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Abstract
We introduce the geodesic complexity of a metric space, inspired by the topological
complexity of a topological space. Both of them are numerical invariants, but, while
the TC only depends on the homotopy type, the GC is an invariant under isometries.
We show that in some cases they coincide but we also develop tools to distinguish
the two in a range of examples. To this end, we study what we denote the total cut
locus, which does not appear to have been explicitly considered in the literature. To
the knowledge of the author, the GC is a new invariant of a metric space. Furthermore,
just like the TC, the GC has potential applications to the field of robotics.

Keywords Geodesic complexity · Metric spaces · Topological complexity · Cut
locus · Topological robotics

Mathematics Subject Classification 53C22 · 55M30 · 68T40
1 Introduction

Almost two decades ago Farber introduced the topological complexity of a space
to study the motion planning problem from robotics using topological tools (Farber
2003). In short, the topological complexity is the smallest number of continuous rules
necessary to motion plan on a given space, where a motion planning rule is a function
which associates to each pair of points a path between them. Fewer rules signify higher
stability (continuity) with respect to the input (pairs of points), which is why we seek
to minimize the number of such rules.

To give the formal definition the following is needed: The path space PX is the
space of all paths on X with the compact-open topology. The free path fibration is the
evaluation map PX → X × X which sends each path γ to the pair (γ (0), γ (1)).

Definition 1.1 (Farber’03) The topological complexity TC(X) of a space X is defined
to be the smallest k forwhich there exists a decomposition into pairwise disjoint locally
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142 D. Recio-Mitter

compact sets X × X = ⋃k
i=0 Ei such that there are local sections si : Ei → PX of

the free path fibration.

In the last two decades, the topological complexity has been computed for a multi-
tude of different spaces by several authors. Furthermore, other variants of topological
complexity have emerged, most of which essentially impose some restrictions on the
motion planners. For instance, monoidal topological complexity requires the motion
from each point to itself to be the constant path. It is an open question of Iwase and
Sakai (2010) whether TC(X) = TCM (X). The equality has been shown for large
classes of spaces (Dranishnikov 2014).

From the point of view of applications, the latter restriction is very sensible: if a
robot is already at the position to which it needs to move, it is a waste of energy for the
robot to move at all. More generally, it is preferable for the motion planner to assign to
each pair of points a path of minimal length between them. This is what motivates the
definition of geodesic complexity below. First we need some preliminary definitions.

Definition 1.2 Let (X , d) be a metric space. The length of a path γ : [0, 1] → X is
given by

�(γ ) = sup
0=t0≤t1≤···≤tN=1

N∑

i=1

d(γ (ti−1), γ (ti )),

where the supremum is taken over all finite partitions of the interval [0, 1].
Definition 1.3 Let (X , d) be a metric space. We say that a path γ is a geodesic if there
exists a number λ such that

d(γ (t), γ (t ′)) = λ|t − t ′|

for all 0 ≤ t < t ′ ≤ 1. In particular the length of the path agrees with the distance
between the endpoints: �(γ ) = d(γ (0), γ (1)) = λ. Note that this is the shortest length
a path from γ (0) to γ (1) could possibly have.

Remark 1.4 Geodesics are shortest paths with constant speed, meaning that they are
parametrized proportional to arc length. If a path γ has minimal length, in the sense
that �(γ ) = d(γ (0), γ (1)), then it can be reparametrized to be a geodesic as defined
above. This is discussed in Sect. 7.

Remark 1.5 In the case when X is a Riemannian manifold, the definition of geodesic
above is equivalent to the definition of (smooth)minimizing geodesic in the usual sense
of Riemannian geometry. This is true for any path satisfying the definition of geodesic
above, without the need to assume that it is smooth or even piecewise smooth. This
follows from the fact that Riemannian manifolds are locally uniquely geodesic metric
spaces, under the usual metric. This means that every point in a Riemannian manifold
has a small ball around it in which any geodesic needs to coincide with the unique
smooth geodesic with the same endpoints, and thus be itself smooth.
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Definition 1.6 Let (X , d) be a metric space and let GX ⊂ PX be the subspace of
the free path space of X consisting of all geodesics on X . We call GX the geodesic
path space. Restricting the free path fibration PX → X × X to GX yields a map
π : GX → X × X .

Definition 1.7 The geodesic complexity GC(X , d) of a metric space (X , d) is defined
to be the smallest k for which there exists a decomposition into k+1 pairwise disjoint
locally compact sets X×X = ⋃k

i=0 Ei such that there are local sections si : Ei → GX
of π . We call such a collection of local sections a geodesic motion planner with k + 1
domains of continuity.

Remark 1.8 As was pointed out in Remark 1.4, geodesics are shortest paths with
constant speed. The constant speed condition is convenientwhen proving lower bounds
because it makes the requirements for geodesic motion planners more rigid, but it is
not essential in the definition of geodesic complexity. We show in Theorem 7.4 that
dropping the “constant speed” requirement results in an equivalent definition. In short,
a motion planner along shortest paths can always be modified to be a motion planner
along shortest paths with constant speed, preserving continuity.

The most commonly used definition of topological complexity requires an open
cover with local sections over the open sets of the cover, instead of a decomposition
into locally compact sets, as above. However, open sets do not work in the case of
geodesic complexity; see Remark 3.17. The definition of topological complexity given
above was also given by Farber (2008, Prop. 4.12) and he showed that for reasonably
nice spaces X (for all Euclidean Neighborhood Retracts for instance) both definitions
are equivalent. All spaces considered in this article are ENRs, in fact even manifolds.

Remark 1.9 Bydefinition,TC(X) ≤ GC(X , d). The topological complexity is a homo-
topy invariant (at least if X is an ENR) and so it does not depend on the metric d. We
will see that the geodesic complexity does depend on the metric and can in general
differ dramatically from the topological complexity.

However,we also show that inmany important examples, such as spheres, projective
spaces, flat n-tori and the flat Klein bottle, the geodesic and the topological complexity
agree; see Sect. 4.

Remark 1.10 In most cases, the map π is no longer a fibration. To see this, consider the
example when X is the circle (see Example 3.16). In that case, the fiber π−1((x, y))
consists of either one geodesic (if x �= −y) or two geodesics (if x = −y). However, if
π : GS1 → S1×S1 were a fibration, the fibers would have to be homotopy equivalent,
since the base is connected.

Because π is not a fibration, some of the techniques commonly used to compute
the topological complexity do not work for geodesic complexity. However, in some
cases π is a level-wise stratified covering. This concept is introduced in Sect. 3 in an
attempt to characterize the properties of π which allow us to find lower bounds for
the geodesic complexity in the examples given in the Sects. 4, 5 and 6. The ideas used
in those sections are also used to find a general lower bound when π is a level-wise
stratified covering (satisfying some additional properties) in Corollary 3.14, indicating
that the characterization of level-wise stratified coverings is appropriate.
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There already exists a variant of topological complexity in the literature motivated
by the idea of requiring the motion planners to be as efficient as possible. It was
introduced by Błaszczyk and Carrasquel-Vera (2018) and it is called the efficient
topological complexity �TC(M) of a compact orientable Riemannian manifold M .

However, geodesic complexity is in fact very different from efficient topological
complexity, despite the similar heuristics: Błaszczyk and Carrasquel-Vera show that
TC(M) ≤ �TC(M) ≤ TC(M)+1 for any closed orientable Riemannian manifold. In
fact, they pose the (still open, to our knowledge) question ofwhether the first inequality
is actually an equality TC(M) = �TC(M) for all closed orientable Riemannian mani-
folds.1 By contrast, we show that the difference between the geodesic complexity and
the topological complexity is arbitrarily large, even for closed Riemannian manifolds.

Theorem 1.11 For every k ∈ N there exists a closed Riemannian manifold (M, g)
such that GC(M) − TC(M) ≥ k. In fact, M can be chosen to be a sphere (with a
non-standard metric). Furthermore, for every k ∈ N, there exists a metric g′

m on R
k+1

such that GC(Rk+1, g′
m) ≥ k, while TC(Rk+1) = 0.

The reason geodesic complexity is very different from efficient topological com-
plexity is that geodesic complexity depends mostly on the structure of the total cut
locus of X , which is the subsetC ⊂ X×X consisting of all pairs (x, y) for which there
is more than one geodesic γ from x to y; see Sect. 3. This is because, by Theorem 3.3,
if a metric space is nice enough, there is a local section of π on the complement the
total cut locus. Thus the main challenge is to find a geodesic motion planner on the
total cut locus itself.

However, efficient topological complexity does not require geodesic motion on
the total cut locus: because of the definition of efficient topological complexity, an
efficient motion planner need not be geodesic on a set of measure zero, but the total
cut locus of a closed Riemannian manifold is always a set of measure zero. Therefore,
an efficient motion planner can be constructed by using any (not necessarily geodesic)
motion planner on the total cut locus and the unique geodesic motion planner on the
complement of the total cut locus (as a single motion planning set). The details of this
argument can be found in Błaszczyk and Carrasquel-Vera (2018).

In Sects. 4, 5 and 6 the geodesic complexity of several spaces are computed. It
is worth noting that the lower bounds are proven by direct considerations of explicit
motion planners (i.e. without recourse to algebra), which is very uncommon in the field
of topological complexity and its variants. The ideas used there might be applicable
to many further examples. We summarize the findings in the following theorems.

Theorem 1.12 (Theorems 4.4 and 4.5) For the flat n-torus T n
flat and the flat Klein

bottle K , the topological complexity and the geodesic complexity agree: GC(T n
flat) =

TC(T n) = n and GC(K ) = TC(K ) = 4.

It turns out that the torus has a different geodesic complexity if equipped with
another very commonly used metric:

1 They do give one example of a manifold with boundary with TC(M) = 0 and �TC(M) = 1, namely a
closed hemisphere of the standard 2-sphere.
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Geodesic complexity of motion planning 145

Theorem 1.13 (Theorem 5.1) Let Temb be the standard embedded torus in R
3 and let

T be the flat 2-torus. Then

GC(Temb) = 3 > GC(T ) = 2.

Theorem 1.14 (Theorem 6.2) Let W be the boundary of the 3-cube with the flat metric.
This is a 2-sphere with a non-standard metric (a flat sphere) for which the geodesic
complexity is different from the topological complexity:

GC(W ) ≥ 3 > TC(W ) = TC(S2) = 2.

The upper bounds on geodesic complexity in the previous theorems come from
explicit geodesic motion planners. In particular, we give an optimal geodesic motion
planner for the Klein bottle K . While it was known that a (not necessarily geodesic)
motion planner with 5 sets exists by the general dimensional upper bound, no motion
planner hadbeen constructed explicitly. It isworth pointingout thatwegive ageometric
proof of GC(K ) = 4. In contrast, both proofs of the equality TC(K ) = 4, the first
by Cohen and Vandembroucq (2017) and the second by Iwase et al. (2019), involve
complicated algebraic calculations.

In Sect. 8 we formulate some open questions regarding geodesic complexity which
arise naturally and seem to be promising problems for further research.

I would like to thank Diarmuid Crowley, Don Davis, Mark Grant, Mike Harrison
and Jarek Kędra for very valuable discussions and suggestions. I would also like to
thank the anonymous referees for their helpful suggestions.

2 Are GC(X) and TC(X) equal?

Apriori GC(X) and TC(X) could actually be the same for all reasonable metric spaces
X (assuming at least that X is geodesically complete, to make sure that GC(X) is
not automatically infinite). However, in this section we construct closed Riemannian
manifolds M for which the numbers GC(M) and TC(M) are arbitrarily far apart
from each other. In fact, the constructed manifolds are spheres with non-standard
Riemannian metrics. We also construct a Riemannian metric on R

n under which the
geodesic complexity is unbounded as the dimension increases, see Theorem 1.11.

