig. 1 The posets ZZ in
Definition 2.10

It iswell-known that, by the theoremofAzumaya-Krull-Remak-Schmidt (Azumaya
1950), such a decomposition is unique up to a permutation of the terms in the direct
sum. Therefore, the multiset barcP(F) is unique if F is interval decomposable since
a multiset is careless of the order of its elements.

Definition 2.9 (Barcodes) We call barcP(F) in Definition 2.8 the barcode of F .

Given any two posetsP,P′, we assume that by default the productP×P′ is equipped
with the partial order where (p, p′) ≤ (q, q ′) if and only if p ≤ p′ and q ≤ q ′. Also,
by Pop we mean the opposite poset of P, i.e. for any p, q ∈ P, p ≤ q in Pop if and
only if q ≤ p in P.

Definition 2.10 (Zigzag poset) The poset ZZ = {(i, j) ∈ Z2 : j = i or j = i − 1}
has the partial order inherited from Rop × R. See Fig. 1.

Definition 2.11 (Zigzagmodule)Any functor F : ZZ → vec is called a zigzagmodule.

Theorem 2.12 (Interval decomposability of 1-D persistencemodules and zigzagmod-
ules Botnan 2017; Carlsson and De Silva 2010; Crawley-Boevey 2015) For any
P ∈ {R,Z,ZZ},P-indexedmodules are interval decomposable. Also, for each interval
I of ZZ (Definition 2.6), I -indexed modules are interval decomposable.

2.2.3 The barcode associated to a zigzagmodule

By Theorem 2.12, any zigzag module M : ZZ → vec admits a barcode (Defini-
tion 2.9), which will be denoted by barcZZ(M).

Notation 2.13 (Intervals ofZZ) The notation introduced inBotnan andLesnick (2018)
is useful for describing barcodes of zigzag modules: Letting � (resp. ≺) denote the
partial order (resp. the strict partial order) on Z2 (not on Zop ×Z), any interval of ZZ
falls into one of the following four types:

(b, d)ZZ := {(i, j) ∈ ZZ : (b, b) ≺ (i, j) ≺ (d, d)} forb < d in Z ∪ {−∞,∞},
[b, d)ZZ := {(i, j) ∈ ZZ : (b, b) � (i, j) ≺ (d, d)} for b < d in Z ∪ {∞},
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542 W. Kim, F. Mémoli

Fig. 2 The points falling into the shaded regions comprise the intervals (−1, 1)ZZ, [−1, 1)ZZ, (−1, 1]ZZ
and [−1, 1]ZZ of the poset ZZ, respectively in order

(b, d]ZZ := {(i, j) ∈ ZZ : (b, b) ≺ (i, j) � (d, d)} for b < d in Z ∪ {−∞},
[b, d]ZZ := {(i, j) ∈ ZZ : (b, b) � (i, j) � (d, d)} for b ≤ d in Z .

See Fig. 2 for examples. Specifically, we let 〈b, d〉ZZ denote any of the above types
of intervals. By utilizing this notation, the barcode of a zigzag module M : ZZ → vec
can be expressed, for some index set J , as

barcZZ(M) =
⎧
⎨

⎩

⎧
⎨

⎩
〈b j , d j 〉ZZ : M ∼=

⊕

j∈J

I 〈b j ,d j 〉ZZ

⎫
⎬

⎭

⎫
⎬

⎭
.

Here, {{·}} is used instead of {·} to indicate barcZZ(M) is a multiset.

2.3 Hasse diagram and path-connected subposets of a poset

Weintroduce thenotionofpath-connected subposetsof a poset (this concept isdifferent
from that of connected posets in Definition 2.5). To that end, we begin by reviewing
relevant terminology from lattice theory (Birkhoff 1940).

Definition 2.14 (Locally finite posets) A poset P is said to be locally finite if for all
p, q ∈ P with p ≤ q, the set [p, q] := {r ∈ P : p ≤ r ≤ q} is finite.

Let P be a poset and let p, q ∈ P. We say that p covers q if q < p and there is
no r ∈ P such that q < r < p. If either [p covers q] or [q covers p], then we write
p � q.

Definition 2.15 (Hasse diagram of a poset) TheHasse diagram of a posetP is a simple
graph on the vertex set P, denoted by Hasse(P), where any two different vertices
p, q ∈ P are adjacent if and only if p � q.

If P is connected (Definition 2.5) and locally finite, then it is clear that Hasse(P)

is a connected graph. Locally finiteness is an important assumption for studying the
connectedness of the Hasse diagram of a poset. For example, even though R is a
connected totally ordered set, the Hasse diagram of R contains no edge.

123



Generalized persistence diagrams for persistence modules… 543

Definition 2.16 (Path-connected subposets) LetP be a poset. A subposet I ⊂ P is said
to be path-connected in P if the induced subgraph of Hasse(P) on I is a connected
graph.

ByCon(P)we denote the collection of all path-connected subposets ofP.We equip
Con(P) with the partial order given by inclusion, i.e. a pair I , J ∈ Con(P) satisfies
I ≤ J if and only if I ⊂ J .

We emphasize the difference between connectivity and path-connectivity (Defini-
tions 2.5 and 2.16) as follows: If a subposet Q is path-connected in P, then Q itself
is connected. However, in general, the converse is not true. For example, given the
poset {a ≤ b ≤ c}, the subposet {a ≤ c} is connected itself, but not path-connected
in {a ≤ b ≤ c}.

Remark 2.17 Let P be a locally finite poset. Note that the collection Int(P) of all
intervals of P (Definition 2.6) is contained in Con(P). Also, Int(P) can sometimes be
equal to Con(P), e.g. P = Z or P = ZZ.

3 Generalized rank invariant and generalized persistence diagrams

In this section we introduce the notions of generalized rank invariant and generalized
persistence diagram.

3.1 Rank invariant for persistencemodules over posets

In this section, we introduce the notion of generalized rank invariant of a diagram
P → C when P is a locally finite, connected poset (as for assumptions on the target
category C , recall Convention 2.3).

3.1.1 Rank and rank invariant of a persistence module over a poset

Recall the notions of cone and cocone from category theory (Definitions A.1 and A.4).
The following observation is the first step toward defining the rank invariant of a
persistence module over a poset.

Proposition 3.1 (Canonical map from a cone to a cocone) Let P be a connected poset
and let F : P → C . Let (L, (πa)a∈P) and (C, (ia)a∈P) be any cone and cocone of F,
respectively. Then for any a, b ∈ P, we have that ia ◦ πa = ib ◦ πb.

Proof Fix a, b ∈ P and let a = c1, c2, . . . , cn = b be any sequence in P such that c j
and c j+1 are comparable for j = 1, . . . , n − 1. Let Vj := Mcj for each j . Then, we
have the combined commutative diagram of

(
L, (πc j ) j=1,...,n

)
and

(
C, (ic j ) j=1,...,n

)

as follows:
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C

V1 V2 V3 · · · Vn

L

f1

ic1 ic2

f2 f3

ic3

fn−1

icn

πc1
πc2 πc3 πcn

Without loss of generality, assuming f1 is a map from V1 to V2, we prove that
ic1 ◦πc1 = ic2 ◦πc2 . This is clear by tracking the commutativity of the diagram above:

ic1 ◦ πc1 = (ic2 ◦ f1) ◦ πc1 = ic2 ◦ ( f1 ◦ πc1) = ic2 ◦ πc2 .

Similarly, for each k = 2, . . . , n − 1, we have ick ◦ πck = ick+1 ◦ πck+1, completing
the proof. ��

Recall that a limit (resp. colimit) of a functor F is the terminal (resp. initial) object
in the category of cones (resp. cocones) over F (Definitions A.2 and A.5). By virtue
of Proposition 3.1, we can define:

Definition 3.2 (Rank of a poset-indexed diagram) Let P be a connected poset. The
rank of an F : P → C is defined as the isomorphism class of the image of the
canonical limit-to-colimit map ψF : lim←− F → lim−→ F .

In what follows, for any F : P → vec, we will regard the codomain of rk(F) as
Z+ by identifying m ∈ Z+ with [Fm] ∈ I (vec) (Remark 2.4).

Remark 3.3 In Definition 3.2, assuming C = vec, the rank of F cannot exceed
mina∈P dim(Fa) and is thus finite. More generally, im(ψF ) belongs to I (C ) for
any category C satisfying Convention 2.3.

The example below justifies the use of the term rank.

Example 3.4 (i) For the singleton set {•}, a functor F : {•} → vec amounts to a vector
space F• with the identity map idF• : F• → F•. In this case, the rank of F is the
dimension of F•.

(ii) A functor G : {a ≤ b} → vec amounts to the linear map Ga
g−→ Gb, where

g = ϕG(a ≤ b). Note that lim←−G ∼= Ga and lim−→G ∼= Gb and the rank of G is
identical to that of g.

Definition 3.5 (Generalized rank invariant) Let P be a locally finite, connected poset.
We define the (generalized) rank invariant of a diagram F : P → C as the map

rk(F) : Con(P) → I (C )

which sends each I ∈ Con(P) to the rank of the sub-diagram F |I .
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In the following example, we will see that the generalized rank invariant is either
equivalent to or a refinement of the rank invariant that have been considered in the
literature (Carlsson andZomorodian 2009; Cerri et al. 2013; Patel 2018; Puuska 2020):

Example 3.6 (i) (1-parameter persistence)Consider the integersZ.WehaveCon(Z) =
Int(Z) and the generalized rank invariant of a diagram F : Z → vec coincides
with the standard rank invariant (Carlsson and Zomorodian 2009; Cohen-Steiner
et al. 2007). This directly follows from the following observation: for any a, b ∈ Z
with a ≤ b, the rank of ϕF (a, b) coincides with the rank of F |[a,b] given in Def-
inition 3.2. This observation is still valid even if the target category of F is other
than vec, implying that the rank invariant ofZ → C in Definition 3.5 is essentially
equal to that of Patel (2018).

(ii) (Zigzag persistence) Consider the zigzag poset ZZ. Note that Con(ZZ) =
Int(ZZ). The generalized rank invariant of a diagram F : ZZ → vec con-
tains more information than the rank invariant defined in Puuska (2020). See
Appendix C. More interestingly, even though rk(F) is defined in way which
makes no reference to whether F is interval decomposable or not , it will turn out
that one can extract the barcode of F from rk(F) (see Fig. 4 (A)). This implies
that the generalized rank invariant is a complete invariant for zigzag modules,
i.e. any two zigzag modules that have the same rank invariant are isomorphic.
This is a generalization of the completeness of the rank invariant for Z-indexed
persistence (Theorem B.5).

(iii) (Multiparameter persistence) Consider the 2-dimensional grid poset Z2 and a
functor F : Z2 → vec. For any (a, b), (c, d) ∈ Z2 with (a, b) ≤ (c, d),
the rank of ϕF ((a, b), (c, d)) coincides with the rank of the restricted diagram
F |[(a,b),(c,d)], in the sense of Definition 3.2. However, the standard rank invariant
(Carlsson and Zomorodian 2009) does not record the rank of F |I when I is not
in the form of [(a, b), (c, d)]. See Fig. 3 for an illustrative example. This implies
that the generalized rank invariant is a refinement of the standard rank invariant
for 2-parameter persistence modules Z2 → vec. Similar argument applies to
diagrams Zd → vec for d > 2.

3.1.2 Order-reversing property of the rank invariant

It is well-known that there exists a translation-invariant order ≤ on the Grothendieck
group A (C ) of C (Patel 2018, Sect. 6.1), Weibel (2013). For example, both
(A (vec),≤) and (A (set),≤) are isomorphic to (Z,≤). In analogy with the case
of standard persistent modules,5 if we assume that the target C satisfies certain prop-
erties, then the generalized rank invariant is also order-reversing. To establish this
result, we first introduce a proposition which is a slight extension of Puuska (2020,
Lemma 3.4):

Proposition 3.7 Let C be an essentially small, symmetric monoidal category with
epimorphic images (Definition 2.1). Also, assume that, for all a, b ∈ ob(C ),

5 Given a diagram F : Z → vec, it holds that rank ϕF (i ′, j ′) ≤ rank ϕF (i, j) for i ′ ≤ i ≤ j ≤ j ′ in Z.
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Fig. 3 Consider I ∈ Con(Z2)

consisting of 6 points in Z2,
depicted as above. The standard
rank invariant of F : Z2 → vec
does not record the rank of F |I ,
whereas the generalized rank
invariant of F does

(i) a ↪→ b ⇒ [a] ≤ [b] in A (C ),
(ii) a � b ⇒ [b] ≤ [a] in A (C ).

