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Abstract
In nonlinear time series analysis and dynamical systems theory, Takens’ embedding
theorem states that the sliding window embedding of a generic observation along
trajectories in a state space, recovers the region traversed by the dynamics. This can
be used, for instance, to show that sliding window embeddings of periodic signals
recover topological loops, and that sliding window embeddings of quasiperiodic sig-
nals recover high-dimensional torii. However, in spite of these motivating examples,
Takens’ theorem does not in general prescribe how to choose such an observation
function given particular dynamics in a state space. In this work, we state conditions
on observation functions defined on compact Riemannian manifolds, that lead to suc-
cessful reconstructions for particular dynamics. We apply our theory and construct
families of time series whose sliding window embeddings trace tori, Klein bottles,
spheres, and projective planes. This greatly enriches the set of examples of time series
known to concentrate on various shapes via sliding window embeddings, and will
hopefully help other researchers in identifying them in naturally occurring phenom-
ena. We also present numerical experiments showing how to recover low dimensional
representations of the underlying dynamics on state space, by using the persistent
cohomology of sliding window embeddings and Eilenberg–MacLane (i.e. circular
and real projective) coordinates.
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1 Introduction

The delay coordinate mapping, or sliding window embedding (Takens 1981; Nolte
2010; Kantz and Schreiber 2004; Das and Giannakis 2017), posits a time series as a
sequence of observations made along trajectories in a hidden state space. Under this
scheme, a one dimensional time series, which could otherwise be analyzed with more
traditional linear analysis techniques such as ARMA and Fourier/Wavelet analysis,
is instead turned into a geometric object via a vector of samples of the time series,
which moves along the signal (Eq. 1). The shape of this geometric object provides
information about the system under study. Periodic processes, for example, map to
points which concentrate on a topological loop. Sliding window embeddings have
been used in this context, for example, to analyze ECG signals of a beating heart
(Stam 2005; Plesnik et al. 2011), to detect chatter in mechanical systems (Khasawneh
and Munch 2016), to quantify repetitive motions in human activities (Frank et al.
2010; Venkataraman et al. 2016), to discover periodicity in gene expression during
circadian rhythms (Perea et al. 2015), and to detect wheezing in audio signals (Emrani
et al. 2014). In addition to loops, torus shapes often show up during “quasiperiodicity,”
which is a state of near-chaos. Sliding window embeddings have witnessed this torus
shape in such applications as vocal fold anomalies (Herzel et al. 1994), horse whinnies
(Briefer et al. 2015), neural networks (Morrison et al. 2016), and oscillating cylinder
flow (Glaz et al. 2017). Certain time series even concentrate on fractals after a sliding
window embedding (Takens 1981; de Silva et al. 2012). Sliding window embeddings
have alsobeenused as a tool for shape analysismoregenerally evenwhenanunderlying
model for the dynamics is unknown, such as in music structure analysis (Bello 2011;
Serra et al. 2009).We direct the interested reader to Perea (2019) for a recent review on
how topological data analysis can be used in the analysis of time delay embeddings.

The main theory motivating the use of sliding window embeddings in all of these
applications is Takens’ delay embedding (Takens 1981) theorem, which is stated as
follows:

Theorem (Takens’ embedding theorem Takens 1981) Let M be a compact manifold
of dimension m. Suppose X is a smooth vector field with flowψt : M → M and G is a
smooth function on M. For τ > 0, N ≥ 2m, and pairs (X ,G) it is a generic property
that �N

τ : M → R
N+1 defined by

�N
τ (p) = (G(p),G(ψτ (p)),G(ψ2τ (p)), . . . ,G(ψNτ (p)))

is an embedding.

A “random” choice of X and G makes the delay coordinate mapping �N
τ a smooth

embedding. Thus, remarkably, the state spaceM of a dynamical systemmay in general
be reconstructed from a single generic observation function G,1 which gives rise to
a 1D time series. However, in practice, Takens’ result is ill-suited for computational
purposes because it does not provide an explicit characterization of “genericity”.

1 Some texts refer to this as an “observable.”
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In this work, we extend Takens’ embedding theory with a geometric characteri-
zation of observations which yield high-dimensional delay coordinate embeddings,
given a particular flow on a manifold. Our main theoretical result for general compact
manifolds is stated in Theorem 4.1 in Sect. 4, as follows:

Theorem The Takens map �N
τ is an embedding for some dimension N > 0 and flow

time τ > 0, if the following conditions hold:

1. For any point of p ∈ M there is an m-tuple J ∈ Z
m≥0 of nonnegative integers such

that the m-form

L∧J
X dG :=

∧

j∈J

L j
X dG

is nonzero at some point on the integral curve γp(s). Here, L j
X denotes the j th-

order Lie derivative.
2. For any pair of distinct points p, q ∈ M the observation curves gp(s) and gq(s)

are not identical.

We first provide several examples in Sect. 3 which satisfy the conditions of our
theorem. In the process, we discuss a non-example that violates condition 1 if we’re
not careful (Example 3.3) and show another non-example which violates condition 2
(Example 3.2, part 2). We then prove our theorem in Sect. 4, and we explore a special
case in Sect. 5 in which Fourier bases can be used to construct observation functions.2

2 Background

In this section, we provide a more detailed overview of several concepts utilized in this
work, including slidingwindow embeddings, persistent (co)homology, andEilenberg–
MacLane coordinates. The latter two tools will be used to empirically validate that
our sliding window embeddings recover our chosen state space and the underlying
dynamics.

2.1 Sliding window embeddings

We express a time series g(t) as an observation G along a dense trajectory γ on a
manifold M , i.e.

g(t) = G(γ (t))

2 The code to generate all figures in this manuscript can be found at http://www.github.com/ctralie/
TwistyTakens.
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for γ : R −→ M and G : M −→ R. We compute the sliding window of g as

SWN
τ g(t) :=

⎡

⎢⎢⎢⎢⎢⎣

g(t)
g(t + τ)

g(t + 2τ)
...

g(t + Nτ)

⎤

⎥⎥⎥⎥⎥⎦
∈ R

N+1 (1)

where N ∈ N is the number of delays, τ > 0 is the delay time, and Nτ is the window
length.

We interpret the sliding window SWN
τ g(t) as the evaluation of the Takens map�N

τ

in Theorem 1 above on an integral curve ψt (p) of a vector field X through a point
p ∈ M . For if N = 2 · dim M and γ (t) = ψt (p), then

SWN
τ g(t) = �N

τ (ψt (p)).