We need the following definition.

Definition 2.1 A subspace K of a metric space (X , d) is said to be convex if for any
pair of points x, y ∈ K , every geodesic in K between x and y lies entirely in K .

Theorem 2.2 If K is a convex locally compact subspace of (X , d), then TC(K ) ≤
GC(K ) ≤ GC(X).

Proof A geodesic motion planner for GX → X × X restricts to a geodesic motion
planner on GK → K × K , because any geodesic with its endpoints in K × K has to
lie entirely in K . Furthermore, for every locally compact Ei in X × X , the intersection
Ei∩K×K is also locally compact. This is because both the product and the intersection
of locally compact Hausdorff spaces is locally compact. 
�

We will need the following theorem.
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Theorem 2.3 (Farber 2003) Let Sn be the n-sphere and T n the n-torus. Then

TC(Sn) =
{
1 if n odd

2 if n even

and

TC(T n) = n.

The following example will motivate the proof of Theorem 1.11.

Example 2.4 Let (S3, gm) be the result of glueing a hemisphere of the standard sphere
(S3, g) onto each end of the standard cylinder S2 × [0, 1]. This space is sometimes
known as a capsule. After smoothing the edges, (S3, gm) becomes a Riemannian
manifold diffeomorphic to S3. Because the submanifold S2 × { 12 } � S2 is convex, by
Theorem 2.2: GC(S3, gm) ≥ TC(S2) = 2 > 1 = TC(S3).

The proof of Theorem 1.11 is essentially a generalization of the previous example.

Proof of Theorem 1.11 Let (Sn+1, g) be the standard sphere of radius 1, with n ≥ 2.
Let T n ↪→ Sn+1 be an embedding of a torus with trivial normal bundle. Choose

a tubular neighborhood N1 of T n in Sn+1 and further tubular neighborhood N2
around N1. Because the normal bundle is trivial, N1 is homeomorphic to a prod-
uct T n × (−1, 1). Construct a new Riemannian metric gm on Sn+1 such that it
coincides with g outside of N2 and it corresponds to the product metric on N1 ∼=
T n × (−diam(T n), diam(T n)), where diam(T n) is the diameter of T n , i.e. the length
of the longest geodesic in T n . It is well known that a metric can be constructed in
N2 − N1 to make (Sn+1, gm) into a Riemannian manifold, using bump functions.

Given two points x and y in (T n, gm |T n ), all geodesics between x and y must stay
in N1 because a path leaving N1 would have a length strictly greater than the diameter
of (T n, gm |T n ). Furthermore, because gm |N1 is the product metric it is clear that the
geodesics all have to lie on T n × {0} ⊂ N1. This shows that (T n, gm |T n ) is convex in
(Sn+1, gm).

By Theorem 2.2 we have GC(Sn+1, gm) ≥ TC(T n) = n, while TC(Sn+1) equals
either 1 or 2. The differenceGC(Sn+1, gm)−TC(Sn+1) ≥ n−2 can bemade arbitrarily
large by increasing n.

We can repeat the same argument with an embedding T k ↪→ R
k+1 instead. In this

way, we can construct a metric g′
m on R

k+1 such that GC(Rk+1, g′
m) ≥ TC(T k) = k.

Linear interpolation yields a continuous motion planner on R
k+1, showing that

TC(Rk+1) = 0. 
�
Remark 2.5 The arguments in the previous proof could be used to find lower bounds on
the geodesic complexity ofRiemannianmanifolds constructed using any embedding of
a Riemannian manifold into another which has a trivial normal bundle (with arbitrary
codimension).

However, these examples could be seen as increasingly artificial, because the con-
struction is very ad hoc. In Sects. 5 and 6 we exhibit some more naturally arising
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Geodesic complexity of motion planning 147

examples for which the topological complexity and the geodesic complexity also dif-
fer. The technique used in those examples is different from the one used in this section
and is introduced in Sect. 3.

3 The total cut locus and lower bounds for GC

Let (X , d) be a metric space. The following definition is very useful when studying
GC(X).

Definition 3.1 The total cut locus of X is the subset C ⊂ X × X consisting of all pairs
(x, y) for which there is more than one geodesic γ from x to y. The cut locus of a
point x ∈ X is the subset Cx ⊂ X consisting of all y in X such that (x, y) is in C .

The cut locus of a point is treated in many differential geometry textbooks, such
as Lee (2018). However, the author was not able to find any treatment of the total
cut locus (by any name) in the literature. It should be mentioned that when X is a
Riemannian manifold the cut locus of a point as defined above does not contain first
conjugate points along a unique minimizing geodesic, in contrast to the definition in
differential geometry (see Lee 2018). The definition above can be found in Bridson
and Haefliger (1999) for instance.

The geodesic complexity seems to depend entirely on the nature of the total cut
locus. Concretely, the following theorem shows that for nice metric spaces there exists
a local section of π : GX → X × X on the complement of the total cut locus. This
means that finding a geodesic motion planner on the total cut locus is the hardest part.

Definition 3.2 We say that a metric space (X , d) is a geodesic space if every pair of
points x, y ∈ X is connected by a geodesic. This is clearly a necessary condition for
the geodesic complexity of a metric space to be finite.

Theorem 3.3 Let (X , d) be a locally compact geodesic complete metric space. Then
the map π : GX → X × X has a local section over the complement of the total cut
locus. In particular, if the total cut locus of X is empty, then GC(X) = 0.

Proof Recall that a metric space (X , d) is said to be proper if all closed balls are
compact. We say that a metric space (X , d) is a length space if the distance between
every pair of points x, y ∈ X is equal to the infimum of the length of the paths joining
them.

By Bridson and Haefliger (1999, Chapter I, 3.8 Corollary) a length space is proper
if and only if it is complete and locally compact.We assume that X is a geodesic space,
which means that the distance between two points is realized by the length of a path
between them, thus X is a length space. Because X is also assumed to be complete, it
is a proper metric space.

Furthermore, Bridson and Haefliger (1999, Chapter I, 3.12 Lemma) states that for a
proper metric space the unique geodesics connecting the pairs of points in X × X −C
vary continuously. Thus, there is a local section of π : GX → X × X over X × X −C .

In particular, if C = ∅, this yields a motion planner with a single motion planning
rule E0 = X × X (it is well known that a product of locally compact sets is itself a
locally compact). This implies that GC(X) = 0. 
�
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Remark 3.4 Theorem 3.3 states that when the total cut locus of a metric space X is
empty, then GC(X) = 0. It is worth noting that the converse implication does not
hold. For example, consider the case when X = I 2 is a square with the �1-metric
d1((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2| (also known as the Manhattan metric).
The total cut locus of (I 2, d1) consists of all pairs ((x1, x2), (y1, y2)) with x1 �= y1
and x2 �= y2. However, GC(I 2, d1) = 0 because there is a global section of π which
maps each pair of points to the geodesic along the straight segment between the points
(i.e. the unique geodesic between the points under the �2 metric).

Remark 3.5 In Bridson and Haefliger (1999, Chapter I, 3.14 Exercise) Bridson and
Haefliger exhibit a complete geodesic space which has an empty total cut locus and
which is even (Lipschitz-1) contractible to a point, but forwhich themapGX → X×X
does not have a section. There is a unique geodesic over each pair of points, but these
geodesics do not vary continuously.

Naturally (in light of the previous theorem), the space given in the example is not
locally compact.

Question Is there a locally compact space X on which there is a unique geodesic
connecting each pair of points x, y ∈ X but for which the unique geodesics do not
vary continuously over X × X (implying GC(X) ≥ 1)? Of course, by the previous
theorem, such a space would not be complete.

We study the total cut locus of several examples in Sects. 4, 5 and 6 to find lower
bounds for the geodesic complexity. These examples seem to point to a general method
to find lower bounds for the geodesic complexity of a metric space in cases in which
the preimages π−1((x, y)) are finite for all (x, y) ∈ X×X , using completely different
ideas from the ones used in Sect. 2. We suggest the definition of a level-wise stratified
covering below and the proof of Theorem 3.13 as a framework in which to understand
those examples. More work needs to be done in that direction.

As was pointed out in the introduction, the map π : GX → X×X is not a fibration.
However, if the preimages π−1((x, y)) are finite for all (x, y) ∈ X × X then the map
π sometimes is a level-wise stratified covering in the following sense.

Definition 3.6 A stratification of B is a decomposition

B =
N⋃

i=1

Si

into disjoint subsets such that Si = ⋃
j≥i S j , for i = 1, . . . , N and such that the

following frontier condition is satisfied: Let S and S′ be path components of each set
Si , which we call the strata. Then S′ ∩ S �= ∅ implies that S′ ⊂ S.

We say that a Hausdorff space B is a stratified space if it admits a stratification.

Remark 3.7 The definition of a stratified space above is slightly stronger than the
definition given in Friedman (2019, Definition 2.2.7). Friedman’s definition would be
equivalent to the definition above if we only required that each

⋃
j≥i S j be closed and

that the frontier condition be satisfied, but do not require that Si = ⋃
j≥i S j .
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Definition 3.8 We say that a surjective map p : E → B is a level-wise stratified
covering if the conditions I, II and III below are satisfied. It takes some work to state
the conditions, but they can be roughly summarized as:

(1) The space B is a stratified space and restricting p to each stratum yields a finite-
sheeted covering.

(2) When one stratum of B lies in the closure of another stratum, the corresponding
coverings fit together along their sheets in a nice way.

Condition I The space B admits a stratification (Si )i such that every x in B has a
neighborhoodU which is a stratified spacewith a stratification (U∩Si )i . Furthermore,
the restriction p|Si : p−1(Si ) → Si is a covering and the neighborhood U can be
chosen such that the map p|U∩Si : p−1(U ∩ Si ) → U ∩ Si is a trivial covering for
each i (even when x is not in Si ).

Therefore, given a decompositionU ∩ Si = ⊔
α∈�i

Pi,α into strata, the total space
p−1(Pi,α) of each covering p|Pi,α is a disjoint union

⊔
σ∈
i,α

Pσ
i,α of copies of the

base space. Here 
i,α parametrizes the set of sheets of the covering p|Pi,α .
Furthermore, since (U ∩ Si )i is a stratification, we can associate to it a partially

ordered set (or poset) (PU ,≺). The elements ofPU are the path-components Pi,α and
the partial order≺ is given by: Pi,α ≺ Pj,β if and only if Pi,α ⊃ Pj,β . Anti-symmetry
follows from the assumption that U ∩ Si is a stratification.

Note that because of the frontier condition, the closure (within U ) of each path-
component can be written as

Pi,α =
⋃

Pi,α≺Pj,β

Pj,β .

Condition II We assume that, whenever the closure (within U ) of a stratum Pi,α
contains another stratum Pj,β , then there exist injective maps φ

j,β
i,α : 
i,α → 
 j,β

specifying how the trivial coverings over the strata p|Pi,α and p|Pj,β fit together: Each

sheet σ ∈ 
i,α accumulates at the sheet φ j,β
i,α (σ ). Concretely, the following restriction

of the map p needs to be a homeomorphism.

⋃

Pi,α≺Pj,β

P
φ
j,β
i,α (σ )

j,β
p|−→∼=

⋃

Pi,α≺Pj,β

Pj,β = Pi,α

Furthermore, we assume that the maps φ
j,β
i,α satisfy φ

k,γ
j,β ◦ φ

j,β
i,α = φ

k,γ
i,α .

