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Abstract
The Turaev–Viro invariants are a powerful family of topological invariants for dis-
tinguishing between different 3-manifolds. They are invaluable for mathematical
software, but current algorithms to compute them require exponential time. The invari-
ants are parameterized by an integer r ≥ 3. We resolve the question of complexity for
r = 3 and r = 4, giving simple proofs that the Turaev–Viro invariants for r = 3 can be
computed in polynomial time, but computing the invariant for r = 4 is #P-hard. More-
over, we describe an algorithm for arbitrary r , which is fixed-parameter tractable with
respect to the treewidth of the dual graph of the input triangulation. We show through
concrete implementation and experimentation that this algorithm is practical—and
indeed preferable—to the prior state of the art for real computation. The algorithm
generalises to every triangulated 3-manifold invariant defined from tensor network
contraction.
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1 Introduction

In geometric topology, testing homeomorphism (topological equivalence) is a fun-
damental algorithmic problem. However, beyond dimension two it is remarkably
difficult. In dimension three—the focus of this paper—an algorithm follows from
Perelman’s proof of the geometrization conjecture (Kleiner and Lott 2008), but it is
extremely intricate, its complexity is unknown and it has never been implemented.

As a result, practitioners in computational topology rely on simpler topological
invariants—computable properties of a topological space that can be used to tell dif-
ferent spaces apart. One of the best known invariants is homology, but for 3-manifolds
(the 3-dimensional generalisation of surfaces) this is weak: there are many topo-
logically different 3-manifolds that homology cannot distinguish. Therefore major
software packages in 3-manifold topology rely on invariants that are stronger but
more difficult to compute.

In the discrete setting, there exist large numbers of invariants for 3-manifolds defined
with the help of triangulations and state sums, i.e., large sums of weights associated
to colourings of the edges of a triangulation (Barrett and Westbury 1996; Turaev
2010). Among the most commonly used such state sum invariants are the Turaev–
Viro invariants (Turaev and Viro 1992).

They can be computed using the major software packages Regina (Burton et al.
1999) and Manifold Recogniser (Matveev 2003; Matveev et al. 2012), and they play
a key role in developing census databases, which are analogous to the well-known
dictionaries of knots (Burton 2007;Matveev 2003). However, current implementations
(Burton et al. 1999; Matveev et al. 2012) are based on backtracking searches, and
require exponential time.1

The purpose of this paper is threefold: (1) to introduce the Turaev–Viro invariants
(and their close relatives) to the wider computational topology community; (2) to
understand the complexity of computing these invariants; and (3) to develop new
algorithms that are suitable for practical software.

The Turaev–Viro invariants are parameterized by an integer r , r ≥ 3, and addi-
tionally depend on a 2r -th root of unity ζ = eiπs/r , 0 < s < 2r coprime to r ; we
denote these invariants by TVr . A typical algorithm for computing TVr takes as input
a triangulated 3-manifold, composed of n tetrahedra attached along their triangular
faces; we use n to indicate the input size. For all known algorithms, the difficulty of
computing TVr grows significantly as r increases (but in contrast, the difficulty is
essentially independent of ζ ).

Our main results are as follows.

– Kauffman and Lins (1991) state that for r = 3, 4 one can compute TVr via
“simple and efficient methods of linear algebra”, but they give no details on either
the algorithms or the complexity. We point out that in fact the situations for r = 3
and r = 4 are markedly different: computing TVr for orientable manifolds and
r = 3 can be done in polynomial time, but for r = 4 it is #P-hard.

1 For these reasons, this work focuses on the family of Turaev–Viro invariants, although our methods can
be applied to any other state sum invariants with very little effort. This is briefly explained in Sect. 5.
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– We give an explicit algorithm for computing TVr for general r that is fixed-
parameter tractable (FPT) in the treewidth of the dual graph of the input
triangulation. Specifically, for any fixed r and any class of input triangulations
whose dual graphs have bounded treewidth, the algorithm has running time lin-
ear in n. Furthermore, we show through comprehensive experimentation that this
algorithm is practical. That is, we implement it in the open-source software pack-
age Regina (Burton et al. 1999), run it through exhaustive census databases, and
find that this new FPT algorithm is comparable to—and often significantly faster
than—the prior backtracking algorithm.