For sufficiently large N and small τ , SWN
τ g(t) densely “traces” the embedding

�N
τ (M) for appropriate choice of observation G and vector field X .
When g is a periodic function with frequency ω ∈ R, it readily follows that the

sliding window embedding SWN
τ g(t) traces a closed curve in R

N+1. The shape of
this curve is closely related to the choice of parameters N and τ , and their relation toω

(Perea and Harer 2015). In particular, if τ and N are chosen so that N is large enough
and Nτω ≈ 1, then the image of SWN

τ g is in fact a topological circle in R
N+1,

whose shape is tightly controlled by the Fourier coefficients of g. In other words,
the periodic nature of g—a spectral property—is reflected in the circularity of its
sliding window, a topological feature. Quasiperiodicity is another spectral notion with
a clear geometric/topological counterpart. Indeed, let 1, ω1, . . . , ωn ∈ R be linearly
independent over the rational numbers.We say that f : R −→ R is quasiperiodic with
frequencies ω1, . . . , ωn , if it can be written as f (t) = F(t, . . . , t) for some function
F : R

n −→ R whose j-th marginals f j (t) = F(t1, . . . , t j−1, t, t j+1, . . . , tn) are
periodicwith frequencyω j . In this case, and for appropriate N and τ , the set SWN

τ f (Z)

is dense in an n-dimensional torus embedded in R
N+1 (Perea 2016; Gakhar and Perea

2018).

2.2 Koopman spectra

Wenow review another relevant tool that goes alongwith slidingwindow embeddings.
For positive flow time t > 0, the flow ψt of a vector field X on a compact manifold M
defines a diffeomorphism ψt : M → M . Then the composition map Ut , or Koopman
operator (Koopman 1931; Das and Giannakis 2017; Mezić 2013) given by

UtG = G ◦ ψt ,

is a linear operator on the space of observation functions on M . The coordinates of
the delay mapping are thus iterated applications of Ut on an observation G.
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Twisty Takens: a geometric characterization of good… 289

For certain classes of dynamical systems, theKoopmanoperator possesses a discrete
spectrum and yields a linear expansion

G =
∞∑

k=0

Gkφk

where φk are eigenfunctions of Ut and Gk are Koopman modes. For such systems
one “lifts” the dynamics on the state space to an evolution of observables. For a
more comprehensive overview of Koopman theory and its applications, please refer
to Arbabi (2018).

We will see in Sect. 5 that a high-dimensional delay mapping essentially recov-
ers the Koopman modes of an observation function. We therefore characterize delay
embedding observations in terms of spectral decomposition properties. We examine
a special case with a Fourier basis for the Koopman operator on the Torus and Klein
bottle, and show via our main Theorem 4.1 what is needed of these coefficients.

2.3 Persistent homology

In practice we evaluate the sliding window SWN
τ g(t) at a finite set of evenly sampled

time points t1 < · · · < tJ . This results in a discrete collection of J vectors, referred
to as a “sliding window point cloud”. The topology of a point cloud with J points is
trivial; it consists of J connected components and lacks any other topological features
(loops, voids, etc). However, if we use a simplicial complex (a discrete object) to
approximate the underlying space from which the point cloud is sampled, then we can
estimate the underlying topology via combinatorial means. A simplicial complex on
a set V of vertices (e.g. a sliding window point cloud) is a collection K of nonempty
subsets σ ⊂ V , so that if ∅ �= τ ⊂ σ ∈ K , then τ ∈ K . As an example, suppose we
seek a simplicial complex with topology reflecting that of the unit circle S1. Starting
with the set V = {a, b, c} of vertices, we let K = {a, b, c, {a, b}, {b, c}, {a, c}} be
the simplicial complex containing 3 edges between every pair of vertices. Like S1, K
has one connected component, one loop which bounds an empty space, and no higher
dimensional features (voids, etc).

So far, our description of simplicial complexes has been purely combinato-
rial/topological, but one can use geometry to inform their construction. An early
scheme in Euclidean space is the alpha complex (Edelsbrunner andMücke 1994), con-
structed as a family of subcomplexes of Delaunay triangulations at different scales. An
even simpler construction, which works in any metric space, is the so-called “Vietoris-
Rips” complex at scale α ≥ 0, denoted Rα(V ). It is comprised of the finite subsets
of V which have diameter less than α. Choosing the “appropriate” scale is ill-posed.
For instance, Fig. 1 shows a point cloud in R

2 for which it is impossible to choose an
appropriate scale at which the simplicial complex contains the two empty loops that
are present in the original shape.

Specifically, R0.16(V ) contains the upper loop, but not the lower loop, and R0.24(V )

contains the lower loop, but the upper loop is no longer empty. In fact, it is impossible
to choose an α in which both loops are present and empty in Rα(V ) in this example.
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Fig. 1 An example of the Rips filtration on a point cloud sampled from a thickened figure eight. The Rips
complex is shown at different scales, the values of α, producing the persistence diagram on the right

However, we can still summarize the multiscale topological information of any point
cloud by performing a filtration of the complex. That is, we evaluate Rα(V ) as α

varies continuously from 0 to some maximum value, so that Rα1(V ) ⊂ Rα2(V ) if
α1 ≤ α2. Throughout this process we keep track of topological features as they
appear, or are “born,” and as they are filled in, or “die”. For each such homology class,
we can produce a point in a scatter plot, known as the persistence diagram of the
filtration, with birth time on the x-axis and death time on the y-axis. Figure 1 shows a
persistence diagram associated with our running example.3 Intuitively, points further
from the diagonal correspond to larger topological features which “persist” (stay alive)
over longer intervals, and points closer to the diagram correspond to small, “noisy”
features which are often artifacts of sampling (e.g. the square and pentagon loop that
exist at α = 0.12).

For completeness, we extend the above explanation with a brief rigorous presen-
tation. For a more comprehensive treatment, please refer to Edelsbrunner and Harer
(2008), Edelsbrunner and Harer (2010), Carlsson (2009), Ghrist (2014) and Perea
(2018a). Let (
,) be a partially ordered set. A 
-filtered simplicial complex is
a collection K = {Kα}α∈
 of simplicial complexes, so that Kα ⊂ Kα′ for every
α  α′ ∈ 
. The typical examples for point cloud data are the Rips filtration, as
we mentioned, and the Čech filtration motivated by the nerve lemma (Hatcher 2002).
Specifically, let L be a finite subset of a metric space (M,d). The Rips filtration of L
is the R-filtered simplicial complex R(L) = {Rα(L)}α∈R. Similarly, for � ∈ L let

Bα(�) = {b ∈ M : d(b, �) < α} and Bα = {Bα(�) : � ∈ L}.

The Čech complex Čα(L) is defined as the nerve of Bα; that is Čα(L) = N (Bα)

where

σ ∈ N (Bα) if and only if
⋂

�∈σ

Bα(�) �= ∅

Hence Č(L) = {Čα}α∈R is an R-filtered simplicial complex, and Rα(L) ⊂ Čα(L) ⊂
R2α(L) for all α ∈ R.