Condition III The poset (PU ,≺) can be decomposed into levels such that the
partial order ≺ is the transitive closure of those order relations going only between
adjacent levels, which are called covering relations. Each level i consists of the path-
components of U ∩ Si �= ∅.
Remark 3.9 Note that in the definition above the stratification (U ∩ Si )i of U induces
a stratification (p−1(U ∩ Si ))i of p−1(U ). With these stratifications, the restriction
of the level-wise stratified covering p|U satisfies the conditions in the definition of
a stratified covering given in Curry and Patel (2020), except that Curry and Patel
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150 D. Recio-Mitter

consider conically stratified spaces. However, the definition above imposes stronger
restrictions on p|U .

Note that each relation Pi,α ≺ Pj,β corresponds to precisely onemapφ
j,β
i,α : 
i,α →


 j,β , where we set φ
i,α
i,α = id
i,α . Recall that a covering relation is a relation Pi−1,α′ ≺

Pi,α between elements that belong to adjacent levels.

Definition 3.10 We say that the poset (PU ,≺) is inconsistent at Pi,α if the intersection
of the images of all maps into Pi,α corresponding to covering relations is empty

⋂

α′
im(φ

i,α
i−1,α′) = ∅

and if there exists at least one such map φ
i,α
i−1,α′ .

We also call the corresponding set of maps inconsistent.

Definition 3.11 The locally compact sectional category of a map p : E → B,
secatENR(p) is defined to be the smallest k for which there exists a decomposition
into k + 1 locally compact sets B = ⋃k

i=0 Ei such that there are local sections
si : Ei → E of p.

Remark 3.12 By definition, the geodesic complexity of a metric space (X , d) is the
locally compact sectional category of the geodesic path evaluation map π : GX →
X × X .

The ideas of the proof in Theorem 3.13 are used in the Sects. 4, 5 and 6 to find
lower bounds for the geodesic complexity. However, in some examples the map π

is not understood in sufficient detail to verify all properties of a level-wise stratified
covering. Because of this and for the sake of concreteness, we prove the lower bounds
in the Sects. 4, 5 and 6 separately, instead of referencing Corollary 3.14 below, even
if the same general idea is used as in the proof of Theorem 3.13. Most of the work in
those sections consists of determining an appropriate stratification and understanding
how the different coverings over the strata fit together.

Concretely, in the examples of Sect. 4 (the flat n-tori and the flat Klein bottle) the
map π is a level-wise stratified covering, as becomes apparent in the proofs. On the
other hand, for the embedded torus, which we study in Sect. 5, the map π is not a level-
wise stratified covering strictly speaking, because it does not satisfy the conditions II
and III at the conjugate pairs. However, it satisfies those conditions for almost all
points, which is sufficient for the lower bound. In fact, the argument for the lower
bound only requires conditions I and II to be satisfied in some neighborhood of one
single point.

Finally, for the flat 2-sphere in Sect. 6 the map π seems to be a level-wise stratified
covering, but establishing this is a hard problem. Thankfully, in order to determine
the lower bound for the geodesic complexity of the flat 2-sphere it will be sufficient
to understand the restriction of π to a small subset of pairs of points.
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Theorem 3.13 Let p : E → B be a level-wise stratified covering. Assume that there
exists an open set U in B such that the poset (PU ,≺) is finite and fulfils the conditions
I, II and III. Furthermore, assume that the poset PU is inconsistent at every element,
except for elements in the bottom level (where the set of incoming maps is empty). Let
N be the number of levels of PU .

Then secatENR(X) ≥ N − 1.
Furthermore, if each covering p|Si is trivial, each intersection U ∩ Si non-empty

and each Si is locally compact, then secatENR(X) = N − 1.

Proof Lower bound
Let B = ⋃k

i=0 Ei be a disjoint decomposition such that there is a local section of
p over each Ei . Let U be an open set satisfying the assumptions of the theorem. We
need to show that k ≥ N − 1.

The proof proceeds by induction on the levels of the poset. The induction starts with
the observation that every element of P1,β is in the closure of at least 1 Ei , because
the sets Ei cover B.

The induction step is the following: Assume that, for a given level j , every element
of every path-component Pj,β is in the closure of at least j different sets Ei . Then
every element of every path-component Pj+1,β ′ in the next level is in the closure of
at least j + 1 different sets Ei .

The induction culminates in the statement that every element of PN ,β is in the
closure of N different sets Ei . This implies that the decomposition above contains at
least N sets Ei and thus k ≥ N − 1.

We will now prove the induction step. Assume, for the sake of contradiction, that
there is an element y of a path-component Pj+1,β ′ which is not in the closure of j + 1

different sets Ei ; that is, there is a neighborhood V which is contained in
⋃ j−1

i=0 Ei .
We may assume that y is in E0.

By assumption, there exists a Pj,β such that Pj,β ≺ Pj+1,β ′ . Let (an) be a sequence
in Pj,β ∩ V converging to y.

By the induction assumption, every element of Pj,β ∩ V is in the closure of Ei for
each i = 0, . . . , l − 1. In particular, every element of Pj,β ∩ V is in the closure of E0.
For each n, let (bnm) be a sequence in E0 ∩ V converging to an .

Setting cn = bnn yields a sequence (cn) in E0 ∩V converging to y. We may assume
that (cn) lies entirely in one path-component Pi,β , since there are only finitely many
path-components.

Let s0 : E0 → E be a local section. By continuity, the sequence of lifts (s0(cn))
needs to converge to s0(y) as n goes to infinity.

It follows from Condition II in the definition of a level-wise stratified covering that
a lift (c̃n) of (cn) converges to a lift ỹ of y if and only if almost all c̃n lie in the same

sheet Pσ
i,α and ỹ lies in the sheet P

φ
j+1,β′
i,α (σ )

j+1,β ′ .
It also follows from Condition II that

φ
j+1,β ′
j,β ◦ φ

j,β
i,α = φ

j+1,β ′
i,α .

Therefore, φ j+1,β ′
i,α (σ ) is contained in the image of φ

j+1,β ′
j,β , for all possible β.
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We can carry out the previous argument with every Pj,β such that Pj,β ≺ Pj+1,β ′ .
Therefore, the index of the sheet containing the lift s0(y) needs to be contained in the

image of each φ
j+1,β ′
j,β (for all possible β, and with j + 1 and β ′ fixed). In particular

the images of those maps φ
j+1,β ′
j,β need to have a non-empty intersection.

However, by the assumption of the theorem the set of those maps φ
j+1,β ′
j,β is incon-

sistent. This means that the intersection of the images of those maps is empty. This
yields a contradiction.

Upper bound
If the coverings over each stratum Si are trivial, then there exists a local section of

p : E → B over each Si . Assuming that every intersectionU ∩ Si is non-empty, each
Si corresponds to exactly one of the N levels of the poset PU . This implies that there
are N many Si and thus GC(X) ≤ N − 1. 
�

The following corollary is immediate.

Corollary 3.14 Let π : GX → X × X be the evaluation map on geodesic paths and
assume it is a level-wise stratified covering satisfying the conditions of the previous
theorem. Then GC(X) ≥ N − 1. Furthermore, if each covering p|Si is trivial, each
intersection U ∩ Si non-empty and each Si is locally compact, then GC(X) = N − 1.

Remark 3.15 Notice that all that was needed in the proof of the lower bound is the
stratification of the neighborhood U . In fact, we only need to be able to find a series
of nested sequences such as the ones used in the induction argument.

Understanding the global picture is very useful to find upper bounds, but in some
cases a local argument is more feasible and also sufficient for the lower bound; see
Sect. 6.

The following is the simplest example of amapπ : GX → X×X being a level-wise
stratified covering.

Example 3.16 Let S1 be the unit circle with the standard Riemannian metric. The
preimage of a pair (x, y) under the map π : GS1 → S1 × S1 is either the unique
geodesic from x to y (when x and y are not antipodal) or two geodesics, one going
clockwise and one counter-clockwise (when x and y are antipodal). Restricting the
map π to the total cut locus clockwise C yields a trivial 2-sheeted covering with the
sheet r consisting of all the clockwise half-circle geodesics and l consisting of all the
counterclockwise half-circle geodesics. Restricting the map π to S1 × S1 − C yields
a 1-sheeted covering (i.e. a homeomorphism).

The map π : GS1 → S1 × S1 is a level-wise stratified covering. The stratification
of S1 × S1 is given by S1 = S1 × S1 − C and S2 = C .

The total cut locusC can be visualized as a diagonal circle inside the torus S1× S1.
As we noted, there are two sheets over each pair (x, y) in C . We can approach such a
pair fromwithin the complement ofC from two sides: on one side the unique geodesic
goes in the clockwise direction and on the other side the unique geodesic goes in the
counter-clockwise direction. The map π is the result of gluing a 1-sheeted covering
over the complement of C with a 2-sheeted covering over C : The single sheet over
S1 × S1 −C converges to a different sheet over C when approaching from each side.
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Let (x, y) be in C and let U be a small open ball around (x, y). Then U ∩ S1 =
P1,r � P1,l , where P1,r consists of pairs for which the unique geodesic goes in the
clockwise direction and P1,l consists of pairs for which the unique geodesic goes
in the counter-clockwise direction. Those two strata are separated by the stratum
U ∩ S2 = P2.

The preimages p−1(P1,r ) = Pσr
1,r and p−1(P1,l) = Pσl

1,l consist of a single sheet.

These approach the two sheets p−1(P2) ∼= Pr
2 � Pl

2 according to φ2
1,r (σr ) = r and

φ2
1,l(σl) = l.

Because the set of maps {φ2
1,r , φ

2
1,l} is inconsistent, the previous theorem implies

that GC(S1) ≥ 1. This lower bound also follows from thewell known fact TC(S1) = 1
(see Theorem 2.3). However, this serves as a very simple example of a more general
method to get lower bounds for the geodesic complexity of a space.

For the sake of concreteness, we will give (a very simple special case of) the proof
of the lower bound in this example. Recall that a local section si : Ei → GS1 consists
of a continuous choice of geodesic over each pair in Ei . No pair (x, y) in C can lie in
the interior of a set Ei : otherwise we could construct two sequences (an) and (bn), in
P1,r ∩ Ei and P1,l ∩ Ei respectively, converging to (x, y). By continuity, si (an) and
si (bn) need to converge to si ((x, y)). However, this is impossible because the limit of
si (an) lies in the sheet r (is a clockwise path) and the limit of si (bn) lies in the sheet
s (is a counterclockwise path). This implies that GC(S1) ≥ 1.

Finally, GC(S1) = 1 because there exists an obvious geodesic motion planner with
two domains of continuity E0 = S1 × S1 − C and E1 = C , which was already
constructed by Farber (2003) to prove TC(S1) = 1 (let s1((x, y)) be the geodesic
going clockwise, for instance).

Remark 3.17 The previous example makes clear that defining geodesic complexity
using an open cover (as opposed to a pairwise disjoint decomposition into locally
compact sets) would not work, given that if a set contains a point of the total cut locus
in its interior then it does not admit a local section of π .

4 Spaces for which TC = GC

Some of the first spaces for which Farber computed the topological complexity are the
spheres, see Theorem2.3. To prove the optimal upper bound for TC(Sn) he constructed
an explicit motion planner. Because that motion planner is geodesic (for the standard
Riemannian metric on the sphere), the upper bound extends to GC(Sn). Together with
the lower bound TC(X) ≤ GC(X) this yields:

Proposition 4.1 Let Sn be the standard n-dimensional sphere. Then GC(Sn) =
TC(Sn).