– We sketch how this algorithm naturally generalises to all invariants which can be
expressed as a state sumover tensor network contractions. In particular,wedescribe
FPT-algorithms for all invariants arising from the very general Turaev–Viro–
Barrett–Westbury construction for triangulated 3-manifolds (Barrett andWestbury
1996).

– We give a new geometric interpretation of the formula for TVr , based on systems
of “normal arcs” in triangles. This generalises earlier observations of Kauffman
and Lins for r = 3 based on embedded surfaces (Kauffman and Lins 1991), and
offers an interesting potential for future algorithms based on Hilbert bases.

Proving #P-hardness for r = 4 and polynomial-time solvability for r = 3 is simple:
the algorithm for r = 3 derives from a known homological formulation (Matveev
2003), and the result for r = 4 is essentially Kirby and Melvin’s NP-hardness proof
for themore complexWitten–Reshetikhin–Turaev invariants (Kirby andMelvin 2004).
The latter result complements other hardness results for the Turaev–Viro invariants in
the literature: It is known that approximating Turaev–Viro invariants for triangulated
manifold is both #P-hard (Alagic andLo2017,Theorem5.1) anduniversal forquantum
computations (Alagic et al. 2010) for infinitely many values of r .

The FPT algorithm for general r is significant in that it is not just theoretical, but
also practical—and indeed preferable—for real software. It was previously known that
computing general tensor network contractions is FPT in the treewidth, see Markov
(2008) where this result is used to simulate quantum computations efficiently. More-
over, a specialised FPT result for TVr is explicitly mentioned in Burton and Downey
(2014). However, these prior result are purely theoretical, and lead to infeasibly large
constants in the running time if translated to a concrete algorithm.More generally, FPT
algorithms do not always translate well into practical software tools, and this paper
is significant in giving the first demonstrably practical FPT algorithm in 3-manifold
topology. The FPT algorithm is implemented in the open-source software package
Regina (Burton et al. 1999).

An extended abstract of this work has appeared in the proceedings of ICALP
2015 (Downey et al. 2015).

2 Preliminaries

Let M be a closed 3-manifold. A generalised triangulation of M is a collection of
n abstract tetrahedra Δ1, . . . , Δn equipped with affine maps that identify (or “glue
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together”) their 4n triangular faces in pairs, so that the underlying topological space
is homeomorphic to M .

In particular, as a consequence of the face identifications, it is possible that several
vertices of the same tetrahedron may be identified together (and likewise for edges
and triangles). Indeed, it is common in practical applications to have a one-vertex
triangulation, in which all vertices of all tetrahedra are identified to a common point. In
general, the 4n tetrahedron vertices are partitioned into equivalence classes according
to how they are identified together; we refer to each such equivalence class as a single
vertex of the triangulation, and likewise for edges and triangles.

Generalised triangulations are widely used across major 3-manifold software pack-
ages. They are (as the name suggests) more general than simplicial complexes, which
allows them to express a rich variety of different 3-manifolds using very few tetra-
hedra. For instance, with just n ≤ 11 tetrahedra one can create 13,400 distinct prime
orientable 3-manifolds (Burton 2011; Matveev 2003).

2.1 The Turaev–Viro invariants

Let T be a generalised triangulation of a closed 3-manifold M , and let r ≥ 3 be an
integer. We define the Turaev–Viro invariant TVr (T) as follows.