3 We compute persistence diagrams for all examples in this paper using the Python interface to “Ripser”
(Bauer 2017; Tralie et al. 2018).
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The persistent homology (resp. cohomology) of a filtered complex K = {Kα}α∈
 ,
with coefficients in a field F, are defined, respectively, as

PHn(K; F) :=
⊕

α∈


Hn(Kα; F) and PHn(K; F) :=
⊕

α∈


Hn(Kα; F)

Let ια,α′ : Hn(Kα; F) −→ Hn(Kα′ ; F) and jα′,α : Hn(Kα′ ; F) −→ Hn(Kα; F)

be the F-linear maps induced by the inclusion Kα ⊂ Kα′ , α  α′. A persistent
homology (resp. cohomology) class is an element

⊕
α∈
 να ∈ PHn(K; F) (resp.

⊕
α∈
 μα ∈ PHn(K; F) ) so that ια,α′(να) = να′ (resp jα′,α

(
μα′) = μα) for every

α  α′.
When 
 = R, a theorem of Crawley-Boevey (2015) contends that if each

Hn(Kα; F) is finite-dimensional (also known in the literature as being pointwise-
finite) then one can choose bases Sα for each Hn(Kα; F), satisfying the following
compatibility condition:

1. ια,α′(Sα) ⊂
(
Sα′ ∪ {0}

)
for every α ≤ α′.

2. If ια,α′(vα
j ) = ια,α′(vα

k ) and j �= k, then ια,α′(vα
j ) = 0.

The set S =⋃α∈R Sα admits a partial order given by Sα � v  v′ ∈ Sα′
if and only

if α ≤ α′ and ια,α′(v) = v′. The maximal chains in (S,) are the persistent homology
classes. To each maximal chain C ⊂ S one can associated the point (bC , dC ) ∈
[−∞,∞] × [−∞,∞] defined by

bC = inf{α ∈ R : Sα ∩ C �= ∅}, dC = sup{α ∈ R : Sα ∩ C �= ∅}

The collection of such pairs, where C runs over all maximal chains, is the persistence
diagram for the persistence homology of the filtered complex K.

Persistent cohomology behaves similarly. Indeed, any basis for Hn(Kα; F) yields a
well-defined isomorphism Hn(Kα; F) ∼= Hn(Kα; F)∗ with the linear dual space, and
the latter is naturally isomorphic to Hn(Kα; F), by the universal coefficient theorem.
Hence, these isomorphisms turn the Sα’s into a collection of compatible bases for the
cohomology groups Hn(Kα; F), showing that persistent homology and cohomology
yield the same persistence diagrams.

2.3.1 Persistent homology of sliding window embeddings

As mentioned in the introduction, there are numerous examples in the literature of
persistent homology on sliding window point clouds. For any periodic time series
(x(t) = x(t + kT ), k ∈ Z), a sliding window embedding yields a topological loop,
and there is a point of high persistence in the persistence diagram for PH1 (Perea and
Harer 2015). However, the authors of Perea and Harer (2015) also show, surprisingly,
that sliding window embeddings of functions like x(t) = cos(t) + a cos(2t), |a| > 1,
can lie on the boundary of an embedded Möbius strip (Perea and Harer 2015). We
use this to help intuitively explain the time series we obtain for the projective plane
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(Example 3.4) and the Klein Bottle (Sect. 5.2). Note that this also means that field
coefficients other than Z2 are needed to maximize the maximum persistence in PH1.
In general, for cos(t) + a cos(kt), coefficients which are not prime factors of k are
needed (Perea and Harer 2015; Tralie 2017). Finally, there are works which utilize
both PH1 and PH2 to quantify the presence of quasiperiodicity in time series data,
by estimating the toroidality of a sliding window point cloud (Perea 2016; Tralie and
Perea 2018). In this work, we extend this suite of examples beyond (possibly twisted)
loops and torii to other manifolds.

2.4 Eilenberg–MacLane coordinates

Though persistent homology is informative, one can further utilize it to perform
nonlinear dimensionality reduction on sliding window point clouds, for visualiza-
tion purposes and reconstruction of the underlying dynamics. To this end, we use
“Eilenberg–MacLane coordinates”, which turn persistent cohomology classes into
maps from point clouds to the circle (De Silva et al. 2011; Perea 2018c), and (real or
complex) projective spaces (Perea 2018b). We present next a more detailed summary;
maps to the projective plane are particularly interesting, as they allow us to “untwist”
non-orientable manifolds like the Klein bottle.

More formally, ifG is an abelian group4 and n is a positive integer, then it is possible
to construct a connected CW complex K (G, n), called an Eilenberg–MacLane space,
whose homotopy type is uniquely determined by two properties:

1. its j-th homotopy group π j (K (G, n)) is trivial for all j �= n
2. πn(K (G, n)) ∼= G

The Brown representability theorem (for CW complexes and singular cohomology)
contends that if B is a CW complex, then there is a natural bijection

Hn(B;G) ∼= [B, K (G, n)] (2)

between the n-th cohomology of B with coefficients in G, and the set of homotopy
classes of maps from B to K (G, n).

The two Eilenberg–MacLane spaces we use to generate circular and projective
coordinates are: K (Z, 1) � S1, and K (Z/2, 1) � RP∞ = R

∞
�{0}/ ∼, respectively.

Here R
∞ is the collection of infinite sequences of real numbers x = (x0, x1, . . .)

which are nonzero for all but finitely many x j ’s, and x ∼ y if and only if x = ry
for some r ∈ R � {0}. One can also regard R

∞ as the direct limit of the system
R ⊂ R

2 ⊂ R
3 ⊂ · · · , where the inclusion R

j ↪→ R
j+1 sends (x0, . . . , x j−1) to

(x0, . . . , x j−1, 0). With this interpretation in mind, RP∞ can be regarded as the direct
limit of the system RP0 ⊂ RP1 ⊂ RP2 ⊂ · · · , where RPn = R

n+1
� {0}/ ∼.

Recently (Perea 2018b), it has been shown that if L is a finite subset of a metric space
(M,d), and for � ∈ L we let Bα(�) be the open ball of radius α centered at �, then
persistent cohomology classes in PH1(R(L); Z/2) can be used to define projective
coordinates

4 In this section G will refer to an Abelian group, but it otherwise refers to an observation function.
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Twisty Takens: a geometric characterization of good… 293

fμ :
⋃

�∈L
Bα(�) −→ RPn

Similarly, persistent cohomology classes in PH1(R(L); Z/q), for appropriate choices
of prime q > 2, yield circular coordinates (Perea 2018c)

fθ,τ :
⋃

�∈L
Bα(�) −→ S1

In both cases, the resulting coordinates mimic the properties of the bijection (2) from
Brown’s representability.