Not long after the computation of TC(Sn), Farber, Tabachnikov and Yuzvinsky
uncovered a surprising link between the topological complexity TC(RPn) of real
projective spacesRPn and their immersion dimension, given in the following theorem.
Recall that the immersion dimension Immdim(M) of a smooth manifold M is the
smallest k such that M can be immersed into R

k .
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Theorem 4.2 (Farber–Tabachnikov–Yuzvinsky 2003) Let RPn be the n-dimensional
projective space. Then

TC(RPn) =
{
n if n = 1, 3, 7

Immdim(M) otherwise
.

Farber, Tabachnikov and Yuzvinsky give a motion planner in (Farber et al. 2003,
Theorem 7.3) which realizes the upper bound TC(RPn) ≤ Immdim(RPn). While
that motion planner is not geodesic, it can be easily modified to become geodesic. The
same ideas can be used to give optimal geodesic motion planners in the cases where
n equals 1, 3 or 7. Just as in the case of spheres we get:

Proposition 4.3 Let RPn be the standard n-dimensional real projective space. The
GC(RPn) = TC(RPn).

The remainder of this section is devoted to computing the geodesic complexity of
two Riemannian manifolds, the torus T and the Klein bottle K , both equipped with
the flat metric (in Sect. 5 we will see that the standard embedded torus has a different
GC). We will show the lower bounds using the ideas mentioned in Sect. 3, rather than
using TC(X) ≤ GC(X). In Sects. 5 and 6 we will see that the lower bound coming
from this technique can be strictly better than the lower bound TC(X) ≤ GC(X).

Theorem 4.4 Let T n
flat be the n-torus equipped with the flat metric. Then

GC(T n
flat) = TC(T n) = n.

Proof Stratification and upper bound
The n-torus T n

flat = (S1)n has a stratification (Sk)1≤k≤n+1 with:

Sk = {(x, y) ∈ T n
flat × T n

flat | yi = xi + π for precisely k − 1 many i}

The sets Sk were used in Cohen and Pruidze (2008) as domains of continuity for an
explicit motion planner in the torus, which is actually a geodesic motion planner. Note
that the geodesics on T n

flat with the flat metric are the paths in which all coordinates

move simultaneously at constant speed along the shortest arc in the corresponding S1

factor. If (x, y) is in Sk , there are precisely k − 1 coordinates which are antipodal.
For each of those k − 1 coordinates we need to choose to move either clockwise or
counterclockwise in that coordinate, which results in 2k−1 many geodesics between x
and y. If we vary (x, y) within Sk the geodesics vary continuously and if we approach
Sm from Sk the geodesics over Sk converge to geodesics over Sm . It is easy to see that
π : GTflat → Tflat × Tflat is a level-wise stratified covering in the sense of Sect. 3.

Cohen and Pruidze show in (2008, Proposition 3.3) that it is possible to make
continuous choices of geodesic over each Sk , yielding a motion planner on n + 1 sets.
This implies the upper bound GC(T n

flat) ≤ n.
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Fig. 1 On the left is the small ball Uε divided into chambers. On the right is the torus T 2
flat, seen as the

square with opposite sides identified with each other. In particular, all the corner points represent the same
point y in T 2

flat

Lower bound for n = 2
The lower bound immediately follows from GC(Tflat) ≥ TC(T ) = 2. However, we

will prove that GC(Tflat) ≥ 2 directly by studying the stratification given above.
Wewill first give aproof forn = 2which canbe extended to alln in a straightforward

manner. Let Tflat = T 2
flat.

Assume, for the sake of contradiction, that we have a decomposition Tflat × Tflat =
E0 ∪ E1 with local sections s0 and s1 of π : GTflat → Tflat × Tflat over E0 and E1
respectively.

Let (x, y) be in S3. We may assume that (x, y) is in E0. Let Uε be a small ball
around y. For the remainder of the proof, the point x will be fixed. Let Ẽi = {y′ ∈
Tflat | (x, y′) ∈ Ei }.

Note that because (x, y) ∈ S3 we have y1 = x1 + π and y2 = x2 + π . We may
identify Tflat with the quotient of a square centered around x , in which the corners
represent y: Tflat = [0, 2π ]2/ ∼ with (0, x2) ∼ (2π, x2) and (x1, 0) ∼ (x1, 2π). The
four distinct geodesics from x to y (the sheets of the level-wise stratified covering
GTflat → Tflat × Tflat over (x, y)) can then be characterized by the directions up-right,
up-left, down-right and down-left (UR, UL, DR, DL); see Fig. 1. By abuse of notation,
we will call geodesics which are very close to one of those four geodesics by the same
name. For example, all geodesics very close to UR will also be denoted UR.

The cut locus Cx of x divides the ball Uε into four open chambers with their
boundaries intersecting at y, see Fig. 1. The chamber decomposition has a cell structure
compatible with the stratification: y is the vertex and (x, y) is in S3, if y′ is in an edge
then (x, y′) is in S2 and if y′′ is in the interior of a chamber then (x, y′′) is in S1.

For points y′′ in the interior of a chamber of Uε , the unique geodesic between x
and y′′ is one of UR, UL, DR, DL, depending on the chamber containing y′′. In this
way we can identify the chambers with the geodesics and label them UR, UL, DR,
DL just as in Fig. 1.

Essentially, the proof is rooted in the following observation: The pair (x, y) ∈ S3
cannot be in the interior of E0 because then s0 could not be continuous at that point.
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To see why, suppose we choose s0((x, y)) = UR. Now note that there are pairs (x, y′′)
arbitrarily close to (x, y) such that a π−1((x, y′′)) = UL. If (x, y) were in the interior
of E0, then we could find such (x, y′′) in E0 which are arbitrarily close to (x, y).
This would contradict continuity because s0((x, y′′)) has to be UL and so it does not
converge to s0((x, y)) = UR as y′′ approaches y.

Furthermore, to get a contradiction to continuity as in the previous paragraph we
did not need to assume that (x, y) is in the interior of E0. To get the same contradiction,
it suffices to assume that E0 contains (for instance) pairs (x, yU ) and pairs (x, yD)

arbitrarily close to (x, y) such thatπ−1((x, yU )) ∈ {UR,UL} and thatπ−1((x, yD)) ∈
{DR,DL}. In order for s0 to be continuous, we would have to choose s0((x, y)) to be
in the intersection {UR,UL} ∩ {DR,DL} = ∅, which is impossible.

There is still one ingredient missing, because the contradiction pointed out in the
previous paragraph does not show that we need more than two domains of continuity
for a geodesic motion planner: If E0 contained (x, y) as an isolated point and E1
contained the a neighborhood of (x, y) (minus the point (x, y) itself) the simple
argument above would not yield a contradiction to continuity.

The key idea is that we can apply the contradiction argument recursively. The same
argument as above can be used to show that no (x, y′) ∈ S2 can ever be in the interior
of E0 (or E1). Because Tflat × Tflat = E0 ∪ E1, this implies that all (x, y′) ∈ S2 are
in the closure of both E0 and E1. By using the fact that (x, y) can be approached by
pairs (x, y′) ∈ S2 from all four edges, we can also approach (x, y) by pairs contained
in E0 from different chambers (by a diagonal argument). As we pointed out above,
that makes it impossible for s0((x, y)) to be continuous.

Now we will follow the strategy outlined above to show the lower bound for T 2
flat

in greater detail. Afterwards we will extend it to all T n
flat using a proof by induction,

where the induction step is essentially the same as in the argument for T 2
flat.

Let y′ be on the edge between chambers UR and DR. Assume, for the sake of
contradiction, that y′ is in the interior of Ẽ0. Then we would be able to find two
sequences (y′′k

I ) and (y′′k
I I ) in Ẽ0 converging to y′ with y′′k

I in UR and y′′k
I I in DR. By

assumption, we have a local section s0 : E0 → GTflat. By continuity s0((x, y′′k
I )) =

UR and s0((x, y′′k
I I )) = DR need to converge to the same path s0((x, y′)), which

yields a contradiction. Therefore, no y′ can lie in the interior of either Ẽ0 or Ẽ1. In
other words, every y′ lying on an edge must be in the boundary of the closure of both
Ẽ0 and Ẽ1.

Recall that (x, y) is in E0. We showed that every point on an edge between cham-
bers lies in the closure of Ẽ0 (and Ẽ1). Using this and a diagonal argument we can
construct a sequence (y′k) in Ẽ0 converging to y, such that (y′k) is contained in a
small neighborhood around the edge between the chambers UR and DR, for instance.
Note that, by construction, s0((x, y′k)) must then converge to either the geodesic UR
or the geodesic DR. By continuity, s0((x, y)) must be either UR or DR.

However, if we assume instead that (y′k) is contained in a small neighborhood
around the edge between the chambers UL and DL, the same argument would
imply that s0((x, y)) must be either UL or DL. This yields a contradiction, because
{UR,DR} ∩ {UL,DL} = ∅.
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Lower bound for n ≥ 3
The lower bound for n ≥ 3 follows by iterating the argument for the case n = 2.
Consider T 3

flat = (S1)3, for instance. Let (x, y) ∈ S4 ⊂ T 3
flat × T 3

flat and let Uε be a
small ball around y. This ball will have a chamber decomposition, just as for n = 2,
except that the square in Fig. 1 has to be replaced by a cube. When n = 3 there are
eight 3-dimensional open chambers, separated by 2-dimensionalwalls, which intersect
along edges, which in turn all intersect at the vertex at the center of the ball Uε .

Analogously to the case with n = 2, we may show that every y′′ in a 2-dimensional
wall is in the closure of at least two Ẽi .

Now assume, for the sake of contradiction, that there exists a point y′ in an edge
which has a neighborhood Vε which is contained in Ẽ0 ∪ Ẽ1. The point y′ can be
approached by a sequence (y′′k) contained in Vε ∩ W , where W is a wall adjacent to
y′. Because each y′′k is on a wall, it is in the closure of at least two Ẽi . Since each
y′′k is in Vε ⊂ Ẽ0 ∪ Ẽ1, it must be in the closure of Ẽ0 (and Ẽ1). Using a diagonal
argument we may construct a sequence (ỹ′′k) converging to y′ contained either in W
or a chamber adjacent to W , and such that (ỹ′′k) is contained in Ẽ0. By continuity,
s0((x, ỹ′′k)) must tend to s0((x, y′)) as k tends to infinity, meaning that s0((x, y′)) is
compatible with one of the two chambers adjacent to W . However, we could do the
same argument with any wall adjacent to y′ and deduce that s0((x, y′)) is compatible
with a chamber which is adjacent that wall too. This yields a contradiction because
there is no chamber adjacent to all four walls which are adjacent to the same edge.
Therefore, every point y′ in an edge is in the closure of at least three Ẽi .