Let V , E , F and T denote the set of vertices, edges, triangles and tetrahedra
respectively of the triangulation T. Let I = {0, 1/2, 1, 3/2, . . . , (r − 2)/2}; note
that |I | = r − 1. We define a colouring of T to be a map θ : E → I ; that is, θ

“colours” each edge ofTwith an element of I . A colouring θ is admissible if, for each
triangle of T, the three edges e1, e2, and e3 bounding the triangle satisfy:

– the parity condition θ(e1) + θ(e2) + θ(e3) ∈ Z;
– the triangle inequalities θ(e1) ≤ θ(e2) + θ(e3), θ(e2) ≤ θ(e1) + θ(e3), and

θ(e3) ≤ θ(e1) + θ(e2); and
– the upper bound constraint θ(e1) + θ(e2) + θ(e3) ≤ r − 2.

More generally, we refer to any triple (i, j, k) ∈ I × I × I satisfying these three
conditions as an admissible triple of colours.

For each admissible colouring θ and for each vertex v ∈ V , edge e ∈ E , triangle
f ∈ F or tetrahedron t ∈ T , we define weights |v|θ , |e|θ , | f |θ , |t |θ ∈ C. The precise
definition of these weights is rather involved and explained in detail below.

Our notation differs slightly from Turaev and Viro (1992); most notably, Turaev
and Viro do not consider triangle weights | f |θ , but instead incorporate an additional
factor of | f |1/2θ into each tetrahedron weight |t |θ and |t ′|θ for the two tetrahedra t and
t ′ containing f . This choice of notation simplifies the notation and avoids unnecessary
(but harmless) ambiguities when taking square roots.

Let ζ = eiπs/r ∈ C, 0 < s < 2r , gcd(r , s) = 1. Note that this implies that ζ is a
(2r)th root of unity, and that ζ 2 is a primitive r th root of unity; that is, (ζ 2)k �= 1 for
k = 1, . . . , r −1. For each positive integer i , we define [i] = (ζ i −ζ−i )/(ζ −ζ−1) and,
as a special case, [0] = 1.Wenext define the “bracket factorial” [i]! = [i] [i−1] . . . [0].
Note that [r ] = 0, and thus [i]! = 0 for all i ≥ r .
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Fig. 1 Edge colours of a
tetrahedron

We give every vertex constant weight

|v|θ =
∣
∣ζ − ζ−1

∣
∣
2

2r
,

and to each edge e of colour i ∈ I (i.e., for which θ(e) = i) we give the weight

|e|θ = (−1)2i · [2i + 1].

A triangle f whose three edges have colours i, j, k ∈ I is assigned the weight

| f |θ = (−1)i+ j+k · [i + j − k]! · [i + k − j]! · [ j + k − i]!
[i + j + k + 1]! .

Note that the parity condition and triangle inequalities ensure that the argument inside
each bracket factorial is a non-negative integer.

Finally, let t be a tetrahedron with edges colours i0, i1, i2, i3, i4, i5 as indicated in
Fig. 1. In particular, the four triangles surrounding t have colours (i0, i1, i3), (i0, i2, i4),
(i1, i2, i5) and (i3, i4, i5), and the three pairs of opposite edges have colours (i0, i5),
(i1, i4) and (i2, i3). We define

τφ(t, z) = [z − i0 − i1 − i3]! · [z − i0 − i2 − i4]! · [z − i1 − i2 − i5]!
· [z − i3 − i4 − i5]!,

κφ(t, z) = [i0 + i1 + i4 + i5 − z]! · [i0 + i2 + i3 + i5 − z]! · [i1 + i2 + i3 + i4 − z]!

for all integers z such that the bracket factorials above all have non-negative arguments;
equivalently, for all integers z in the range z− ≤ z ≤ z+ with

z− = max{i0 + i1 + i3, i0 + i2 + i4, i1 + i2 + i5, i3 + i4 + i5};
z+ = min{i0 + i1 + i4 + i5, i0 + i2 + i3 + i5, i1 + i2 + i3 + i4}.