Let f : a → b, g : a′ → a, h : b → b′ be morphisms in C and denote f ′ = h ◦ f ◦ g.
Then,

[
im( f ′)

] ≤ [im( f )] in A (C ).

Proof By the universal properties of images (which are epimorphic), we have the
following commutative diagram:

a′ b′

a b

im( f ) im (h ◦ m1)

im( f ′)

f ′

g

f

h

e

m1

m2

(1)

In particular, by the epimorphism e and the monomorphism m2 (Remark 2.2) in the
diagram, we have

[
im( f ′)

] ≤ [im (h ◦ m1)] ≤ [im( f )], as desired. ��
Proposition 3.8 (Order-reversing property of the generalized rank invariant) Let C
be an essentially small, symmetric monoidal category satisfying the conditions in
Convention 2.3 (b). Let P be any locally finite, connected poset and let F : P → C
be a functor. Then, whenever I and I ′ in Con(P) are such that I ⊂ I ′, it holds that
rk(F)(I ′) ≤ rk(F)(I ) in A (C ).

The order-reversing property of the rank invariant can sometimes be useful for
the efficient computation of persistence diagrams we will define (Definition 3.13 and
Example 3.20).
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Proof of Proposition 3.8 Fix I , I ′ ∈ Con(P) such that I ⊂ I ′. Notice that the limit(
lim←− F |I ′, (π ′

a)a∈I ′
)
and colimit

(
lim−→ F |I ′, (i ′a)a∈I ′

)
can be restricted to a cone and

a cocone over F |I , respectively (Remark A.7). Then by the terminal property of(
lim←− F |I , (πa)a∈I

)
and the initial property of

(
lim−→ F |I , (ia)a∈I

)
, there exist unique

morphisms p : lim←− F |I ′ → lim←− F |I and ι : lim−→ FI → lim−→ F |I ′ such that for every a
in I , π ′

a = πa ◦ p and i ′a = ι ◦ ia . Let ψF (I ) : lim←− F |I → lim−→ F |I and ψM (I ′) :
lim←− F |I ′ → lim−→ F |I ′ be the canonical LC maps. Fix a ∈ I . Then

ψM (I ′) = i ′a ◦ π ′
a = (ι ◦ ia) ◦ (πa ◦ p) = ι ◦ (ia ◦ πa) ◦ p = ι ◦ ψM (I ) ◦ p.

Wefirst show that im(ψF (I )) belongs to ob(C ), not ob(D)\ob(C ). By the universal
property of im(ia ◦πa)(= im(ψF (I ))) and im(ia), there exist monomorphisms im(ia ◦
πa) ↪→ im(ia) ↪→ lim−→ F |I (Remark 2.2). Also, since C has epimorphic images,
we have an epimorphism from Fa ∈ ob(C ) to im(ia). Then, by assumption (b),
im(ia) ∈ ob(C ). Now, by assumption (b), im(ia◦ pa) ∈ ob(C ). By the same argument,
one can check that im(ψF (I ′)) ∈ ob(C ).

Note that ι and p are morphisms ofD , but not necessarily C . However, in diagram
(1), by replacing f , f ′, g and h byψM (I ), ψM (I ′), p and ι respectively, and invoking
assumptions (b) and (b) in Proposition 3.8, we have rk(F)(I ′) ≤ rk(F)(I ) in A (C )

as desired. ��

3.2 Persistence diagrams for persistencemodules over posets

In this section we define the generalized persistence diagram of a functor P → C
where P is a connected and essentially finite poset (defined below), and C satisfies the
conditions in Convention 2.3.

3.2.1 Essentially finite posets

A locally finite poset P is said to be essentially finite if every I ∈ Con(P) has a finite
perimeter:

Definition 3.9 (Neighborhood and perimeter) Let P be a locally finite poset. For
I ∈ Con(P), we define the neighborhood of I as

nbd(I ) := {p ∈ P \ I : there exists q ∈ I such that q � p}.

The perimeter oI of I is defined as the cardinality of nbd(I ) (note that if I is a
singleton {p}, then nbd(I ) is the neighborhood of the vertex p in the graph Hasse(P)).

We remark that, for each interval I of Z, the perimeter of I is either 0, 1 or 2:
If I = Z, then the perimeter is 0. For intervals of the form I = [b,∞), b ∈ Z or
I = (−∞, d], d ∈ Z, the perimeter of I is 1. If I = [b, d] for some b, d ∈ Z, then
perimeter of I is 2. Similarly, for the poset ZZ, the perimeter of any interval of ZZ is
either 0, 1 or 2.
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Definition 3.10 (Essentially finite posets) A poset P := (P,≤) is said to be essentially
finite if

(i) (P,≤) is locally finite, and
(ii) For each I ∈ Con(P), the perimeter oI of I is finite.

Examples of essentially finite posets include all finite posets, the integers Z, and
ZZ. For d > 1, the infinite d-dimensional integer grid Zd is locally finite, but not
essentially finite. For example, the intervalZ×{0} ofZ2 has the infinite neighborhood
Z × {1,−1}.

3.2.2 Persistence diagrams for generalized persistence modules

The following notation is useful for defining generalized persistence diagrams.

Notation 3.11 (n-th entourage) Let P be a connected, essentially finite poset and
let I ∈ Con(P). Fix n ∈ N. By I n , we denote the set of all J ⊂ P such that
I ⊂ J ⊂ I ∪ nbd(I ) and |J ∩ nbd(I )| = n. In other words, each J ∈ I n is obtained
by adding n points of nbd(I ) to I . We refer to I n as the n-th entourage of I .

Remark 3.12 Let oI be the perimeter of I (Definition 3.9).

(i) For example, I 1 = {I ∪ {p} : p ∈ nbd(I )}, and ∣∣I 1∣∣ = oI . In general, for n ≤ oI ,
one has |I n| = (oI

n

)
, whereas for n > oI , I n = ∅.

(ii) Any J ∈ I n belongs to Con(P).

By Remark 2.4, we can identify the Grothendieck group A (vec) with the integer
group (Z,+). Given an F : Z → vec and [a, b] ∈ Int(Z) = Con(Z) with a < b, let
us recall that in the standard persistence diagram of F the multiplicity of (a, b) ∈ Z2

is defined as Cohen-Steiner et al. (2007):

rk(F)([a, b]) − rk(F)([a − 1, b]) − rk(F)([a, b + 1]) + rk(F)([a − 1, b + 1]).

This formula is a motivation for:

Definition 3.13 (Generalized persistence diagram of P → C ) Let P be a connected,
essentially finite poset. Given an F : P → C , let us define the persistence diagram
dgmP(F) : Con(P) → A (C ) of F by sending each I ∈ Con(P) to

dgmP(F)(I ) := rk(F)(I ) −
∑

J∈I 1
rk(F)(J ) +

∑

K∈I 2
rk(F)(K ) − . . .

+ (−1)oI
∑

L∈I oI
rk(F)(L). (2)

At the end of this section we will show that dgmP(F) is the Möbius inversion of
rk(F) over the poset Conop(P), generalizing the framework of Patel (2018). Now, by
invoking the principle of inclusion-exclusion, we prove that the barcode of interval
decomposable persistence modules (Definition 2.9) can be obtained via formula (2):
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Fig. 4 a Let ↔ denote ≤ or ≥. Given any vec-diagram M indexed by {1 ↔ 2 ↔ 3 ↔ 4}, M is interval
decomposable. The multiplicity of the interval [2, 3] in the barcode of M is equal to rank(M |[2,3]) −
rank(M |[2,4])− rank(M |[1,3])+ rank(M |[1,4]). bGiven any interval decomposable persistence module N
over the grid {1, 2, 3} × {1, 2, 3}, the multiplicity of the interval indicated by the LHS in the barcode of N
can be computed in a similar way

Theorem 3.14 (Generalized persistence diagram recovers the barcode) Let P be any
connected, essentially finite poset and let F : P → vec be interval decomposable.
For I ∈ Con(P), the value given by equation (2) is equal to the multiplicity of I in
barcP(F) (this implies that if I ∈ Con(P) \ Int(P), then the value is zero).

See Fig. 4 for illustrative examples of applications of Theorem3.14. We remark that
formula (2) can be simplified in special cases, e.g. see Botnan et al. (2020) for the case
of rectangle decomposable Z2-indexed persistence modules. We will obtain a proof
of Theorem 3.14 via an elementary argument resting upon the inclusion-exclusion
principle. This proposition can also be obtained as a corollary to Propositions 3.18
and 3.19, based on standard results from incidence algebra.

Remark 3.15 Since the barcode of an interval decomposable F : P → vec is a com-
plete invariant of F , Theorem 3.14 implies that the generalized rank invariant of F
(Definition 3.5) is also a complete invariant for F .

Remark 3.16 Theorem 3.14 also implies the following: Given any G : P → vec, (1)
if there exists I ∈ Con(P) \ Int(P) such that dgmP(G)(I ) �= 0, then G is not interval
decomposable. (2) If there exists I ∈ Int(P) such that dgmP(G)(I ) < 0, then G is
not interval decomposable: See Example 3.20. (3) The converse of statement in item
(2) is not true: See Example 3.21.

Let us recall the following folklore fact for Z-indexed modules: Let F : Z → vec
and let a, b ∈ Zwith a ≤ b. Then, the rank of ϕF (a, b) is equal to the total number of
intervals J ∈ barcZ(F) such that [a, b] ⊂ J . In our setting, this fact generalizes to:
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Proposition 3.17 (Barcode recovers the generalized rank invariant) Let P be a con-
nected, locally finite poset. For any interval decomposable F : P → vec and
J ∈ Con(P), rk(F)(J ) is equal to the total multiplicity of intervals K ∈ barcP(F)

such that K ⊃ J .

Here we provide a succinct proof of Proposition 3.17 under the extra assumption that
lim←− F |J is of finite dimension. A general proof is deferred to the appendix due to its
length (Sect. E).
Proof in the casewhere lim←− F |J is finite dimensional.Since F is interval decomposable,

there exists an indexing set C such that F ∼= ⊕
c∈C I Kc , where each Kc is an interval

of P. Let us recall that (1) colimits preserve direct sums, and (2) limits preserve direct
products (Mac Lane 2013, Theorem V.5.1). By virtue of the extra assumption that
lim←− F |J is finite dimensional (as well as for each p ∈ P, Fp is finite dimensional),
the notions of direct product and direct sum coincide in the category of cones over F .
Therefore,

rk(F)(J ) = rank(F |J ) = rank

(
⊕

c∈C
I Kc |J

)

=
∑

c∈C
rank

(
I Kc |J

)
.

Note that, for every c ∈ C , rank
(
I Kc |J

) =
{
1, Kc ⊂ J

0, otherwise.
(cf. Remark 3.3). There-

fore, the right-most summation is the total multiplicity of intervals Kc ∈ barcP(F)

such that Kc ⊃ J . ��
Proof of Theorem 3.14 Let barcP(F) = {{

Jc : F ∼= ⊕
c∈C I Jc

}}
for some indexing set

C . Let a0(I ) be the cardinality of the set {c ∈ C : I ⊂ Jc}. Also, let a1(I ) be the
cardinality of the set {c ∈ C : I � Jc}. Since the difference a0(I ) − a1(I ) is the
multiplicity of I in barcP(F), it suffices to show that a0(I ) − a1(I ) is identical to the
value given by formula (2). First, by Proposition 3.17, a0(I ) = rk(F)(I ).

Next we compute a1(I ). For any K ∈ Con(P), let BF (K ) := {c ∈ C : K ⊂ Jc} .

Let K ∈ Con(P) be such that I � K . Let us show that K must include at least one
element of nbd(I ): Pick any k ∈ K \ I and any p ∈ I . Since the induced subgraph
of Hasse(P) on K is connected, there exist p = q0, q1, . . . , qm = k in K such that qi
and qi+1 are adjacent (i.e. qi � qi+1) in the subgraph for all i . Since p = q0 ∈ I and
qm = k ∈ K \ I , there must be i ∈ {1, . . . ,m} such that qi belongs to nbd(I ).