Next we assume, for the sake of contradiction, that the small ball Uε around y
is contained in Ẽ0 ∪ Ẽ1 ∪ Ẽ2. The point y can be approached by a sequence (y′k)
contained in Ẽ0 ∪ Ẽ1 ∪ Ẽ2 and on an edge L . Because each y′k is in the closure of at
least three Ẽi , it is in the closure of Ẽ0 (and Ẽ1 and Ẽ2). Using a diagonal argument we
may construct a sequence (ỹ′k) converging to y contained in L or a chamber adjacent
to L and such that (ỹ′k) is contained in Ẽ0. By continuity, s0((x, ỹ′k)) must tend to
s0((x, y)) as k tends to infinity, meaning that s0((x, y)) is compatible with one of
the chambers adjacent to L . However, we could do the same argument with any edge
and deduce that s0((x, y′)) is compatible with a chamber adjacent to every edge. This
yields a contradiction because there is no chamber adjacent to every edge. Therefore,
the point y is in the closure of at least four Ẽi . This implies that GC(T 3

flat) ≥ 3.
In the case of general n the ballUε around y is divided into 2n many n-dimensional

chambers separated by (n− 1)-dimensional walls going through the center of the ball
and meeting along (n − 2)-dimensional walls and so on. The k-dimensional walls
correspond to the k-skeleton of the n-dimensional cube intersected with small balls
around the corner points. By induction on the argument above we can show that every
point of a k-dimensional wall needs to be in the closure of n − k + 1 many Ẽi , which
implies that GC(T n

flat) ≥ n (seeing the vertex as a 0-dimensional wall). 
�

In the following theorem we compute the geodesic complexity of the Klein bot-
tle. While the lower bound in the theorem follows from GC(K ) ≥ TC(K ) and from
TC(K ) = 4, as shown by Cohen and Vandembroucq using rather complicated alge-
braic calculations, we show the lower bound directly without using TC(K ).
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Fig. 2 The cut locus of the point
(1/2, 1/2) in the Klein bottle is
a wedge of circles. The picture
for the torus is exactly the same
in this case

The topological complexity of the higher-dimensional Klein bottles Kn (introduced
in Davis 2019) is unknown, but an argument similar to the one given in the proof of the
theorem, albeit with much more complicated cut loci, yields the geodesic complexity
of Kn for all n; this is done by Davis and the author in Davis and Recio-Mitter (2019).

Theorem 4.5 Let Kflat be the Klein bottle equipped with the flat metric. Then
GC(Kflat) = 4.

Proof Stratification
The total cut locus of the Klein bottle is somewhat similar to the total cut locus of

the torus but more complex. Before going through the following proof it is helpful to
first read the proof of the previous theorem.

Let Kflat = [0, 1]2/ ∼ with (0, x2) ∼ (1, 1 − x2) and (x1, 0) ∼ (x1, 1).
The total cut locus of the torus is completely homogeneous, in the following sense.

If we fix a point x in the torus, then the cut locus at x is homeomorphic to S1 ∨ S1.
As we translate x in the torus, the cut locus is simply translated along with x .

In the case of the Klein bottle, the cut locus of a point changes as we move the
point around Kflat. To understand the total cut locus of Kflat we will make use of the
universal covering p : R

2 → Kflat. Given a point x in Kflat, we can determine its cut
locus Cx in the following way.

Consider the set of all lifts p−1(x) in R
2 under the universal covering. Now choose

one point in p−1(x) and draw segments between that point and all the other lifts in
p−1(x). Then the cut locus Cx is the projection of the convex hull of the bisecting
lines of all those segments. In Fig. 2 we see that in the case x2 = 0 or x2 = 1/2 the
convex hull is a square which projects to S1 ∨ S1 ⊂ Kflat, the cut locus of x , just as in
the case of the torus. However, when x2 �= 0, 1/2, 1 the convex hull is a (non-regular)
hexagon, which projects down to a θ graph with edges of different lengths; see Fig. 3.

After the preliminaries above we are ready to describe howCx changes as we move
x .

If we start moving a point x with x2 = 0 vertically, the cut locus Cx continuously
deforms from a wedge S1 ∨ S1 into a θ graph. The smallest edge gradually gets
longer while one of the other edges of the graph gets shorter. Once x reaches the other
orientation-reversing “meridian” (for example we go up from x2 = 0 to x2 = 1/2),
the new edge turns into a circle of the cut locus S1∨S1, while the edge that was getting
shorter has been contracted into the basepoint (Fig. 4).

On the other hand, if we move x horizontally the cut locus is merely translated
along.
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Fig. 3 The cut locus of points
between (1/2, 1/2) and (1/2, 1)
in the Klein bottle. When the
point moves up from (1/2, 1/2)
a new edge appears at the vertex
and then it keeps growing, while
another edge gets shorter

Fig. 4 The cut locus of the point
(0, 1) in the Klein bottle is a
wedge of circles again. The new
edge that appeared when moving
up from (1/2, 1/2) has
completely replaced the old
vertical edge

We construct the following stratification, which makes π : GKflat → Kflat × Kflat

into a level-wise stratified covering.

(1) The set S1 is the complement of the total cut locus. That is, the pairs (x, y) in S1
are covered by a unique geodesics.

(2) The set S2 consists of the pairs (x, y) covered by precisely two geodesics. This
is the case precisely when y lies in the interior of one of the edges of Cx , which
is either S1 ∨ S1 or a θ graph.

(3) The set S3 consists of the pairs (x, y) covered by precisely three geodesics. This
is the case precisely when x2 �= 0, 1/2, 1 and y lies on one of the vertices of the
θ graph Cx .

(4) The set S4 consists of the pairs (x, y) covered by precisely four geodesics. This
is the case precisely when x2 = 0, x2 = 1/2 or x2 = 1 and y is the vertex of
S1 ∨ S1 = Cx .

Upper bound
For the upper bound we will construct a geodesic motion planner with 5 sets. That

is, a decomposition Kflat × Kflat = ⋃4
i=0 Ei such that there is a local section of

π : GKflat → Kflat × Kflat over each Ei .
Note that there is no local section of GKflat → Kflat × Kflat on Si for i = 2, 3, 4

because we cannot make a consistent choice of a geodesic going “up” or “down” on
the Klein bottle. To get sets Ei for which we can define a geodesic motion planner
we can “cut” the strata so as to make it impossible to go once around the Klein bottle
along an orientation-reversing curve. We are going to divide the pairs (x, y) into two
sets, depending on whether x lies in the annulus A = {(x1, x2) ∈ Kflat | x1 �= 0}.
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We set

SA
i = {(x, y) ∈ Si | x ∈ A}

and Sci = Si − SA
i .

This yields another stratification of Kflat × Kflat:

(1) Ẽ0 = S1
(2) Ẽ1 = SA

2
(3) Ẽ2 = Sc2 � SA

3
(4) Ẽ3 = Sc3 � SA

4
(5) Ẽ4 = Sc4.

Intuitively, the sets range from more to less generic. The disjoint unions above
indicate that the sets are topologically disjoint.

We will construct local sections si : Ei → GKflat for all i by constructing them
separately on every path component of Ei .

Conceptually, the remainder of the proof can be summarized as follows. The path
components of the Ei are either contractible or have the homotopy type of the circle.
We will show that GKflat → Kflat × Kflat becomes a trivial covering when restricted
to each path component, by constructing sections of all those coverings. In the case of
contractible path components it is immediate that the restriction is a trivial covering.
In the case of path components which are homotopy equivalent to the circle it boils
down to showing that the monodromy action in the restriction is trivial (i.e. the loop
going once around the circle lifts to a loop).

The section s0 : E0 → GKflat simply maps (x, y) to the unique geodesic between
x and y.

The set E1 = SA
2 has three path components. The first path component contains

those pairs (x, y) such that x is in the annulus A and y is being represented by a point
which is in the interior of the horizontal edges either of the square or of the hexagon
in Figs. 2 and 3. In this case, there are precisely two geodesics between x and y, one
going up and one going down, and s1((x, y)) can be chosen to be the geodesic going
up. Note that there is a consistent choice of up and down because x has to remain in A.
There are two further path components in E1, containing those pairs (x, y) such that
x is in the annulus A and y is being represented by a point which is in the interior of
either the vertical edges of the square in Fig. 2 or in the slanted edges of the hexagon
in Fig. 3. As the coordinate y2 approaches 0 (or 1) or 1/2 one of the slanted edges of
the hexagon becomes a vertical edge of the square and the other one disappears. Both
for vertical edges and slanted edges, there are precisely two geodesics between x and
y, one going to the right and one going to the left, and choosing s1((x, y)) to be the
geodesic going to the right yields a continuous map.

For the set E2 = Sc2 � SA
3 we are going to define the section s2 : E2 → GKflat

separately on Sc2 and SA
3 . For S

c
2 the situation is analogous as for S

A
2 above, replacing

A by its complement (a circle). The set SA
3 consists of pairs (x, y) such that x lies

in A and satisfies x2 �= 0 (and x2 �= 1) and x2 �= 1/2, and y lies on one of the two
vertices of the θ -graph Cx . In terms of Fig. 3, y is being represented by a corner of the
hexagon. Note that x is restricted to two disjoint open squares on which the corners
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of the hexagon remain completely separate. In fact, SA
3 has four path components

homeomorphic to (0, 1)2, because for each of the two open squares containing x , y
can be one of the two vertices in the θ -graphCx . For (x, y) on a given path component,
there will be precisely three geodesics from x to y, either two going to the left and
one to the right, or two going to the right and one to the left. Choosing s1((x, y)) to
be the geodesic going to the right in the former case and to the left in the latter case
(for instance) yields a continuous map.

For the set E3 = Sc3 � SA
4 we are going to define the section s3 : E3 → GKflat

separately on Sc3 and SA
4 . For S

c
3 the situation is analogous as for S

A
3 above, replacing

A by its complement (a circle). For (x, y) in SA
4 there are precisely four geodesics

from x to y. This situation corresponds to y being represented by a point which is on
a corner of the cube in Fig. 2. The set SA

4 has two path components homeomorphic to
(0, 1), depending on whether x2 = 0 or x2 = 1/2. We choose the geodesic going up
and to the right (represent y by the upper right corner) for each path component.

For the set E4 = Sc4 the situation is analogous as for SA
4 above, replacing A by its

complement (a circle).
Lower bound
For the lower bound we use the stratification Si .
We want to show GC(Kflat) ≥ 4. Assume that we have a decomposition Kflat ×

Kflat = ⋃3
i=0 Ei such that there exist local sections si : Ei → GKflat. Choose a point

(x, y) in S4 and fix it for the remainder of the proof. We may assume that (x, y) is in
E0.

The proof of the lower bound has two parts. First we show that every (x, y) in
S4 is in the closure of every single Ei . We do this analogously to the proof of the
lower bound for GC(T n

flat), by using a proof by contradiction argument recursively. In
the second part we will use the fact that the Ei are locally compact sets to show that
this implies that every path component of S4 must be contained in one of the sets Ei .
This will yield a contradiction because no path component of S4 admits a continuous
geodesic motion planner.

Assume that there is a small ball Wε around (x, y) which only intersects E0, E1
and E2 (so it does not intersect E3). We will show that this contradicts the continuity
of the local section s0 at (x, y) and thus every (x, y) in S4 has to be in the closure of
every single Ei .

Choose a small ballUε around y such that {x}×Uε is inWε . The ballUε is divided
into four chambers precisely as for the torus in the proof of Theorem 4.4 (see Fig. 1).

Between x and y there are four geodesics. Making a local choice of orientation
in the vertical direction (choice of up and down) the geodesics can be characterized
by the directions up-right, up-left, down-right and down-left (UR, UL, DR, DL). By
abuse of notation, we will denote geodesics which are very close to one of those four
geodesics by the same name. For example geodesics which are very close to UR will
also be denoted UR.

For points y′′ in the interior of a chamber of Uε , the unique geodesic between x
and y′′ is one of UR, UL, DR, DL, depending on the chamber containing y′′. In this
way we can identify the chambers with the geodesics and label them UR, UL, DR,
DL just as in Fig. 1.
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Fig. 5 The small ball V ε divided into chambers

Now let (x ′, y′) be in S3∩Wε and let Vε be a small ball around y′ such that {x}×Vε

is in Wε . Similarly to Uε , the ball Vε is divided into chambers corresponding to the
geodesics from x ′ to y′, but into three chambers in this case; see Fig. 5. Labelling the
chambers by the geodesics associated to them as for S4 above, we end up with four
kinds of chamber decompositions of a small ball Vε around a point (x ′, y′) ∈ S3∩Wε :

(1) {UR, UL, DR}
(2) {UR, DL, UL}
(3) {DR, DL, UL}
(4) {DR, UR, DL}.