Note that, as before, the parity condition ensures that the argument inside each bracket
factorial above is an integer. We then declare the weight of tetrahedron t to be

|t |φ =
∑

z−≤z≤z+

(−1)z · [z + 1]!
τφ(t, z) · κφ(t, z)

,
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Note that all weights are polynomials in ζ with rational coefficients.
Using these weights, we define the weight of the colouring to be

|T|θ =
∏

v∈V

|v|θ ×
∏

e∈E

|e|θ ×
∏

f ∈F

| f |θ ×
∏

t∈T

|t |θ , (1)

and the Turaev–Viro invariant to be the sum over all admissible colourings

TVr (T) =
∑

θ admissible

|T|θ . (2)

Turaev and Viro (1992) show that TVr (T) is indeed an invariant of the manifold;
that is, ifT andT′ are generalised triangulations of the same closed 3-manifold M , then
TVr (T) = TVr (T

′) for all r . Although TVr (T) is defined on the complex numbers
C, it always takes a real value (it is equal to the square of the modulus of a Witten–
Reshetikhin–Turaev invariant) (Walker 1991).

In Sect. 5 we describe the philosophy of the Turaev–Viro–Barrett–Westbury con-
struction of topological invariants (Barrett and Westbury 1996), which substantially
generalises the Turaev–Viro model.

2.2 Treewidth and parameterized complexity

Throughout this paper we always refer to nodes and arcs of graphs, to clearly distin-
guish these from the vertices and edges of triangulations.

Robertson and Seymour (1986) introduced the concept of the treewidth of a graph,
which nowplays amajor role in parameterized complexity. Here, we adapt this concept
to triangulations in a straightforward way.

Definition 1 Let T be a generalised triangulation of a 3-manifold, and let T be the set
of tetrahedra in T. A tree decomposition (X , {Bτ }) of T consists of a tree X and bags
Bτ ⊆ T for each node τ of X , for which:

– each tetrahedron t ∈ T belongs to some bag Bτ ;
– if a face of some tetrahedron t1 ∈ T is identified with a face of some other
tetrahedron t2 ∈ T , then there exists a bag Bτ with t1, t2 ∈ Bτ ;

– for each tetrahedron t ∈ T , the bags containing t correspond to a connected subtree
of X .

The width of this tree decomposition is defined as max |Bτ | − 1. The treewidth of T,
denoted tw(T), is the smallest width of any tree decomposition of T.

The relationship between this definition and the classical graph-theoretical notion
of treewidth is simple: tw(T) is the treewidth of the dual graph of T, the 4-valent
multigraph whose nodes correspond to tetrahedra of T and whose arcs represent pairs
of tetrahedron faces that are identified together.

Figure 2 shows the dual graph of a 9-tetrahedra triangulation of a 3-manifold, along
with a possible tree decomposition. The largest bags have size three, and so the width
of this tree decomposition is 3 − 1 = 2.
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Fig. 2 The dual graph and a tree decomposition of a 3-manifold triangulation

Definition 2 Anice tree decompositionof a generalised triangulationT is a tree decom-
position (X , {Bτ }) of T whose underlying tree X is rooted, and where:

– The bag Bρ at the root of the tree is empty (Bρ is called the root bag);
– If a bag Bτ has no children, then |Bτ | = 1 (such a Bτ is called a leaf bag);
– If a bag Bτ has two children Bσ and Bμ, then Bτ = Bσ = Bμ (such a Bτ is called
a join bag);

– Every other bag Bτ has precisely one child Bσ , and either:

• |Bτ | = |Bσ | + 1 and Bτ ⊃ Bσ (such a Bτ is called an introduce bag), or
• |Bτ | = |Bσ | − 1 and Bτ ⊂ Bσ (such a Bτ is called a forget bag).

Given a tree decomposition of a triangulation T of width k and O(n) bags, we can
convert this in O(n) time into a nice tree decomposition of T that also has width k and
O(n) bags (Kloks 1994).