Now, we have the equality

{c ∈ C : I � Jc} =
⋃

K∈I 1
BF (K ) (see Notation 3.11),

and hence a1(I ) = ∣
∣⋃

K∈I 1 BF (K )
∣
∣. In particular, since F is a diagram of finite

dimensional vector spaces, the set {c ∈ C : I � Jc} and all the sets BF (K ) must be
finite sets. Therefore, by the principle of inclusion-exclusion and Proposition 3.17, we
have:
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a1(I ) =
∑

J∈I 1
|BF (J )| −

∑

K∈I 2
|BF (K )| + . . . + (−1)oI−1

∑

L∈I oI
|BF (L)|

=
∑

J∈I 1
rk(F)(J ) −

∑

K∈I 2
rk(F)(K ) + . . . + (−1)oI−1

∑

L∈I oI
rk(F)(L),

completing the proof. ��

3.2.3 Möbius function and another interpretation of Definition 3.13

LetQ be a locally finite poset. TheMöbius functionμQ : Q×Q → Z ofQ is defined6

recursively (Rota 1964) as

μQ(p, q) =

⎧
⎪⎨

⎪⎩

1, p = q,

−∑
p≤r<q μQ(p, r), p < q,

0, otherwise.

(3)

Proposition 3.18 (Möbius inversion formula Rota 1964, Proposition 2 (p.344)) LetQ
be a locally finite poset and let k be a field. Suppose that an element 0 ∈ Q exists with
the property that 0 ≤ q for all q ∈ Q. Consider a pair of functions f , g : Q → k with
the property that

g(q) =
∑

r≤q

f (r).

Then, f (q) =
∑

r≤q

g(r) · μQ(r , q) for q ∈ Q.

Under the assumption thatCon(P) is locally finite, formula (2) is in fact theMöbius
inversion of the rank invariant rk(F) over the poset Conop(P):

Proposition 3.19 (Extension of Patel’s generalized persistence diagrams) Let P be a
connected, essentially finite poset such that (Con(P),⊂) is locally finite. Let F : P →
C . Letμ : Conop(P)×Conop(P) → Z be the Möbius function of the posetCon(P)op.

Then, for I ∈ Conop(P)

dgmP(F)(I ) =
∑

J⊃I

rk(F)(J ) · μ(J , I ).

We prove Proposition 3.19 at the end of this section.

Example 3.20 LetP := {a, b, c, d} equippedwith the partial order≤:= {(a, b), (c, b),
(d, b)} ⊂ P × P. Then, Hasse(P) is shown as in (A) below. Consider F : P → vec
given as in (B) below,

6 More precisely, the codomain of μQ is the multiple of 1 in a specified base ring rather than Z.
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a

b

c d

(A)

k

k2

k k

(B)

i1

i2
i1+i2

where i1, i2 : k → k2 are the canonical inclusions into the first factor and the second
factor of k2, respectively. We show that F is not interval decomposable.

By Remark 3.16, it suffices to show that, for I := {b}, one has dgmP(F)(I ) < 0.
Observe that I 1 = {{a, b}, {b, c}, {b, d}}, I 2 = {{a, b, c}, {a, b, d}, {b, c, d}}, and
I 3 = {{a, b, c, d}} = {P}, I n = {∅} for n > 3. Note that:

– rk(F)(I ) = 2, which is the dimension of F(b) = k2 (cf. Example 3.4 (i)).
– rk(F)(J ) = 1 for every J ∈ I 1 (cf. Example 3.4 (ii)).
– rk(F)(J ) = 0 for every J ∈ I 2: the sub-diagram F |J amounts to a zigzag module
of length 3 (Carlsson et al. 2009). It is not difficult to check that the barcode
of F |J does not include the full interval J . This implies, by Proposition 3.17,
rk(F)(J ) = rk(F |J )(J ) = 0.

– rk(F)(P) = 0: Fix J ∈ I 2. By Proposition 3.8, 0 ≤ rk(F)(P) ≤ rk(F)(J ) = 0.

Therefore, formula (2) gives that dgmP(F)(I ) = 2−(1+1+1)+(0+0+0)−0 = −1,
completing the proof.

The non-negativity of the persistence diagram of a G : P → vec does not imply
the interval-decomposability of G:

Example 3.21 Let P and F : P → vec respectively be the same as Example 3.20. Let
G be the direct sum of F and the interval moduleJ {b} : P → vec supported by {b}.
Note that rk(G) = rk(F) + rk(J {b}) and

dgmP(G)(I ) =
{
0, I = {b}
dgmP(F)(I ), otherwise.

In particular, observe that dgmP(G) is non-negative even though G is not inter-
val decomposable. Also, note that, for H = I {a,b}⊕ I {b,c}⊕ I {b,d}, we have
rk(G) = rk(H) and in turn dgmP(G) = dgmP(H). This shows that the general-
ized rank invariant and persistence diagram are not complete invariants beyond the
class of interval decomposable persistencemodules. The following is also noteworthy:
for the intervals I = {a, b}, {b, c}, {b, d}, G does not admitJ I as a summand even
though dgmP(G)(I ) = 1.

Remark 3.22 Given F : P → vec, for each K ∈ Int(P), let nK := dgmP(F)(K ).
When dgmP(F) is non-negative on Int(P), the direct sum G = ⊕

K∈Int(P) nK ·
I K of interval modules could be seen as an “approximation” of F . In particular,
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by Theorem 3.14 we know that F ∼= G whenever F is interval decomposable. This
observation is connected toAsashiba et al. (2019), where the authors propose amethod
to approximate a diagram F : R2 → vec by an interval decomposable δ∗(F) : R2 →
vec whose (standard) rank invariant is the same as F . In particular, F = δ∗(F)

whenever F is interval decomposable.

3.2.4 Towards a proof of Proposition 3.19

In order to prove Proposition 3.19, we will exploit the poset structure of Conop(P).
To this end, we briefly review the notion of lattice. See Birkhoff (1940) for a compre-
hensive treatment on this subject.

Let L be a poset, and let S ⊂ L. An element u ∈ L is said to be an upper bound
of S if s ≤ u for all s ∈ S. An upper bound u of S is said to be its least upper bound,
or join if u ≤ x for each upper bound x of S. If a join of S exists, then it is unique.
The concepts of lower bound and greatest lower bound are defined in a dual way. In
particular, a greatest lower bound is said to be a meet.

Definition 3.23 (Lattices) Let L be a poset. L is said to be a join-semi lattice if for
every pair a, b ∈ L, the set {a, b} has a join in L. Dually, L is said to be a meet-semi
lattice if for every pair a, b ∈ L, the set {a, b} has a meet in L. If L is both join-semi
lattice and meet-semi lattice, then L is said to be a lattice.

Lemma 3.24 (Conop(P) is locally a lattice) Let P be a connected, essentially finite
poset such that Con(P) is locally finite. Let I , J ∈ Conop(P) with J ⊃ I . Then
[J , I ] := {K ∈ Conop(P) : J ⊃ K ⊃ I } is a finite lattice.
Proof By assumption, Con(P) is locally finite and thus [J , I ] is finite. Fix any
K1, K2 ∈ [J , I ]. Observe that K1∪K2 is the greatest lower bound for {K1, K2} in the
subposet [J , I ] of Conop(P). Also, observe that the least upper bound for {K1, K2} is
the union of all subposets L in the subcollection {L ∈ Conop(P) : K1 ∩ K2 ⊃ L ⊃ I }
of [J , I ] (note that this subcollection contains I and hence not empty). This shows
that [J , I ] is a lattice. ��

An atom in a poset is an element that covers a minimal element. A dual atom is an
element that is covered by a maximal element (Rota 1964).

Proposition 3.25 (Rota 1964, Corollary (P. Hall), p. 349) Let L be a finite lattice with
0, 1 ∈ L such that 0 ≤ l ≤ 1 for all l ∈ L. If 0 is not the meet of dual atoms of L, or
if 1 is not the join of atoms, then μL(0, 1) = 0.

Let P be a connected, essentially finite poset such that Con(P) is locally finite. Let
I , J ∈ Con(P) with J ⊃ I . Observe that, in the finite lattice L = [J , I ] which is
a subposet of Conop(P), all dual atoms belong to the first entourage I 1 of I (Nota-
tion 3.11).

Proof of Proposition 3.19 Invoking formula (3), by elementary induction, it follows that
for any n ∈ {1, . . . , oI } and for any J ∈ Conop(P) with J ∈ I n , μ(J , I ) = (−1)n .
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Now pick any J ∈ Conop(P) such that J ⊃ I and J /∈ ⋃oI
n=1 I

n . This implies that
J is not the union of elements in I 1 and in turn implies that J is not the meet of dual
atoms of [J , I ]. By (Rota 1964, Proposition 4 (p.345)), the restriction of the Möbius
function ofConop(P) to [J , I ]×[J , I ] is equal to theMöbius function of the subposet
[J , I ]. Lemma 3.24 and Proposition 3.25 now directly imply that μ(J , I ) = 0. ��

4 Computing the 0-th level set barcode of a Reeb graph within
set-category

In this section we propose a novel method to compute the 0-th level set barcode
of a Reeb graph within the category of sets (Sect. 4.2). This will be possible via a
geometric interpretation of ZZ-indexed set-diagrams (Sect. 4.1). An improvement of
a semicontinuity theorem by Patel will also follow thereby (Sect. 4.3).

4.1 Local analysis of Reeb graphs

4.1.1 Reeb graphs

Let f : M → R be a Morse(-type) function (Definition G.1) on a manifold. The Reeb
graph of f is a descriptor for the evolution of connected components of the level sets
f −1(r) as r ∈ R varies (Reeb 1946). There have been not only numerous applications
of Reeb graphs in shape analysis and visualization (Biasotti et al. 2008; Shinagawa
et al. 1991) or in dynamic/high-dimensional data analysis (Buchin et al. 2015; Ge
et al. 2011; Kim and Mémoli 2017, 2018a), but also a vast body of theoretical study
on Reeb graphs (De Silva et al. 2016; Stefanou 2020), approximation/computation of
Reeb graphs (Dey and Wang 2013; Harvey et al. 2010; Parsa 2012), metrics on Reeb
graphs (Bauer et al. 2014, 2015, 2020; Carrière and Oudot 2017), and generalizations
(Dey et al. 2016; Singh et al. 2007).

By a Reeb graph, we will refer to a constructible topological graph X equipped
with a notion of “height” represented by a continuous function f : X → R. While we
defer the rigorous definition of Reeb graphs to Appendix (Definitions G.1 and G.2),
it is well-known that any diagram M : ZZ → set amounts to a Reeb graph and vice
versa as we will see below in more detail (Curry and Patel 2020; De Silva et al. 2016).

Definition 4.1 (Reeb-graph-realization of a zigzag diagram in set) LetM : ZZ → set.
We define the Reeb graph corresponding to M as the pair (Reeb(M), π) consisting of
a topological graph Reeb(M) and a map π : Reeb(M) → R, described subsequently
(referring to Example 4.2 may help the understanding of the description below).

1. For (i, i) ∈ ZZ, let each element in M(i,i) become a vertex which lies over i ∈
Z(⊂ R).

2. For (i, i − 1) ∈ ZZ, let each element in M(i,i−1) become an edge which lies over
the interval [i − 1, i] ⊂ R.

3. For each comparable pair (i, i − 1) ≤ (i, i) (resp. (i, i − 1) ≤ (i − 1, i − 1))
in ZZ, the attaching map between the vertex set and the edge set is specified by
ϕM ((i, i − 1), (i, i)) (resp. ϕM ((i, i − 1), (i − 1, i − 1))).
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Fig. 5 The Reeb graph
(Reeb(M), π) corresponding to
M in Example 4.2, where
π : Reeb(M) → R is the
projection map to the horizontal
real axis

The space Reeb(M) is the quotient of the disjoint union of the spaces M(i,i) ×{i} and
M(i,i−1) × [i − 1, i] for all i ∈ Z with respect to the identifications

(ϕM ((i, i − 1), (i, i))(e), i) ∼ (e, i) and

(ϕM ((i, i − 1), (i − 1, i − 1))(e), i − 1) ∼ (e, i − 1).

The map π : Reeb(M) → R is defined as the projection onto the second factor.
For any interval I ofZZ, one can define the Reeb graph corresponding to a diagram

I → set in the same way.

