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Abstract
This paper outlines a program in what one might call spectral sheaf theory—an exten-
sion of spectral graph theory to cellular sheaves. By lifting the combinatorial graph
Laplacian to the Hodge Laplacian on a cellular sheaf of vector spaces over a regular
cell complex, one can relate spectral data to the sheaf cohomology and cell structure in
a manner reminiscent of spectral graph theory. This work gives an exploratory intro-
duction, and includes discussion of eigenvalue interlacing, sparsification, effective
resistance, synchronization, and sheaf approximation. These results and subsequent
applications are prefaced by an introduction to cellular sheaves and Laplacians.

Keywords Cohomology · Cellular sheaf theory · Spectral graph theory ·
Effective resistance · Eigenvalue interlacing
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1 Introduction

In spectral graph theory, one associates to a combinatorial graph additional algebraic
structures in the form of square matrices whose spectral data is then investigated and
related to the graph. These matrices come in several variants, most particularly degree
and adjacency matrices, Laplacian matrices, and weighted or normalized versions
thereof. In most cases, the size of the implicated matrix is based on the vertex set,
while the structure of the matrix encodes data carried by the edges.
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To say that spectral graph theory is useful is an understatement. Spectral methods
are key in such disparate fields as data analysis (Belkin and Niyogi 2003; Coifman
and Lafon 2006), theoretical computer science (Hoory et al. 2006; Cvetcović and
Simić 2011), probability theory (Lyons and Peres 2016), control theory (Bullo 2018),
numerical linear algebra (Spielman and Teng 2014), coding theory (Spielman 1996),
and graph theory itself (Chung 1992; Brouwer and Haemers. 2012).

Much of spectral graph theory focuses on the Laplacian, leveraging its unique com-
bination of analytic, geometric, and probabilistic interpretations in the discrete setting.
This is not the complete story. Many of the most well-known and well-used results
on the spectrum of the graph Laplacian return features that are neither exclusively
geometric nor even combinatorial in nature, but rather more qualitative. For example,
it is among the first facts of spectral graph theory that themultiplicity of the zero eigen-
value of the graph Laplacian enumerates connected components of the graph, and the
relative size of the smallest nonzero eigenvalue in a connected graph is a measure of
approximate dis-connectivity. Such features are topological.

There is another branch of mathematics in which Laplacians hold sway: Hodge
theory. This is the slice of algebraic and differential geometry that uses Laplacians
on (complex) Riemannian manifolds to characterize global features. The classical
initial result is that one recovers the cohomology of the manifold as the kernel of the
Laplacian on differential forms (Abraham et al. 1988). For example, the dimension
of the kernel of the Laplacian on 0-forms (R-valued functions) is equal to the rank
of H0, the 0-th cohomology group (with coefficients in R), whose dimension is the
number of connected components. In spirit, then, Hodge theory categorifies elements
of spectral graph theory.

Hodge theory, like much of algebraic topology, survives the discretization from
Riemannianmanifolds to (weighted) cell complexes (Eckmann 1945; Friedman 1998).
The classical boundary operator for a cell complex and its formal adjoint combine
to yield a generalization of the graph Laplacian which, like the Laplacian of Hodge
theory, acts on higher dimensional objects (cellular cochains, as opposed to differential
forms). The kernel of this discrete Laplacian is isomorphic to the cellular cohomology
of the complex with coefficients in the reals, generalizing the connectivity detection
of the graph Laplacian in grading zero. As such, the spectral theory of the discrete
Laplacian offers a geometric perspective on algebraic-topological features of higher-
dimensional complexes. Laplacians of higher-dimensional complexes have been the
subject of recent investigation (Parzanchevski 2013; Steenbergen 2013; Horak and
Jost 2013).

This is not the end. Our aim is a generalization of both spectral graph theory and
discreteHodge theorywhich ties in to recent developments in topological data analysis.
The past two decades have witnessed a burst of activity in computing the homology
of cell complexes (and sequences thereof) to extract robust global features, leading
to the development of specialized tools, such as persistent homology, barcodes, and
more, as descriptors for cell complexes (Carlsson 2012; Edelsbrunner and Harer 2010;
Kaczynski et al. 2004; Otter et al. 2017).

Topological data analysis is evolving rapidly. One particular direction of evolution
concerns a change in perspective from working with cell complexes as topological
spaces in and of themselves to focusing instead on data over a cell complex—viewing
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the cell complex as a base onwhichdata to be investigated resides. For example, one can
consider scalar-valued data over cell complexes, as occurs in weighted networks and
complexes; or sensor data, as occurs in target enumeration problems (Curry et al. 2012).
Richer data involves vector spaces and linear transformations, as with recent work in
cryo-EM (Hadani and Singer 2011) and synchronization problems (Bandeira 2015).
Recent work in TDA points to a generalization of these and related data structures
over topological spaces. This is the theory of sheaves.

We will work exclusively with cellular sheaves (Curry 2014). Fix a (regular, locally
finite) cell complex—a triangulated surface will suffice for purposes of imagination. A
cellular sheaf of vector spaces is, in essence, a data structure on this domain, assigning
local data (in the form of vector spaces) to cells and compatibility relations (linear
transformations) between cells of incident ascending dimension. These structure maps
send data over vertices to data over incident edges, data over edges to data over incident
2-cells, etc. As a trivial example, the constant sheaf assigns a rank-one vector space to
each cell and identity isomorphisms according to boundary faces. More interesting is
the cellular analogue of a vector bundle: a cellular sheaf which assigns a fixed vector
space of dimension n to each cell and isomorphisms as linear transformations (with
specializations to O(n) or SO(n) as desired).

The data assigned to a cellular sheaf naturally arranges into a cochain complex
graded by dimension of cells. As such, cellular sheaves possess a Laplacian that
specializes to the graph Laplacian and the Hodge Laplacian for the constant sheaf.
For cellular sheaves of real vector spaces, a spectral theory—an examination of the
eigenvalues and eigenvectors of the sheaf Laplacian—is natural, motivated, and, to
date, unexamined apart from a few special cases (see Sect. 3.6).

This paper sketches an emerging spectral theory for cellular sheaves. Given the
motivation as a generalization of spectral graph theory, we will often specialize to
cellular sheaves over a 1-dimensional cell complex (that is, a graph, allowing when
necessary multiple edges between a pair of vertices). This is mostly for the sake of
simplicity and initial applications, as zero- and one-dimensional homological invari-
ants are themost readily applicable. However, as the theory is general, we occasionally
point to higher-dimensional side-quests.

The plan of this paper is as follows. In Sect. 2, we cover the necessary topological
and algebraic preliminaries, including definitions of cellular sheaves. Next, Sect. 3
gives definitions of the various matrices involved in the extension of spectral theory to
cellular sheaves. Section 4 uses these to explore issues related to harmonic functions
and cochains on sheaves. In Sect. 5, we extend various elementary results from spectral
graph theory to cellular sheaves. The subsequent two sections treat more sophisticated
topics, effective resistance (Sect. 6) and the Cheeger inequality (Sect. 7), for which
we have some preliminary results. We conclude with outlines of potential applications
for the theory in Sect. 8 and directions for future inquiry in Sect. 9.

The results and applications we sketch are at the beginnings of the subject, and a
great deal more in way of fundamental and applied work remains.

This paper has been written in order to be readable without particular expertise
in algebraic topology beyond the basic ideas of cellular homology and cohomology.
Category-theoretic terminology is used sparingly and for concision. Given the well-
earned reputation of sheaf theory as difficult for the non-specialist, we have provided
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an introductory section with terminology and core concepts, noting that much more is
available in the literature (Bredon 1997; Kashiwara and Schapira 1990). Our recourse
to the cellular theory greatly increases simplicity, readability, and applicability, while
resonating with the spirit of spectral graph theory. There are abundant references
available for the reader who requires more information on algebraic topology (Hatcher
2001), applications thereof (Edelsbrunner and Harer 2010; Ghrist 2014), and cellular
sheaf theory (Curry 2014; Ghrist 2014).

2 Preliminaries

2.1 Cell complexes

Definition 2.1 A regular cell complex is a topological space X with a partition into
subspaces {Xα}α∈PX satisfying the following conditions:

1. For each x ∈ X , every sufficiently small neighborhood of x intersects finitely
many Xα .

2. For all α, β, Xα ∩ Xβ �= ∅ only if Xβ ⊆ Xα .
3. Every Xα is homeomorphic to R

nα for some nα .
4. For every α, there is a homeomorphism of a closed ball in R

nα to Xα that maps
the interior of the ball homeomorphically onto Xα .

Condition (2) implies that the set PX has a poset structure, given by β ≤ α iff
Xβ ⊆ Xα . This is known as the face poset of X . The regularity condition (4) implies
that all topological information about X is encoded in the poset structure of PX . For
our purposes, we will identify a regular cell complex with its face poset, writing the
incidence relation β �α. The class of posets that arise in this way can be characterized
combinatorially (Björner 1984). For our purposes, a morphism of cell complexes is a
morphism of posets between their face incidence posets that arises from a continuous
mapbetween their associated topological spaces. In particular,morphismsof simplicial
and cubical complexes will qualify as morphisms of regular cell complexes.

The class of regular cell complexes includes simplicial complexes, cubical com-
plexes, and so-called multigraphs (as 1-dimensional cell complexes). As nearly every
space that can be characterized combinatorially can be represented as a regular cell
complex, these will serve well as a default class of spaces over which to develop a
combinatorial spectral theory of sheaves.We note that the spectral theory of complexes
has heretofore been largely restricted to the study of simplicial complexes (Schaub
et al. 2018). A number of our results will specialize to results about the spectra of
Hodge Laplacians of regular cell complexes by restricting to the constant sheaf.

A few notions associated to cell complexes will be useful.

Definition 2.2 The k-skeleton of a cell complex X , denoted X (k), is the subcomplex
of X consisting of cells of dimension at most k.

Definition 2.3 Let σ be a cell of a regular cell complex X . The star of σ , denoted
st(σ ), is the set of cells τ such that σ�τ .

123



Toward a spectral theory of cellular sheaves 319

Topologically, st(σ ) is the smallest open collection of cells containing σ , a role
we might denote as the “smallest cellular neighborhood” of σ . Stars serve an impor-
tant purpose in giving combinatorial analogues of topological notions for maps. For
instance, amorphism f : X → Y of cell complexesmay be locally injective as defined
on the topological spaces. Topologically, the condition for local injectivity is simply
that every point in X have a neighborhood on which f is injective. Translating this to
cell complexes, we require that for every cell σ ∈ X , f is injective on st(σ ).

Topological continuity ensures that the preimage of a star st(σ ) under a cell mor-
phism f : X → Y is a union of stars; if f is locally injective, we see that it must be
a disjoint union of stars. A locally injective map is, further, a covering map if on each
component of f −1(st(σ )), f is an isomorphism. That is, the fiber of a star consists of
a disjoint union of copies of that star.

2.2 Cellular sheaves

Let X be a regular cell complex. A cellular sheaf attaches data spaces to the cells
of X together with relations that specify when assignments to these data spaces are
consistent.

Definition 2.4 A cellular sheaf of vector spaces on a regular cell complex X is an
assignment of a vector space F(σ ) to each cell σ of X together with a linear transfor-
mation Fσ�τ : F(σ ) → F(τ ) for each incident cell pair σ � τ . These must satisfy
both an identity relation Fσ�σ = id and the composition condition:

ρ � σ � τ ⇒ Fρ�τ = Fσ�τ ◦ Fρ�σ .

The vector space F(σ ) is called the stalk of F at σ . The maps Fσ�τ are called the
restriction maps.

For experts, this definition at first seems only reminiscent of the notion of sheaves
familiar to topologists. The depth of the relationship is explained in detail in Curry
(2014), but the essence is this: the data of a cellular sheaf on X specifies spaces of local
sections on a cover of X given by open stars of cells. This translates in two different
ways into a genuine sheaf on a topological space. One may either take the Alexandrov
topology on the face incidence poset of the complex, or one may view the open stars
of cells and their natural refinements a basis for the topology of X . There then exists a
natural completion of the data specified by the cellular sheaf to a constructible sheaf
on X .

One may compress the definition of a cellular sheaf to the following: If X is a
regular cell complex with face incidence poset PX , viewed as a category, a cellular
sheaf is a functor F : PX → Vectk to the category of vector spaces over a field k.

Definition 2.5 Let F be a cellular sheaf on X . A global section x of F is a choice
xσ ∈ F(σ ) for each cell σ of X such that xτ = Fσ�τ xσ for all σ � τ . The space of
global sections of F is denoted Γ (X;F).
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Perhaps the simplest sheaf on any complex is the constant sheaf with stalkV, which
we will denote V. This is the sheaf with all stalks equal to V and all restriction maps
equal to the identity.

2.2.1 Cosheaves

In many situations it is more natural to consider a dual construction to a cellular sheaf.
A cellular cosheaf preserves stalk data but reverses the direction of the face poset,
and with it, the restriction maps.

Definition 2.6 A cellular cosheaf of vector spaces on a regular cell complex X is an
assignment of a vector space F(σ ) to each cell σ of X together with linear maps
Fσ�τ : F(τ ) → F(σ ) for each incident cell pair σ � τ which satisfies the identity
(Fσ�σ = id) and composition condition:

ρ � σ � τ ⇒ Fρ�τ = Fρ�σ ◦ Fσ�τ .

More concisely, a cellular cosheaf is a functor Pop
X → Vectk. The contravariant

functor Hom(•, k) : Vectop
k

→ Vectk gives every cellular sheaf F a dual cosheaf F̂
whose stalks are Hom(F(σ ), k).