3 Algorithms for computing Turaev–Viro invariants

All of the algorithms in this paper use exact arithmetic. This is crucial if we wish to
avoid floating-point numerical instability, since computing TVr may involve expo-
nentially many arithmetic operations.

We briefly describe how this exact arithmetic works. Since all weights in the def-
inition of TVr are rational polynomials in ζ = eiπs/r , 0 < s < 2r , all arithmetic
operations remain within the rational field extensionQ(ζ ). If ζ is a primitive nth root
of unity then this field extension is called the nth cyclotomic field. This in turn is
isomorphic to the polynomial fieldQ[X ]/Φn(X), where Φn(X) is the nth cyclotomic
polynomial with degree ϕ(n) (Euler’s totient function). Therefore we can implement
exact arithmetic using degree ϕ(n) polynomials over Q.

If r is odd and s is even, then ζ is a primitive r th root of unity, and Q(ζ ) ∼=
Q[X ]/Φr (X). Otherwise ζ is a primitive (2r)th root of unity, and Q(ζ ) ∼= Q[X ]/
Φ2r (X). In this paper we give our complexity results in terms of arithmetic operations
in Q(ζ ).

Let ζ be an n-root of unity and Q(ζ ) be the nth cyclotomic field. We represent
elements of Q(ζ ) by polynomials of degree at most ϕ(n), with rational coefficients,
using the isomorphismQ(ζ ) ∼= Q[X ]/Φn(X). Asymptotically, the Euler totient func-
tion satisfies ϕ(n) = Θ(n). Additions of two polynomials of degree at most n are
performed in O(n) operations in Q, and multiplications and divisions are performed
in O(M(n)) operations in Q, with M(n) = O(n log n log log n) (Cantor et al. 1991).
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Hence, for fixed r , Turaev–Viro invariants can be computed in O(N (r) · r log r
log log r) operations in Q using exact arithmetic over cyclotomic fields, where N (r)

denotes the number of arithmetic operations needed to compute TVr .

3.1 The backtracking algorithm for computing TVr

There is a straightforward but slow algorithm to compute TVr for arbitrary r . The
core idea is to use a backtracking algorithm to enumerate all admissible colourings
of edges, and compute and sum their weights. Both major software packages that
compute Turaev–Viro invariants—the Manifold Recogniser (Matveev et al. 2012) and
Regina (Burton et al. 1999)—currently employ optimised variants of this.

Let T be a 3-manifold triangulation, with � edges e1, . . . , e�. A simple Euler char-
acteristic argument gives � = n + v where n is the number of tetrahedra and v is the
number of vertices in T. Therefore � ∈ Θ(n).

To enumerate colourings, since each edge admits r − 1 possible colours, the back-
tracking algorithm traverses a search tree of O((r − 1)�) nodes: a node at depth i
corresponds to a partial colouring of the edges e1, . . . , ei , and each node has degree
r −1 (one edge per colour). Each leaf on the tree represents a (possibly not admissible)
colouring of all the edges. At each node we maintain the weight of the current partial
colouring, and updates this weight as we traverse the tree. If we reach a leaf whose
colouring is admissible, we add this weight to our total.

Lemma 1 If we sort the edges e1, . . . , e� by decreasing degree, the backtracking algo-
rithm terminates in O((r − 1)�) arithmetic operations in Q(ζ ).

Proof The proof is simple. The main complication is to ensure that updating the
weight of the current partial colouring takes amortised constant time. For this we use
Chebyshev’s inequality, plus the observation that the average edge degree is ≤ 6.

In more detail, suppose that the edges e1, . . . , e� are ordered by decreasing degree.
Let deg(ei ) be the degree of edge ei . Changing the colour of ei affects the colours
of the deg(ei ) triangles and deg(ei ) tetrahedra containing ei . Hence the update of
the current partial colouring weight is performed in O(deg(ei )) arithmetic operations
in Q(ζ ). The total number of arithmetic operations performed by the algorithm is
consequently O(

∑

i (r − 1)i deg(ei )). Following an Euler characteristic argument, a
triangulation of a closed3-manifoldwith � edges andv vertices hasn = �−v tetrahedra
and, consequently, the average degree of an edge is 6(� − v)/� and thus constant.
Considering that the sequence ((r − 1)i )i is increasing and deg ei is decreasing, we
conclude using Chebyshev’s sum inequality that

O

(
∑

i

(r − 1)i deg(ei )

)

= O

(
∑

i

(r − 1)i

)

= O((r − 1)�).