Example 4.2 Consider M : ZZ → set specified as follows:

M(1,1) = {v1, v2}, M(2,1) = {e1, e2}, M(2,2) = {v3, v4},
M(3,2) = {e3, e4}, M(3,3) = {v5, v6},

and other M(i, j) are the empty set. The four maps

M(1,1) M(2,1) M(2,2) M(3,2) M(3,3)
ϕM ((2,1),(1,1)) ϕM ((2,1),(2,2)) ϕM ((3,2),(2,2)) ϕM ((3,2),(3,3))

are defined as follows:

v1 e1 v3 e3 v5

v2 e2 v4 e4 v6.

The Reeb graph corresponding to M is depicted in Fig. 5.

Definition 4.1 describes how to turn a functor M : ZZ → set into a Reeb graph. In
this respect, we will refer to any M : ZZ → set as a Reeb graph. On the other hand,
any Reeb graph can be expressed as a set-valued zigzag diagram over R (Curry and
Patel 2020; De Silva et al. 2016). This zigzag diagram over R is in turn equivalent to
a ZZ-index set-diagram up to rescaling— this idea has already implicitly appeared in
Botnan and Lesnick (2018), Curry (2013). This means that the entire combinatorial

123



556 W. Kim, F. Mémoli

information of a Reeb graph X can be encoded into a certain M : ZZ → set. In
particular, the 0-th level set barcode of X (Carlsson et al. 2009) can be extracted from
M up to rescaling of intervals.

4.1.2 Local analysis of Reeb graphs

We illustrate how to extract topological/combinatorial information from limits and
colimits of interval restrictions of a Reeb graph M : ZZ → set. For k, l ∈ ZZ,
assume that x ∈ Mk and y ∈ Ml . We write x ∼ y if k and l are comparable and one
of x and y is mapped to the other via the internal map between Mk and Ml .

We can explicitly represent the limit and colimit of M as follows.

(i) The limit of M is the pair (L, (πk)k∈ZZ), where

L :=
{

(xk)k∈ZZ ∈
∏

k∈ZZ
Mk : for comparable k, l ∈ ZZ, xk ∼ xl

}

,

and each πk : L → Mk is the canonical projection.
(ii) The colimit of M is the pair (C, (ik)k∈ZZ) described as follows:

C :=
(
∐

k∈ZZ
Mk

)
/ ≈, (4)

where≈ is the equivalence relation generated by the relations xk ∼ xl for xk ∈ Mk

and xl ∈ Ml with k, l being comparable. For the quotientmapq : ∐k∈ZZ Mk → C ,

each ik is the composition Mk ↪→ ∐
k∈ZZ Mk

q→ C .

Let I ∈ Int(ZZ). For any diagram N : I → set, we can construct the limit and
colimit of N in the same way; namely, in items (i) and (ii) above, replace M and
ZZ by N and I , respectively. In what follows, we use those explicit constructions
whenever considering limits and colimits of (interval restrictions of) ZZ-indexed
set-diagrams.

Definition 4.3 (Supports and full components) Let I ∈ Int(ZZ) and let N : I → set.
Let c ∈ lim−→ N . We define the support of c as

supp(c) := {k ∈ I : ∃xk ∈ Nk, ik(xk) = c}.

In particular, if supp(c) = I , we call c a full component of N .

Now, extending ideas in De Silva et al. (2016), we geometrically interpret elements
of limits, colimits and images of the canonical LC maps of (interval restrictions of)
ZZ-indexed set-diagrams.

Recall that, for b, d ∈ Z with b < d, 〈b, d〉ZZ stands for an interval of ZZ (Nota-
tion 2.13). Similarly, for b, d ∈ R with b < d, 〈b, d〉 will stand for one of the real
intervals (b, d), [b, d], (b, d], [b, d). The terminology introduced in Definition 4.4
below will be illustrated in Example 4.5.
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Definition 4.4 (Local analysis of a Reeb graph) Consider any M : ZZ → set and fix
I := 〈b, d〉ZZ ∈ Int(ZZ).

(i) Each element in lim−→ M |I is said to be a 〈b, d〉-component.

(ii) Each element in lim←− M |I is said to be a 〈b, d〉-section.7
(iii) If c ∈ lim−→ M |I and supp(c) = I , then c is said to be a 〈b, d〉-full-component.
(iv) Each element in the image of the canonical LC map ψM|I : lim←− M |I → lim−→ M |I

is said to be a 〈b, d〉-full-component of M with a section.

Example 4.5 (Geometric interpretation of Definition 4.4) ForM : ZZ → set in Exam-
ple 4.2 (Fig. 5), note the following:

(i) There are two [1, 3]-components: The connected component containing the ver-
tex v1 and the one containing v2. Also, there are two [1, 2]-components: these
components correspond to the restrictions of the previous two components to
π−1([1, 2]).

(ii) The 5-tuples (v1, e1, v3, e3, v5) and (v1, e1, v3, e4, v6) are [1, 3]-sections. These
tuples deserve to be called by such a name since there indeed exist continuous
maps s1 : [1, 3] → Reeb(M) and s2 : [1, 3] → Reeb(M) satisfying (1) π ◦
s1 = π ◦ s2 = id[1,3], and (2) im(s1), im(s2) lie on v1e1v3e3v5 and v1e1v3e4v6
respectively in Reeb(M).

(iii) There exists only one [1, 3]-full-component; among the two [1, 3]-components
considered in item (i), the one containing v1 is the unique [1, 3]-full-component.

(iv) Via the canonical LCmap, each [1, 3]-section is mapped to the unique [1, 3]-full-
component, which contains the image of the [1, 3]-section. This demonstrates
why the connected component containing v1 is called a [1, 3]-full-component of
M with a section (cf. Example 4.12).

4.2 Computing the 0-th level set barcode of a Reeb graph without homology

In this section we propose a novel method to compute the 0-th level set barcode of a
Reeb graph within the category of sets.

4.2.1 The 0-th level set barcode of a Reeb graph

The 0-th level set barcode of a Reeb graph (Definition 4.7) captures the lifetime of
all homological features in the Reeb graph (Bauer et al. 2014). Whereas measuring
the interleaving distance (or equivalently functional distortion distance) between Reeb
graphs is not easy De Silva et al. (2016, Sect. 5), (Bauer et al. 2015), the computation
of the bottleneck distance between the 0-th level set barcodes of Reeb graphs can be
efficiently carried out (Kerber et al. 2017). Moreover, the bottleneck distance between
the 0-th level set barcodes of Reeb graphs is a tight lower bound for the interleaving
distance between Reeb graphs up to multiplicative constant 2 (Bauer et al. 2014;
Botnan and Lesnick 2018).

7 A right-inverse of a morphism is called a section (Mac Lane 2013). See Example 4.5 (ii).
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Definition 4.6 (Linearization functor) Let LF : Set → Vec be the linearization func-
tor (a.k.a. free functor): For any set S, LF(S) consists of formal linear combination∑

i ai si , (ai ∈ F, si ∈ S) of finite terms of elements in S over the field F. Also, given
a set map f : S → T , LF( f ) is the linear map from LF(S) to LF(T ) obtained by
linearly extending f .

Throughout this section, we identify both of the Grothendieck groupsA (vec) and
A (set) with the integer group (Z,+) (Remark 2.4). Let us recall the 0-th level set
barcode of a Reeb graph (Carlsson et al. 2009; Botnan and Lesnick 2018):

Definition 4.7 (The 0-th level set barcode of a Reeb graph) Given M : ZZ → set,
consider LF◦M : ZZ → vec. The 0-th level set barcodeofM refers to barcZZ(LF◦M).

4.2.2 Newmethod for computing the 0-th level set barcode of a Reeb graph

In order to establish a method to compute the 0-th level set barcode of a Reeb graph
without matrix operations (Carlsson et al. 2009; Milosavljević et al. 2011), we intro-
duce a new invariant for Reeb graphs.

Given M : ZZ → set and I ∈ Int(ZZ), we denote the number of full components
of M |I by full(M |I ) (Definition 4.3).

Definition 4.8 (Full function of a Reeb graph) Given M : ZZ → set, the full function
Full(M) : Int(ZZ) → Z≥0 is defined as I �→ full (M |I ) .

One can observe that Full(M)(〈b, d〉ZZ) is equal to the number of connected com-
ponents of π−1〈b, d〉(⊂ Reeb(M)) whose images via π are 〈b, d〉. For instance,
consider M : ZZ → set whose corresponding Reeb graph is depicted as in Fig. 6a.
Full(M)([2, 3)ZZ) is 2, since both of the two connected components of π−1[2, 3)
cover [2, 3) via π . On the other hand, Full(M)((1, 3)ZZ) is 1 since only one of the
connected components of π−1(1, 3) covers the entire (1, 3) via π .

The following proposition is the core observation for establishing a new method to
compute the 0-th level set barcodes of Reeb graphs.

Proposition 4.9 For any M : ZZ → set,

Full(M) = rkvec(LF ◦ M).

We prove Proposition 4.9 at the end of this section.
Let I ∈ Int(ZZ) be finite. Then nbd(I ) consists of two elements, say nbd(I ) :=

{a, b}. Hence,we canwrite the first and second entourage of I as I 1 = {I∪{a}, I∪{b}}
and I 2 = {I ∪ {a, b}}, respectively. By Theorems 2.12, 3.14, and Proposition 4.9, we
directly have:

Corollary 4.10 For any M : ZZ → set and any finite I ∈ Int(ZZ), the multiplicity of
I in barcZZ(LF ◦ M) is

Full(M)(I ) − Full(M)(I ∪ {a}) − Full(M)(I ∪ {b}) + Full(M)(I ∪ {a, b})

which is also equal to dgmZZ
vec(LF ◦ M)(I ).
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Fig. 6 a A Reeb graph (Reeb(M), π) which corresponds to M in Example 4.11. b Pre-images π−1(I ) for
4 different choices of intervals I ⊂ R. Blue components are the full components over the corresponding
intervals

Note that, when I ∈ Int(ZZ) is infinite, the perimeter of I is either 0 or 1 and thus
the formula for the multiplicity of I in barc(LF ◦ M) is even simpler than the one
given above.

Example 4.11 Consider M : ZZ → set whose corresponding Reeb graph is depicted
as in Fig. 6a. By Corollary 4.10, we have that

dgmZZ
vec(LF ◦ M)([2, 3)ZZ)

= Full(M)([2, 3)ZZ) − Full(M)((1, 3)ZZ)

− Full(M)([2, 3]ZZ) + Full(M)((1, 3]ZZ)

= 2 − 1 − 1 + 1

= 1,

which is the multiplicity of [2, 3)ZZ in barcZZ(LF◦M). By applying the same strategy
to the other intervals of ZZ, we have:

dgmZZ
vec(LF ◦ M)(I ) =

{
1, I ∈ {[2, 3)ZZ, (2, 3]ZZ, [1, 4]ZZ},
0, otherwise,

(5)

and the barcode of LF◦M consists of the three intervals [2, 3)ZZ, (2, 3]ZZ and [1, 4]ZZ.
We remark that the Reeb graph from Example 4.11 was introduced in Adams

and Carlsson (2015, Fig. 12) along the way to address the problem of searching for
evasion paths in mobile sensor networks. The authors pointed out that, without careful
homological considerations, one could make a wrong guess about the 0-th level set
barcode of thisReeb graph (see alsoCurry 2013, Sect. 10). Example 4.11 demonstrates
the usefulness of Corollary 4.10 in this context.

GivenM : ZZ → set, we also have another persistence diagramdgmZZ
set (M), which

has nothing to do with the linearization functor LF. Next we show that dgmZZ
set (M) is

not necessarily equal to dgmZZ
vec(LF ◦ M):
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Example 4.12 Consider M : ZZ → set whose corresponding Reeb graph is depicted
as in Fig. 6a. By Definition 4.4 (iv), rk(M)(〈b, d〉ZZ) counts the number of 〈b, d〉-full
components with a section. We claim that

for I ∈ Int(ZZ), rk(M)(I ) =
{
0, I � [2, 3]ZZ
full(M |I ), otherwise.

(6)

Assume that I := 〈b, d〉ZZ ∈ Int(ZZ) strictly contains [2, 3]ZZ. Then, π−1〈b, d〉
has one connected component and it does not has a section, i.e. there is no map
s : 〈b, d〉 → Reeb(M) such that π ◦ s = id〈b,d〉. On the other hand, if I does not
strictly contain [2, 3]ZZ, then every 〈b, d〉-full-connected component has a section.
These observations prove the claim in (6). Now, by Definition 3.13, it is not hard to
obtain:

dgmZZ
set (M)(I ) =

⎧
⎪⎨

⎪⎩

1, I = [2, 3)ZZ or I = (2, 3]ZZ
−1, I = [2, 3]ZZ
0, otherwise.