2.2.2 Homology and cohomology

The cells of a regular cell complex have a natural grading by dimension. By regularity
of the cell complex, this grading can be extracted from the face incidence poset as the
height of a cell in the poset. This means that a cellular sheaf has a graded vector space
of cochains

Ck(X;F) =
⊕

dim(σ )=k

F(σ ).

To develop this into a chain complex, we need a boundary operator and a notion of
orientation—a signed incidence relation on PX . This is a map [• : •] : PX × PX →
{0,±1} satisfying the following conditions:

1. If [σ : τ ] �= 0, then σ�τ and there are no cells between σ and τ in the incidence
poset.

2. For any σ�τ ,
∑

γ∈PX [σ : γ ][γ : τ ] = 0.

Given a signed incidence relation on PX , there exist coboundary maps δk :
Ck(X;F) → Ck+1(X;F). These are given by the formula

δk |F(σ ) =
∑

dim(τ )=k+1

[σ : τ ]Fσ�τ ,

or equivalently,

(δk x)τ =
∑

dim(σ )=k

[σ : τ ]Fσ�τ (xσ ).
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Here we use subscripts to denote the value of a cochain in a particular stalk; that is,
xσ is the value of the cochain x in the stalk F(σ ).

It is a simple consequence of the properties of the incidence relation and the com-
mutativity of the restriction maps that δk ◦δk−1 = 0, so these coboundary maps define
a cochain complex and hence a cohomology theory for cellular sheaves. In particular,
H0(X;F) is naturally isomorphic to Γ (X;F), the space of global sections. An anal-
ogous construction defines a homology theory for cosheaves. Cosheaf homology may
be thought of as dual to sheaf cohomology in a Poincaré-like sense. That is, frequently
the natural analogue of degree zero sheaf cohomology is degree n cosheaf homology.
A deeper formal version of this fact, exploiting an equivalence of derived categories,
may be found in Curry (2014), ch. 12.

There is a relative version of cellular sheaf cohomology. Let A be a subcomplex of
X . There is a natural subspace of Ck(X;F) consisting of cochains which vanish on
stalks over cells in A. The coboundary of a cochain which vanishes on A also vanishes
on A, since any cell in A(k+1) has only cells in A(k) on its boundary. We therefore get
a subcomplex C•(X , A;F) of C•(X;F). The cohomology of this subcomplex is the
relative sheaf cohomology H•(X , A;F). The natural maps between these spaces of
cochains constitute a short exact sequence of complexes

0 → C•(X , A;F) → C•(X;F) → C•(A;F) → 0,

from which a long exact sequence for relative sheaf cohomology arises:

0 → H0(X , A;F) → H0(X;F) → H0(A;F) → H1(X , A;F) → · · ·

2.2.3 Sheaf morphisms

Definition 2.7 If F and G are sheaves on a cell complex X , a sheaf morphism ϕ :
F → G is a collection of maps ϕσ : F(σ ) → G(σ ) for each cell σ of X , such that for
any σ�τ , ϕτ ◦ Fσ�τ = Gσ�τ ◦ ϕσ . Equivalently, all diagrams of the following form
commute:

F(σ ) G(σ )

F(τ ) G(τ )

Fσ�τ

ϕσ

Gσ�τ

ϕτ

This commutativity condition assures that a sheaf morphism ϕ : F → G inducesmaps
ϕk : Ck(X;F) → Ck(X;G) which commute with the coboundary maps, resulting in
the induced maps on cohomology Hkϕ : Hk(X;F) → Hk(X;G).

2.2.4 Sheaf operations

There are several standard operations that act on sheaves to produce new sheaves.

Definition 2.8 (Direct sum) If F and G are sheaves on X , their direct sum F ⊕ G is a
sheaf on X with (F ⊕G)(σ ) = F(σ )⊕G(σ ). The restriction maps are (F ⊕G)σ�τ =
Fσ�τ ⊕ Gσ�τ .
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Definition 2.9 (Tensor product) If F and G are sheaves on X , their tensor product
F ⊗ G is a sheaf on X with (F ⊗ G)(σ ) = F(σ ) ⊗ G(σ ). The restriction maps are
(F ⊗ G)σ�τ = Fσ�τ ⊗ Gσ�τ .

Definition 2.10 (Pullback) If f : X → Y is a morphism of cell complexes and F
is a sheaf on Y , the pullback f ∗F is a sheaf on X with f ∗F(σ ) = F( f (σ )) and
( f ∗F)σ�τ = F f (σ )� f (τ ).

Definition 2.11 (Pushforward) The full definition of the pushforward of a cellular
sheaf is somewhat more categorically involved than the previous constructions. If
f : X → Y is a morphism of cell complexes and F is a sheaf on X , the pushforward
f∗F is a sheaf on Y with stalks f∗F(σ ) given as the limit limσ� f (τ ) F(τ ). The
restriction maps are induced by the restriction maps of F , since whenever σ�σ ′, the
cone for the limit defining f∗F(σ ) contains the cone for the limit defining f∗F(σ ′),
inducing a unique map f∗F(σ ) → f∗F(σ ′).

In this paper, we will mainly work with pushforwards over locally injective cell
maps, that is, those whose geometric realizations are locally injective (see Sect. 2.1).
If f : X → Y is locally injective, every cell σ ∈ X maps to a cell of the same
dimension, and for every cell σ ∈ Y , f −1(st(σ )) is a disjoint union of subcomplexes,
each of which maps injectively to Y . In this case, f ∗F(σ ) � ⊕

σ ′∈ f −1(σ ) F(σ ′), and
( f ∗F)σ�τ = ⊕

(σ ′�τ ′)∈ f −1(σ�τ) Fσ ′�τ ′ . This computational formula in fact holds

more generally, if the stars of cells in f −1(σ ) are disjoint.

Those familiar with the definitions of pushforward and pullback for sheaves over
topological spaces will note a reversal of fates when we define sheaves over cell
complexes. Here the pullback is simple to define, while the pushforward is more
involved. This complication arises because cellular sheaves are in a sense defined
pointwise rather than over open sets.

3 Definitions

3.1 Weighted cellular sheaves

Let k = R or C. A weighted cellular sheaf is a cellular sheaf with values in k-
vector spaces where the stalks have additionally been given an inner product structure.
Adding the condition of completeness to the stalks, one may view this as a functor
PX → Hilbk, where Hilbk is the category whose objects are Hilbert spaces over k

and whose morphisms are (bounded) linear maps.
The inner products on stalks of F extend by the orthogonal direct sum to inner

products on Ck(X;F), making these Hilbert spaces as well. The canonical inner
products on direct sums and subspaces of Hilbert spaces give the direct sum and tensor
product of weighted cellular sheaves weighted structures. Similarly, the pullbacks
and pushforwards (over locally injective maps) of a weighted sheaf have canonical
weighted structures given by their computational formulae in Sect. 2.2.4.

Every morphism T : V → W between Hilbert spaces admits an adjoint map T ∗ :
W → V , determined by the property that for all v ∈ V , w ∈ W , 〈w, T v〉 = 〈T ∗w, v〉.
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One may readily check that (T ∗)∗ = T . This fact gives the category Hilbk a dagger
structure, that is, a contravariant endofunctor † (here the adjoint operation ∗) which
acts as the identity on objects and squares to the identity. In a dagger category, the
notion of unitary isomorphisms makes sense: they are the invertible morphisms T
such that T † = T−1.

The dagger structure ofHilbk introduces some categorical subtleties into the study
of weighted cellular sheaves. The space of global sections of a cellular sheaf is defined
in categorical terms as the limit of the functor X → Vect defining the sheaf. This
defines the space of global sections up to unique isomorphism. We might want a
weighted space of global sections to be a sort of limit in Hilbk which is defined up
to unique unitary isomorphism. This is the notion of dagger limit, recently studied
in Heunen and Karvonen (2019). Unfortunately, this work showed that Hilbk does
not have all dagger limits; in particular, pullbacks over spans of noninjective maps do
not exist. As a result, there is no single canonical way to define an inner product on
the space of global sections of a cellular sheaf F . There are two approaches that seem
most natural, however. One is to view the space of global sections of F as ker δ0F
with the natural inner product given by inclusion into C0(X;F). The other is to view
global sections as lying in

⊕
σ F(σ ). We will generally take the view that global

sections are a subspace of C0(X;F); that is, we will weight Γ (X;F) by its canonical
isomorphism withH0(X;F), as defined in Sect. 3.2.

The dagger structure on Hilbk gives a slightly different way to construct a dual
cosheaf from a weighted cellular sheaf F . Taking the adjoint of each restriction map
reverses their directions and hence yields a cosheaf with the same stalks as the original
sheaf. From a categorical perspective, this amounts to composing the functor F with
the dagger endofunctor onHilbk. When stalks are finite dimensional, this dual cosheaf
is isomorphic to the cosheaf F̂ defined in Sect. 2.2.1 via the dual vector spaces of stalks.
In this situation, we have an isomorphism between the stalks ofF and its dual cosheaf.
This is reminiscent of the bisheaves recently introduced by MacPherson and Patel
(2018). However, the structure maps F(σ ) → F̂(σ ) will rarely commute with the
restriction and extension maps as required by the definition of the bisheaf—this only
holds in general if all restriction maps are unitary. The bisheaf construction is meant
to give a generalization of local systems, and as such fits better with our discussion of
discrete vector bundles in Sect. 3.5.

3.2 The sheaf Laplacian

Given a chain complex of Hilbert spaces C0 → C1 → · · · we can construct the
Hodge Laplacian Δ = (δ + δ∗)2 = δ∗δ + δδ∗. This operator is naturally graded
into components Δk : Ck → Ck , with Δk = (δk)∗δk + δk−1(δk−1)∗. This operator
can be further separated into up- (coboundary) and down- (boundary) Laplacians
Δk+ = (δk)∗δk and Δk− = δk−1(δk−1)∗ respectively.

A key observation is that on a finite-dimensional Hilbert space, ker δ∗ = (im δ)⊥.
For if δ∗x = 0, then for all y, 0 = 〈δ∗x, y〉 = 〈x, δy〉, so that x ⊥ im δ. This allows us
to express the kernels and images necessary to compute cohomology purely in terms
of kernels. This is the content of the central theorem of discrete Hodge theory:
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Theorem 3.1 Let C0 → C1 → · · · be a chain complex of finite-dimensional Hilbert
spaces, with Hodge Laplacians Δk . Then kerΔk ∼= Hk(C•).

Proof By definition, Hk(C•) = ker δk/ im δk−1. In a finite dimensional Hilbert space,
ker δk/ im δk−1 is isomorphic to the orthogonal complement of im δk−1 in ker δk ,
which we may write (ker δk)∩ (im δk−1)⊥ = (ker δk)∩ (ker(δk−1)∗). So it suffices to
show that kerΔk = (ker δk)∩ (ker(δk−1)∗). Note that ker δk = ker(δk)∗δk = kerΔk+
and similarly for Δk−. So we need to show that ker(Δk+ + Δk−) = kerΔk+ ∩ kerΔk−,
whichwill be true if imΔk+∩imΔk− = 0. But this is true because imΔk+ = im(δk)∗ =
(ker δk)⊥ and imΔk− = im δk−1 ⊆ ker δk . ��

The upshot of this theorem is that the kernel ofΔk gives a set of canonical represen-
tatives for elements of Hk(C•). This is commonly known as the space of harmonic
cochains, denoted Hk(C•). In particular, the proof above implies that there is an
orthogonal decomposition Ck = Hk ⊕ im δk−1 ⊕ im(δk)∗.

When the chain complex in question is the complex of cochains for a weighted
cellular sheafF , theHodge construction produces the sheaf Laplacians. The Laplacian
which is easiest to study and most immediately interesting is the degree-0 Laplacian,
which is a generalization of the graph Laplacian. We can represent it as a symmetric
block matrix with blocks indexed by the vertices of the complex. The entries on
the diagonal are Δ0

v,v = ∑
v�e F∗

v�eFv�e and the entries on the off-diagonal are

Δ0
u,v = −F∗

u�eFv�e, where e is the edge between v and u. Laplacians of other
degrees have similar block structures.

The majority of results in combinatorial spectral theory have to do with up-
Laplacians. We will frequently denote these Lk by analogy with spectral graph theory,
where L typically denotes the (non-normalized) graph Laplacian. In particular, we
will further elide the index k when k = 0, denoting the graph sheaf Laplacian by
simply L . A subscript will be added when necessary to identify the sheaf, e.g. LF or
Δk
F .
Weighted labeled graphs are in one-to-one correspondence with graph Laplacians.

The analogous statement is not true of sheaves on a graph. For instance, the sheaves
in Fig. 1 have coboundary maps with matrix representations

⎡

⎣
1 −1
1 0
0 1

⎤

⎦ and

⎡

⎣
1√
2

1√
2√

3
2 −

√
3
2

⎤

⎦ ,

which means that the Laplacian for each is equal to

[
2 −1

−1 2

]
.

However, these sheaves are not unitarily isomorphic, as can be seen immediately by
checking the stalk dimensions. More pithily, one cannot hear the shape of a sheaf. One
source of the lossiness in the sheaf Laplacian representation is that restriction maps
may be the zero morphism, effectively allowing for edges that are only attached to one
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Toward a spectral theory of cellular sheaves 325

Fig. 1 Two nonisomorphic sheaves with the same Laplacian

vertex. More generally, restriction maps may fail to be full rank, which means that it
is impossible to identify the dimensions of edge stalks from the Laplacian.