Using the chambers described above and the exact same argument as in the proof
of the lower bound for GC(T 2

flat) we can show that every point of S3 has to be in the
closure of at least three different Ei . Otherwise, there would be a neighborhood of a
pair (x ′, y′) in S3 having a non-empty intersection only two Ei , which would in turn
imply that there is no continuous local section at that point (just as in the argument for
T 2
flat).
Because we assumed thatWε only intersects the sets E0, E1 and E2 and every point

of S3 has to be in the closure of at least three different Ei , all three of those sets need
to accumulate at every point of Wε ∩ S3. In particular, E0 accumulates at every point
of Wε ∩ S3.

As was explained at the beginning of this proof and illustrated in the Figs. 2, 3 and
4, the stratum S3 accumulates at the stratum S4. In the Figs. 6 and 7 we see how all
four different kinds of 3-chamber decompositions for S3 merge into the 4-chamber
decomposition for S4 which is looks like Fig. 1.

For instance, there is a sequence of points ((x ′k, y′k)) lying in Wε ∩ S3 and con-
verging to (x, y) such that π−1((x ′k, y′k)) = {UR,UL,DR} for all k. Using a diagonal
argument we can construct another sequence ((x ′′k, y′′k)) in E0 converging to (x, y)
and such that each (x ′′k, y′′k) is in a small neighborhood of (x ′k, y′k), which implies
π−1((x ′′k, y′′k)) ∈ {UR,UL,DR} for all k. Recall that we abuse notation by denot-
ing all geodesics which are close to each other by the same name, to simplify the
notation. By continuity, s0((x ′′k, y′′k)) must converge to s0((x, y)), which means that
s0((x, y)) ∈ {UR,UL,DR}.
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Fig. 6 As x ′ approaches x from above the two 3-chamber decompositions around S3 merge into one
4-chamber decomposition around S4, as the hexagon turns into a square

Fig. 7 As x ′ approaches x from below the two 3-chamber decompositions around S3 merge into one
4-chamber decomposition around S4, as the hexagon turns into a square

However, repeating the argument for the other types of chamber decomposi-
tion would imply that s0((x, y)) ∈ {UR,UL,DR} ∩ {UR,DL,UL} ∩ {DR,DL,UL} ∩
{DR,UR,DL} = ∅. This yields a contradiction to our assumption that there is a small
ballWε around (x, y)which only intersects E0, E1 and E2, because there is no choice
of s0((x, y)) that would make s0 continuous at (x, y). This shows that every point of
S4 lies in the closure of at least four different Ei .

The above argument is also illustrated slightly differently in Fig. 8.
In the final part of the proof we use the assumption that the Ei are locally compact

sets to improve the bound from GC(Kflat) ≥ 3 to GC(Kflat) ≥ 4.
Assume, for the sake of contradiction, that we have a decomposition X × X =⋃3
i=0 Ei such that there exist local sections si : Ei → GX . As we showed in part 1,

every point of S4 lies in the closure of at least four Ei . Because we are assuming that
there are only four Ei in the decomposition, S4 must lie in the closure of every Ei .

Because X is a metric space and thus Hausdorff, the Ei have to be locally closed,
which means that they are open in their closure. In particular the intersections Ei ∩ S4
yield a decomposition of S4 into disjoint open sets. This implies that if Ei intersects
any point of S4, it contains the entire path component of S4 containing that point.
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Fig. 8 As the vertical coordinate x2 approaches 1
2 , and V1 (V ′

1) and V2 (V ′
2) approach the vertex V0 (V ′

0),

the only continuous choice of geodesics requires all geodesics go up (down) when x2 is approaching 1
2

from above (below)

However, no path component of S4 admits a continuous (local) section because there
is no consistent choice of up or down, due to the non-orientability of Kflat.

This yields a contradiction, implying that GC(Kflat) ≥ 4. 
�

5 Embedded torus

In this section we prove that the geodesic complexity of the torus embedded in R
3 in

the standard way is higher than the geodesic complexity of the flat torus.
Specifically, the standard embedded torus Temb in R

3 with meridian circle of radius
r = 1 and core circle of radius R = 2 is given by

Temb =
{

(x, y, z) ∈ R
3

∣
∣
∣
∣
∣

(√

x2 + y2 − 2

)2

+ z2 = 1

}

.

Theorem 5.1 Let Temb be the embedded torus defined above and let Tflat be the flat
2-torus. Then

GC(Temb) = 3 > GC(Tflat) = 2.

Proof The equality GC(Tflat) = 2 follows from Theorem 4.4.
To compute GC(Temb) we use the description of the cut locus of any point in Temb

given by Gravesen et al. (2005):
The cut locus of a point p = (x0, 0, z0) with x0 > 0 on the torus is the union of

(i) the opposite meridian y = 0, x < 0,
(ii) a (piecewise C1) Jordan curve which intersects the opposite meridian at a single

point and is freely homotopic to eachparallel, (seeFigure 1 inSection5ofGravesen
et al. 2005) and, if p is sufficiently far from the inner equator, i.e., if x0 > c2 for
some positive constant c2 (> R − r = 2 − 1 = 1),

(iii) a pair of subarcs of the parallel z = −z0, each with a conjugate point of p as one
endpoint and joining
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Fig. 9 The three diagrams represent a neighborhood of the intersection point of the parallel z = −z0 and
the opposite meridian in the cut locus of a point p = (x0, 0, z0). The value of x0 increases from the left to
the right

• only the Jordan curve of (ii) if c2 < x0 < c1 for some c1, (see Figure 2 in
Section 5 of Gravesen et al. 2005)

• both of the above if x0 = c1 (see Figure 3 in Section 5 of Gravesen et al. 2005)
or

• only the meridian of (i) if c1 < x0, (see Figure 4 in Section 5 of Gravesen et al.
2005) at their other endpoint.

In particular, the cut locus of any point in Temb is a graph. Let v
p
0 denote the vertex

at the intersection between the opposite meridian and the parallel z = −z0 in the cut
locus of a point p = (x0, 0, z0) as described above.

In Fig. 9 we illustrate the three different types of cut locus of a point p, in a neigh-
borhood of v

p
0 .

Lower bound
Assume, for the sake of contradiction, that we have a decomposition Temb×Temb =⋃2
i=0 Ei such that there exist local sections si : Ei → GTemb.
Let p be a point in Temb and q be a vertex (of degree at least 3) in the cut locus of p.

Analogously to the proofs of Theorems 4.4 and 4.5 we can show that each such pair
(p, q) lies in the closure of E0, E1 and E2. We may assume that (p, v p

0 ) is in E0.
Let v

p
1 and v

p
2 be vertices of the cut locus of a point p as in Fig. 9. As the x

coordinate of p increases, the vertices v
p
1 and v

p
2 merge together with v

p
0 .

There are three geodesics between p and v
p
1 , each going through one of the three

domainsA, C andD. Similarly, there are three geodesics between p and v
p
2 , each going

through one of the three domains B, E and F. As we vary p and v
p
1 and v

p
2 converge to

v
p
0 , the geodesics s0((p, v

p
1 )) and s0((p, v

p
2 )) need to converge to the same geodesic

s0((p, v
p
0 )). However, that is impossible, since the geodesic s0((p, v

p
0 )) would have

to go through a domain contained in {A, C, D} ∩ {B, E, F} = ∅.
Upper bound
There exists a geodesic motion planner on Temb with the following sets Ei .

• Let E0 be the complement of the total cut locus of Temb.
• Let E1 consist of those pairs (p, q) such that q lies in the interior of an edge of
the cut locus Cp.
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• Let E2 consist of those pairs (p, q) such that q lies on a vertex of the cut locus
Cp other than the vertex v

p
0 . Recall that v

p
0 is the intersection point between the

meridian and the Jordan curve.
• Let E3 consist of the pairs (p, v p

0 ).

There are two geodesics between any pair in E1, three geodesics between any pair
in E2 and either four or six geodesics between any pair in E3.

Using the description of the cut locus given above we can make a continuous
choice of geodesic over each of the sets Ei , just as for the Klein bottle in the proof of
Theorem 4.5. See also the figures in Gravesen et al. (2005, Section 5). 
�

6 Flat spheres

In Sect. 2 we constructed a Riemannian metric on n-spheres with which the geodesic
complexity is strictly greater than the topological complexity. The method used in that
section does not work for the 2-sphere, however. It only works for n ≥ 3 because it
relies on having an embedded (n − 1)-dimensional submanifold M with TC(M) >

TC(Sn). For n = 2 we have that TC(S2) = 2 and TC(M) ≤ 2dim(M) = 2.
In this section we exhibit a metric on the 2-sphere which yields a higher geodesic

complexity than that of the standard 2-sphere. This metric space was provided by Jarek
Kędra as an example with a pathological total cut locus when the author was trying to
get a better intuition about the cut locus of general metric spaces.

Note that the ideas used in the proof are completely different from the method of
Sect. 2. Instead, we are using the same ideas as for the flat torus and the flat Klein
bottle in Sect. 4 and for the embedded torus in Sect. 5, which are conceptualized in
Sect. 3.

Definition 6.1 Let W be the boundary of the 3-cube with the flat metric. The flat
metric comes from regarding W as a subset of the plane with the edges identified
appropriately (see Fig. 10). This is a topological manifold which is homeomorphic to
the 2-sphere. We call it the flat 2-sphere.

The following theorem is somewhat surprising. Unlike for the spheres in Sect. 2,
we did not construct the metric purposefully to get a higher geodesic complexity in
this case.

Theorem 6.2 Let W be the flat 2-sphere. Then GC(W ) ≥ 3 > 2 = TC(W ).

Remark 6.3 It should be stressed that W is a topological manifold and a metric space,
but not a Riemannian manifold or even a smooth manifold. In fact, it is well-known
that there cannot be a 2-sphere with a flat Riemannian manifold, as follows from
the Gauss-Bonnet Theorem. That said, the theorem might still hold after slightly
smoothing the edges and corners. The proof seems to carry over to that case, intuitively.
However, explicitly describing the geodesics on such a space would require methods
from differential geometry.
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Fig. 10 We introduce
coordinates for points x and y
on opposite faces

Proof The fact that TC(W ) = TC(S2) = 2 follows from Theorem 2.3 and the homo-
topy invariance of topological complexity (since W and S2 are both ENRs).

The total cut locus of W is quite complicated. However, just as in the previous
section, the argument relies on understanding the different geodesics between points
arbitrarily close to a specific pair of points. Concretely, in this case it suffices to
consider (a subset of) the neighborhood of a pair of opposite corners in W × W .

Step 1: Geodesics between pairs approaching opposite corners
Let (x, y)be a pair of pointswith x and y onopposite faces.Consider the coordinates

(x1, x2) and (y1, y2) for opposite faces given in Fig. 10, in which the midpoints of
each face acts as the origin and the squares have side length 1.

As seen in Fig. 11, there are at most 12 paths A1, A2, . . . , A12 which could poten-
tially be geodesics between x and y.

Denoting the length of the path Ai by Li , we have the following.