Now, observe that dgmZZ
set (M) is different from dgmZZ

vec(LF ◦ M) in (5).

Remark 4.13 (i) The persistence diagram of a ZZ-indexed set-diagram is not a com-
plete invariant. For example, assume that N : ZZ → set is defined as

N |[2,3]ZZ = M |[2,3]ZZ , Ns = ∅ for s /∈ [2, 3]ZZ.

Even though N is not isomorphic to M in Example 4.12, it is not difficult to check
that rk(M) = rk(N ) and thus dgmZZ

set (M) = dgmZZ
set (N ).

(ii) For every M : ZZ → set, rk(M)(I ) ≤ rk(LF ◦ M)(I ) for all I = 〈b, d〉ZZ. This
directly follows from the fact that rk(M)(I ) counts 〈b, d〉-full-components with a
section, whereas rk(LF ◦ M)(I ) counts 〈b, d〉-full-components (Proposition 4.9).

In Sect. 4.3 we will discuss the stability of dgmZZ
set (M) under perturbations of

M : ZZ → set.

4.2.3 Extended persistence and a proof of Proposition 4.9

For proving Proposition 4.9, we briefly review the notion of extended persistence. See
Cohen-Steiner et al. (2009) for details.

Let X be a topological space and let f : X → R be a Morse-type function
(Definition G.1) where S := {s1, s2, . . . , sn} is the collection of critical points of f .
Let us select a set of indices ti which satisfy

−∞ < t0 < s1 < t1 < s2 < · · · < tn−1 < sn < tn < ∞.
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For 1 ≤ i ≤ j ≤ n, let X j
i := f −1([ti , t j ]). For k ∈ Z+, consider the following

diagram of absolute and relative homology groups:

Hk(X0
0) Hk(X1

0) · · · Hk(X
n−1
0 ) Hk(Xn

0 )

Hk(Xn
0 , X

n
0 ) Hk(Xn

0 , X
n
1 ) · · · Hk(Xn

0 , X
n
n−1) Hk(Xn

0 , X
n
n ),

where each arrow stands for the map induced by the inclusion. The collection of
pairs arising from this diagram are recorded in the so-called k-th extended persistence
diagram. There are three different types of pairs: ordinary pairs arise between the
elements in the top row of the sequence, relative pairs between the elements in the
bottom row, and extended pairs span both rows. In particular, in the k-th extended
persistence diagram,

(i) an ordinary pair of Xi
0 and X j

0 (i < j < n) is recorded as [si , s j+1),
(ii) a relative pair of (Xn

0 , X
n
i ) and (Xn

0 , X
n
j ) (i < j < n) is recorded as [s̄ j+1, s̄i ),

(iii) an extended pair of Xi
0 and (Xn

0 , X
n
j ) is recorded as [si , s̄ j ).

Proof of Proposition 4.9 Fix I := 〈b, d〉ZZ ∈ Int(ZZ). We will prove that

full(M)(I ) = rkvec(LF ◦ M)(I ). (7)

By Proposition 3.17, rkvec(LF ◦ M)(I ) is equal to the multiplicity of I in barcI (LF ◦
M |I ). Let (Reeb(M |I ), π) be the Reeb graph corresponding to M |I . By the bijection
given in Carlsson et al. (2009, EP Equivalence Theorem (Table 1)), the copies of
I = 〈b, d〉ZZ in barcZZ(LF ◦ M |I ) one-to-one correspond to the copies of [b, d̄) in
the 0-th extended persistence diagram of (Reeb(M |I ), π). Also, the copies of [b, d̄)

in the 0-th extended persistence diagram of (Reeb(M |I ), π) one-to-one correspond to
the connected components of Reeb(M |I ) whose image via π is [b, d] ⊂ R (Cohen-
Steiner et al. 2009, p.83). These connected components are exactly the full components
of M |I in the sense of Definition 4.3. Therefore, we have the equality in (7). ��

4.3 The stability of set-persistence diagrams for merge trees and untwisted Reeb
graphs

Patel’s semicontinuity theoremPatel (2018) states that the so-called typeA persistence
diagram of F : R → C is stable to all sufficiently small perturbations of F . In this
section we promote this theorem to a complete continuity theorem when C = set.
Also, in turn we establish a stability result for set-persistence diagrams of a certain
class of Reeb graphs.

Again, throughout this section,we identify both of theGrothendieck groupsA (vec)
and A (set) with the integer group (Z,+) (Remark 2.4).
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4.3.1 Bottleneck stability for merge trees

One can encode all the combinatorial information of a merge tree (Morozov et al.
2013) into a Z-indexed set-diagram:

Definition 4.14 A functor F : Z → set is said to be a (discrete) merge tree.8

Recall from Sect. 4.2 that, given an M : ZZ → set, the two persistence diagrams
dgmZZ

set (M) and dgmZZ
vec(LF ◦ M) do not coincide in general. That is not the case for

merge trees:

Proposition 4.15 For any F : Z → set, we have rk(F) = rk(LF ◦ F) and therefore,

dgmZ
set(F) = dgmZ

vec(LF ◦ F).

Before proving Proposition 4.15, note the following: given a set map f : A → B, it
directly follows from the definition of the linearization functor LF that the cardinality
of im( f ) is equal to the rank of LF( f ) : LF(A) → LF(B).

Proof of Proposition 4.15 Let I := [a, b] ∈ Int(Z). Then,

rk(F)(I ) = |im(ϕF (a ≤ b))| = rank (LF(ϕF (a ≤ b))) = rk(LF ◦ F)(I ).

Since, dgmZ
set(F) (resp. dgmZ

vec(LF ◦ F)) is the Möbius inversion of rk(F) (resp.
rk(LF ◦ F)) over the poset (Int(Z),⊃) = (Con(Z),⊃) (Definition 3.13), we also
have dgmZ

set(F) = dgmZ
vec(LF ◦ F). ��

We remark that the stability of dgmZ
vec(LF ◦ F) under perturbations of F was

established in Morozov et al. (2013), whereas the semicontinuity of dgmZ
set(F) was

established in Patel (2018, Theorem 8.1)9 (we remark that both of those works use R
as the indexing poset). Now, by virtue of Proposition 4.15, Patel (2018, Theorem 8.1)
can be improved to a complete stability theorem: Let dB be the bottleneck distance,
and let dCI be the interleaving distance between functors Z → C (Definitions D.2
and D.6 in Appendix). We have:

Corollary 4.16 For F,G : Z → set,

dB
(
dgmZ

set(F), dgmZ
set(G)

)
≤ dsetI (F,G).

Though this corollary directly follows from Proposition 4.15 and arguments similar
to those is Morozov et al. (2013), we provide another concise proof:

8 A constructible persistence module F : R → set (Definition F.1 in Appendix) is often said to be a merge
tree (Morozov et al. 2013). In order to compute the Patel’s persistence diagram of F , it suffices to consider
a certain re-indexed diagram D(F) : Z → set of F . Such a re-indexing method is described in Appendix F
(the paragraph Re-indexing a constructible persistence module by Z).
9 This theorem states that, when C is essentially small symmetric monoidal category with images, the
persistence diagram of F : R → C is stable to all sufficiently small perturbations of F .
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Proof We have:

dB
(
dgmZ

set(F), dgmZ
set(G)

)
= dB

(
dgmZ

vec(LF ◦ F), dgmZ
vec(LF ◦ G)

)
by Proposition 4.15

= dvecI (LF ◦ F, LF ◦ G) see below

≤ dsetI (F,G) by functoriality of LF.

The second equality follows from the celebrated isometry theorem (Chazal et al. 2016;
Lesnick 2015). ��

We remark that Corollary 4.16 is true even for constructible functors F,G : R →
set (Definition F.1 in Appendix), which can be proved via trivial re-indexing of F,G
by Z.

4.3.2 Decomposition of a Reeb graph and untwisted Reeb graphs

We define untwisted Reeb graphs, a generalization of merge trees, and extend Corol-
lary 4.16 to untwisted Reeb graphs.

A Reeb graph M : ZZ → set is said to be empty if Ms = ∅ for all s ∈ ZZ. Let
N , N ′ : ZZ → set. The disjoint union N

∐
N ′ : ZZ → set is defined as follows:

for all s ∈ ZZ, (N
∐

N ′)s := Ns � N ′
s and for all s ≤ t in ZZ, ϕN

∐
N ′(s, t) :

(N
∐

N ′)s → (N
∐

N ′)t is defined as ϕN (s, t) � ϕN ′(s, t). We say that a nonempty
M : ZZ → set is decomposable if M is isomorphic to N

∐
N ′ for some nonempty

N , N ′ : ZZ → set. Otherwise, we say that M is indecomposable. We have similar
definitions even when the indexing poset ZZ is replaced by any I ∈ Int(ZZ). In
what follows, we will see that the decomposition of a nonempty M : ZZ → set into
indecomposables parallels the topological decomposition ofReeb(M) (Definition 4.1)
into path-connected components.

We can explicitly decompose M as follows: Let J := lim−→ M , which is a nonempty
set (not necessarily finite). According to the canonical construction in equation (4),
each j ∈ J is a subset of the disjoint union

∐
k∈ZZ Mk . Note that M ∼= ∐

j∈J N
j ,

where each N j : ZZ → set is defined as N j
k = {m ∈ Mk : m ∈ j} for k ∈ ZZ and

the internal morphisms of N are the canonical restrictions of the internal morphisms
of M . Now we directly have:

Proposition 4.17 Any nonempty M : ZZ → set decomposes into a disjoint union of
indecomposables ZZ → set, and the decomposition is unique up to a permutation of
summands.

Remark 4.18 (i) Recall that a nonempty M : ZZ → set gives rise to the Reeb
graph (Reeb(M), π) (Definition 4.1). Given an indecomposable decomposition
M ∼= ∐

j∈J N
j , the path-connected components (Reeb(M), π) are precisely

Reeb(N j ), j ∈ J equipped with the restrictions of π .
(ii) Given any nonempty M : ZZ → set, the following are equivalent: (a) a nonempty

M is indecomposable, (b) Reeb(M) (Definition 4.1) contains only one path-
connected component, (c) lim−→ M is a singleton.
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Let M : ZZ → set be nonempty indecomposable. Then, lim−→ M is a singleton by
Remark 4.18 (ii). By supp(M), we denote the support of the unique element of lim−→ M
(Definition 4.3).

Definition 4.19 (Untwisted Reeb graphs) A nonempty M : ZZ → set is said to be
untwisted if the following holds: For I ∈ Int(ZZ) such that M |I is nonempty, if
M |I ∼= ∐

j∈J N
j for some indexing set J and nonempty indecomposables N j : I →

set, then lim←− N j |supp(N j ) �= ∅ for each j ∈ J .

Examples of untwisted Reeb graphs include M in Example 4.2 and merge trees,10

while non-examples include the Reeb graph of Fig. 6a. Let us characterize untwisted
Reeb graphs:

Proposition 4.20 Let M : ZZ → set be nonempty and let (Reeb(M), π) be the
corresponding Reeb graph (Definition 4.1). The following are equivalent:

(i) M is untwisted.
(ii) rk(M) = rk(LF ◦ M) (and thus, dgmZZ

set (M) = dgmZZ
vec(LF ◦ M)).

(iii) For each real interval 〈b, d〉 such that π−1(〈b, d〉) is nonempty, the restriction of
π to each connected component of π−1(〈b, d〉) has a section.

Proof We will utilize geometric insight of Example 4.5 and Remark 4.18 throughout
the proof.

(i)⇒(iii): It suffices to consider an interval 〈b, d〉 ⊂ R such that b, d ∈ Z ∪
{−∞,∞} and π−1(〈b, d〉) is nonempty. Let I := 〈b, d〉ZZ and consider the restricted
diagramM |I . Note that the assumptionπ−1(〈b, d〉) �= ∅ implies thatM |I is nonempty.
Now assume that M |I has an indecomposable decomposition M |I ∼= ∐

j∈J N
j . Then

Reeb(N j ) are exactly the connected components of Reeb(M |I ) (Remark 4.18 (i)).
Also, there exists a canonical bijection from lim←− N j |supp(N j ) to the sections of the

restriction π |Reeb(N j ) (cf. Example 4.5 (ii)). For each j ∈ J , since lim←− N j |supp(N j ) �=
∅, π |Reeb(N j ) has at least one section.