2.4.1 Projective coordinates

Here is a sketch of the construction of projective coordinates from persistent coho-
mology classes. Let L = {�0, . . . , �n} ⊂ M, and fix a cocycle μ = {μα

jk} ∈
Z1(R2α(L); Z/2) so that its cohomology class is not in the kernel of the homomor-
phism

ι2α,α : H1(R2α(L); Z/2) −→ H1(Rα(L); Z/2)

induced by the inclusion Rα(L) ⊂ R2α(L). Since Rα(L) ⊂ Čα(L) ⊂ R2α(L), then
the rightmost inclusion yields a nonzero class in H1(Čα(L); Z/2). We let

fμ :
⋃

�∈L
Bα(�) = L(α) −→ RPn

Bα(� j ) � b �→
[
(−1)μ

α
j0 |α−d(b, �0)|+ : · · · : (−1)μ

α
jn |α − d(b, �n)|+

]

where [x0 : · · · : xn] ∈ RPn denotes the equivalence class of (x0, . . . , xn) ∈ R
n+1

�

{0}, and |r |+ := max{0, r} for r ∈ R. Since {μα
jk} is a cocycle, it readily follows

that the point fμ(b) ∈ RPn is independent of the index j ∈ {0, . . . , n} for which
b ∈ Bα(� j ). In other words, fμ is well defined.

If {να
jk} ∈ Z1(R2α(L); Z/2) is cohomologous to {μα

jk}, and fν : L(α) −→ RPn is
the associated map, then fμ � fν and hence we get a well defined function

H1(R2α(L); Z/2) −→
[
L(α), RPn

]

[μ] �→ [ fμ]

The metric properties of fμ are also determined by the cohomology class of μ. For if

dg(x, y) := arccos

( |〈x, y〉|
‖x‖ · ‖y‖

)

123



294 B. Xu et al.

Fig. 2 An example of projective coordinates for point sampled from a flat Klein bottle obtained as a
quotient of the torus via [x, y] ∼ [x + π, −y]. The two coordinates are colored according to their x and y
positions on the fundamental domain [0, 2π ]× [0, π ], and we show two different stereographic projections
to the plane from RP2. If the fundamental domain is split into distinct parts A = [0, 2π ] × [0, π/2] and
B = [0, 2π ] × [π/2, π ], then A and B map to two distinct Möbius strips which are attached at their
boundaries at y = π/2 (medium red for the y colors), which is indeed what happens when the Klein bottle
is cut down the middle (color figure online)

denotes the geodesic distance in RPn , then it readily follows that

dg
(
fν(b), fν(b

′)
) = dg

(
fμ(b), fμ(b′)

)

for all b, b′ ∈ L(α) and μ, ν in the same cohomology class.
Given a finite set P ⊂ L(α), taking its image through fμ yields a new point cloud

fμ(P) ⊂ RPn . A dimensionality-reduction scheme in RPn referred to as principal
projective component analysis is also defined in Perea (2018b). This procedure yields
a sequence of maps

Pk : fμ(P) −→ RPk, k = 0, . . . , n

minimizing an appropriate notion of (metric) distortion. In particular, Pk ◦ fμ(P) and
Pk ◦ fν(P) are isometric ifμ and ν are cohomologous. The point clouds Pk ◦ fμ(P) ⊂
RPk are referred to as the projective coordinates of P , induced by the landmarks
L ⊂ M and the cohomology class [μ] ∈ H1(R2α(L); Z/2).

As an example, Fig. 2 shows the projective coordinates onto RP2 of points sam-
pled from a Klein bottle K, using the flat metric on the torus T, descended onto the
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Twisty Takens: a geometric characterization of good… 295

automorphism κ : (x, y) �→ (x + π,−y). We use the cocycle representative which is
the sum of the representative cocycles from the two most persistent classes.

In fact, this is a 2 to 1 map, as shown in Fig. 2. Just as a torus can be obtained
from gluing two annuli together at their boundary, the Klein bottle can be obtained
by gluing two Möbius strips at their boundary. Each one of these Möbius strips is
visible in the odd and even columns of the bottom two rows of Fig. 2, respectively. In
particular, the loops [0, 2π ]×0 and [0, 2π ]×π are at the center of eachMöbius strip,
and the boundaries of each Möbius strip at [0, 2π ] × π/2 get identified at the center
of the projective coordinates plot. We will observe similar projective coordinates for
the sliding window of our Klein bottle time series in Sect. 5.2.

2.4.2 Circular coordinates

The idea of using the bijection H1(B; Z) ∼= [B, S1] to construct circle-valued func-
tions for data, from persistent cohomology classes, was first introduced by De Silva
et al. (2011). Their construction has shortcomings (not sparse, not transductive) which
are addressed in Perea (2018c); the latter is the procedure we use in the paper and the
one we describe next.

Let q > 2 be a prime so that the homomorphism

H1(R2α(L); Z) −→ H1(R2α(L); Z/q)

induced by the projectionZ −→ Z/q, is surjective. Hence, anyμ ∈ Z1(R2α(L); Z/q)

has a lift μ̃ ∈ Z1(R2α(L); Z).Moreover, if ι : Z ↪→ R is the inclusion homomorphism,
then there are cochains θ ∈ Z1(R2α(L); R) and τ ∈ C0(R2α(L); R) so that θ is the
unique harmonic cocycle representative of ι∗([μ̃]) and ι#(μ̃) = θ − δ0τ . From this
data we define

fθ,τ : ⋃
�∈L

Bα(�) −→ S1 ⊂ C

Bα(� j ) � b �→ exp

{
2π i

(
τ j +

n∑
k=0

θ jkϕk(b)

)}

where

ϕk(b) = |α − d(b, �k)|+∑n
r=0 |α − d(b, �r )|+

Figure 3 shows an example of this algorithm on a point cloud sampled from a torus,
using 400 landmarks. In this example, the algorithm is able to find maps from the
points to the inner and outer circle of the torus.

3 Preliminary examples: distance to a point as observation function

To motivate a more general development of good observation functions on manifolds,
we first explore a very specific genre of observation functions: those which arise as the
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Fig. 3 An example of the circular coordinates algorithm on a point cloud sampled from a torus in R
3. The

third plot shows the coordinates resulting from the representative cocycle of the largest persistence class,
which goes around the large circle on the outside, while the fourth plot shows the circular coordinates
resulting from the cocycle from the second largest persistence class, which wraps around the inner circle

distance to a specified point in the manifold. We then verify the geometric integrity
of a delay coordinate mapping of the resulting time series using persistent homology
and Eilenberg–Maclane coordinates on a few examples. Through these tools and a
visual comparison of the time series to known examples, we will already be able to
explain quite a lot, including motivating both conditions of Theorem 4.1, though a full
development of the theory in Sect. 4 is needed to justify these choices of observation
functions.

In the discussion below, all of our observation functions are of the form G(x) =
d(x, x̂), where d is some metric chosen on the manifold and x̂ is some fixed point on
the manifold which is our “reference distance point.”

Example 3.1 Flat torus T

We first examine the planar torus T = R
2/2πZ

2, parameterized by (u, v) ∈
[0, 2π ] × [0, 2π ]. As our dynamics, we take the irrational winding ψt (u, v) =
(u+√

2dt, v + dt), and the observation G(u, v) is the flat geodesic distance between
(u, v) and the point x̂ = (6, π). This is shown in Fig. 4. After performing a delay
embedding on the resulting time series with window length of 30 samples, we see
two persistent H1 classes and 1 persistent H2 class, which is the signature of a torus.
Furthermore, circular coordinates resulting from the top two persistent classes in H1
recovered the full original flow specification.