3.2.1 Harmonic cochains

The elements of kerΔk = Hk are known as harmonic k-cochains. More generally, a
k-cochain may be harmonic on a subcomplex:

Definition 3.2 A k-cochain x of a sheaf F on a cell complex X is harmonic on a set
S of k-cells if (Δk

F x)|S = 0.

When k = 0 and F is the constant sheaf (i.e., in spectral graph theory), this can be
expressed as a local averaging property: For each v ∈ S, xv = 1

dv

∑
u∼v xu , where ∼

indicates adjacency and dv is the degree of the vertex v.

3.2.2 Identifying sheaf Laplacians

Given a regular cell complex X and a choice of dimension for each stalk, one can
identify the collection of matrices which arise as coboundary maps for a sheaf on X
as those matrices satisfying a particular block sparsity pattern. This sparsity pattern
controls the number of nonzero blocks in each row of the matrix. Restricting to δ0,
we get a matrix whose rows have at most two nonzero blocks. The space of matrices
which arise as sheaf Laplacians is then the space ofmatrices which have a factorization
L = δ∗δ, where δ is a matrix satisfying this block sparsity condition. Boman et al.
studied this class of matrices when the blocks have size 1×1, calling themmatrices of
factor width two (Boman et al. 2005). They showed that this class coincides with the
class of symmetric generalized diagonally dominant matrices, those matrices L for
which there exists a positive diagonalmatrix D such that DLD is diagonally dominant.
Indeed, the fact that sheaves ongraphs are not in general determinedby their Laplacians
is in part a consequence of the nonuniqueness of width-two factorizations.
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3.3 Approaching infinite-dimensional Laplacians

The definitions given in this paper are adapted to the case of sheaves of finite dimen-
sional Hilbert spaces over finite cell complexes. Relaxing these finiteness constraints
introduces new complications.

The spaces of cochains naturally acquire inner products by taking the Hilbert space
direct sum. These are not the same as taking the algebraic direct sum or product of
stalks. However, there is a sequence of inclusions of complexes

C•
c (X;F) ⊆ L2C•(X;F) ⊆ C•(X;F)

inducing algebraic maps between the corresponding compactly supported, L2, and
standard sheaf cohomology theories.

The theory of abstract complexes of possibly infinite-dimensional Hilbert spaces
has been developed in Brüning and Lesch (1992). This paper explains conditions for
the spaces of harmonic cochains of a complex to be isomorphic with the algebraic
cohomology of the complex. A particularly nice condition is that the complex have
finitely generated cohomology, which implies that the total coboundary map is a
Fredholm operator. More generally, if the images of the coboundary and its adjoint
are closed, the spaces of harmonic cochains will be isomorphic to the cohomology.

Further issues arise when we consider the coboundary maps δk . For spectral pur-
poses, it is in general desirable for these to be bounded linear maps, for which we
must make some further stipulations. Sufficient conditions for coboundary maps to be
bounded are as follows:

Proposition 3.3 Let F be a sheaf of Hilbert spaces on a cell complex X. Suppose
that there exists some Mk such that for every pair of cells σ�τ with dim σ = k and
dim τ = k + 1, ‖Fσ�τ‖ ≤ Mk. Further suppose that every k-cell in X has at most
dk cofaces of dimension k + 1, and every (k + 1)-cell in X has at most dk+1 faces of
dimension k. Then δkF is a bounded linear operator.

Proof We compute:

‖δk x‖2 =
∑

dim τ=k+1

‖(δk x)τ‖2 ≤
∑

dim τ=k+1

⎛

⎝
∑

σ�τ

‖Fσ�τ xσ ‖
⎞

⎠
2

≤
∑

dim τ=k+1

⎛

⎝
∑

σ�τ

Mk‖xσ ‖
⎞

⎠
2

≤ M2
k

∑

dim τ=k+1

dk+1

∑

σ�τ

‖xσ ‖2

= M2
k dk+1

∑

dim σ=k

∑

σ�τ

‖xσ ‖2 ≤ M2
k dk+1d

k
∑

dim σ=k

‖xσ ‖2 = M2
k dk+1d

k‖x‖2.

��
If δk is bounded, its associated Laplacians Δk+ = (δk)∗δk and Δk+1− = δk(δk)∗

are also bounded. As bounded self-adjoint operators, their spectral theory is relatively

123



Toward a spectral theory of cellular sheaves 327

unproblematic. Their spectra consist entirely of approximate eigenvalues, those λ for
which there exists a sequence of unit vectors {xk} such that ‖Δk+xk − λxk‖ → 0.

If δk is not just bounded, but compact, the Laplacian spectral theory becomes even
nicer. In this situation, the spectrum of Δk+ has no continuous part, and hence consists
purely of eigenvalues. An appropriate decay condition on norms of restriction maps
ensures compactness.

Proposition 3.4 Let F be a sheaf of Hilbert spaces on a cell complex X. Suppose
that for all σ�τ with dim σ = k and dim τ = k + 1, the restriction map Fσ�τ for is
compact, and further that

∑
σ�τ‖Fσ�τ‖ < ∞. Then δkF is a compact linear operator.

Proof It is clear that δk cannot be compact if any one of its component restriction
maps fails to be compact. Suppose first that all restriction maps are finite rank, and
fix an ordering of (k + 1)-cells of X , defining the orthogonal projection operators
Pi : Ck+1(X;F) → Ck+1(X;F) sending stalks over (k + 1) cells of index greater
than i to zero. Then Piδk is a finite-rank operator and

‖Piδk − δk‖ ≤
∑

j>i

∑

σ�τ j

‖Fσ�τ j ‖,

which goes to zero as i → ∞. In the case that the restriction maps are compact but not
finite rank, pick an approximating sequence for each by finite rank maps and combine
the two approximations. ��

An important note is that when Ck(X;F) is infinite dimensional and δk is compact
with finite dimensional kernel, the eigenvalues of Δk+ will accumulate at zero. This
means that there will be no smallest nontrivial eigenvalue for such Laplacians.

Most of the difficulties considered here already arise in the study of spectra of
infinite graphs. The standard Laplacian associated to an infinite graph is bounded but
not compact, while a proper choice of weights decaying at infinity makes it compact.

The study of sheaves of arbitrary Hilbert spaces on not-necessarily-finite cell com-
plexes is interesting, and indeed suggests itself in certain applications. However, for
the initial development and exposition of the theory, we have elected to focus on the
(still quite interesting) finite-dimensional case. This is sufficient for most applications
we have envisioned, and avoids the need for repeated qualifications and restrictions.

For the balance of this paper, we will assume that all cell complexes are finite and
all vector spaces are finite dimensional, giving where possible proofs that generalize
in some way to the infinite-dimensional setting. Most results that do not explicitly
require a finite complex will extend quite directly to the case of sheaves with com-
pact coboundary operators. Proofs not relying on the Courant-Fischer theorem will
typically apply even to situations where coboundary operators are merely bounded,
although their conclusions may be somewhat weakened.

3.4 The normalized Laplacian and weights

Many results in spectral graph theory rely on a normalized version of the standard
graph Laplacian, which is typically defined in terms of a rescaling of the standard
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Laplacian. Let D be the diagonal matrix whose nonzero entries are the degrees of ver-
tices; then the normalized Laplacian is L = D−1/2LD−1/2. This definition preserves
the Laplacian as a symmetric matrix, but it obscures the true meaning of the normal-
ization. The normalized Laplacian is the standard Laplacian with a different choice of
weights for the vertices. The matrix D−1/2LD−1/2 is similar to D−1L , which is self
adjoint with respect to the inner product 〈x, y〉 = xT Dy. In this interpretation, each
vertex is weighted proportionally to its degree. Viewing the normalization process
as a reweighting of cells leads to the natural definition of normalized Laplacians for
simplicial complexes given by Horak and Jost (2013).

Indeed, following Horak and Jost’s definition for simplicial complexes, we propose
the following extension to sheaves.

Definition 3.5 Let F be a weighted cellular sheaf defined on a regular cell complex
X . We say F is normalized if for every cell σ of X and every x, y ∈ F(σ )∩ (ker δ)⊥,
〈δx, δy〉 = 〈x, y〉.
Lemma 3.6 Given a weighted sheaf F on a finite-dimensional cell complex X, it is
always possible to reweight F to a normalized version.

Proof Note that if X has dimension k, the normalization condition is trivially satisfied
for all cells σ of dimension k. Thus, starting at cells of dimension k−1, we recursively
redefine the inner products on stalks. If σ is a cell of dimension k − 1, let Πσ be the
orthogonal projectionF(σ ) → F(σ )∩ker δ. Thendefine the normalized inner product
〈•, •〉Nσ onF(σ ) to be given by 〈x, y〉Nσ = 〈δ(id−Πσ )x, δ(id−Πσ )y〉+〈Πσ x,Πσ y〉.
It is clear that this reweighted sheaf satisfies the condition of Definition 3.5 for cells of
dimension k and k − 1. We may then perform this operation on cells of progressively
lower dimension to obtain a fully normalized sheaf. ��

Note that there is an important change of perspective here: we do not normalize the
Laplacian of a sheaf, but instead normalize the sheaf itself, or more specifically, the
inner products associated with each stalk of the sheaf.

If we apply this process to a sheaf F on a graph G, there is an immediate inter-
pretation in terms of the original sheaf Laplacian. Let D be the block diagonal
of the standard degree 0 sheaf Laplacian, and note that for x ⊥ ker L , 〈x, Dx〉
is the reweighted inner product on C0(G;F). In particular, the adjoint of δ with
respect to this inner product has the form D†δT , where D† is the Moore-Penrose
pseudoinverse of D, so that the matrix form of the reweighted Laplacian with
respect to this inner product is D†L . Changing to the standard basis then gives
L = D†/2LD†/2.

3.5 Discrete vector bundles

A subclass of sheaves of particular interest are those where all restriction maps
are invertible.These sheaves have been the subject of significantly more study than
the general case, since they extend to locally constant sheaves on the geometric
realization of the cell complex. The Riemann-Hilbert correspondence describes an
equivalence between locally constant sheaves (or cosheaves) on X , local systems on
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X , vector bundles on X with a flat connection, and representations of the funda-
mental groupoid of X . (See, e.g., Davis and Kirk 2001, ch. 5 or Zein and Snoussi
2009 for a discussion of some aspects of this correspondence.) When we represent
a local system by a cellular sheaf or cosheaf, we will call it a discrete vector bun-
dle.

One way to understand the space of 0-cochains of a discrete vector bundle is as
representing a subspace of the sections of a geometric realization of the associated
flat vector bundle, defined by linear interpolation over higher-dimensional cells. The
coboundary map can be seen as a sort of discretization of the connection, whose
flatness is manifest in the fact that δ2 = 0.

Discrete vector bundles have some subtleties when we study their Laplacians. The
sheaf-cosheaf duality corresponding to a local system, given by taking inverses of
restriction maps, is not in general the same as the duality induced by an inner product
on stalks. Indeed, these duals are only the samewhen the restrictionmaps are unitary—
their adjoints must be their inverses.

The inner product on stalks of a cellular sheaf has two roles: it gives a rel-
ative weight to vectors in each stalk, but via the restriction maps also gives a
relative weight to cells in the complex. This second role complicates our inter-
pretation of certain sorts of vector bundles. For instance, one might wish to
define an O(n) discrete vector bundle on a graph to be a cellular sheaf of real
vector spaces where all restriction maps are orthogonal. However, from the per-
spective of the degree-0 Laplacian, a uniform scaling of the inner product on
an edge does not change the orthogonality of the bundle, but instead in some
sense changes the length of the edge, or perhaps the degree of emphasis we
give to discrepancies over that edge. So a discrete O(n)-bundle should be one
where the restriction maps on each cell are scalar multiples of orthonormal
maps.

That is, for each cell σ , we have a positive scalar ασ , such that for every σ�τ , the
restriction map Fσ�τ is an orthonormal map times ατ /ασ . One way to think of this
is as a scaling of the inner product on each stalk of F . Frequently, especially when
dealing with graphs, we set ασ = 1 when dim(σ ) = 0, but this is not necessary.
(Indeed, when dealing with the normalized Laplacian of a graph, we have αv =√
dv .)
The rationale for this particular definition is that in the absence of a basis, inner

products are not absolutely defined, but only in relation to maps in or out of a space.
Scaling the inner product on a vector space is meaningless except in relation to a given
collection of maps, which it transforms in a uniform way.

As a special case of this definition, it will be useful to think about weighted ver-
sions of the constant sheaf. These are isomorphic to the ‘true’ constant sheaf, but
not unitarily so. Weighted constant sheaves on a graph are analogous to weighted
graphs. The distinction between the true constant sheaf and weighted versions arises
because it is often convenient to think of the sections of a cellular sheaf as a sub-
space of C0(X;F). As a result, we often only want our sections to be constant on
0-cells, allowing for variation up to a scalar multiple on higher-dimensional cells.
This notion will be necessary in Sect. 8.6 when we discuss approximations of cellular
sheaves.
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3.6 Comparison with previous constructions

Friedman, in Friedman (2015), gave a definition of a sheaf1 on a graph, developed a
homology theory, and suggested constructing sheaf Laplacians and adjacency matri-
ces. The suggestion that one might develop a spectral theory of sheaves on graphs has
remained until now merely a suggestion.