(iii)⇒(ii): Fix I = 〈b, d〉ZZ. By assumption, every 〈b, d〉-full-component has a
section. Invoking that rk(LF ◦M)(I ) is the number of 〈b, d〉-full-components (Propo-
sition 4.9), whereas rk(M)(I ) stands for the number of 〈b, d〉-full-components with a
section (Definition 4.4 (iv) andExample 4.5 (iv)), we have rk(M)(I ) = rk(LF◦M)(I ).

(ii)⇒(i): Fix any I ∈ Int(ZZ) such that M |I is nonempty and assume that M |I ∼=∐
j∈J N

j for some indexing set J and nonempty indecomposables N j : I → set.
Fix j ∈ J and let K := supp(N j ) = 〈b, d〉ZZ. By assumption, the number

rk(M)(K ) of 〈b, d〉-full-components of Reeb(M) is equal to the number rk(LF ◦
M)(K ) of 〈b, d〉-full-components of Reeb(M) which have a section. Therefore,
every 〈b, d〉-full-component has a section. By the choice of K , Reeb(N j ) is a 〈b, d〉-
full-component and thus Reeb(N j ) has a section. This means that lim←− N j |K �= ∅, as
desired. ��
10 Every Z-indexed set-diagram F can be converted into a ZZ-indexed diagram D(F) which contains the
same combinatorial information as F (refer to the paragraph Re-indexing ZR-indexed diagram by ZZ in
Appendix F). In this respect, every merge tree can be viewed as a Reeb graph.
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4.3.3 Bottleneck stability for untwisted Reeb graphs

We extend the stability result in Corollary 4.16 to a class of untwisted Reeb graphs.
An interleaving distance dCI between zigzag modules ZZ → C is defined when

C is cocomplete (Definition D.4 in Appendix). The following theorem can be proved
in the same way as Corollary 4.16 except utilizing the algebraic stability of zigzag
modules (Theorem D.8 in Appendix) in lieu of the isometry theorem.

Theorem 4.21 For any untwisted Reeb graphs M, N : ZZ → set,

dB
(
dgmZZ

set (M), dgmZZ
set (N )

)
≤ 2 · dSetI (M, N ). (8)

Proof We have:

dB
(
dgmZZ

set (M), dgmZZ
set (N )

)
= dB

(
dgmZZ

vec(LF ◦ M), dgmZZ
vec(LF ◦ N )

)
by Proposition 4.20

≤ 2 · dVecI (LF ◦ M, LF ◦ N ) by Theorem D.8

≤ 2 · dSetI (M, N ) by functoriality of LF.

��
We remark that the inequality in (8) is tight: dgmZZ

set (M) and dgmZZ
set (N ) are equal

to dgmZZ
vec(LF◦M) and dgmZZ

vec(LF◦N ) respectively and the tightness of the following
inequality is known (Botnan and Lesnick 2018):

dB
(
dgmZZ

vec(LF ◦ M), dgmZZ
vec(LF ◦ N )

)
≤ 2 · dsetI (M, N ).

We provide a concrete example of which the both sides in (8) coincide:

Example 4.22 (Tightness) Let M : ZZ → set be defined as

M(0,0) = {v1}, M(1,1) = {v2}, M(1,0) = {e1, e2}

and any other M(i, j) is the empty set. The maps ϕM ((1, 0), (0, 0)), ϕM ((1, 0), (1, 1))
are the unique surjections See Fig. 7a. One can check that dgmZZ

set (M)(I ) = 1 if
I = [1, 2]ZZ or I = (1, 2)ZZ, and dgmZZ

set (M)(I ) = 0 otherwise.
On the other hand, define N : ZZ → set as

N(0,0) = {v1}, N(1,1) = {v2}, N(1,0) = {e1}

and any other N(i, j) is the empty set. The maps ϕN ((1, 0), (0, 0)), ϕN ((1, 0), (1, 1))
are the unique bijections. See Fig. 7b. One can check that dgmZZ

set (N )(I ) = 1 if
I = [1, 2]ZZ and dgmZZ

set (N )(I ) = 0 otherwise. Checking that

dB
(
dgmZZ

set (M), dgmZZ
set (N )

)
= 1/2, and dsetI (M, N ) = 1/4,

demonstrates the tightness of the inequality in (8).
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Fig. 7 Illustration forExample 4.22.aTheReebgraph corresponding toM .bTheReebgraph corresponding
to N . Observe that for every interval I ∈ R, the preimages π−1

M (I ) and π−1
N (I ) consist solely of connected

components which allow a section. This demonstrate that M and N are untwisted

5 Discussion

We have extended the notions of rank invariant and generalized persistence diagram
due to Patel (2018) to the setting of generalized persistence modules P → C , when P
and C satisfy mild assumptions. The rank invariant and persistence diagram defined
in this paper generalize those in Botnan and Lesnick (2018), Carlsson et al. (2009),
Carlsson and Zomorodian (2009), Cohen-Steiner et al. (2007), Patel (2018), Zomoro-
dian and Carlsson (2005). In particular, our construction of the rank invariant yields
a complete invariant for interval decomposable persistence modules P → vec (which
include the case of zigzag modules). Along the way, the 0-th level set barcode of a
Reeb graph has been interpreted with a novel viewpoint. This leads to the promotion
of a Patel’s theorem and opens up the possibility of the existence of another efficient
algorithm for computing the 0-th level set barcode of a Reeb graph or a Morse-type
function.

Many questions remain unanswered:

(1) To what extent can we generalize stability results about persistence dia-
grams/barcodes beyond those results in Sect. 4.3 and those in Botnan and Lesnick
(2018), Chazal et al. (2009), Cohen-Steiner et al. (2007), McCleary and Patel
(2020), Patel (2018)? In particular, for arbitrary M : ZZ → set: how to address
the stability of dgmZZ

set (M) given that dgmZZ
set (M) could take negative values?11

(2) For persistence modules P → vec which are not interval decomposable, how
faithful is the rank invariant?

(3) Wewonder whether interval modules can be characterized in terms of persistence
diagrams as follows. Given an indecomposable F : P → vec, if dgmP(F)

vanishes on Con(P) \ Int(P) and has non-negative values on Int(P): is F an
interval module? This question is motivated from Example 3.21.

(4) In order to compute level set barcodes of Morse-type functions, algorithms in
Carlsson et al. (2009), Milosavljević et al. (2011) make use of a sequence of

11 We saw such a case in Example 4.12. Non-positive persistence diagrams also appear in Betthauser et al.
(2021).
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operations on matrices. Utilizing the results in Sect. 4.2, can we establish more
efficient algorithms for specifically computing 0-th level set barcodes?

(5) An Rd -indexed persistence module M can often be encoded as a P-indexed
module FM for some connected finite poset P; seeMiller (2020, Sect. 1.3). Small
perturbations to M in the interleaving distance (Definition D.2) are expected to
result in small variations of dgmP(FM ). How can we quantify the stability of
the assignment M �→ dgmP(FM )? Answering this question will enable us to
utilize dgmP(FM ) in statistical studies of multiparameter persistence modules
(e.g. efficient clustering methods for multiparameter persistence modules).

Note added in proof: See Section H of the arXiv version of this paper for a result
establishing the stability of the generalized rank invariant (Definition 3.5) with respect
to the interleaving distance.
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A Limits and Colimits

We recall the notions of limit and colimit (Mac Lane 2013). Throughout this section
I will stand for a small category.

Definition A.1 (Cone) Let F : I → C be a functor. A cone over F is a pair(
L, (πx )x∈ob(I )

)
consisting of an object L in C and a collection (πx )x∈ob(I ) of mor-

phisms πx : L → F(x) that commute with the arrows in the diagram of F , i.e. if
g : x → y is a morphism in I , then πy = F(g) ◦ πx in C , i.e. the diagram below
commutes.

F(x) F(y)

L

F(g)

πx πy

In Definition A.1, the cone
(
L, (πx )x∈ob(I )

)
over F will sometimes be denoted

simply by L , suppressing the collection (πx )x∈ob(I ) of morphisms if no confusion can
arise. A limit of a diagram F : I → C is a terminal object in the collection of all
cones:
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Definition A.2 (Limit) Let F : I → C be a functor. A limit of F is a cone over F ,

denoted by
(
lim←− F, (πx )x∈ob(I )

)
or simply lim←− F , with the following terminal prop-

erty: If there is another cone
(
L ′, (π ′

x )x∈ob(I )
)
of F , then there is a unique morphism

u : L ′ → lim←− F such that π ′
x = πx ◦ u for all x ∈ ob(I ).

Remark A.3 It is possible that a diagram does not have a limit at all. However, if
a diagram does have a limit then the terminal property of the limit guarantees its
uniqueness up to isomorphism. For this reason, we will sometimes refer to a limit as
the limit of a diagram.

Cocones and colimits are defined in a dual manner:

Definition A.4 (Cocone) Let F : I → C be a functor. A cocone over F is a pair(
C, (ix )x∈ob(I )

)
consisting of an object C in C and a collection (ix )x∈ob(I ) of mor-

phisms ix : F(x) → C that commute with the arrows in the diagram of F , i.e. if
g : x → y is a morphism in I , then ix = iy ◦ F(g) in C , i.e. the diagram below
commutes.

C

F(x) F(y)

ix

F(g)

iy

In Definition A.4, a cocone
(
C, (ix )x∈ob(I )

)
over F will sometimes be denoted

simply by C , suppressing the collection (ix )x∈ob(I ) of morphisms. A colimit of a
diagram F : I → C is an initial object in the collection of cocones over F :

Definition A.5 (Colimit) Let F : I → C be a functor. A colimit of F is a cocone,

denoted by
(
lim−→ F, (ix )x∈ob(I )

)
or simply lim−→ F , with the following initial property:

If there is another cocone
(
C ′, (i ′x )x∈ob(I )

)
of F , then there is a unique morphism

u : lim−→ F → C ′ such that i ′x = u ◦ ix for all x ∈ ob(I ).

Remark A.6 It is possible that a diagram does not have a colimit at all. However, if
a diagram does have a colimit then the initial property of the colimit guarantees its
uniqueness up to isomorphism. For this reason, we will sometimes refer to a colimit
as the colimit of a diagram.

Remark A.7 (Restriction of an indexing poset) Let P be any poset and let Q be a
subposet of P. In categorical language, Q is a full subcategory of P. Let F : P → C
be a functor.

(i) Assume that the limit of the restriction F |Q exists. For any cone
(
L ′, (π ′

p)p∈P
)

over F , its restriction
(
L ′, (π ′

p)p∈Q
)
is a cone over the restriction F |Q : Q → C .

Therefore, by the terminal property of the limit
(
lim←− F |Q, (πq)q∈Q

)
, there exists

the unique morphism u : L ′ → lim←− F |Q such that π ′
q = πq ◦ u for all q ∈ Q.
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(ii) Assume that the colimit of the restriction F |Q exists. For any cocone
(
C ′, (i ′p)p∈P

)

over F , its restriction
(
C ′, (i ′p)p∈Q

)
is a cocone over the restriction F |Q : Q →

C ′. Therefore, by the initial property of lim−→ F |Q, there exists the unique morphism
u : lim−→ F |Q → C ′ such that such that i ′q = u ◦ iq for all q ∈ Q.

B The rank invariant of a standard persistencemodule

In this section we review some important (standard) results about the rank invariant of
one-dimensional or multidimensional persistence modules. Recall the poset U from
Definition 2.10.

Definition B.1 (Rank invariant of a persistence module) Let F : R → vec be any
persistence module. The rank invariant of F is defined as the map rk(F) : U → Z+
which sends each u = (u1, u2) ∈ U to rank (F(u1 ≤ u2)).

Remark B.2 (Category theoretical interpretation of the rank invariant) Let F : R →
vec be a persistence module. For any u = (u1, u2) ∈ U, it is not difficult to check that

(
Fu1, (ϕF (u1, t))t∈[u1,u2]

)
and

(
Fu2 , (ϕF (t, u2))t∈[u1,u2]

)

are a limit and a colimit of F |[u1,u2], respectively. The canonical LC map from Fu1
to Fu2 is definitely ϕF (u1, u2), which is identical to ϕF (t, u2) ◦ ϕF (u1, t), for any
t ∈ [u1, u2]. Therefore, rk(F)(u) can be regarded as the rank of the canonical LC
map of F |[u1,u2].
Remark B.3 In Definition B.1, rk(F)(u) for u = (u1, u2) counts all the persistence
features of the persistence module F which are born before or at u1 and die after u2.
Also, when u1 = u2, rk(M)(u) is the dimension of Fu1 .