• L2
1 = (x1 − y1)2 + (2 − x2 + y2)2

• L2
2 = (1 − x1 + y2)2 + (2 − x2 − y1)2

• L2
3 = (1 − x2 − y1)2 + (2 − x1 + y2)2

• L2
4 = (x2 + y2)2 + (2 − x1 − y1)2

• L2
5 = (1 + x2 − y1)2 + (2 − x1 − y2)2

• L2
6 = (1 − x1 − y2)2 + (2 + x2 − y1)2

• L2
7 = (x1 − y1)2 + (2 + x2 − y2)2
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Fig. 11 There are 12 paths
A1, . . . , A12 which are
potentially geodesics between
two points on opposite faces,
depending on the specific
positions of the points. To make
the picture more symmetric, x
and y have been chosen to be on
the midpoints of the faces. The
points x and y can be anywhere
on the two faces. However, note
that some of the paths are not
admissible for every choice of x
and y. That being said, the paths
A1, A4, A7 and A10 are
admissible for all x and y on
opposite faces

• L2
8 = (1 + x1 − y2)2 + (2 + x2 + y1)2

• L2
9 = (1 + x2 + y1)2 + (2 + x1 − y2)2

• L2
10 = (x2 + y2)2 + (2 + x1 + y1)2

• L2
11 = (1 − x2 + y1)2 + (2 + x1 + y2)2

• L2
12 = (1 + x1 + y2)2 + (2 − x2 + y1)2.

It can be readily seen that all the L2
i have a common summand x21 + x22 + y21 +

y22 + 4 once we multiply the squares out. Once we subtract that common summand,
all expressions have a common factor of 2. To better compare the lengths Li we will
consider the “normalized” square lengths Ni = (L2

i − (x21 + x22 + y21 + y22 + 4))/2:

• N1 = −x1y1 − 2x2 + 2y2 − x2y2
• N2 = 1

2 − x1 + y2 − x1y2 − 2x2 − 2y1 + x2y1
• N3 = 1

2 − x2 − y1 + x2y1 − 2x1 + 2y2 − x1y2
• N4 = x2y2 − 2x1 − 2y1 + x1y1
• N5 = 1

2 + x2 − y1 − x2y1 − 2x1 − 2y2 + x1y2
• N6 = 1

2 − x1 − y2 + x1y2 + 2x2 − 2y1 − x2y1
• N7 = −x1y1 + 2x2 − 2y2 − x2y2
• N8 = 1

2 + x1 − y2 − x1y2 + 2x2 + 2y1 + x2y1
• N9 = 1

2 + x2 + y1 + x2y1 + 2x1 − 2y2 − x1y2
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Fig. 12 We introduce
coordinates for points on
opposite faces approaching the
corner along the diagonal on the
respective face

• N10 = x2y2 + 2x1 + 2y1 + x1y1
• N11 = 1

2 − x2 + y1 − x2y1 + 2x1 + 2y2 + x1y2
• N12 = 1

2 + x1 + y2 + x1y2 − 2x2 + 2y1 − x2y1.

Now we want to consider two points moving towards a pair of opposite corners p
and q with coordinates p1 = p2 = −1/2 and q1 = −q2 = 1/2, along the diagonals
of opposite faces; see Fig. 12. The diagonals are given by x1 = x2 and y1 = −y2. For
convenience we introduce new coordinates xd = −x1 = −x2 and yd = y1 = −y2
to describe pairs of points on the diagonals. Because we are going to consider points
close to the corners p and q we will limit ourselves to the case 0 < xd , yd < 1/2.

Assuming that xd = −x1 = −x2 and yd = y1 = −y2, the normalized lengths
above turn into the following expressions (substitute x1 = −xd , x2 = −xd , y1 = yd
and y2 = −yd ).

• N1 = 2(xd − yd)
• N2 = 1

2 + 3(xd − yd) − 2xd yd
• N3 = 1

2 + 3(xd − yd) − 2xd yd
• N4 = 2(xd − yd)
• N5 = 1

2 + xd + yd + 2xd yd
• N6 = 1

2 − xd − yd + 2xd yd
• N7 = −2(xd − yd)
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• N8 = 1
2 − 3(xd − yd) − 2xd yd

• N9 = 1
2 − 3(xd − yd) − 2xd yd

• N10 = −2(xd − yd)
• N11 = 1

2 − xd − yd + 2xd yd
• N12 = 1

2 + xd + yd + 2xd yd .

If we further assume that the points are at the same distance from the corners
(approaching the corners at the same rate) and set z = xd = yd (see Fig. 13) the
expressions simplify further:

• N1 = 0
• N2 = 1

2 − 2z2

• N3 = 1
2 − 2z2

• N4 = 0
• N5 = 1

2 + 2z + 2z2

• N6 = 1
2 − 2z + 2z2

• N7 = 0
• N8 = 1

2 − 2z2

• N9 = 1
2 − 2z2

• N10 = 0
• N11 = 1

2 − 2z + 2z2

• N12 = 1
2 + 2z + 2z2.

Note that N1, N4, N7 and N10 are equal and smaller than all other Ni when −x1 =
−x2 = y1 = −y2 = z, since all the other Ni are positive, as long as 0 < z < 1

2 .
Because the Ni vary continuously, there is a small neighborhood around every pair

(x, y) with 0 < −x1 = −x2 = y1 = −y2 = z < 1
2 in which N1, N4, N7 and N10 are

shorter than all other Ni . Let UA be the union of all such neighborhoods. Assuming
that (x, y) is inUA, to determine all the geodesics between x and y we can immediately
disregard all paths except A1, A4, A7 and A10.

Note that for pairs (x, y)with 0 < −x1 = −x2 = y1 = −y2 = z < 1
2 all four paths

A1, A4, A7 and A10 have the same length, which means that such pairs have exactly
four preimages under π : GW → W × W . Therefore, we can construct a sequence
(siA) converging to (p, q) with coordinates

siA =
((

−1

2
+ 1

5i
,−1

2
+ 1

5i

)

,

(
1

2
− 1

5i
,−1

2
+ 1

5i

))

,

such that π−1
(
siA

) = {A1, A4, A7, A10}.
Furthermore, for every sequence component siA we may construct two sequences

(r j
i I ) and (r j

i I I ) converging to siA with coordinates

r j
i I =

((

−1

2
+ 1

5i
+ 1

5 j
,−1

2
+ 1

5i
+ 1

5 j

)

,

(
1

2
− 1

5i
,−1

2
+ 1

5i

))
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Fig. 13 We introduce one
coordinate z for points on
opposite faces approaching the
corner along the diagonal on the
respective face such that they are
always at the same distance from
the corners. There are precisely
four geodesics for such pairs of
points

and

r j
i I I =

((

−1

2
+ 1

5i
− 1

5 j
,−1

2
+ 1

5i
− 1

5 j

)

,

(
1

2
− 1

5i
,−1

2
+ 1

5i

))

,

such that π−1(r j
i I ) = {A1, A4} and π−1(r j

i I I ) = {A7, A10}. This is because N1 =
N4 < N7 = N10 if xd < yd and N1 = N4 > N7 = N10 if xd > yd .

Finally, for every sequence component r j
i I we can construct two sequences (tki j I )

and (tki j I I ) converging to r j
i I such that π−1(tki j I ) = {A1} and π−1(tki j I I ) = {A4}, and

similarly for (r j
i I I ). Intuitively, moving the first point of the pair r j

i I slightly in the
direction of the path A1 results in a pair with unique geodesic A1 and similarly for A4.

For the sake of concreteness, we may choose

tki j I =
((

−1

2
+ 1

5i
+ 1

5 j
,−1

2
+ 1

5i
+ 1

5 j
+ 1

100k

)

,

(
1

2
− 1

5i
,−1

2
+ 1

5i

))

and

tki j I I =
((

−1

2
+ 1

5i
+ 1

5 j
+ 1

100k
,−1

2
+ 1

5i
+ 1

5 j

)

,

(
1

2
− 1

5i
,−1

2
+ 1

5i

))

.

123



172 D. Recio-Mitter

To see why π−1(tki j I ) = {A1} for k big enough, it is enough to check that for
x2 = x1 + ε, x1 = yd − δ and y1 = −y2 = yd we have N1 < N4, N7, N10 (assuming
that ε, δ > 0 and small). This is a straightforward calculation, substituting the above
expressions for x and y in the formulas for the appropriate N j and subtracting them
pairwise. Similarly for π−1(tki j I I ) = {A4}.

Step 2: Proof by contradiction that at least four Ei are necessary
Assume that we have a decomposition into disjoint locally compact setsW ×W =⋃2
i=0 Ei with a local section si of π : GW → W × W over each Ei . This will yield

a contradiction to the continuity of the local sections si , analogously to the arguments
in the proofs of the Theorems 4.4, 4.5 and 5.1.

First we show that all components of the sequences (r j
i I ) and (r j

i I I ) are in the closure

of two Ei . Assume that there exists a sequence component r j
i I which is in the interior

of E0, for instance. Then we may assume that (tki j I ) and (tki j I I ) are in E0 by taking

a subsequence if necessary. By continuity, this would imply that s0(tki j I ) = A1 and

s0(tki j I I ) = A4 need to both converge to the same path s0(r
j
i I ) as k tends to infinity.

This yields a contradiction, implying that every r j
i I lies in the closure of two Ei . The

same argument applies to (r j
i I I ).

Next we show that all components of the sequence (siA) are in the closure of three
Ei . Assume that there exists a sequence component siA which has a neighborhood Vε

which is fully contained in E0 ∪ E1, for instance. We may assume that the sequences
(r j
i I ) and (r j

i I I ) are contained in Vε . We showed that all components of the sequences

(r j
i I ) and (r j

i I I ) are in the closure of two Ei . Because we assumed that Vε ⊂ E0 ∪ E1,

this means that every r j
i I and r j

i I I lies in the closure of E0 (and E1). By a diagonal

argument we can construct two new sequences (r̃ j
i I ) and (r̃ j

i I I ) converging to s
i
A which

are contained in E0, and such that π−1(r̃ j
i I ) ∈ {A1, A4} and π−1(r̃ j

i I I ) ∈ {A7, A10}.
This is because pairs sufficiently close to r j

i I and r
j
i I I cannot have other Ai as geodesics,

since the length of the Ai varies continuously. By continuity, this would imply that
s0(r̃

j
i I ) ∈ {A1, A4} and s0(r̃

j
i I I ) ∈ {A7, A10} need to both converge to the same path

s0(siA) as j tends to infinity. This yields a contradiction, implying that every siA lies in
the closure of three Ei .

Finally, it just remains to show that this in turn implies that there is noway to choose
a geodesic for s0((p, q)) that would make s0 continuous at the pair (p, q) of opposite
corners.

There are two other faces adjacent to the corner p, denoted B and C in Fig. 14.
By using the 3-fold rotation symmetry of the cube around the corners p and q we can
construct a neighborhood UB within which the geodesics are B1, B4, B7 and B10 and
a neighborhood UC within which the geodesics are C1, C4, C7 and C10, as well as
a sequence (siB) converging to (p, q), such that π−1(siB) = {B1, B4, B7, B10} and a
sequence (siC ) converging to (p, q), such that π−1(siC ) = {C1,C4,C7,C10}. Here the
paths Bi and Ci are the result of rotating Ai around the axis going through p and q,
and similarly for UB , UC , (siB) and (siC ).
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Fig. 14 There are precisely six
geodesics between opposite
corners p and q. We denote the
faces adjacent to p by A, B and
C

There are precisely six geodesics between p and q as seen in Fig. 14. We denote
them Di , 1 ≤ i ≤ 6, just as in the figure. The Di are limits of the paths Ai , Bi and Ci

as pairs of points in UA, UB and UC approach (p, q). Specifically:

• The paths A1, A4, A7 and A10 converge to D3, D4, D6 and D1 respectively.
• The paths B1, B4, B7 and B10 converge to D5, D6, D2 and D3 respectively.
• The paths C1, C4, C7 and C10 converge to D1, D2, D4 and D5 respectively.