The graph connection Laplacian, introduced by Singer and Wu in Singer and Wu
(2012), is simply the sheaf Laplacian of an O(n)-vector bundle over a graph. This
construction has attracted significant interest from a spectral graph theory perspec-
tive, including the development of a Cheeger-type inequality (Bandeira et al. 2013)
and a study of random walks and sparsification (Chung and Zhao 2012). Connection
Laplacianmethods have proven enlightening in the study of synchronization problems.
Others have approached the study of vector bundles, and in particular line bundles, over
graphs without reference to the connection Laplacian, studying analogues of spanning
trees and the Kirchhoff theorems (Kenyon 2011; Catanzaro et al. 2013). Other work on
discrete approximations to connection Laplacians of manifolds has analyzed similar
matrices (Mantuano 2007).

Gao, Brodski, and Mukherjee developed a formulation in which the graph connec-
tion Laplacian is explicitly associated to a flat vector bundle on the graph and arises
from a twisted coboundary operator (Gao et al. 2016). This coboundary operator is not
a sheaf coboundary map and has some difficulties in its definition. These arise from a
lack of freedom to choose the basis for the space of sections over an edge of the graph.
Further work by Gao uses a sheaf Laplacian-like construction to study noninvertible
correspondences between probability distributions on surfaces (Gao 2016).

Wu et al. (2018) have recently proposed a construction they call a weighted simpli-
cial complex and studied its associated Laplacians. These are cellular cosheaves where
all stalks are equal to a given vector space and restriction maps are scalar multiples
of the identity. Their work discusses the cohomology and Hodge theory of weighted
simplicial complexes, but does not touch on issues related to the Laplacian spectrum.

4 Harmonicity

As a prelude to results about the spectra of sheaf Laplacians, we will discuss issues
related to harmonic cochains on sheaves. While these do not immediately touch on
the spectral properties of the Laplacian, they are closely bound with its algebraic
properties.

4.1 Harmonic extension

Proposition 4.1 Let X be a regular cell complex with a weighted cellular sheafF . Let
B ⊆ X be a subcomplex and let x |B ∈ Ck(B;F) be an F-valued k-cochain specified
on B. If Hk(X , B;F) = 0, then there exists a unique cochain x ∈ Ck(X;F) which
restricts to x |B on B and is harmonic on S = X\B.
1 In our terminology, Friedman’s sheaves are cellular cosheaves.
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Proof A matrix algebraic formulation suffices. Representing Δk
F in block form as

partitioned by B and S, the relevant equation is

[
Δk
F (S, S) Δk

F (S, B)

Δk
F (B, S) Δk

F (B, B)

] [
x |S
x |B

]
=
[
0
y

]
.

Since y is indeterminate, we can ignore the second row of the matrix, giving the
equationΔk

F (S, S)x |S +Δk
F (S, B)x |B = 0.We can writeΔk

F (S, S) = (δk |S)∗δk |S +
((δk−1)∗|S)∗(δk−1)∗|S , which is very close to the k-th Hodge Laplacian of the relative
cochain complex

· · · → Ck−1(X , B;F) → Ck(X , B;F) → Ck+1(X , B;F) → · · · .

Indeed, we can exploit the fact that this is a subcomplex of C•(X;F) to compute its
Hodge Laplacian in terms of the coboundary maps ofC•(X;F). The coboundary map
δS of C•(X , B;F) is simply the restriction of the coboundary map δ of C•(X;F) to
the subcomplex: δkS = πk+1

S δki kS , where πk
S is the orthogonal projection C

k(X;F) →
Ck(X , B;F) and i kS the inclusionC

k(X , B;F) → Ck(X;F). Note that πk
S and i

k
S are

adjoints, and that i kSπ
k
S is the identity on im δk−1

S . We may therefore write the Hodge
Laplacian of the relative complex as

Δk(X , B;F) = (δkS)
∗δkS + δk−1

S (δk−1
S )∗

= πk
S (δ

k)∗i k+1
S πk+1

S δki kS + πk
Sδ

k−1i k−1
S πk−1

S (δk−1)∗i kS
= πk

S (δ
k)∗δki kS + πk

Sδ
k−1i k−1

S πk−1
S (δk−1)∗i kS .

Meanwhile, we can write the submatrix

Δk
F (S, S) = πk

S (δ
k)∗δki kS + πk

Sδ
k−1(δk−1)∗i kS .

It is then immediate that ker(Δk
F (S, S)) ⊆ kerΔk(X , B;F), so that Δk

F (S, S) is
invertible if Hk(X , B;F) = 0. ��

If we restrict to up- or down-Laplacians, a harmonic extension always exists, even
if it is not unique. This is because, for instance, im(δk |S)∗δk |B ⊆ im(δk |S)∗δk |S . In
particular, this implies that harmonic extension is always possible for 0-cochains, with
uniqueness if and only if H0(X , B;F) = 0.

4.2 Kron reduction

Kron reduction is one of many names given to a process of simplifying graphs
with respect to the properties of their Laplacian on a boundary. If G is a con-
nected graph with a distinguished set of vertices B, which we consider as a sort
of boundary of G, Proposition 4.1 shows that there is a harmonic extension map
E : R

B → R
V (G). It is then possible to construct a graph G ′ on B such that for
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every function x on the vertices of G ′, we have LG ′x = πB LGE(x), where πB is
the orthogonal projection map R

V (G) → R
B . Indeed, letting S = V (G)\B, we have

E(x)|S = −LG(S, S)−1LG(S, B)x , so

LG ′x = πB LGE(x) = LG(B, B)x − LG(B, S)LG(S, S)−1LG(S, B)x .

Therefore,

LG ′ = LG(B, B) − LG(B, S)LG(S, S)−1LG(S, B),

that is, LG ′ is the Schur complement of the (B, B) block of LG . It is also the Laplacian
of a graph on B:

Theorem 4.2 (see (Dörfler and Bullo 2013)) If LG is the Laplacian of a con-
nected graph G, and B a subset of vertices of G, then LG ′ = LG(B, B) −
LG(B, S)LG(S, S)−1LG(S, B) is the Laplacian of a graph with vertex set B.

A physically-inspired way to understand this result (and a major use of Kron reduc-
tion in practice) is to view it as reducing a network of resistors given by G to a smaller
network with node set B that has the same electrical behavior on B as the original net-
work. In this guise, Kron reduction is a high-powered version of the Y -Δ and star-mesh
transforms familiar from circuit analysis. Further discussion of Kron reduction and its
various implications and applications may be found in Dörfler and Bullo (2013).

Can we perform Kron reduction on sheaves? That is, given a sheaf F on a graph
G with a prescribed boundary B, can we find a sheaf FB on a graph with vertex set B
only such that for every x ∈ C0(B;FB) we have LFB x = πC0(B;FB )LF E(x), where
E(x) is the harmonic extension of x to G?

The answer is, in general, no. Suppose we want to remove the vertex v from our
graph, i.e., B = G\{v}. Let Dv = ∑

v�e F∗
v�eFv�e = Lv,v . To eliminate the vertex

v we apply the condition (LF (x, E(x)))(v) = 0, and take a Schur complement,
replacing L(B, B) with L(B, B) − L(B, v)D−1

v L(v, B). This means that we add to
the entry L(w,w′) the mapF∗

w�eFv�eD−1
v F∗

v�e′Fw′�e′ , where e is the edge between
v andw, and e′ the edge between v andw′. This does not in general translate to a change
in the restriction maps for the edge between w and w′. In general, Kron reduction is
not possible for sheaves.

In particular, if x ∈ C0(G;F) is a section ofF , its restriction to B must be a section
of FB . Conversely, if x is not a section, its restriction to B cannot be a section of FB .
But we can construct sheaves with a space of sections on the boundary that cannot be
replicated with a sheaf on the boundary vertices only. For instance, take the star graph
with three boundary vertices, with stalks R over boundary vertices and edges, and R

2

over the internal vertex. Take as the restriction maps from the central vertex restriction
onto the first and second components, and addition of the two components. See Fig. 2
for an illustration.

Note that a global section of this sheaf is determined by its value on the central
vertex. If we label the boundary vertices counterclockwise starting at the top, the space
of global sections for FB must have as a basis
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Fig. 2 A sheaf illustrating the
general impossibility of Kron
reduction

x1 =
⎡

⎣
1
1
0

⎤

⎦ , x2 =
⎡

⎣
1
0
1

⎤

⎦ .

But there is no sheaf on agraphwith vertex set Bwhichhas this spaceof global sections.
To see this, note that if x1 is a section, the map from F(v1) to F(v3) must be the zero
map, and similarly for the map from F(v2) to F(v3). Similarly, if x2 is a section, the
maps F(v1) → F(v2) and F(v3) → F(v2) must be zero. But this already shows that
the vector

[
1 0 0

]T must be a section, givingFB a three-dimensional space of sections.
The problem is that the internal node allows for constraints between boundary nodes
that cannot be expressed by purely pairwise interactions. This fact is a fundamental
obstruction to Kron reduction for general sheaves.

However, there is a sheafKron reduction for sheaveswith vertex stalks of dimension
at most 1. This follows from the identification of the Laplacians of such sheaves as
the matrices of factor width two in Sect. 3.2.2.

Theorem 4.3 The class of matrices of factor width at most two is closed under taking
Schur complements.

Proof By Theorems 8 and 9 of Boman et al. (2005), a matrix L has factor width at
most two if and only if it is symmetric and generalized weakly diagonally dominant
with nonnegative diagonal, that is, there exists a positive diagonal matrix D such that
DLD is weakly diagonally dominant. Equivalently, these are the symmetric positive
semidefinite generalized weakly diagonally dominant matrices. The class of gener-
alized weakly diagonally dominant matrices coincides with the class of H -matrices,
which are shown to be closed under Schur complements in Johnson and Smith (2005).
Similarly, the class of symmetric positive definite matrices is closed under Schur
complements, so the intersection of the two classes is also closed. ��
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4.3 Maximummodulus theorem

Harmonic 0-cochains of an O(n)-bundle satisfy a local averaging propertywhich leads
directly to a maximum modulus principle.

Lemma 4.4 Let G be a graph with an O(n)-bundle F , with constant vertex weights
αv = 1 and arbitrary edge weights αe (as defined in Sect. 3.5). If x ∈ C0(G;F) is
harmonic at a vertex v, then

xv = 1

dv

∑

v,w�e
v �=w

F∗
v�eFw�exw,

where dv = ∑
v�e‖Fv�e‖2 = ∑

v�e α2
e .

Proof The block row of LF corresponding to v has entries−F∗
v�eFw�e off the diago-

nal and
∑

v�e F∗
v�eFv�e = ∑

v�e‖Fv�e‖2 idF(v) on the diagonal. The harmonicity
condition is then

dvxv −
∑

v,w�e
v �=w

F∗
v�eFw�exw = 0.

��
Theorem 4.5 (Maximummodulus principle) Let G be a graph, and B be a thin subset
of vertices of G; that is, G\B is connected, and every vertex in B is connected to
a vertex not in B. Let F be an O(n)-bundle on G with av = 1 for all v ∈ G, and
suppose x ∈ C0(G;F) is harmonic on G\B. Then if x attains its maximum stalkwise
norm at a vertex in G\B, it has constant stalkwise norm.
Proof Note that for a given edge e = v ∼ w, Fv�e and Fu�e are both αe times an
orthogonal map, so F∗

v�eFw�e is α2
e times an orthogonal map. Let v ∈ G\B and

suppose ‖xv‖ ≥ ‖xw‖ for all w ∈ G. Then this holds in particular for neighbors of v,
so that we have

‖xv‖ = 1

dv

∥∥∥∥
∑

v,w�e
v �=w

F∗
v�eFw�exw

∥∥∥∥ ≤ 1

dv

∑

v,w�e
v �=w

‖F∗
v�eFw�exw‖

= 1

dv

∑

v,w�e
v �=w

α2
e‖xw‖ ≤ 1

dv

∑

v�e

α2
e‖xv‖ = ‖xv‖,

Equality holds throughout, which, combined with the assumption that ‖xv‖ ≥ ‖xw‖
for all w, forces ‖xv‖ = ‖xw‖ for w ∼ v. We then apply the same argument to every
vertex in G\B adjacent to v, and, after iterating, the region of constant stalkwise norm
extends to all ofG\B because this subgraph is connected. But since every vertex b ∈ B
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is adjacent to some vertex w ∈ G\B, the same argument applied to the neighborhood
ofw forces ‖xb‖ = ‖xw‖. So any harmonic function that attains itsmaximummodulus
on G\B has constant modulus. ��
Corollary 4.6 Let B be a thin subset of vertices of G, and F an O(n)-bundle on G as
before. If x ∈ C0(G;F) is harmonic on G\B, then it attains its maximum modulus
on B.

The constant sheaf on a graph is an O(n)-bundle, so this result gives a maximum
modulus principle for harmonic functions on the vertices of a graph.A slightly stronger
result in this vein, involving maxima and minima of x , is discussed in Sunada (2008).
The thinness condition for B is not strictly necessary for the corollary to hold—there
are a number of potential weakenings of the condition. For instance, we might simply
require that there exists some w ∈ B such that for every vertex v ∈ G\B there exists
a path from v to w not passing through B.

5 Spectra of sheaf Laplacians

The results in this section are straightforwardgeneralizations and extensions of familiar
results from spectral graph theory.Most are not particularly difficult, but they illustrate
the potential for lifting nontrivial notions from graphs and complexes to sheaves.

It is useful to note a few basic facts about the spectra of Laplacians arising from
Hodge theory.

Proposition 5.1 The nonzero spectrum ofΔk is the disjoint union of the nonzero spec-
tra of Δk+ and Δk−.