Remark B.4 (Rank invariant is order-reversing) In Definition B.1, for any pair u =
(u1, u2) ≤ u′ = (

u′
1, u

′
2

)
in U, since

ϕF
(
u′
1, u

′
2

) = ϕF
(
u2, u

′
2

) ◦ ϕF (u1, u2) ◦ ϕF
(
u′
1, u1

)
,

it holds that rk(F)
(
u′) ≤ rk(F)(u). Therefore, the map rk(F) : U → Z+ is an order-

reversing map. This result generalizes to McCleary and Patel (2020, Proposition 4.4).
Also, see Puuska (2020, Proposition 3.7).

Theorem B.5 (Completeness of the rank invariant for one-dimensional modules Carls-
son and Zomorodian 2009) The rank invariant defined in Definition B.1 is a complete
invariant for one-dimensional persistence modules, i.e. if there are two constructible
persistence modules F,G : R → vec such that rk(F) = rk(G), then F and G are
isomorphic (see Definition F.1 for the meaning of constructible).

The rank invariant can also be defined for multidimensional modules F : Rn →
vec, n > 1 : For any pair a ≤ b in Rn , let rk(F)(a,b) := rank (ϕF (a,b)). This
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defines a function from the set {(a,b) ∈ Rn × Rn : a ≤ b} to Z+. However, the map
rk(F) is not a complete invariant for multidimensional modules, i.e. for any n > 1,
there exists a pair of persistence modules F,G : Rn → vec that are not isomorphic
but rk(M) = rk(N ) (Carlsson and Zomorodian 2009).

C Comparison with Ville Puuska’s rank invariant

In (Puuska 2020), Ville Puuska considers the set

DgmP := {(a, b) ∈ P × P : a < b}

and defines the rank invariant of a functor F : P → C as the map dF : DgmP → C
sending (a, b) to im (ϕF (a, b)) ∈ ob(C ). Even though this definition is a straightfor-
ward generalization of the rank invariant of Carlsson and Zomorodian (2009), when
P = ZZ and C = vec, this definition is not anywhere near a complete invariant
of F : P → C . Namely, there exists a pair of zigzag modules M, N such that
dI(M, N ) = +∞ (Definition D.4) whereas dM ∼= dN :

Example C.1 Consider the two zigzag modules M, N : ZZ → vec defined as follows:
M := I (−∞,∞)ZZ and N is defined as

N(i,i) = F, N(i+1,i) = F
2,

ϕN ((i, i − 1), (i, i)) = π1,

ϕN ((i + 1, i), (i, i)) = π2,

whereπ1, π2 : F
2 → F are the canonical projections to the first and the second coordi-

nate, respectively. Note that dM(a, b) ∼= dN (a, b) ∼= F for all (a, b) ∈ DgmP. How-
ever, it is not difficult to check that barcZZ(M) = {{(−∞,∞)ZZ}} and barcZZ(N ) =
{{(i, i + 2)ZZ : i ∈ Z}}. This implies that dB

(
barcZZ(M), barcZZ(N )

) = +∞, and in
turn dI(M, N ) = +∞ by Theorem D.8.

D Interleaving distance and existing stability theorems

D.1 Interleaving distance

We review the interleaving distance betweenRd (orZd )-indexed functors and between
ZZ-indexed functors (Botnan and Lesnick 2018; Chazal et al. 2009; Lesnick 2015).

D.1.1 Natural transformations

We recall the notion of natural transformations from category theory (Mac Lane
2013): Let C and D be any categories and let F,G : C → D be any two functors.
A natural transformation ψ : F ⇒ G is a collection of morphisms ψc : Fc → Gc in
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D for all objects c ∈ C such that for any morphism f : c → c′ in C , the following
diagram commutes:

Fc Fc′

Gc Gc′ .

F( f )

ψc ψc′
G( f )

Natural transformations ψ : F → G are considered as morphisms in the category
DC of all functors from C to D .

D.1.2 The interleaving distance between Rd (or Zd )-indexed functors

In what follows, for any ε ∈ [0,∞), we will denote the vector ε(1, . . . , 1) ∈ Rd by
ε. The dimension d will be clearly specified in context.

Definition D.1 (v-shift functor) Let C be any category. For each v ∈ [0,∞)n , the
v-shift functor (−)(v) : C Rd → C Rd

is defined as follows:

(i) (On objects) Let F : Rd → C be any functor. Then the functor F(v) : Rd → C
is defined as follows: For any a ∈ Rd ,

F(v)a := Fa+v.

Also, for another a′ ∈ Rd such that a ≤ a′ we define

ϕF(v)(a, a′) := ϕF
(
a + v, a′ + v

)
.

In particular, if v = ε ∈ [0,∞)d , then we simply write F(ε) in lieu of F(ε).
(ii) (On morphisms) Given any natural transformation ψ : F ⇒ G, the natural trans-

formation ψ(v) : F(v) ⇒ G(v) is defined as ψ(v)a = ψa+v : F(v)a → G(v)a
for each a ∈ Rd .

For any v ∈ [0,∞)d , let ψv
F : F ⇒ F(v) be the natural transformation whose

restriction to each Fa is the morphism ϕF (a, a+ v) in C . When v = ε, we denote ψv
F

simply by ψε
F .

Definition D.2 (v-interleaving between Rd -indexed functors) Let C be any category.
Given any two functors F,G : Rd → C , we say that they are v-interleaved if there
are natural transformations f : F ⇒ G(v) and g : G ⇒ F(v) such that

(i) g(v) ◦ f = ψ2v
F ,

(ii) f (v) ◦ g = ψ2v
G .

In this case, we call ( f , g) a v-interleaving pair. When v = ε(1, . . . , 1), we simply
call ( f , g) ε-interleaving pair. The interleaving distance between dCI is defined as

dCI (F,G) := inf{ε ∈ [0,∞) : F,G are ε-interleaved}, (9)
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Fig. 8 a The shaded region stands for the poset U. For u,u′ ∈ U as marked in the figure, we have u ≤ u′.
b Fixing u ∈ U as shown, the subposet ZZ[ι ≤ u] is indicated by the red points and the red arrows

where we set dCI (F,G) = ∞ if there is no ε-interleaving pair between F and G for
any ε ∈ [0,∞). Then dCI is an extended pseudo-metric for C -valued Rd -indexed
functors. By replacing Rd by Zd in Definitions D.1 and D.2, we similarly obtain
the interleaving distance between Zd -indexed functors.

Definition D.3 (PosetU) The poset U := {
(u1, u2) ∈ R2 : u1 ≤ u2

}
is equipped with

the partial order inherited from Rop × R (see Fig. 8 (A)) , i.e. (u1, u2) ≤ (u′
1, u

′
2) in

U if and only if the interval (u1, u2) ⊂ R is contained in (u′
1, u

′
2) ⊂ R.

The reflection map r : Rop → R defined by t �→ −t induces a poset isomorphism
Rop ×R → R2 and this in turn induces an isomorphism C R2 → C Rop×R. Therefore,
the notions of ε-interleaving pair and the interleaving distance dCI on ob(C R2

) carry
over to Rop × R-indexed or U-indexed functors.

D.1.3 Extension functor and the interleaving for ZZ-indexed functors

From Definition 2.10, recall the poset ZZ = {(i, j) ∈ Z2 : j = i or j = i −
1} ⊂ Rop × R. Let ι : ZZ ↪→ Rop × R be the canonical inclusion map. For any
u = (u1, u2) ∈ U, let

ZZ[ι ≤ u] := {a ∈ ZZ : ι(a) ≤ u}

which is a subposet of ZZ. Observe that ZZ[ι ≤ u] cannot be empty for any choice
of u ∈ U. See Fig. 8b.

We review the definition of extension functor E : C ZZ → C U of Botnan and
Lesnick (2018) for a cocomplete category C . For any M : ZZ → C , define the
functor Ẽ(M) : Rop × R → C as follows: For a ∈ Rop × R,

Ẽ(M)(a) := lim−→ M |ZZ[(ι≤a)].
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Also, for any pair a ≤ b in Rop × R, since ZZ[ι ≤ a] is a subposet of ZZ[ι ≤ b],
the linear map lim−→ M |ZZ[(ι≤a)] → lim−→ M |ZZ[(ι≤b)], is uniquely specified by the initial
property of the colimit lim−→ M |ZZ[(ι≤a)] (DefinitionA.5 andRemarkA.7). This Ẽ(M) is
called the left Kan extension of M along ι : ZZ ↪→ Rop ×R. Given M, N : ZZ → C
and a natural transformation 
 : M → N , universality of colimits also yields an
induced morphism 
̃ : Ẽ(M) → Ẽ(N ). Given any M : ZZ → C , the functor
E(M) : U → C is defined as the restriction Ẽ(M)|U : U → C .

Definition D.4 (Interleaving distance between zigzag modules Botnan and Lesnick
2018) Let C be a cocomplete category. For any M, N : ZZ → C ,

dI(M, N ) := dCI (E(M), E(N )) .

D.2 Existing stability theorems

In this section we review the existing stability results fromBotnan and Lesnick (2018),
McCleary and Patel (2020).

D.2.1 Stability theorem of Patel

We recall McCleary and Patel (2020, Theorem 5.6):

Theorem D.5 (Stability for constructible persistence modules) LetC be an essentially
small, abelian12 category. Let F,G : R → C be constructible (Definition F.1). Then,

dB
(
dgmC (F), dgmC (G)

) ≤ dI(F,G).

We remark that the persistence diagram dgmC (F) can be computed via the following
process: (1) Re-indexing of F : R → C to obtain D(F) : Z → C (Sect. F), (2)
computing the persistence diagram of D(F) by Definition 3.13, and (3) the rescaling
of the persistence diagram (Sect. F).

D.2.2 Bottleneck distance

Weregard the extended real lineR := R∪{−∞,∞} as a posetwith the canonical order
≤. Let U :=

{
(u1, u2) ∈ R

2 : u1 ≤ u2
}
be equipped with the partial order inherited

from R
op × R. For u = (u1, u2), v = (v1, v2) ∈ U, let

‖u − v‖∞ := max (|u1 − v1| , |u2 − v2|) .

We can quantify the difference between two persistence diagrams or two barcodes of
real intervals, using the bottleneck distance (Cohen-Steiner et al. 2007):

12 A category C is abelian if morphisms and objects in C can be “added” and kernels and cokernels exist
in C with some desirable properties. See Mac Lane (2013, p.198) for the precise definition.

123



574 W. Kim, F. Mémoli

Definition D.6 (The bottleneck distance) Let X1, X2 be multisets of points in U. Let
α : X1 � X2 be a matching, i.e. a partial injection. We call α an ε-matching if

(i) for all u ∈ dom(α), ‖u − α(u)‖∞ ≤ ε,
(ii) for all u = (u1, u2) ∈ X1 \ dom(α), u2 − u1 ≤ 2ε,
(iii) for all v = (v1, v2) ∈ X2 \ im(α), v2 − v1 ≤ 2ε.

Their bottleneck distance dB(X1, X2) is defined as the infimum of ε ∈ [0,∞) for
which there exists an ε-matching α : X1 � X2.

Recall that 〈b, d〉ZZ for b, d ∈ Z denotes intervals ofZZ and that 〈b, d〉 for b, d ∈ R
denotes intervals of R.

Remark D.7 (1) Given a pair of multisets of intervals 〈b, d〉ZZ of ZZ, their bottleneck
distance is defined by converting those multisets into the multisets of U via the iden-
tification 〈b, d〉ZZ ↔ (b, d) ∈ U. (2) A map Int(ZZ) → Z+ can be considered as
a multiset of Int(ZZ) in an obvious way, and thus such maps can also be compared
in dB. (3) The bottleneck distance between multisets of real intervals 〈b, d〉 is also
defined via the identification 〈b, d〉 ↔ (b, d) ∈ U.