Example 3.2 Flat Klein Bottle K

As in our projective coordinates example in Fig. 2, we now form a quotient on the
domain of the flat torus to create a Klein bottle, via the automorphism κ : (x, y) ∼
(x +π,−y). Then, the metric on the torus descends to the Klein bottle via κ . We use a
slightly modified weighted L2 flat metric as our distance measure for the observation
function; that is

dα,β((u1, u1), (u2, u2)) =
√

α2(u1 − u2)2 + β2(u1 − u2)2 (3)

In this particular example, we let α = 1 and β = 0.5, and we take an observation
to the point x̂ = (4.5, 2.5); that is, G(u, v) = d1,0.5((u, v), (4.5, 2.5). Finally, we use
a flow with a very shallow slope, ψt (u, v) = (u+dt, v +0.05dt), in the fundamental
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Fig. 4 An irrational winding on the flat torus, with an observation function as the distance to the point
x̂ = (6, π), which is shown as a blue dot on the left plot. The distance from this point is indicated in gray
(dark means close, light means far). The resulting time series is shown in the second plot, with a sliding
window indicated with a red box. The third and fourth figures show, respectively, the persistence diagrams
of the sliding window point cloud and the resulting circular coordinates. The arrows in the fourth plot are the
recovered dynamics; they indicate the order on the sliding windows inherited from the time series. Colors
are coordinated between the flows in the first, second, and fourth plots. Similar plotting conventions are
present in Figs. 5, 6, 7, 8 and 9 (color figure online)

Fig. 5 A winding with a very shallow slope on the fundamental domain of a flat Klein bottle, which is
double covered by the flat torus by the automorphism (x, y) ∼ (x + π, −y). The observation function is
then a scaled L2 distance from the point x̂ = (4.5, 2.5), which descends under the automorphism

domain y < π . After performing a sliding window embedding with a window length
of 30 samples, we see two persistent classes in H1 and one persistent class in H2
with Z/2 coefficients, but we only see one class in H1 and no classes in H2 with Z/3
coefficients. This is indeed the signature of a Klein bottle. We will show projective
coordinates on a similar example with a slightly different observation function in
Sect. 5.2, and we will explain more intuitively visual features of the time series at that
point.

Note that not every distance function will lead to a reconstruction of the Klein
bottle. For instance, if we use the same flow ψt but an observation function G(u, v) =
d((u, v), (π, 0)), as in Fig. 6, then the sliding window embedding of the resulting
time series degenerates to a cylinder, because there exist pairs of points with the same
observation curves under the flow. This motivates condition 2 in Theorem 4.1.

Example 3.3 Sphere S2

We now reconstruct the sphere from a given trajectory and distance function. Tralie
(2017) showed empirically that a sliding window embedding of a helical trajectory,
under the observation function on the spherewhich is the arclength from some point on
the sphere, yields an embedding of the sphere.We replicate this here.More specifically,
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Fig. 6 Not all distance functions on the Klein bottle work. The conditions here are the same as in Fig. 5,
but the point x̂ from which distance is measured has been moved to (π, 0). The sliding window embedding
degenerates to a cylinder in this example

Fig. 7 An observation function on the sphere which is the geodesic distance from a point x̂ drawn in red.
The top and bottom views of the vector field are drawn in the left two figures. 3D PCA of the sliding
window embedding, which retains nearly all of the variance of the sliding window point cloud, is shown in
the bottom right plot (color figure online)

we parameterize the unit sphere in spherical coordinates (φ, θ) (where φ is azimuth
and θ is elevation from the north pole), we let ψt (φ, θ)α = (φ + dt,−π/2 + θdt),
and the let the observation G(φ, θ) to a point x̂ = (φ̂, θ̂ ) be

G(θ, φ) = cos−1
(
cos(φ) sin(θ) cos(φ̂) sin(θ̂)+ sin(φ) sin(θ) sin(φ̂) sin(θ̂)

+ cos(θ) cos(θ̂)
)

(4)

We repeat this here in Fig. 7. In this example, simple linear dimension reduction
via PCA is able to recover the most of the geometry of the sliding window point cloud,
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Fig. 8 An observation function on RP2 which is the geodesic distance from a point x̂ drawn in red (color
figure online)

though spherical coordinates are also possible in the Eilenberg–MacLane framework
(Perea 2018b).

One pitfall in this example is that the observation point x̂ cannot lie on the equator
or the north or south poles; that is, φ̂ /∈ {−π/2, 0, π/2}. In these cases, the helix
structure is flattened to a spiral,so the sliding window embedding degenerates to a
disc. This motivates the “derivative rank” condition, or condition 1 in Theorem 4.1.

Example 3.4 Projective plane RP2

We can extend the scheme that we used in Example 3.3 to the projective plane
RP

2 by taking a flow only on the upper hemisphere and performing the antipodal
identification at the equator x ∼ −x . The flow ψt is the same, but the observation
function changes to

G(θ, φ) = cos−1
∣∣∣cos(φ) sin(θ) cos(φ̂) sin(θ̂) + sin(φ) sin(θ) sin(φ̂) sin(θ̂)

+ cos(θ) cos(θ̂)

∣∣∣ (5)

Figure 8 shows this result, in which a single highly persistent point is present for
both H1 and H2 using Z/2 coefficients, but in which none are present for Z/3, which
is a correct signature of RP2. Interestingly, the quotient identification is visible in the
time series itself; the time series in Fig. 8 can be obtained from the time series in
Fig. 7 by reflecting values above the line y = π/2 across that line. This is because
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Fig. 9 An example of a time series resulting from a dense flow on the 2-holed torus, using the flat squared
Euclidean distance (Zorich 2006) from an observation point (shown as a red dot) (color figure online)

the maximum distance between any two points on RP2 is π/2. Additionally, both the
sphere time series and the Möbius loop time series (cos(t) + a cos(2t)) are visible in
Fig. 8. The time series starts off in a spiral, which fills out a disc, and this disc transitions
to a spiraling Möbius loop time series which fills out the strip. This visually reflects
the fact that RP2 is the connected sum of a disc and the boundary of a cross-cap. We
will use a similar intuition to explain the Klein bottle time series in Sect. 5.2.

Example 3.5 Genus 2 surface T#T

Finally, we show a time series whose sliding window embedding lies on the two
holed torus. We use an irrational flow with slope (dt, dt

√
3/2), with an observation

function as the squared flat metric on the fundamental domain (Zorich 2006) repre-
sented by an octagonwith opposite sides identified. Figure 9 shows the result, in which
four highly persistent dots are visible in H1 and a single persistent dot is visible in H2,
matching what is expected of the homology of a genus 2 surface.