To obtain a bound in the number of tetrahedra n, we note that a closed and con-
nected 3-manifold triangulation with n > 2 tetrahedra must have v ≤ n + 1 vertices.
Combined with n = �−v above, we have a worst-case running time of O((r −1)2n+1)

arithmetic operations in Q(ζ ).
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3.2 A polynomial-time algorithm for r = 3

Throughout this section, T denotes an n-tetrahedra triangulation of an orientable 3-
manifold M .

Remark 1 We introduce homology with coefficients in the field Z2. A generalised
triangulationT, after gluing, contains a set of vertices (dimension 0), edges (dimension
1), triangles (dimension 2) and tetrahedra (dimension 3) with incidence relations.
The group of d-chains of T, d ∈ {0, . . . , 3}, denoted by Cd(T,Z2) is the group of
formal sums of d-simplices with Z2 coefficients. The dth boundary operator is a
linear operator ∂d : Cd(T,Z2) → Cd−1(T,Z2) that assigns to a d-face the alternate
sum of its boundary faces. The kernel of ∂d , denoted by Zd(T,Z2), is the group
of d-cycles and the image of ∂d , denoted by Bd−1(T,Z2), is the group of (d − 1)-
boundaries. The fundamental property of homology is that ∂d ◦ ∂d+1 = 0, and we
define the dth homology group Hd(T,Z2) of T to be the quotient Hd(T,Z2) =
Zd(T,Z2)/Bd(T,Z2). It is a finite dimensional Z2-vector space and we denote its
dimension by βd(T,Z2).

For a more thorough introduction into homology theory, see Munkres (1984).

There are two Turaev–Viro invariants for r = 3, at ζ = eiπ/3 and at ζ = eiπ2/3. In
both cases the value of TV3(T) is closely related to H2(M,Z2), the 2- dimensional
homology group of M with Z2 coefficients. H2(M,Z2) is a Z2-vector space whose
dimension is the second Betti number β2(M,Z2). Its elements are (for our purposes)
equivalence classes of 2-cycles, called homology classes, which can be represented
by 2-dimensional triangulated surfaces S embedded in T.

The Euler characteristic of a triangulated surface S, denoted by χ(S), is χ(S) =
v − e + f , where v, e and f denote the number of vertices, edges and triangles
of S respectively. We define the Euler characteristic χ(c) of a 2-cycle c to be the
Euler characteristic of the embedded surface it represents. Given T, the dimension
β2(M,Z2) of H2(M,Z2) may be computed in O(poly(n)) operations.

The following result is well known (Matveev 2003):

Proposition 1 Let M be a closed orientable 3-manifold. If M contains a 2-cycle with
odd Euler characteristic, then TV3(M) = the order of H2(M,Z2) at ζ = eiπ2/3 and
TV3(M) = 0 at ζ = eiπ/3. Otherwise we have TV3(M) = the order of H2(M,Z2)

for both ζ = eiπ/3 and ζ = eiπ2/3.