Proof We take advantage of the Hodge decomposition, noting that Ck(X;F) =
kerΔk ⊕ imΔk− ⊕ imΔk+. This is an orthogonal decomposition, and = 0 as well
as Δk−|(imΔk+) = 0. Further, since kerΔk = kerΔ+ ∩ kerΔ−, both restrict to

zero on the kernel of Δk . We therefore see that Δk is the orthogonal direct sum
0|kerΔk ⊕ Δk+|(imΔk+) ⊕ Δk−|(imΔk−), and hence the spectrum of Δk is the union of the
spectra of these three operators. ��
Proposition 5.2 The nonzero eigenvalues of Δk+ and Δk+1− are the same.

Proof We have Δk+ = (δk)∗δk and Δk+1− = δk(δk)∗. The eigendecompositions of
these matrices are determined by the singular value decomposition of δk , and the
nonzero eigenvalues are precisely the squares of the nonzero singular values of δk .

��
One reason for the study of the normalized graph Laplacian is that its spectrum

is bounded above by 2 (Chung 1992), and hence normalized Laplacian spectra of
different graphs can be easily compared. A similar result holds for up-Laplacians of
normalized simplicial complexes (Horak and Jost 2013): the eigenvalues of the degree-
k up-Laplacian of a normalized simplicial complex are bounded above by k + 2. This
fact extends to normalized sheaves on simplicial complexes. This result and others in
this paper will rely on the Courant-Fischer theorem, which we state here for reference.
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Definition 5.3 Let A be a self-adjoint operator on a Hilbert space V. If x ∈ V, the
Rayleigh quotient corresponding to x and A is

RA(x) = 〈x, Ax〉
〈x, x〉 .

Theorem 5.4 (Courant-Fischer) Let A be an n× n Hermitian matrix with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn. Then

λk = min
dim V=k

max
x∈V RA(x) = max

dim V=n−k+1
min
x∈V RA(x).

The proof is immediate once one uses the fact that A is unitarily equivalent to a
diagonal matrix.

Proposition 5.5 Suppose F is a normalized sheaf on a simplicial complex X. The
eigenvalues of the degree k up-Laplacian Lk

F are bounded above by k + 2.

Proof By the Courant-Fischer theorem, the largest eigenvalue of Lk
F is equal to

max
x∈Ck (X;F)

〈x, Lk
F x〉

〈x, x〉 = max
x⊥ker δk

〈δk x, δk x〉∑
dim σ=k〈δk xσ , δk xσ 〉

= max
x⊥ker δk

∑
dim τ=k+1

∑
σ,σ ′�τ [σ : τ ][σ ′ : τ ]〈Fσ�τ xσ ,Fσ ′�τ xσ ′ 〉

∑
dim σ=k

∑
σ�τ 〈Fσ�τ xσ ,Fσ�τ xσ 〉 .

Note that for σ �= σ ′,

[σ : τ ][σ ′ : τ ]〈Fσ�τ xσ ,Fσ ′�τ xσ ′ 〉 ≤ ‖Fσ�τ xσ ‖‖Fσ ′�τ xσ ′ ‖
≤ 1

2

(
‖Fσ�τ xσ ‖2 + ‖Fσ ′�τ xσ ′ ‖2

)

by the Cauchy-Schwarz inequality. In particular, then, the term of the numerator cor-
responding to each τ of dimension k + 1 is bounded above by

∑

σ�τ

‖Fσ�τ xσ ‖2 + 1

2

∑

σ �=σ ′�τ

(
‖Fσ�τ xσ ‖2 + ‖Fσ ′�τ xσ ′ ‖2

)

= (k + 2)
∑

σ�τ

‖Fσ�τ xσ ‖2,

by counting the number of times each term‖Fσ�τ xσ ‖2 appears in the sum.Meanwhile,
the denominator is equal to

∑
dim τ=k+1

∑
σ�τ‖Fσ�τ xσ ‖2, so the Rayleigh quotient

is bounded above by k + 2. ��
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5.1 Eigenvalue interlacing

Definition 5.6 Let A, B be n × n matrices with real spectra. Let λ1 ≤ λ2 ≤ · · · ≤ λn
be the eigenvalues of A and μ1 ≤ μ2 ≤ · · · ≤ μn be the eigenvalues of B. We
say the eigenvalues of A are (p,q)-interlaced with the eigenvalues of B if for all k,
λk−p ≤ μk ≤ λk+q . (We let λk = λ1 for k < 1 and λk = λn for k > n.)

The eigenvalues of low-rankperturbations of symmetric positive semidefinitematri-
ces are related by interlacing. The following is a standard result:

Theorem 5.7 Let A and B be positive semidefinite matrices, with rank B = t . Then
the eigenvalues of A are (t, 0)-interlaced with the eigenvalues of A − B.

Proof Letμk be the k-th largest eigenvalue of A−B and λk the k-th largest eigenvalue
of A. By the Courant-Fischer theorem, we have

μk = min
dim Y=k

(
max

y∈Y ,y �=0

〈y, Ay〉 − 〈y, By〉
〈y, y〉

)

≥ min
dim Y=k

(
max

y∈Y∩ker B,y �=0

〈y, Ay〉
〈y, y〉

)

≥ min
dim Y=k−t

(
max

y∈Y ,y �=0

〈y, Ay〉
〈y, y〉

)
= λk−t

and

λk = min
dim Y=k

(
max

y∈Y ,y �=0

〈y, Ay〉
〈y, y〉

)

≥ min
dim Y=k

(
max

y∈Y ,y �=0

〈y, Ay〉 − 〈y, By〉
〈y, y〉

)
= μk .

��
This result is immediately applicable to the spectra of sheaf Laplacians under the

deletion of cells from their underlying complexes. The key part is the interpretation
of the difference of the two Laplacians as the Laplacian of a third sheaf.2 Let F be
a sheaf on X , and let C be an upward-closed set of cells of X , with Y = X\C . The
inclusion map i : Y → X induces a restriction of F onto Y , the pullback sheaf i∗F .
Consider the Hodge Laplacians Δk

F and Δk
i∗F . If C contains cells of dimension k,

these matrices are different sizes, but we can derive a relationship by padding Δk
i∗F

with zeroes. Equivalently, this is the degree-k Laplacian ofF with the restriction maps
incident to cells in C set to zero.

Proposition 5.8 Let G be the sheaf on X with the same stalks as F but with all
restriction maps between cells not in C set to zero. The eigenvalues of Δk

i∗F
are (t, 0)-interlaced with the eigenvalues of Δk

F , where t = codim Hk(X;G) =
dimCk(X;F) − dim Hk(X;G).

2 Such subtle moves are part and parcel of a sheaf-theoretic perspective.
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Similar results can be derived for the up- and down-Laplacians. Specializing to
graphs, interlacing is also possible for the normalized degree 0 sheaf Laplacian. The
Rayleigh quotient for the normalized Laplacian Li∗F is

〈x, D−1/2
i∗F Li∗FD−1/2

i∗F x〉
〈x, x〉 = 〈y, Li∗F y〉

〈y, Di∗F y〉 = 〈y, LF y〉 − 〈y, LG y〉
〈y, DF y〉 − 〈y, DG y〉 ,

where we let y = D−1/2
i∗F x . Then if {λk} are the ordered eigenvalues of LF and {μk}

are the ordered eigenvalues of Li∗F , we have

μk = min
dim Y=k

(
max

y∈Y ,y �=0

〈y, LF y〉 − 〈y, LG y〉
〈y, DF y〉 − 〈y, DG y〉

)

≥ min
dim Y=k

(
max

y∈Y∩H0(X;G),y �=0

〈y, LF y〉
〈y, DF y〉 − 〈y, DG y〉

)

≥ min
dim Y=k

(
max

y∈Y∩H0(X;G),y �=0

〈y, LF y〉
〈y, DF y〉

)

≥ min
dim Y=k−t

(
max

y∈Y ,y �=0

〈y, LF y〉
〈y, DF y〉

)
= λk−t

μk = max
dim Y=n−k+1

(
min

y∈Y ,y �=0

〈y, LF y〉 − 〈y, LG y〉
〈y, DF y〉 − 〈y, DG y〉

)

≤ max
dim Y=n−k+1

(
min

y∈Y∩H0(X;G),y �=0

〈y, LF y〉
〈y, DF y〉 − 〈y, DG y〉

)

≤ max
dim Y=n−k+1

(
min

y∈Y∩H0(X;G),y �=0

〈y, LF y〉
〈y, DF y〉

)

≤ max
dim Y=n−k−t+1

(
min

y∈Y ,y �=0

〈y, LF y〉
〈y, DF y〉

)
= λk+t

Therefore, the eigenvalues of the normalized Laplacians are (t, t)-interlaced. This
generalizes interlacing results for normalized graph Laplacians.

5.2 Sheaf morphisms

Proposition 5.9 Suppose ϕ : F → G is a morphism of weighted sheaves on a regular
cell complex X. If ϕk+1 is a unitary map, then Lk

F = (ϕk)∗Lk
Gϕk .

Proof The commutativity condition ϕk+1δF = δGϕk implies that (δF )∗(ϕk+1)∗ϕk+1

δF = (ϕk)∗(δG)∗δGϕk = (ϕk)∗Lk
Gϕk . Thus if (ϕk+1)∗ϕk+1 = idCk+1(X;F), we have

Lk
F = (ϕk)∗Lk

Gϕk . This condition holds if ϕk+1 is unitary. ��
An analogous result holds for the down-Laplacians ofF , and these combine to a result
for the full Hodge Laplacians.
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5.3 Cell complexmorphisms

The following constructions are restricted to locally injective cellular morphisms, as
discussed in Sect. 2.1. Recall that under thesemorphisms, cellsmap to cells of the same
dimension and the preimage of the star of a cell is a disjoint union of subcomplexes, on
each of which the map acts injectively. The sheaf Laplacian is invariant with respect
to pushforwards over such maps:

Proposition 5.10 Let X and Y be cell complexes, and let f : X → Y be a locally
injective cellular morphism. If F is a sheaf on X, the kth coboundary Laplacian
corresponding to f∗F on Y is the same (up to a unitary change of basis) as the kth
coboundary Laplacian of F on X.

Corollary 5.11 The sheavesF and f∗F are isospectral for the coboundary Laplacian.

Proof There is a canonical isometry fk : Ck(X ,F) → Ck(Y , f∗F), which is given
on stalks by the obvious inclusion fσ : F(σ ) → f∗F( f (σ )) = ⊕

f (τ )= f (σ ) F(τ ).
For σ�σ ′, fσ commutes with the restriction mapFσ�σ ′ and hence fk commutes with
the coboundary map. But this implies that:

Lk
f∗F = (δkf∗F )∗δkf∗F = (δkf∗F )∗ f ∗

(k+1) f(k+1)δ
k
f∗F = f ∗

k (δkF )∗δkF fk = f ∗
k L

k
F fk .

��
General locally injectivemaps behave nicelywith sheaf pushforwards, and covering

maps behave well with sheaf pullbacks. Recall that a covering map of cell complexes
is a locally injective map f : C → X such that for every cell σ ∈ X , f is an
isomorphism on the disjoint components of f −1(st(σ )).

Proposition 5.12 Let f : C → X be a covering map of cell complexes, withF a sheaf
on X. Then for any k, the spectrum of Lk

F is contained in the spectrum of Lk
f ∗F .

Proof Consider the lifting map ϕ : Ck(X;F) → Ck(C; f ∗F) given by x �→ x ◦ fk .
This map commutes with δ and δ∗. The commutativity with δ follows immediately
from the proof of the contravariant functoriality of cochains. The commutativity with
δ∗ is more subtle, and relies on the fact that f is a covering map.

For y ∈ Ck(C; f ∗F) and x ∈ Ck+1(X;F), we have

〈y, δ∗ϕx〉 = 〈δy, ϕx〉 =
∑

σ ′,τ ′∈PC
σ ′�τ ′

[σ ′ : τ ′] 〈 f ∗Fσ ′�τ ′(yσ ′), (ϕx)τ ′ 〉

=
∑

σ,τ∈PX
σ�τ

[σ : τ ]
∑

σ ′∈ f −1(σ )

〈Fσ�τ (yσ ′), xτ 〉

=
∑

σ,τ∈PX
σ�τ

[σ : τ ]〈Fσ�τ (ϕ
∗y)σ , xτ 〉

= 〈δϕ∗y, x〉 = 〈y, ϕδ∗x〉.
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Now, if Lk
F x = λx , we have Lk

f ∗Fϕx = (δkf ∗F )∗δkf ∗Fϕx = ϕ(δkF )∗δkF x =
ϕLk

F x = λϕx , so λ is an eigenvalue of Lk
f ∗F . ��

Even if f : Y → X is not quite a covering map, it is still possible to get some
information about the spectrum of f ∗F . For instance, for dimension-preserving cell
maps with uniform fiber size we have a bound on the smallest nontrivial eigenvalue
of the pullback:

Proposition 5.13 Suppose f : Y → X is a dimension-preserving map of regular
cell complexes such that for dim(σ ) = d,

∣∣ f −1(σ )
∣∣ = �d is constant, and let F be

a sheaf on X. If λk(F) is the smallest nontrivial eigenvalue of Ld
F , then λk(F) ≥

�d
�d+1

λk( f ∗F).