4 Main theorem: characterizing good observation functions

As our main theoretical contribution, we now state more general conditions for good
observation functions. Let M be a compact manifold of dimension m, G : M → R a
smooth function, and X a vector field with flow ψt . Applying G to an integral curve
γp(t) = ψt (p) through a point p yields a real-valued function

gp := G ◦ γp

in t , the observation curve of p. For sufficiently nice G and X , one can recover
the point p from a finite uniform sampling of gp. More precisely, the Takens map
�N

τ : M → R
N+1 defined by

�N
τ (p) = (gp(0), gp(τ ), gp(2τ), . . . , gp(Nτ)

)
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is an embedding for some dimension N > 0 and flow time τ > 0. For such G and X
we say G is a good observation for X .

4.1 Motivation for the approach

As a simple example, take M = S1 = R/2πZ, ψt (x) = x + t , and G(x) = cos(x).
The point x is uniquely determined by sampling the two values gx (0) = cos(x) and
gx (π/2) = − sin(x) and the Takens map

�1
π/2(x) = (cos(x),− sin(x))

is an embedding, so G is a good observation.
On the other hand, the doubly periodic function G(x) = cos(2x) is not a good

observation function. Indeed, any integral curve gx (t) is invariant under a π -shift of x ,
asG cannot distinguish between any flow of x and x+π . In fact, the good observation
functions on S1 for the rotational dynamic are precisely ones with minimum period
2π

In higher dimensions the task of recovering p from gp becomes less clear. Consider
the torus T = S1 × S1 and G : T → R given by

G(x, y) = cos(x) + cos(y)

and ψt an irrational flow

ψt (x, y) = (x + αt, y + βt)

and thus for p = (x, y) ∈ T we have the observation curve

gp(t) = cos(x + αt) + cos(y + βt)

For G to be good, there must be a τ such that each p is uniquely determined by
sampling G along the integral curve γp at finitely many τ -steps. Since we are free to
shrink τ and increase N , it is natural to examine infinitesimal changes of G along the
flow ψt . The derivatives

gp(0) = cos(x) + cos(y)

g′
p(0) = −α sin(x) − β sin(y)

g(2)
p (0) = −α2 cos(x) − β2 cos(y)

g(3)
p (0) = α3 sin(x) + β3 sin(y)

123



302 B. Xu et al.

up to 3rd order yield the linear equation

⎛

⎜⎜⎝

1 1 0 0
−α2 −β2 0 0
0 0 −α −β

0 0 α3 β3

⎞

⎟⎟⎠

⎛

⎜⎜⎝

cos(x)
cos(y)
sin(x)
sin(y)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

gp(0)
g′
p(0)

g(2)
p (0)

g(3)
p (0)

⎞

⎟⎟⎠

Equivalently, over C, the linear system

⎛

⎜⎜⎝

1 1 1 1
iα −iα iβ −iβ

−α2 −α2 −β2 −β2

−iα3 iα3 −iβ3 iβ3

⎞

⎟⎟⎠

⎛

⎜⎜⎝

eix

e−i x

eiy

e−iy

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

gp(0)
g′
p(0)

g(2)
p (0)

g(3)
p (0)

⎞

⎟⎟⎠

has invertible Vandermonde matrix and one can solve for eix and eiy . Therefore (x, y)
is uniquely determined by g(k)

p (0)’s. Choosing τ small enough so that gp(τ ) is close
to the 3rd order Taylor polynomial of gp about 0, we see that p is uniquely determined
(modulo 2π ) by a τ -uniform finite sampling of gp.

4.2 Main theorem and proof

The above calculation illustrates our approach to determining whether G is good: by
studying the Taylor coefficients g(k)

p . Note that g(k)
p (t) is the k-fold derivation of X

applied to G at ψt (p), i.e. in Lie derivative notation,

g(k)
p (t) = Lk

XG(ψt (p)).

LX is the linear operator on tensor fields which measures infinitesimal change along
X , i.e. if T is a tensor then

LXT (p) = d

dt

∣∣∣∣
t=0

((ψ−t )∗Tψt (p))

Writing dG for the differential ofG, and∧ for exterior product, we now state the main
result:

Theorem 4.1 The Takens map �N
τ is an embedding for some N > 0 and flow time

τ > 0, if the following conditions hold:

1. For any point of p ∈ M there is an m-tuple J ∈ Z
m≥0 of nonnegative integers such

that the m-form

L∧J
X dG :=

∧

j∈J

L j
X dG
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is nonzero at some point on the integral curve γp(s).
2. For any pair of distinct points p, q ∈ M the observation curves gp(s) and gq(s)

are not identical.

Proof For �N
τ to be an immersion, the cotangent vectors

dG|p, d(G ◦ ψτ )|p, d(G ◦ ψ2τ )|p, . . . , d(G ◦ ψNτ )|p ∈ T ∗
p M

must span an m-dimensional space for all p ∈ M . Equivalently, for any point p ∈ M
there must be a strictly increasing m-tuple I = (i1, i2, . . . , im) ∈ Z

m≥0 of indices such
that the determinant m-form

∧
d(G ◦ ψikτ ) does not vanish at p, i.e.

ωI
p(τ ) :=

∧

ik∈I
d(G ◦ ψikτ )|p �= 0.

We require that I be strictly increasing because a wedge product containing identical
factors is zero.

The idea is to perform a convolution of the Taylor series of the cotangent curves
d(G◦ψik t ) and to use condition 1 above to choose sufficiently small τ so thatωI

p(τ ) �=
0 for some I . By compactness of M , one makes a uniform choice of small τ so that
�τ is immersive and each observation curve is distinguished on some integer multiple
of τ , thereby making �N

τ injective.
Let s ≥ 0 be a time parameter for p such that

L∧J
X dG

is nonzero at γp(s). Write p̃ = γp(s) and Jn for the set of all strictly increasing
m-tuples J = ( j1, j2, . . . , jm) with degree

j1 + j2 + · · · + jm = n

satisfying

L∧J
X dG| p̃ �= 0

Fix n > 0 to be the minimal integer for which Jn is nonempty (possible by condition
1 above).

Let A(t) be the m by (n + 1) matrix with (k, j)th entry

Ak, j (t) = i j−1
k (t − s) j−1

( j − 1)!

and L : Tp̃M → R
n+1 the linear map given by L j−1

X dG| p̃ in the j th coordinate,

L =
(
dG| p̃,L1

XdG| p̃, . . . ,Ln
XdG| p̃

)
.
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So the kth component of the composition A(t) ◦ L , viewed as an m-tuple of t-
dependent cotangent vectors, yields the nth order Taylor polynomial about t = s of
the cotangent curve d(G ◦ ψik t )|p:

A(t) ◦ L =
n∑

j=0

i jk (t − s) j

j ! L j
X dG| p̃.