D.2.3 Algebraic stability for zigzag modules

Theorem D.8 (Bottleneck stability for zigzag modules Bjerkevik 2021; Botnan and
Lesnick 2018) For any M, N : ZZ → vec,

dB
(
barcZZ(M), barcZZ(N )

)
≤ 2 · dI(M, N ).

Let M be any zigzag module. By barcZZo (M), barcZZco (M), barcZZoc (M) and
barcZZc (M), we mean the subcollection of barcZZ(M), consisting solely of the points
of the form (b, d)ZZ, [b, d)ZZ, (b, d]ZZ, and [b, d]ZZ, respectively.
Remark D.9 Suppose that the two zigzag modules M, N in Theorem D.8 are the lev-
elset zigzag persistent homology of any two Morse type functions f , g : X → R
(Definition G.1). Then, the inequality in Theorem D.8 can be extended and strength-
ened as follows (Botnan and Lesnick 2018; Carlsson et al. 2019, Theorem 4.11): For
each � ∈ {o, co, oc, c},

dB
(
barcZZ� (M), barcZZ� (N )

)
≤ dI(M, N )

≤ ‖ f − g‖∞ .

Therefore, we also have

dB
(
barcZZ(M), barcZZ(N )

)
≤ max

�
dB
(
barcZZ� (M), barcZZ� (N )

)

≤ dI(M, N ) ≤ ‖ f − g‖∞ ,

where the maximum is taken over all � ∈ {o, co, oc, c}.
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E Proof of Proposition 3.17

In this section we prove Proposition 3.17. For notational simplicity, we set P = ZZ.
We remark that the proof extends to arbitrary connected locally finite posets.

E.1 Canonical bases and l-type intervals

Suppose that M : ZZ → vec is given as M = ⊕
c∈C I Jc for an index set C . Then

for each (i, j) ∈ ZZ, the dimension of M(i, j) is the total multiplicity of intervals
containing (i, j) in barcZZ(M) = {{Jc : c ∈ C}}. Given any c ∈ C , and (i, j) ∈ Jc,
let e(i, j)

c denote the 1 in the field F which corresponds to the (i, j)-component of
I Jc . Then for each (i, j) ∈ ZZ, the vector space M(i, j) admits the canonical basis

B(i, j) =
{
e(i, j)
c : Jc contains (i, j)

}
and hence every v ∈ M(i, j) can be uniquely

expressed as a linear combination of the elements in B(i, j), i.e.

v =
∑

Jc"(i, j)

ace
(i, j)
c , ac ∈ F. (10)

This expression is called the canonical expression of v. The collection B =
(B(i, j))(i, j)∈ZZ is called the canonical basis of M = ⊕

c∈C I Jc .
In order to prove Proposition 3.17, we identify a certain type of intervals of the

poset ZZ:

Definition E.1 (l-type intervals) Any interval I of ZZ is called l-type13 if I is of the
form (b, d)ZZ for some b ∈ Z ∪ {−∞} and d ∈ Z ∪ {∞} (see Fig. 2).
Notation E.2 Let M : ZZ → vec be any zigzag module and let (i, j), (i ′, j ′) ∈ ZZ.
For v(i, j) ∈ M(i, j) and v(i ′, j ′) ∈ M(i ′, j ′), we write v(i, j) ∼ v(i ′, j ′) if (i, j), (i ′, j ′) are
comparable and either

v(i, j) = ϕM ((i ′, j ′), (i, j))(v(i ′, j ′)) (when (i ′, j ′) ≤ (i, j)) or

v(i ′, j ′) = ϕM ((i, j), (i ′, j ′))(v(i, j)) (when (i, j) ≤ (i ′, j ′)).

Proof of Proposition 3.17 For simplicity of notation, we prove the proposition when
P = ZZ and J = (−∞,∞) = ZZ. The proof straightforwardly extends to any
connected, locally finite poset P and J ∈ Con(P). By Theorem 2.12, we may assume
that M = ⊕

c∈C I Jc , where barcZZ(M) = {{Jc : c ∈ C}}. In what follows, we identify
ZZ with the integers Z via the bijection (i, j) �→ i + j . Therefore, by

⊕
k∈Z Mk and∏

k∈Z Mk , we will denote
⊕

(i, j)∈ZZ M(i, j) and
∏

(i, j)∈ZZ M(i, j) respectively.

(i) The limit of M is (isomorphic to) the pair (V , (πk)k∈Z) described as follows:

V :=
{

(vk)k∈Z ∈
∏

k∈Z
Mk : ∀k ∈ Z, vk ∼ vk+1

}

. (11)

13 Given any M : ZZ → vec, l-type intervals in barcZZ(M) contribute to the dimension of the limit of M
and that is the reason for the name ‘l’-type.
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For each k ∈ Z, the map πk : V → Mk is the canonical projection.
(ii) The colimit of M is (isomorphic to) the pair (U , (ik)k∈Z) described as fol-

lows: U is the quotient vector space
(⊕

k∈Z Mk
)
/W , where W is the subspace

of the direct sum
⊕

k∈Z Mk which is generated by the vectors of the form
(· · · , 0, . . . , 0, vk,−vk+1, 0, . . . , 0, · · · ) with vk ∼ vk+1 (Notation E.2). Let q
be the quotient map from

⊕
k∈Z Mk to U = (⊕

k∈Z Mk
)
/W . For k ∈ Z, let the

map īk : Mk → ⊕
k∈Z Mk be the canonical injection. Then ik : Mk → U is the

composition q ◦ īk .

Let 0 ∈ Z. Since the canonical map ψM : lim←− M → lim−→ M is equal to i0 ◦ π0,
it suffices to show that the dimension of the vector space im(i0 ◦ π0) is equal to the
cardinality of (−∞,∞)ZZ in barcZZ(M).

If M0 is the zero space, then it is clear that there is no (−∞,∞)ZZ in barcZZ(M)

and that im(π0) = 0. Therefore, im(i0 ◦ π0) = 0, and the statement directly follows.
Assume that M0 is not trivial. Define

C0 := {c ∈ C : 0 ∈ Jc}.

Since M0 is a finite dimensional vector space, |C0| = dim(M0) is finite and hence
we can write C0 = {c1, . . . , cm}, where dim(M0) = m. Also, we can write M0 ∼=
⊕m

j=1 F j , where each F j = F is the component of the interval module I Jc j at 0 ∈ ZZ.
We identify M0 with

⊕m
j=1 F j . Then, we claim that

im(π0) =
⎧
⎨

⎩
(a1, . . . , am) ∈

m⊕

j=1

F j : a j = 0 if Jc j is not l-type

⎫
⎬

⎭
. (12)

We prove this equality at the end of the proof.
For j = 1, . . . ,m, let e j := (0, . . . , 0, 1

j−th
, 0, . . . , 0) ∈ ⊕m

j=1 F j . By equation

(12), the set B0 = {e j : Jc j is l-type} is a basis of im(π0). Therefore, the dimension
of im(i0 ◦ π0) is equal to the dimension of the space that is spanned by the image of
B0 under the map i0 : M0 → U . By invoking item (ii) above, if Jc j �= (−∞,∞)ZZ,
it follows that i0(e j ) = 0 ∈ U .

LetCfull
0 := {c ∈ C : Jc = (−∞,∞)ZZ}, which is a subset ofC0 = {c1, . . . , cm}.

Assuming that Cfull
0 �= ∅, suppose that Cfull

0 = {c1, . . . , cn} for some n ≤ m without
loss of generality. Invoking item (ii) above, the set {i0(e1), . . . , i0(en)} is linearly
independent in U . Therefore, we have that

rank(i0 ◦ π0) = n = (the multiplicity of (−∞,∞)ZZ in barcZZ(M)),

as desired.
Finally we prove equation (12). First we prove “⊂”. Recall item (i) above and pick

any v = (vk)k∈Z ∈ V . Then π0(v) = v0 = (a1, . . . , am). Suppose that c j ∈ C0
is such that Jc j is not l-type. This implies that the interval Jc j has an endpoint r =
(r1, r2) ∈ ZZ where r1 = r2 ∈ Z and then either (r1 + 1, r1) or (r1, r1 − 1) is not in
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Jc1 . Without loss of generality, assume that s = (r1 + 1, r1) ∈ ZZ does not belong to
Jc1 . By the choice of v = (vk)k∈Z, we have v0 ∼ v1 ∼ . . . ∼ v2r1 ∼ v2r1+1, and this
leads to that a j = 0.

Next we show “⊃”. Pick any (a1, . . . , am) in the RHS of equation (12). For each
k ∈ Z, define vk ∈ Mk using the canonical expression:

vk :=
∑

Jc"k
bce

k
c , bc ∈ F,

where bc = 0 if c /∈ C0 and bc = a j if c = c j ∈ C0 = {c1, . . . , cm}. Let v := (vk)k∈Z.
Then, one can check that π0(v) = (a1, . . . , am), completing the proof. ��

F Constructible persistencemodules and re-indexing

Patel generalizes the persistence diagram of Cohen-Steiner, Edelsbrunner, and Harer
to the setting of constructible R-indexed diagrams valued in a symmetric monoidal
category (Patel 2018).

Definition F.1 (Constructible R-indexed diagrams) Let S = {s1 < s2 < . . . < sn} be
a finite set of R. A diagram F : R → C is S-constructible if

(i) for p ≤ q < s1, ϕF (p, q) is the identity on e,
(ii) for si ≤ p ≤ q < si+1, ϕF (p, q) is an isomorphism,
(iii) for sn ≤ p ≤ q, ϕF (p, q) is an isomorphism.

If G : R → C is T -constructible for some finite set T ⊂ R, then we call G con-
structible.

F.1 Re-indexing an R-indexed diagram by Z

Let F : R → C be S-constructible with S = {s1 < s2 < . . . < sn}. A functor
D(F) : Z → C that contains all the algebraic information of F would be defined as
follows:

D(F)i =

⎧
⎪⎨

⎪⎩

e, for i ≤ 0,

Fsi , for i = 1, . . . , n,

Fsn , for i ≥ n + 1.

ϕD(F) (i, i + 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ide, for i ≤ 0,

ϕF (si , si+1), for i = 0, 1, . . . , n − 1, where

s0 is arbitrarily chosen in (−∞, s1),

idFsn , for i ≥ n.

When C = vec, there exists a bijection from the barcode of F to that of D(F) via
[si , s j ) �→ [i, j − 1] for 1 ≤ i < j ≤ n, and [si ,∞) �→ [i,∞) for 1 ≤ i ≤ n.
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F.2 Re-indexing a Z-indexed diagram by ZZ

Let F : Z → C . Let us define L(F) : ZZ → C as follows (Botnan and Lesnick
2018, Remark 4.5):

L(F)(i,i) = L(F)(i+1,i) = Fi
ϕL(F) ((i + 1, i), (i, i)) = idFi
ϕL(F) ((i − 1, i), (i, i)) = ϕF (i − 1, i).

When C = vec and Fi = 0 for i ≤ 0, there exists a bijection from the barcode
of F to that of L(F) via [a, b] �→ [a, b + 1)ZZ for a, b ∈ Z with a ≤ b, and
[a,∞) �→ [a,∞)ZZ for a ∈ Z.

G Rigorous definition of Reeb graphs

In order to introduce the definition of Reeb graphs, we begin by introducing the notion
of Morse type functions from Botnan and Lesnick (2018), Carlsson et al. (2009).

Definition G.1 (Morse type functions) Let X be a topological space. We say that a
continuous function p : X → R is of Morse type if

(i) There exists a strictly increasing functionG : Z → R such that limi→+∞ G (i) =
∞, limi→−∞ G (i) = −∞ and such that for eachopen interval Ii = (G (i),G (i+
1)) there exist a topological space Yi and a homeomorphism hi : Ii × Yi →
p−1(Ii ) with f ◦ hi being the projection Ii × Yi → Ii .

(ii) Each homeomorphism hi : Ii ×Yi → p−1(Ii ) extends to a continuous function

h̄i : Īi × Yi → p−1( Īi ),

where Īi denotes the closure of Ii .
(iii) For all t ∈ R and k ∈ Z+, dim Hk

(
p−1(t)

)
< ∞.

We introduce the definition of Reeb graphs (De Silva et al. 2016).

Definition G.2 (Reeb graphs) Let X be a topological space and let p : X → R be of
Morse type. If the topological spaces Yi as in Definition G.1 (i) are finite sets of points
with the discrete topology, then the pair (X , p) is said to be a Reeb graph.14 See Fig. 5
(A) for an illustrative example.
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