Proof Let x be an eigenvector corresponding to λk(F). Note that since every fiber is
the same size, the lift ϕ preserves the inner product up to a scaling. That is, if y and z
are d-cochains, 〈ϕy, ϕz〉 = �d〈y, z〉. This means that the pullback of x is orthogonal
to the pullback of any cochain in the kernel of LF . Therefore, we have

λk(F) = 〈δx, δx〉
〈x, x〉 = �d〈ϕδx, ϕδx〉

�d+1〈ϕx, ϕx〉 = �d〈δϕx, δϕx〉
�d+1〈ϕx, ϕx〉 ≥ �d

�d+1
λk( f

∗F).

��

5.4 Product complexes

If X and Y are cell complexes, their product X × Y is a cell complex with cells σ × τ

for σ ∈ X , τ ∈ Y , and incidence relations (σ × τ)�(σ ′ × τ ′) whenever σ�σ ′ and
τ�τ ′. The dimension of σ × τ is dim(σ ) + dim(τ ). The complex X × Y possesses
projection maps πX and πY onto X and Y .

Definition 5.14 If F and G are sheaves on X and Y , respectively, their product is the
sheaf F �G = π∗

XF ⊗π∗
YG. Equivalently, we have (F �G)(σ × τ) = F(σ )⊗F(τ )

and (F � G)σ×τ�σ ′×τ ′ = Fσ�σ ′ ⊗ Gτ�τ ′ .

Proposition 5.15 If LF and LG are the degree-0 Laplacians of F and G, the degree-0
Laplacian of F � G is LF�G = idC0(X;F) ⊗LG + LF ⊗ idC0(Y ;G).

Proof The vector space C1(X × Y ;F � G) has a natural decomposition into two
subspaces: one generated by stalks of the form F(v) ⊗ G(e) for v a vertex of X and e
an edge of Y , and another generated by stalks of the opposite form F(e) ⊗G(v). This
induces an isomorphism

C1(X × Y ;F � G) ∼= (C0(X;F) ⊗ C1(Y ;G)) ⊕ (C1(X;F) ⊗ C0(Y ;G)).

Then the coboundary map of F � G can be written as the block matrix

δF�G =
[
idC0(X;F) ⊗δG
δF ⊗ idC0(Y ;G)

]
.
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Aquick computation then gives LF�G = δ∗
F�GδF�G = idC0(X;F) ⊗δ∗

GδG+δ∗
F δF ⊗

idC0(Y ;G) = idC0(X;F) ⊗LG + LF ⊗ idC0(Y ;G). ��
Corollary 5.16 If the spectrum of LF is {μi }i and the spectrum of LG is {λ j } j , then
the spectrum of LF�G is {μi + λ j }i j .

For higher degree Laplacians, this relationship becomes more complicated. For
instance, the degree-1 up-Laplacian is computed as follows:

δ1F�G =
⎡

⎢⎣
idC0(X;F) ⊗δ1G 0

δ0F ⊗ idC1(Y ;G) idC1(X;F) ⊗δ0G
0 δ1F ⊗ idC0(Y ;G)

⎤

⎥⎦ .

L1
F�G =

[
idC0(X;F) ⊗L1

G + L0
F ⊗ idC1(Y ;G) (δ0F )∗ ⊗ δ0G

δ0F ⊗ (δ0G)∗ idC1(X;F) ⊗L0
G + L1

F ⊗ idC0(Y ;G)

]
.

Because L1
F�G is given by a blockmatrix in terms of various Laplacians and cobound-

ary maps of F and G, computing its spectrum is more involved. When X and Y are
graphs, this simplifies significantly and it is possible to compute the spectrum in terms
of the spectra of F and G.

Proposition 5.17 Suppose X and Y are graphs, with F and G sheaves on X and Y .
If vF is an eigenvector of L0

F with eigenvalue λ and vG an eigenvector of L0
G with

eigenvalue μ, then the vector vF�G =
[√

λ
μvF ⊗ δ0GvG

√
μ
λ δ0F vF ⊗ vG

]
is an eigenvector of L1

F�G

with eigenvalue λ + μ.

Proof A computation.

L1
F�GvF�G =

[
L0
F ⊗ idC1(Y ;G) (δ0F )∗ ⊗ δ0G
δ0F ⊗ (δ0G)∗ idC1(X;F) ⊗L0

G

]⎡

⎣

√
λ
μ
vF ⊗ δ0GvG

√
μ
λ
δ0FvF ⊗ vG

⎤

⎦

=
⎡

⎢⎣

(√
λ
μ

+
√

μ
λ

)
λvF ⊗ δ0GvG

(√
λ
μ

+
√

μ
λ

)
μδ0FvF ⊗ vG

⎤

⎥⎦ = (λ + μ)

⎡

⎣

√
λ
μ
vF ⊗ δ0GvG

√
μ
λ
δ0FvF ⊗ vG

⎤

⎦ .

��
A simpler way to obtain nearly the same result is to recall from Proposition 5.2 that

(δ1F�G)∗δ1F�G and δ1F�G(δ1F�G)∗ have the same spectrum up to the multiplicity of

zero. But when X and Y are graphs,

δ1F�G(δ1F�G)∗ = (Δ1−)F ⊗ idC1(Y ;G) + idC1(X;F) ⊗(Δ1−)G,
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and since the nonzero eigenvalues of (Δ1−)F are the same as those of L0
F , we obtain

a correspondence between eigenvalues of L1
F�G and sums of eigenvalues of L0

F and

L0
G .
However, for higher-dimensional complexes and higher-degree Laplacians, there

appears to be no general simple formula giving the spectrum of F �G in terms of the
spectra of F and G. Indeed, we suspect that no such formula can exist, i.e., that the
spectrum of F � G is not in general determined by the spectra of F and G.

6 Effective resistance

Effective resistance is most naturally defined for weighted cosheaves, but since every
weighted sheaf has a canonical dual weighted cosheaf, the following definition applies
to weighted sheaves as well.

Definition 6.1 Let F be a cosheaf on a cell complex X , and let a, b ∈ ker(∂k)F be
homologous k-cycles. The effective resistance Reff(a, b) is given by the solution to
the optimization problem

min
c∈Ck+1(X;F)

‖c‖2 s.t. ∂k+1c = b − a. (6.1)

Proposition 6.2 Cosheaf effective resistance may be computed by the formula
Reff(a, b) = 〈b − a, (Lk

F )†(b − a)〉, where Lk
F is the up Laplacian ∂k+1∂

∗
k+1.

Proof By a standard result about matrix pseudoinverses, (Lk
F )† = (∂

†
k+1)

∗∂†k+1, so

〈b − a, (Lk
F )†(b − a)〉 = 〈∂†k+1(b − a), ∂

†
k+1(b − a)〉 = ‖∂†k+1(b − a)‖2. But if

b−a ∈ im ∂k+1, then ∂
†
k+1(b−a) is the minimizer of the optimization problem (6.1).

��
The condition that a and b be homologous becomes trivial if Hk(X;F) = 0. Note

that if F is the constant cosheaf on a graph, a 0-cycle supported on a vertex v is
homologous to a 0-cycle supported on a vertex w if their values are the same. This
means that the definition of cosheaf effective resistance recovers the definition of graph
effective resistance.

For any cosheaf on a cell complex,we canget ameasure of effective resistance over a
(k+1)-cell σ by using the boundarymap restricted to σ . Any choice of c ∈ F(σ ) gives
an equivalence class of pairs of homologous k-cycles supported inside the boundary
of σ . That is, we can decompose ∂c into the sum of two k-cycles in a number of
equivalent ways. For instance, if σ is a 1-simplex with two distinct incident vertices,
there is a natural decomposition of ∂c into a sumof two 0-cycles, one supported on each
vertex. This gives a quadratic form on F(σ ): Reff(σ )(x) = 〈∂x, L†

F∂x〉. The choice
of decomposition does not affect the quadratic form. Of course, by the inner product
pairing, this quadratic form can be represented as a matrix (∂|F(σ ))

∗L†
F∂|F(σ ). In

particular, this defines a matrix-valued effective resistance over an edge for a cosheaf
on a graph.
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6.1 Sparsification

Graph effective resistance has also attracted attention due to its use in graph sparsifi-
cation. The goal when sparsifying a graphG is to find a graph H with fewer edges that
closely preserves properties of G. One important property we might wish to preserve
is the size of boundaries of sets of vertices. If S is a set of vertices, we let |∂S| be the
sum of the weights of edges between S and its complement. We can compute this in
terms of the Laplacian of G: |∂S| = 1TS LG1S , where 1S is the indicator vector on the
set S. If H well approximates G in this sense, we would like to have a relation like
(1− ε)1TS LG1S ≤ 1TS LH1S ≤ (1+ ε)1TS LG1S for every set S of vertices. Indeed, we
could strengthen this condition by requiring this to hold for all vectors in C0(G; R),
not just indicators of sets of vertices. The resulting relationship between the Laplacians
of G and H is described by the Loewner order on positive semidefinite matrices.

Definition 6.3 The Loewner order on the cone of symmetric positive definite matrices
of size n × n is given by the relation A � B if B − A is positive semidefinite.
Equivalently, A � B if and only if xT Ax ≤ xT Bx for all x ∈ R

n .

By the Courant-Fischer theorem, the relation A � B has important implications for
the eigenvalues and eigenvectors of these matrices. In particular, λmax(B) ≥ λmax(A)

andλmin(A) ≤ λmin(B). If (1−ε)A � B � (1+ε)B, the eigenvalues and eigenvectors
of B are constrained to be close to those of A. Thus, it is appropriate to call this
relationship a spectral approximation of A by B.

Spielman and Srivastava famously used effective resistances to construct spectral
sparsifiers of graphs (Spielman and Srivastava 2008). This approach extends to sheaves
on graphs: just as graph Laplacians can be spectrally approximated by Laplacians of
sparse graphs, so too can sheaf Laplacians be spectrally approximated by Laplacians
of sheaves on sparse complexes.

Theorem 6.4 Let X be a regular cell complex of dimension d and F a cosheaf on X
with dimCd−1(X;F) = n. Given ε > 0 there exists a subcomplex X ′ ⊆ X with the
same (d − 1)-skeleton and O(ε−2n log n) d-cells, together with a cosheaf F ′ on X ′
such that (1 − ε)Ld−1

F � Ld−1
F ′ � (1 + ε)Ld−1

F .

Proof If ker Ld−1
F = 0, then an equivalent condition to the conclusion is

λmax((L
d−1
F )−

1
2 Ld−1

F ′ (Ld−1
F )−

1
2 ) ≤ 1 + ε

and

λmin((L
d−1
F )−

1
2 Ld−1

F ′ (Ld−1
F )−

1
2 ) ≥ 1 − ε.

If ker Ld−1
F is nontrivial, we use the pseudoinverse of Ld−1

F and restrict to the
orthogonal complement of the kernel. This only offers notational difficulties, so in the
following we will calculate as if the kernel were trivial.
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Consider the restrictions of ∂d to each d-cell σ , and note that

∑

dim(σ )=d

(∂d |σ )(∂d |σ )∗ = Ld−1
F .

For each d-cell σ , we will choose σ to be in X ′ with probability

pσ = min(1, 4ε−2 log(n) tr(Reff(σ ))).

If σ is chosen to be in X ′, we choose its extension maps to be F ′
σ�• = 1√

pσ
Fσ�•.

Let Aσ be independent Bernoulli random variables with E[Aσ ] = pσ and let

Xσ = 1
pσ

Aσ (Ld−1
F )− 1

2 (∂d |σ )(∂d |σ )∗(Ld−1
F )− 1

2 . Note that by construction
∑

σ Xσ =
(Ld−1

F )− 1
2 Ld−1

F ′ (Ld−1
F )− 1

2 and

E

[
∑

σ

Xσ

]
= (Ld−1

F )−
1
2 Ld−1

F (Ld−1
F )−

1
2 = idCd−1(X;F)

Wewish to show that the eigenvalues of
∑

σ Xσ are close to those of its expectation,
forwhichwe use amatrixChernoff bound proven in Tropp (2012). This bound requires
a bound on the norms of Xσ :

‖Xσ ‖ ≤ 1

pσ

‖(Ld−1
F )−

1
2 (∂d |σ )(∂d |σ )∗(Ld−1

F )−
1
2 ‖

≤ 1

pσ

tr((Ld−1
F )−

1
2 (∂d |σ )(∂d |σ )∗(Ld−1

F )−
1
2 )

≤ 1

pσ

tr((∂|σ )∗(Ld−1
F )†∂σ ) = tr(Reff(σ ))

pσ

.

We can a priori subdivide any Xσ with pσ = 1 into sufficiently many independent
random variables so that their norms are as small as necessary. This does not affect
the hypotheses of the concentration inequality, so we consider the case where pσ < 1,
where ‖Xσ ‖ ≤ ε2

4 log n . Our matrix Chernoff bound then gives

P

[
λmin((L

d−1
F )−

1
2 Ld−1

F ′ (Ld−1
F )−

1
2 ) ≤ 1 − ε

]
≤ n exp

(−4ε2

2
ε−2 log n

)
= n−1

P

[
λmax((L

d−1
F )−

1
2 Ld−1

F ′ (Ld−1
F )−

1
2 ) ≥ 1 + ε

]
≤ n exp

(−4ε2

3
ε−2 log n

)
= n−1/3.

When n is not trivially small there is therefore a high probability of LF ′ ε-
approximating LF .
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We now check the expected number of d-cells in X ′. This is
∑

σ

pσ ≤ 4ε−2 log n
∑

σ

tr(Reff(σ )),

and

∑

σ

tr(Reff(σ )) =
∑

σ

tr((∂|σ )∗(Ld−1
F )−1∂|σ ) =

∑

σ

tr((Ld−1
F )−1∂σ (∂|σ )∗)

= tr

(
(Ld−1

F )−1
∑

σ

∂σ (∂|σ )∗
)

= tr((Ld−1
F )−1Ld−1

F ) ≤ n.