By Cauchy-Binet formula applied to A(t) and L , the top exterior product

ωI
p(t) =

∧

ik∈I
d(G ◦ ψik t )|p

has nth order Taylor series expansion about t = s with nth coefficient

Cn = det(V )

an

∑

J∈Jn

|I J | · L∧J
X dG| p̃

where

• an is a nonzero constant depending only on n
• |I J | =∏ i jk−k+1

k

and

det(V ) =
∏

k<k′
(ik′ − ik) �= 0

is the nonzero determinant of the m × m Vandermonde matrix V with (k, j)th entry

Vk, j = ik
j−1

where we take 00 = 1.
By theminimality assumption onJn , all the lower degree Taylor coefficients, which

contain LK
X dG| p̃ = 0 for m-tuples K with degree strictly less than n,

C j = 0 for j < n

are zero. So the Taylor expansion of ωI
p(t) has the form

ωI
p(t) = (t − s)nCn + Rn

p(t)

where Rn
p(t) is the nth order Taylor error term with vanishing limit

lim
t→s

Rn
p(t)

(t − s)n
= 0
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For for suitable choice of I , there will be a dominating term in the sum over Jn

such that Cn is nonzero. For J̃ ∈ Jn the colexigraphically maximal element of Jn ,
let a be the maximal index such that ja < j̃a , for all J < J̃ . Choose I by making all
terms right of a − 1 large, so that

|I J | << |I J̃ |

for all J < J̃

∑

J∈Jn

|I J | · L∧J
X dG| p̃ �= 0.

So the nth Taylor coefficient

Cn �= 0

is nonzero. Hence wemay choose a time η > s sufficiently close to s so that the Taylor
error Rn

p(η) is small and the inequality

ωI
q(η) �= 0

holds for all q in a neighborhood of p, and this property remains invariant under
shrinking η closer to s. By compactness of M there is a finite collection of triples
(Ir , ηr , sr ) such that the collection of m-forms

{ωIr (ηr )}

do not all vanish at any given point of M and the cotangent vectors

{d(G ◦ ψikηr )|q}ik∈Ir
specified by Ir are linearly independent. Choose τ > 0 small enough so that there is
an integer multiple of τ lying in the interval (sr , ηr ) for each r . Then the Takens map
�N

τ is an immersion for all N > 0 bounding Ir and ηr/τ .
So �N

τ is locally injective and the difference map

�N
τ (p) − �N

τ (q)

does not vanish for all p �= q in an open neighborhood U of the diagonal in M × M ,
and this property is invariant under scaling N �→ Nd and τ �→ τ/d for an integer
d > 0 (with U fixed).

For distinct (p, q) ∈ M×M\U , wemay shrink τ so that gp and gq are distinguished
on some integer multiple of τ and �τ (p) �= �τ (q). By compactness of M × M \U ,
there is a uniform choice of τ and N making �N

τ injective, hence an embedding. ��
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Remark 4.2 While one can provide a lower bound for the dimension N needed to
yield a Takens embedding, the formula depends in a complicated way on G and X . In
practice, choosing sufficiently large N and small τ amounts to a dense sampling of a
discrete time series.

5 An application to surfaces via fourier theory

Now that we have our theory in hand, we can examine another class of observation
functions which are constructed from Fourier modes, in addition to our distance-based
observation functions in Sect. 3.

5.1 The torus

We start by characterizing all smooth observations G : T → R for a vector field X of
irrational flow

ψt (x, y) = (x + αt, y + βt)

yielding toroidal delay embedding. For G write the Fourier expansion

G(x, y) =
∑

(n,m)∈Z2

Ĝ(n,m) · exp(i(nx + my))

where Ĝ(n,m) ∈ C is the (n,m)th Fourier coefficient of G. Set

Supp Ĝ = {(n,m) ∈ Z
2 | Ĝ(n,m) �= 0}

the support of Ĝ.

Theorem 5.1 A smooth function G : T → R is a good observation for an irrational
winding if and only if the support Supp Ĝ of the Fourier coefficients generates Z

2 as
an abelian group.

Proof Write en,m = exp(i(nx + my)) for the (n,m)th Fourier basis element. The
k-fold Lie derivative Lk

XG has Fourier coefficient

̂Lk
XG(n,m) = i k(nα + mβ)k · Ĝ(n,m)

and thus Fourier expansion

Lk
XG =

∑

(n,m)∈Z2

i k(nα + mβ)k Ĝ(n,m) · en,m

Since α/β is irrational, the coefficients

cn,m = i · (nα + mβ)
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are nonvanishing and pairwise distinct. Therefore the Vandermonde matrix with
(n,m) × j th entry

(ckn,m)

is nonsingular and the projection

G ∗ en,m = Ĝ(n,m) · exp(i(nx + my))

can be written as an infinite sum

Ĝ(n,m) · exp(i(nx + my) =
∞∑

j=0

b jL j
XG (6)

Hence the values of Lk
XG on a point (u, v) ∈ T uniquely determine

Ĝ(n,m) · ei(nu+mv)

If Supp Ĝ generates Z
2, then there is some finite product

∏

(n j ,m j )∈Supp Ĝ
ei(n j u+m jv) = eiu

and thus u, and similarly v, are uniquely determined modulo 2π by the observation
curve G ◦ γu,v and condition 2 of Theorem 4.1 above is satisfied.

If dL j
XG ∧ dLk

XG vanishes at p for all j, k ≥ 0, then by Eq. 6 above, the 2-form

d(G ∗ en,m) ∧ d(G ∗ en′,m′) = det

(
n m
n′ m′

)
Ĝ(n,m)Ĝ(n′,m′) · en,men′,m′

also vanishes at p for all pairs (n,m), (n′,m′) ∈ Z
2. Thus

det

(
n m
n′ m′

)
= 0 for all (n,m), (n′,m′) ∈ Supp Ĝ

and Supp Ĝ cannot generate Z
2. So condition 1 of Theorem 4.1 is satisfied if Supp Ĝ

generates Z
2.

Conversely, suppose Supp Ĝ does not generate Z
2. By the classification of finitely

generated abelian groups, there is a Z-basis

(n1,m1), (n2,m2)

for Z
2 such that Supp Ĝ is generated by

a · (n1,m1), b · (n2,m2)
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where a and b are integers not both ±1. Then there is some (u, v) /∈ 2πZ
2 such that

(
an1 am1
bn2 bm2

)
·
(
u
v

)

takes values in 2πZ, so that exp(i(nu + mv)) = 1 for all (n,m) ∈ Supp Ĝ. So for
any point (x, y) ∈ T, (x + u, y + v) ∈ T is a distinct point with the same observation
curve, and no Takens map can distinguish between (x, y) and (x + u, y + v). ��
Remark 5.2 Theorem 5.1 can be strengthened to include rational windings. In this case
one cannot expect the delay mapping to recover all Fourier modes of an observation
function, but only those which are coprime to the slope of the winding.

Remark 5.3 For the irrational winding on the torus, the Koopman eigenfunctions are
given by the Fourier basis. The Vandermonde inversion in Eq. (6) above shows that
the Fourier modes of an observation are determined by its delay mapping. We are not
aware of such a connection between Takens and Koopman, though it seems natural in
this context.