Just as we did above for siA, we can show that all siB and all siC lie in the closure
of E0 (and of E1 and E2). Just as above, this allows us to use a diagonal argument
to construct new sequences (s̃iA), (s̃iB) and (s̃iC ) contained in E0 and converging to
(p, q) such that π−1(s̃iA) ∈ {A1, A4, A7, A10}, π−1(s̃iB) ∈ {B1, B4, B7, B10} and
π−1(s̃iC ) ∈ {C1,C4,C7,C10}.

By continuity, we need s0(s̃iA), s0(s̃iB) and s0(s̃iC ) to converge to the same path
s0((p, q)). Thus, s0 can only be continuous if the geodesic s0((p, q)) lies in the
following set {D3, D4, D6, D1} ∩ {D5, D6, D2, D3} ∩ {D1, D2, D4, D5} = ∅. This
yields a contradiction to the continuity of s0. 
�

Remark 6.4 The map GW → W × W seems to yield a level-wise stratified covering
over a stratified space just as made explicit for the torus and the Klein bottle, but
it appears to be a hard problem to explicitly understand the whole total cut locus.
Nonetheless, it would be very interesting to understand the total cut locus and it seems
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likely that this would allow us to construct a geodesic motion planner with four sets,
which would show GC(W ) = 3.

Remark 6.5 Presumably for the n-dimensional analogues Wn of W (n-spheres seen
as boundary of n + 1 cubes, with the flat metric) the geodesic complexity is n + 1,
while the topological complexity oscillates between 1 and 2. If this could be shown, it
would yield another (maybe more natural) family of examples where the gap between
TC and GC is unbounded.

7 Defining geodesic complexity using shortest paths

Recall that we say that a path γ in a metric space (X , d) is a geodesic if there exists a
number λ such that

d(γ (t), γ (t ′)) = λ|t − t ′|

for all 0 ≤ t < t ′ ≤ 1.
It immediately follows from Definition 1.2 that �(γ ) = d(γ (0), γ (1)) = λ. It is

also clear from the definition that d(γ (0), γ (1)) is the shortest length a path from γ (0)
to γ (1) could possibly have.

Definition 7.1 We say that a path γ in a metric space (X , d) is a shortest path if
�(γ ) = d(γ (0), γ (1)).

Definition 7.2 Let γ be a path in a metric space (X , d). We say that γ ′ is a
reparametrization of γ if γ ′ ◦ ψ = γ for some non-decreasing surjective map
ψ : [0, 1] → [0, 1].

Geodesics are precisely the shortest paths which are parametrized proportional to
arc length, i.e. have constant speed λ. Any non-trivial reparametrization of a geodesic
is no longer a geodesic, but it will still be a shortest path, since the length of a path is
independent of the parametrization. This rigidity is very useful in the lower bound argu-
ments for level-wise stratified coverings in Sect. 3 and for the examples in Sects. 4, 5
and 6.However, onemight ask if allowingmore flexibility in the parametrizationmight
make it possible to find motion planners with lower complexity (meaning decompo-
sitions into fewer sets). In Theorem 7.4 below we show that this is not the case, but
first we need some preliminary definitions.

By Bridson and Haefliger (1999, Chapter I, 1.22 Remark), any shortest path can
be reparametrized to be a geodesic as defined above: Let γ be a path with �(γ ) =
d(γ (0), γ (1)) �= 0. Then the map λ : [0, 1] → [0, 1] defined by

λ(t) := �(γ |[0,t])
�(γ )

,

yields a reparametrization γ ′ which is a geodesic (concretely, we have γ = γ ′ ◦ λ).
If �(γ ) = 0, meaning that γ is constant, γ is already a geodesic and we can set
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λ = id|[0,1]. Note that in Bridson and Haefliger (1999) geodesics are required to have
unit speed and are defined on intervals of varying length. Because under our definition
geodesic paths are always defined on the interval [0, 1], we need to divide by the total
length in the formula for λ(t) above. In fact, our definition of geodesic corresponds
precisely to the definition of linearly reparametrized geodesic in Bridson andHaefliger
(1999), which are allowed to have any constant speed.

Definition 7.3 Let (X , d) be a metric space. Denote by G̃X ⊂ PX the space of all
shortest paths and denote by π̃ : G̃X → X × X the restriction of the evaluation map.

Theorem 7.4 Replacing π : GX → X × X by π̃ : G̃X → X × X in the definition
of geodesic complexity would result in an equivalent definition. In other words, the
locally compact sectional categories of π and π̃ agree: secatENRπ = secatENRπ̃ .

Proof Because GX ⊂ G̃X , it is immediate that secatENRπ ≥ secatENRπ̃ . It remains
to show the reverse inequality.

We will show that, given a local section s̃ : E → G̃X of π̃ , reparametrizing each
shortest path s̃(e) yields a local section s : E → GX of π . Concretely, we need to
prove that letting s(e) be the path such that s̃(e) = s(e) ◦λe defines a continuous map

s : E → GX . Recall that λe(t) = �(s̃(e)|[0,t])
�(s̃(e)) if �(s̃(e)) �= 0 and λe(t) = t otherwise.

To simplify the notation, we write s̃(e) = s̃e and s(e) = se.
Recall that the path space PX is equipped by the compact-open topology and that,

if X is a metric space, the compact-open topology on PX is induced by the supremum
metric

dsup(γ1, γ2) = sup
t∈[0,1]

d(γ1(t), γ2(t)).

The subspace topology on both GX and G̃X is also induced by the supremum
metric.

We need to show that, for any given e0 in E , the map s : E → GX is continuous at
e0 with respect to the supremum metric on GX . It suffices to show that for all ε > 0
there exists a δ > 0 such that d(se0(t), se(t)) < ε for all t , whenever d(e0, e) < δ.

Let ε > 0. Choose δ > 0 such that d(s̃e0(t), s̃e(t)) < ε/5 for all t , whenever
d(e0, e) < δ. Such a δ exists because s̃ is continuous and by the definition of the
supremum metric.

Furthermore, we may assume that δ > 0 is small enough such that �(s̃e) �= 0
whenever d(e0, e) < δ: If �(s̃e0) �= 0, such a δ can be found by the continuity of
s̃. In the case when �(s̃e0) = 0, the inequality dsup(s̃e0 , s̃e) < ε immediately implies
dsup(se0 , se) < ε, because s̃e0 = se0 is a constant path. Thus, in that case the continuity
of s at e0 follows immediately from the continuity of s̃ at e0.

Let t be in [0, 1] and choose t ′ and t ′′ such that λe0(t ′) = λe(t ′′) = t . Then:

d(se0(t), se(t)) = d(se0(λe0(t
′)), se(λe(t ′′)))

≤ d(se0(λe0(t
′)), se(λe(t ′))) + d(se(λe(t

′)), se(λe(t ′′)))
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= d(s̃e0(t
′), s̃e(t ′))

︸ ︷︷ ︸
<ε/5

+d(s̃e(t
′), s̃e(t ′′)).

Because s̃e is a shortest path, we can rewrite the second summand above as follows

d(s̃e(t
′), s̃e(t ′′)) = |d(s̃e(0), s̃e(t ′)) − d(s̃e(0), s̃e(t

′′))|
≤ |d(s̃e(0), s̃e(t ′)) − d(s̃e0(0), s̃e0(t

′))|
︸ ︷︷ ︸

<2ε/5 (Inequality A)

+ |d(s̃e0(0), s̃e0(t ′)) − d(s̃e(0), s̃e(t
′′))|

︸ ︷︷ ︸
<2ε/5 (Inequality B)

.

Inequality A follows from

d(s̃e(0), s̃e(t
′)) ≤ d(s̃e(0), s̃e0(0))︸ ︷︷ ︸

<ε/5

+d(s̃e0(0), s̃e0(t
′)) + d(s̃e0(t

′), s̃e(t ′))
︸ ︷︷ ︸

<ε/5

and the analogous reverse inequality.
To show Inequality B note that

λe(t) = �(s̃e|[0,t])
�(s̃e)

= d(s̃e(0), s̃e(t))

d(s̃e(0), s̃e(1))

because s̃e is a shortest path.
Recall that t = λe0(t

′) = λe(t ′′) and thus

d(s̃e0(0), s̃e0(t
′))

d(s̃e0(0), s̃e0(1))
= d(s̃e(0), s̃e(t ′′))

d(s̃e(0), s̃e(1))
.

This implies that

d(s̃e0(0), s̃e0(t
′)) = d(s̃e(0), s̃e(t

′′))d(s̃e0(0), s̃e0(1))
d(s̃e(0), s̃e(1))

= d(s̃e(0), s̃e(t
′′))

(

1 + d(s̃e0(0), s̃e0(1)) − d(s̃e(0), s̃e(1))

d(s̃e(0), s̃e(1))

)

≤ d(s̃e(0), s̃e(t
′′)) + |d(s̃e0(0), s̃e0(1)) − d(s̃e(0), s̃e(1))|

≤ d(s̃e(0), s̃e(t
′′)) + d(s̃e0(0), s̃e(0))︸ ︷︷ ︸

<ε/5

+ d(s̃e0(1), s̃e(1))︸ ︷︷ ︸
<ε/5

.

Together with the analogous reverse inequality, this implies Inequality B. 
�

8 Further work

There are many open questions left to explore regarding geodesic complexity. For
example, it is unclear to which extent classical bounds for topological complexity still
hold (in some form) for geodesic complexity.
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The most commonly used upper bound for topological complexity is TC(X) ≤
dim(X × X) (Farber 2003), where dim(X × X) is the covering dimension. We were
not able tofindmetric spaces forwhichwecanprove thatGC(X) > dim(X×X),which
leaves open the possibility that the dimensional upper bound also holds for geodesic
complexity. However, there does not seem to be a reason for GC(X) ≤ dim(X × X)

to hold, since the arguments used in the case of topological complexity do not apply
in the geodesic setting.

Question 1 Does the bound GC(X) ≤ dim(X × X) hold for sufficiently nice metric
spaces X?

It should be noted that we do not mean homotopy dimension here, as is often
done in the study of topological complexity. We know from Theorem 1.11 that even
contractible metric spaces can have arbitrarily high geodesic complexity.

Other commonly used bounds for topological complexity are given by the
Lusternik–Schnirelmann category cat(X), which is the smallest k for which there
is an open cover X = ⋃k

i=0Ui such that each inclusion Ui ↪→ X is null-homotopic.
The Lusternik–Schnirelmann category is a homotopy invariant which is closely related
to topological complexity. Farber (2003) shows that:

cat(X) ≤ TC(X) ≤ cat(X × X)

The lower bound trivially carries over to geodesic complexity since TC(X) ≤
GC(X). However, the upper bound does not carry over: According to Theorem 1.11,
there is a Riemannian metric gm , such that GC(Sn+1, gm) ≥ n, while it is well-known
that cat(Sn × Sn) = 2. Furthermore, Theorem 6.2 also yields a counterexample, since
the theorem states that GC(W ) ≥ 3, and yet cat(W × W ) = cat(S2 × S2) = 2.

Possibly the bound can be recovered by replacing the Lusternik–Schnirelmann
category with a geodesic version. Given a metric space X , let Gcat(X) be the smallest
k for which there is an decomposition into locally compact sets X = ⋃k

i=0 Ei such
that each Ei ↪→ X is null-homotopic along geodesics (meaning that the homotopy
restricted to any point of X yields a geodesic). It is easy to see that Gcat(X) ≤ GC(X)

but the proof of TC(X) ≤ cat(X × X) does not carry over to the geodesic case.

Question 2 Does the bound GC(X) ≤ Gcat(X × X) hold for sufficiently nice metric
spaces X?
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