AstandardChernoff bound argumentwith theBernoulli randomvariables determin-
ing whether each cell is included then shows that the number of d-cells is concentrated
around its expectation and thus can be chosen to be O(ε−2n log n). ��

The proof given here follows the outline of the proof for graphs given by Spielman
in Spielman (2015). This newer proof simplifies the original proof in Spielman and
Srivastava (2008), which used a sampling of edges with replacement. Theorem 6.4
generalizes a number of theorems on sparsification of graphs and simplicial complexes
(Spielman and Teng 2011; Chung and Zhao 2012; Osting et al. 2017); however, it is
not the most general sparsification theorem. Indeed, the core argument does not rely
on the cell complex structure, but only on the decomposition of the Laplacian into a
sum of matrices, one corresponding to each cell.

More general, and stronger, theorems about sparsifying sums of symmetric positive
semidefinite matrices have been proven, such as the following from De Carli Silva
et al. (2016):

Theorem 6.5 (De Carli Silva et al. 2016) Let B1, . . . , Bm be symmetric, positive
semidefinite matrices of size n × n and arbitrary rank. Set B := ∑

i Bi . For any
ε ∈ (0, 1), there is a deterministic algorithm to construct a vector y ∈ R

m with
O(n/ε2) nonzero entries such that y is nonnegative and

B �
m∑

i=1

yi Bi � (1 + ε)B.

The algorithm runs in O(mn3/ε2) time. Moreover, the result continues to hold if the
input matrices B1, . . . , Bm are Hermitian and positive semidefinite.

The sheaf theoretic perspective, though not the most general or powerful possible,
neverthelessmaintains both a great deal of generality alongwith a geometric interpreta-
tion of sparsification in terms of an effective resistance. This geometric interpretation
may then be pursued to develop efficient methods for approximating the effective
resistance and hence fast algorithms for sparsification of cell complexes and cellular
sheaves atop them.
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7 The Cheeger inequality

7.1 The Cheeger inequality forO(n)-bundles

Recall from Sect. 3.5 the notion of an O(n)-bundle on a graph. Bandeira, Singer, and
Spielman proved an analogue to the graph Cheeger inequality for O(n)-bundles (Ban-
deira et al. 2013). Their goal was to give guarantees on the performance of a spectral
method for finding an approximate section to a principal O(n)-bundle over a graph.
For an O(n)-bundle on a graph with Laplacian L , degree matrix D and normalized
Laplacian L = D−1/2LD−1/2, they defined the frustration of a 0-cochain x to be

η(x) = 〈x, Lx〉
〈x, Dx〉 = 〈x,Lx〉

〈x, x〉 ,

and showed that any 0-cochain can be rounded to one with controlled frustration as
follows. Given a 0-cochain x and a threshold κ ≥ 0, let xκ be the cochain whose value
at a vertex v is xv/‖xv‖ if ‖xv‖2 ≥ κ and is zero otherwise. For any such x there
exists a κ such that η(xκ) ≤ √

10η(x). Taking the minimum over all 0-cochains x
then implies that if λ1(L) is the smallest eigenvalue of L,

λ1(L) ≤ min‖xv‖=1 or 0
η(x) ≤ √

10λ1(L). (7.1)

A natural question is whether this theorem extends to a more general class of
sheaves on graphs. One reasonable candidate for extension is the class of sheaves on
graphs where all restrictionmaps are partial isometries, i.e., maps which are unitary on
the orthogonal complement of their kernels. One might view these as O(n)-bundles
where the edge stalks have been reduced in dimension by an orthogonal projection.
However, the cochain rounding approach does not work for these sheaves, as the
following simple counterexample shows. Let G be a graph with two vertices and one
edge, and let F(v1) = F(v2) = R

2 and F(e) = R. Then let Fv1�e = [1 0] and
Fv2�e =

[
1
2

√
3
2

]
. Then let xv1 =

[ 1
2
0

]
and xv2 =

[
1
0

]
. Then η(x) = 0, but η(xu) > 0

for any choice of u < 1. This means that there cannot exist any function f : R → R

with f (0) = 0 such that η(xu) ≤ f (η(x)).
This example does not immediately show that the Cheeger inequality (7.1) is false

for this class of sheaves, since this sheaf does have a section of stalkwise norm 1, but it
does offer a counterexample to the key lemma in the proof. Indeed, amore complicated
family of counterexamples exists with sheaves that have no global sections. These
counterexamples show that an approach based on variational principles and rounding
is unlikely to prove an analogue of the results of Bandeira et al. for more general
classes of sheaves.
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7.2 Toward a structural Cheeger inequality

Many extensions of the graph Cheeger inequality view it from the perspective of a
constrained optimization problem over cochains. This is the origin of the Cheeger
inequality for O(n)-bundles, and of the higher-dimensional Cheeger constants pro-
posed by Gromov, Linial and Meshulam, and others (Linial and Meshulam 2006;
Gromov 2010; Parzanchevski et al. 2016). However, a sheaf gives us more structure
to work with than simply cochains.

The traditional Cheeger inequality for graphs is frequently stated as a graph cutting
problem: what is the optimal cut balancing the weight of edges removed with the sizes
of the resulting partition? If we take the constant sheaf on a graph G, we can represent
a cut of G by setting some restriction maps to 0, or, more violently, setting the edge
stalks on the cut to be zero-dimensional. Thus, a potential analogue to the Cheeger
constant for sheaves might be an optimal perturbation to the structure of the sheaf
balancing the size of the perturbation with the size of the support of a new global
section that the perturbation induces.

For instance, we might measure the size of a perturbation of the sheaf’s restriction
maps in terms of the square of the Frobenius norm ‖·‖F of the coboundary matrix. If
we minimize ‖δF − δF ′ ‖2F , a natural relaxation to the space of all matrices shows that
this value is greater than λ1(LF ).

8 Toward applications

The increase in abstraction and technical overhead implicit in lifting spectral graph
theory to cellular sheaves is nontrivial. However, given the utility of spectral graph
theory in so many areas, the generalization to sheaves would appear to be a good
investment. As this work is an initial survey of the landscape, we quickly sketch
a collection of potential applications. These sketches are brief enough to allow the
curious to peruse, while providing experts with enough to construct details as needed.

8.1 Distributed consensus

Graph Laplacians and adjacency matrices play an important role in the study and
design of distributed dynamical systems. This begins with the observation that the
continuous-time dynamical system on a set of real variables {xv : v ∈ V (G)} indexed
by the vertices of a graph G with Laplacian L ,

ẋ = −Lx,

is local with respect to the graph structure: the only terms that influence ẋv are the
xw for w adjacent to v. Further, if the graph is connected, diagonalization of L shows
that the flow of this dynamical system converges to a consensus—the average of the
initial condition. A similar observation holds for sheaves of finite-dimensional vector
spaces on graphs:
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Proposition 8.1 Let F be a sheaf on a cell complex X. The dynamical system ẋ =
−Δk

F x has as its space of equilibriaHk(X;F), the space of harmonic k-cochains of
F . The trajectory of this dynamical system initialized at x0 converges exponentially
quickly to the orthogonal projection of x0 onto Hk(X;F).

Proof This is a linear dynamical system with flows given by x(t) = e−tΔk
F x0. Since

Δk
F is self-adjoint, it has an orthogonal eigendecomposition Δk

F = V�V ∗, so that
flows are given by x(t) = Ve−t�V ∗x0 = ∑

i e
−tλi 〈vi , x0〉vi . The termsof this sum for

λi > 0 converge exponentially to zero, while the terms with λi = 0 remain constant,
so that the limit as t → ∞ is

∑
vi∈Hk (X;F)〈vi , x0〉vi . Since the vi are orthonormal,

this is an orthogonal projection onto Hk(X;F). ��
In particular, for k = 0, this result implies that a distributed system can reach

consensus on the nearest global section to an initial condition.

8.2 Flocking

One well-known example of consensus on a sheaf comes from flocking models (Jad-
babaie et al. 2003; Tanner et al. 2003b). In a typical setting, a group of autonomous
agents is tasked with arranging themselves into a stable formation. As a part of this,
agents need a way to agree on a global frame of reference.

Suppose one has a collection of autonomous agents inR
3, each of which has its own

internal coordinate system with respect to which it measures the outside world. Each
agent communicates with its neighbors, communication being encoded as a graph.
Assumeagents can calculate bearings to their neighbors in their owncoordinate frames.
The agents wish to agree on a single direction in a global, external frame, perhaps in
order to travel in the same direction. However, the transformations between local
frames are not known.

To solve this, one constructs a sheaf on the neighborhood graph of these agents. The
vertices have as stalks R

3, representing vectors in each agent’s individual coordinate
frame. The edges have stalks R

1, used to compare bearings. Since the agents can
measure the bearing to each neighbor, they can project vectors in their coordinate
frame onto this bearing. Let b(v,w) be the unit vector in v’s frame pointing toward
w. Then for the (oriented) edge e = v ∼ w, the restriction map Fv�e : R

3 → R is
given by 〈b(v,w), •〉, while the restriction map Fw�e is −〈b(w, v), •〉. (The change
of sign is necessary because the bearing vectors are opposites in the global frame.)
Any globally consistent direction for the swarm will be a section of this sheaf, and
with a bit more information the agents can achieve consensus on a direction.

This is merely one simple example of a sheaf for building consensus via Laplacian
flow. The literature on flocking has various scenarios, including, e.g., the case in which
the network communication graph changes over time (Tanner et al. 2003a).

8.3 Opinion dynamics

Sheaf Laplacians provide a drop-in replacement for graph Laplacianswhen onewishes
to constrain a distributed algorithm to a locally definable subspace of the global state

123



Toward a spectral theory of cellular sheaves 349

space. For example, the flocking application in the previous example generalizes
greatly to the setting of opinion dynamics on social networks.

Consider the setting of a collection of agents, each of whom has an R-valued
opinion on somematter (say, a measure of agreement or disagreement with a particular
proposition). A social network among agents, modeled as a weighted graph, permits
influence of opinions based on Laplacian dynamics: each member of the network
continuously adjusts their opinion to be more similar to the average of their neighbors’
opinions, either in continuous or discrete time.

The literature on opinion dynamics begins with this simple setting (DeGroot 1974;
Lehrer 1975), and quickly grows to include a number of generalizations of graph
Laplacians when there aremultiple opinions or other features (Ye et al. 2018; Patterson
andBamieh 2010; Pirani andSundaram2014).Our perspective is that lifting the simple
model to a sheaf automatically incorporates various novel features while maintaining
the simplicity of a Laplacian flow.

The first obvious generalization is that multiple opinions reside in higher-
dimensional stalks. Each agent p has a vector space F(p) of opinions on some set of
topics. These vector spaces need not have the same dimension across the network—
there is no need to assume that every member of the network has an opinion on every
topic. Between each pair (p, q) of participants adjacent in the social network, there
is an edge e with a stalk F(e), which we might label a discourse space. Opinions in
F(p) and F(q) are translated into the discourse space by the restriction maps Fp�e
and Fq�e.

The flexibility of a sheaf permits a wonderful array of novel features. For instance,
each pair of participants in the social networkmight only communicate about a handful
of topics, andhenceonly influence eachothers’ opinions along certain directions.Other
topics would therefore lie in the kernels of the restriction map to their shared discourse
space.

Some features which appear difficult to model in the classical literature on opinion
dynamics are easily programmed into a sheaf: what happens if certain agents lie about
their opinion, and then only to certain individuals on certain topics? Is a “public”
consensus (with privately-held or context-dependent personal opinions) still possible?
This demonstrates the utility of sheaves not merely in having stalks which vary, but
with varying and interesting restriction maps as well.

8.4 Distributed optimization

Laplacian dynamics are useful not only for mere consensus, but also as a way to
implement consistency constraints for other sorts of distributed algorithms. Particu-
larly important among these are distributed optimization algorithms, where a network
optimizes a sum of objective functions distributed across the nodes, with the Laplacian
dynamics enforcing the constraint that local state be consistent across nodes.

Fix a sheaf of finite-dimensional vector spaces over a graph G. For each node,
v ∈ V (G), assume a cost function, say, a convex functional φv from the stalk of v toR.
The problem of finding a global section x = (xv)which minimizes

∑
v φv(xv) subject

to the constraint that x ∈ H0(G;F) is a relatively unexplored class of optimization
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problems. Such problems are naturally distributed in nature, as the constraint (given
in terms of the coboundary operator) is locally defined.

More generally, one can consider distributed optimization with homological con-
straints on any cellular sheaf of vector spaces over a cell complex X . If the problem to
be solved is the optimization of an objective function defined on Ck(X;F) subject to
the constraint that the optimum lie inHk(X;F), then this is naturally distributed. One
might call such problems homological programs, analogous to the manner in which
linear constraints give rise to linear programs. The Laplacian evolution then plays a
role in providing distributed algorithms to solve such optimization problems.

8.5 Communication compression

Both discrete-time as well as continuous-time Laplacian evolution is useful. Consider
the following modification of the consensus problems previously discussed. Suppose
one has a distributed system modeled by a graph G, where each node of G has state
in R

D for some large D and the nodes are required to reach consensus. The Laplacian
flow on states may be discretized as

x[t + 1] = (I − αL)x[t]. (8.1)

To implement this discrete-time evolution equation, at each time step, a node v must
send its state xv[t] ∈ R

D to each of its neighbors, the cost of doing so scaling with
state size D. It may be preferable instead to have each node send a lower-dimensional
compression of its state to each neighbor, i.e., a projection of xv[t] onto a d � D-
dimensional subspace, with the subspace depending on the edge e.