By Theorem 5.1, whether or not G is good for an irrational flow depends only on
the support Supp Ĝ. The quasiperiodic function

g(t) = cos
√
2t + cos t (7)

is the observation of G(x, y) = cos(x) + cos(y) along the irrational flow (
√
2t, t)

on the planar torus T = R
2/2πZ

2. A point cloud densely sampled from the sliding
window SW10

1 g(t) coordinates given by 10 uniform shifts of g(t) yields a curve in
R
10 with toroidal persistence (Fig. 10).

5.2 The Klein bottle

As in our example in Sect. 2.4.1, we write the Klein bottle K as the quotient of the
torus T by the automorphism κ : (x, y) �→ (x + π,−y). The irrational flow on the T

is not κ-invariant since κ is orientation reversing in the y coordinate. To approximate
the shallow flow in Figs. 5 and 6 above, we construct a vector field which flows
cyclically along a repellor y = 0 and an attractor y = π by restricting a linear flow

Fig. 10 The observation function cos(x) + cos(y) for the same flow as Fig. 4
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to the fundamental domain [0, 2π ] × [0, π ] and flatten it out on the boundary circles
y = 0, π . For α, β ∈ R with 0 < α/β << 1 irrational, let Xε be a vector field on the
rectangle given by

Xε(x, y) =

⎧
⎪⎨

⎪⎩

(α, ρ(y)) 0 ≤ y ≤ ε

(α, β) ε < y ≤ π − ε

(α, ρ(π + ε − y)) π − ε < y ≤ π

(8)

where ρ is a smooth function on a neighborhood of [0, ε] with ρ(0) = 0, ρ(ε) = β

making Xε smooth. For example, ρ = β exp(1/(y/ε − 1)2 − 1). Then Xε extends
uniquely to a κ-invariant vector field on on T, and therefore induces a vector field on
K.

Theorem 5.4 Let G : T → R be a κ-invariant function onT. For fixed Nτ , the Takens
map

�N
τ : K → R

induced by G and Xε for arbitrarily small ε and slope α/β << 1 is an embedding if
and only if the following conditions hold:

1. G(x, π) and G(x, 0) have period π in x and do not differ by a shift
2. Supp Ĝ generates Z

2

Proof Suppose G is good for Xε . Since Xε flows horizontally at y = 0, π , condition
(1) must hold so that each point is uniquely determined by its observation curve.
Condition (2) must hold as well, since Xε is given by an irrational winding away from
the ε-neighborhood of y = 0, π and the same argument as in Theorem 5.1 above
applies for sufficiently shallow slope α/β because Nτ is fixed.

Conversely, suppose conditions (1) and (2) hold. Xε is given by an irrational flow
away from the ε-neighborhood of y = 0, π . Furthermore, any point in the ε-strip with
y �= 0, π may be flowed to a point where Xε has irrational slope. The same argument
as in Theorem 5.1 shows that the Takens map restricts to an embedding on y �= 0, π .

By condition 1, the observation curve of a point (x, y) where y = 0, π uniquely
determines x modulo π , and is periodic and therefore distinct from any observation
curve for y �= 0, π . So each point is uniquely determined by its observation curve as
per condition (2) of Theorem 4.1.

It remains to show that the Takens map is immersive at y = 0, π . If not, then
∂G
∂ y vanishes on the circles y = 0, π , a neighorhood about which �N

τ would fail to
immerse, a contradiction. ��

According to Theorem 5.4, the “simplest” κ-symmetric good observation is

G(x, y) = cos 2x + cos x sin y + cos y. (9)

Indeed, the Fourier coefficients of G are supported at (±2, 0), (±1,±1), (0,±1),
which generates Z

2. Along the limit cycles we have G(x, 0) = cos 2x + 1 and
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Fig. 11 The observation functionG(x, y) fromEq. 9 for the sameflowas Fig. 5. Indeed the good observation
function reproduces K, as evidenced by the persistence diagram

Fig. 12 Projective coordinates for a Klein bottle with observation function specified in Eq. 9. We plot the
first half in the second subplot, which traces a Möbius strip from its core to its boundary, shown in yellow.
Then, that boundary is glued to a second Möbius strip, which corresponds to the second half of the time
series, as shown on the right (color figure online)

G(x, 0) = cos 2x − 1, which are distinct and doubly periodic. Let g(t) be the time
series resulting from the flow from Eq. 8 composed with the observation G(x, y).
Then a point cloud densely sampled from the sliding window SW40

1 g(t) yields the
persistence of a Klein bottle, as shown in Fig.11. Furthermore, Fig. 12 shows that the
projective coordinates of this point cloud result in two Möbius strips connected along
their boundary, which is further evidence that the sliding window has recovered the
Klein bottle.

Intuitively, the cos 2x term is responsible for delay-mapping the limit cycles y =
0, π via a double covering. Without this term, the boundary G(x, 0) = 1, G(x, π) =
−1 along the bottom and top boundaries, respectively. Not only are these boundaries
no longer identified, but they also each map to a single point, turning the Klein bottle
into a sphere. The delay mapping of cos x sin y fills two Möbius strips in conjuction
with cos(2x), while the cos(y) term serves to “separate” the Möbius strips, as shown
in the right hand side of Fig. 12.

We can also see this by parameterizing the flow by a single variable t = x and
examining the time series directly. In this case, the time series is

g(t) = cos(2t) + cos(t) sin

(
α

β
t

)
+ sin

(
α

β
t

)
(10)

for ε < α
β
t < π − ε. Over small ranges of t , the sine terms are approximately

constant. The time series is then of the form cos(2t) + a cos(t), |a| < 1; that is,
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its sliding window embedding locally parameterizes the boundary of a Möbius strip
(Perea and Harer 2015). As it moves further along, a changes, and so it fills out the
strip.

6 Discussion

It is clear what circular and toroidal observations look like in the time domain, and as
we havementioned, there aremany applications that take advantage of this knowledge.
The theory developed in this paper has enabled us to move beyond this and to develop
examples of signals recovering other manifolds.

Also, by showing the existence of time series whose “attractors” are on twisted
spaces, we also provide further motivation for TDA time series users to move beyond
exclusively using Z/2Z in TDA. The latter is the default option across most applica-
tions of TDA in time series analysis, but it is possible that these pipelines are blind to
important features, as some of our examples show.

Moreover, just as circular and toroidal sliding window embeddings have interpre-
tations in terms of physical phenomena, the presence of Klein bottles, Moebius strips,
spheres, projective planes, etc, should also have practical meaning. It is unlikely that
one could recognize the significance of these time series in the wild without such
examples in hand, and being primed as such makes it more likely that we will be able
to discover physical examples where non-orientable state spaces are natural.

Finally, we note that not only do we have a method for producing time series
recovering other manifolds, which we have validated empirically using persistent
homology andEilenbergMacClane coordinates, but themethod is backed by a theorem
that indicates exactly when it will succeed/fail.
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