As with the continuous-time evolution, equilibria of (8.1) correspond to global
sections of the sheaf. However, changing the stalks over edges and the correspond-
ing restriction maps changes the sheaf and therefore, potentially, its global sections.
The goal for reducing the communication complexity is therefore to program this
compressed sheaf so as to preserve the zeroth cohomology H0. Such a sheaf would
comprise a certain approximation of the constant sheaf over the graph.

8.6 Sheaf approximation

A sheaf of vector spaces can be thought of as a distributed system of linear trans-
formations, and its cohomology H• consists of equivalence classes of solutions to
systems based on these constraints. From this perspective, questions of approximation
— of sheaves and sheaf cohomology—take on especial relevance. The question of
approximating global sections to a given sheaf has appeared in, e.g., Robinson (2017,
2018).

Questions of approximating sheaves are equally interesting. Given the relative lack
of investigation, the following definition is perhaps premature; nevertheless, it is well-
motivated by problems of distributed consensus and by cognate notions of cellular
approximation in algebraic topology.
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Definition 8.2 Let X be a regular cell complex, and let G be a sheaf on X . We say that
a sheaf F on X is a k-approximation to G if there exists a sheaf morphism a : G → F
which is an isomorphism on stalks over cells of degree at most k, and which induces
an isomorphism Hi (X;G) → Hi (X;F) for all i ≤ k.

If V is a vector space, we denote the constant sheaf with stalk V by V, and say that
F is an approximation to the constant sheaf if F is an approximation to V.

This definition is reminiscent of cellular approximation methods from algebraic
topology. A space X may be k-approximated by a cell complex Y , via a morphism
Y → X inducing an isomorphism on homotopy groups up to degree k. Here we
approximate a sheaf on a cell complex by one with the same cohomology in degrees
up to k. In particular, a 0-approximation to F has the same vertex stalks and the same
space of global sections as F .

Proposition 8.3 If F is a 0-approximation to V, then it is isomorphic to a sheaf with
vertex stalks V where for each edge e joining vertices v and w, the restriction maps
Fv�e : V → F(e) and Fw�e : V → F(e) are equal.

Proof Note that because a : V → F is an isomorphism on vertex stalks, F is clearly
isomorphic to a sheaf with vertex stalks V. For every edge e = (v,w) we have the
diagram

V V

V F(e)

V V

id

id

Fv�e

ae

id

id

Fw�e

,

and the only way it can commute is if Fv�e = Fw�e = ae. ��
The proof of this proposition shows that specifying an approximation to V is the

same as specifying a morphism ae : V → F(e) for each edge e of G. Further, in order
to produce an approximation to V, the ae must assemble to a map a : C1(G; V) →
C1(G;F) = ⊕

e∈E F(e) such that ker(a ◦ δV) = ker δV. This holds if ker a is
contained in a complement to im δ; equivalently, the projection map π : C1(G; V) →
H1(G; V) must be an isomorphism when restricted to ker a.

This suggests a way to construct an approximation to the constant sheaf. Choose
a subspace Ke of V(e) for each edge e of G and define ae to be the projection map
V → V/Ke. If

⊕
e∈E Ke has the same dimension in H1(G; V) as in C1(G; V), then

a = ⊕
e∈E ae defines the edge maps giving an approximation to V. (The vertex maps

may be taken to be the identity.)
The question of when a collection {Ke} produces an approximation to the constant

sheaf appears quite subtle, and will be the subject of future work.
This description of approximations to the constant sheaf has ignored the question of

weights—that is, what inner products to put on the quotient spacesV/Ke—which will
be crucial to the spectral behavior of their Laplacians and hence to the performance
of distributed consensus algorithms based thereon.
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To understand this relationship, consider again the discretization of the Laplacian
flow x[t + 1] = (I − αLF )x[t]. The matrix (I − αLF ) has an eigenvalue of 1 with
eigenspace equal to H0(G;F), with all other eigenvalues less than 1. The optimal
convergence rate for this consensus algorithm is obtained at anα keeping the nontrivial
eigenvalues as close to zero as possible. If λmax is the largest eigenvalue of LF and
λmin the smallest nontrivial eigenvalue of LF , this is obtained at α = 2

λmax+λmin
, for a

nontrivial spectral radius of r = λmax−λmin
λmax+λmin

.
The number of steps necessary to reach a level of disagreement of ε is thus pro-

portional to log ε
log(r) . On a k-regular graph with d-dimensional edge stalks, the total

amount of communication each node must undertake at each step is proportional to
kd. Thus the total communication cost per node is proportional to kd log ε

log(r) . For the

constant sheaf R
D , the total cost per node is kD log ε

log(R)
, where R = λmax(G)−λmin(G)

λmax(G)−λmin(G)
is

the corresponding spectral radius for consensus over LRD . If

d log(R)

D log(r)
< 1,

the total communication cost for consensus using the approximation to the constant
sheaf will be lower than that for the constant sheaf. Preliminary investigation suggests
it may be possible to construct approximations to the constant sheaf that achieve
this threshold, but more work is necessary to develop methods for creating spectrally
advantageous approximations to the constant sheaf. These could then be marshaled
to improve the speed and efficiency of distributed algorithms that involve consensus,
such as distributed optimization.

8.7 Synchronization

The concept of synchronization in the context of problems with data on graphs is
exemplified in work by Singer on the angular alignment problem (Singer 2011). The
concept was developed further by Bandeira in his dissertation (Bandeira 2015). The
general idea is to recover information about some set of parameters from knowledge
of their pairwise relationships. The general formulation, due to Bandeira, is as follows:
Given a group G, a graph X , and a function fi j : G → R for each edge i ∼ j of X ,
find a function g : V (X) → G minimizing

∑
i∼ j fi j (g(i)g( j)−1).

Often, the functions fi j are chosen such that they have a uniqueminimum at a given
element gi j ∈ G. One may view this as originating from a G-principal bundle on a
graph, with the group elements gi j defining transition maps. The desired solution is a
section of the bundle, determined up to a self-action of G, but may not exist if there
is error in the measured gi j . As a result, we seek an error-minimizing solution, where
the error is measured by the functions fi j .

Sheaves on graphs offer a broader formulation: synchronization is the problem of
finding a global section, or approximate global section, of an observed sheaf on a
graph. By choosing sheaves valued in a suitable category, we can recover the group-
theoretic formulation. There is something of a gap between the natural formulation
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of many synchronization problems and a sheaf valued in vector spaces; bridging that
gap for synchronization over O(d) is the goal of Bandeira et al. (2013).

One of the initial motivating problems for the study of synchronization was the
cryo-electron microscopy alignment problem. The goal is to understand the con-
figuration of a molecule, represented by a density function on R

3. Cryo-electron
microscopy allows one to measure projections of random rotations of this function
onto a fixed two-dimensional plane. One approach to recovery involves inferring these
unknown rotations from pairwise information. After taking the Fourier transform of
the measured two-dimensional distributions, each pair of distributions will agree on a
one-dimensional subspace, specifically, the invariant axis for the rotation relating the
two orientations of the molecule.

Suppose the i th measurement is taken from the molecule in an orientation ρi ∈
SO(3), so that the transformation between the orientation of measurement i and mea-
surement j is ρi j = ρ jρ

−1
i . If x is a vector in the base orientation frame of the

molecule, its representation in the frames for i and j are ρi x and ρ j x , respectively.
These two vectors have the same projection onto the invariant subspace of ρi j . Since
this invariant subspace is precisely the subspace on which the relevant two projections
agree, we can check whether two vectors in the frames for measurements i and j agree
by projecting them onto this subspace.

A single constraint of this form does not ensure equality of vectors in the different
frames. However, sufficiently many generic such constraints will. Combining all these
pairwise constraints gives us a sheaf with the same form as the sheaf of autonomous
agents discussed in Sect. 8.2. Note that the pairwise data here obtained is not in the
form of invertible transformations, but weaker constraints. Thus, a major motivat-
ing problem for synchronization has a natural expression in the language of cellular
sheaves.

The explicitly sheaf-theoretic formulation of the synchronization problem suggests
a different solution approach. If a synchronization sheaf has a global section—as is
the case when the data are internally consistent and uncorrupted by noise—finding
that section is trivial. The traditional approach to synchronization takes these transition
functions as they are, and seeks an approximate section to the sheaf. On the other hand,
we might try to denoise the measured relationships themselves using the condition of
cycle-consistency. That is, given an observed sheaf, find the nearest sheaf supporting
a global section. A structural Cheeger inequality as discussed in Sect. 7.2 would give
spectral insights into this problem. Deeper understanding would come from study of
an appropriate moduli space of cellular sheaves, which is a direction for future work.

8.8 Consistent clustering

As suggested by Gao et al. (2016), the data of a sheaf on a graph is useful for more than
recovering a global section. The problem of clustering objects where the similarity
measure comes from an explicit matching or transformation gives extra information.
If we stipulate that objects within a cluster should have consistent transformations
along cycles, the problem of clustering becomes the problem of partitioning a graph
into subgraphs, each of which supports the appropriate space of global sections.

123



354 J. Hansen , R. Ghrist

Similar ideas arise in Gao (2016), which considers correspondences between
surfaces produced using the soft Procrustes distance. These correspondences are
maps between probability distributions on the vertex sets of discretized surfaces.
When these surfaces are meshes with varying numbers of vertices, these maps
are not invertible, but by construction they are represented by doubly stochas-
tic matrices, and the analogue of the inverse for such a map is simply the
transpose of its corresponding matrix. These sorts of geometric correspondences
are natural to consider in the context of geometric morphometrics, the field
devoted to studying and classifying species based on their geometric proper-
ties.

Gao constructs a matrix he calls the graph horizontal Laplacian, together with
normalized versions he uses to formulate a fiber bundle version of the diffusion maps
algorithm for dimensionality reduction. The graph horizontal Laplacian is related to a
map of graphs X → G, where the fibers over vertices of G are discrete. A weighting
on the edges of X induces a matrix-valued weighting on the edges ofG. This produces
a weighted adjacency matrix W of G, from which the graph horizontal Laplacian is
generated by LH = D − W , where D is the diagonal matrix necessary to make LH

have row sums equal to zero.
This is in fact equivalent to the sheaf Laplacian of the pushforward of the weighted

constant sheaf on X , and as a consequence of Proposition 5.10, is simply a block
subdivision of the Laplacian of X . This sheaf onG can then be normalized to construct
a diffusionmap embedding of the vertices ofG, as well as an embedding of the vertices
of X . When applied to the surface correspondence problem, the eigenvectors of the
resulting sheaf Laplacian serve to partition the surfaces into automatically determined
landmarks or regions of interest.

Approaching these notions of partitioning, partial sections, and noninvertible
matchings from a sheaf-theoretic perspective offers new tools and clarifies the prob-
lems in question, with potential for the spectral approach to yield insights.

9 Closing questions

There are numerous interesting open questions in an emerging spectral sheaf theory.
We highlight a few below, with comments.

9.1 Metrics on the space of cellular sheaves

Interleaving-type constructions have been used to define metrics on the space of con-
structible sheaves (Curry 2014, Chapter 15). However, these rely on explicit geometric
information about the sheaves and their underlying spaces. Working with weighted
cellular sheaves may make it possible to define useful distances that rely only on the
combinatorial and algebraic structure of the sheaves. What are the most useful metrics
on the space of sheaves? How do they interact with the sheaf Laplacians and their
spectra? How does this shed light on a moduli space of cellular sheaves?
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9.2 Developing a Cheeger inequality

Following the discussion in Sect. 7.2, a structural Cheeger inequality for sheaves is
connected to questions of a potential moduli space of sheaves. Such an inequality
would describe how the spectral properties of a sheaf interact with its distance to the
nearest sheaf with a nontrivial global section. Can a Cheeger inequality emerge from
approximations to the constant sheaf, seeking 0-cochains of small coboundary which
are constant on large sets of vertices?

9.3 Interactions with the derived category

The standard way of understanding sheaf cohomology is through the derived category
of complexes of sheaves (Gelfand and Manin 2003). We may replace a sheaf by an
injective resolution and take the cohomology of the complex of sheaves. What is the
relationship between a weighted sheaf and its injective resolutions, and how do the
resulting Laplacians connect with the Hodge Laplacian defined on the cochain com-
plex? What results can be proven about their spectra? How do they interact with the
standard sheaf operations? Is there a consistent way to add weights to the derived cate-
gory of sheaves?We should not expect the answers to these questions to be unique due
to the dagger categorical issues discussed in Sect. 3.1, but there may be constructions
which are nevertheless appealing.

9.4 Randomwalks

Chung andZhao (2012) considered randomwalks on discrete O(n)-bundles, including
a definition of a sort of PageRank algorithm. Is it possible to define random walks
on more general sheaves of vector spaces, and to what extent are such related to the
sheaf Laplacian and its spectral features? Is there an analogous PageRank algorithm
for sheaves?

9.5 Cones and directedness

How does one model directedness and asymmetric relations on sheaves? Sheaves of
cones and sheaf cohomology taking values in categories of cones have proven useful
in recent applications of sheaf theory to problems incorporating directedness (Ghrist
and Krishnan 2017; Kashiwara and Schapira 2018). Such methods, though promising,
may be noncommutative, using semigroups or semimodules to encode the directed-
ness, which, in turn, pushes the boundaries of existing methods in sheaf theory and
nonabelian sheaf cohomology.
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