Consequently TV3(M) = 2β2(M,Z2) at ζ = eiπ2/3, and one can compute TV3(M)

in this case in polynomial time. The parity of the Euler characteristic of 2-cycles
does not change within a homology class; moreover, given two 2-cycles c and c′,
χ(c + c′) ≡ χ(c) + χ(c′) mod 2. Consequently, for ζ = eiπ/3, one can check
whether TV3(M) = 0 or TV3(M) = the order of H2(M,Z2) by computing the Euler
characteristic of a cycle in each of the β2(M,Z2) homology classes that generate
H2(M,Z2). Because β2(M,Z2) = O(n), this leads to a polynomial time algorithm
also.
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3.3 #P-hardness of TV4

The complexity class #P is a function class that counts accepting paths of a non-
deterministic Turing machine (Valiant 1979). Informally, given an NP decision
problem C asking for the existence of a solution, its #P analogue #C is a count-
ing problem asking for the number of such solutions. A problem is #P-hard if every
problem in #P polynomially reduces to it. For example, the problem #3S AT , which
asks for the number of satisfying assignments of a 3C N F formula, is #P-hard.

Naturally, counting problems are “harder” than their decision counterpart, and so
#P-hard problems are at least as hard as NP-complete problems—specifically, #P-
complete problems are as hard as any problem in the polynomial hierarchy (Toda
1991). Hence proving #P-hardness is a strong complexity statement.

Kirby and Melvin (2004) prove that computing the Witten–Reshetikhin–Turaev
invariant τr is #P-hard for r = 4. This invariant τr is a more complex 3-manifold
invariant which is closely linked to the Turaev–Viro invariant TVr at ζ = eiπ/r by the
formula TVr (M) = |τr (M)|2. Although computing TVr is “easier” than computing
τr , we can use the Kirby-Melvin hardness proof to fit our purposes.

To prove their result, Kirby and Melvin reduce the problem of counting the zeros
of a cubic form to the computation of τ4. Given a cubic form

c(x1, . . . , xn) =
∑

i

ci xi +
∑

i, j

ci j xi x j +
∑

i, j,k

ci jk xi x j xk

in n variables over Z2 and with #c zeros, they define a triangulation of a 3-manifold
Mc with O(poly(n)) tetrahedra satisfying τ4(Mc) = 2#c − 2n and hence TVr =
(2#c − 2n)2.

Consequently, counting the zeros of c(x1, . . . , xn) reduces to computing τ4(Mc),
and so computing TV4 determines #c up to a± sign ambiguity (depending on whether
or not c admits more than half of the input as zeros).

Establishing the existence of a zero for a cubic form is an NP-complete prob-
lem, which implies that counting the number of zeros is #P-complete. Consequently,
computing τ4 is #P-hard. Kirby and Melvin prove this claim by reducing #3S AT to
the problem of counting the zeros of a cubic form; moreover, we observe that their
construction ensures that this cubic form admits more than half of its inputs as zeros.

We recall the reduction of #3S AT to the problem of counting the number of zeros
of a cubic form over Z2 found in Kirby and Melvin (2004). Given a 3C N F formula
over variables x1, . . . , xn :

C = C1 ∧ · · · ∧ Cm with C j = x j1 ∨ x j2 ∨ x j3

and xi is either xi or its negation ¬xi the problem #3S AT consists in counting the
number of assignments of “true” and “false” to the variables x1, . . . , xn satisfying the
formula.

To each form C j = x j1 ∨ x j2 ∨ x j3 we assign a cubic equation q j overZ2 by setting
“true” = 0 and “false” = 1, and replacing xi by the variable xi and ¬xi by (1 − xi ).
For example, a form (¬xi ∧ ¬x j ∧ xk) leads to the equation (1− xi )(1− x j )xk = 0.
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An assignment satisfies C j if and only if it cancels q j , hence the number of solution
to the system of equations {q1(x1, . . . , xn) = 0, . . . , qm(x1, . . . , xn) = 0} is equal to
#c, the number of satisfying assignments for C .

We turn each cubic equation into two quadratic equations by introducing a new
variable xi j for each monomial xi x j xk of degree 3 and a new quadratic equation
xi j − xi x j = 0, and by replacing the product xi x j xk by xi j xk . We obtain a set of m′
equations {q1(x1, . . . , xn) = 0, . . . , qm′(x1, . . . , xn′) = 0} in n′ variables over Z2,
with m < m′ ≤ 2m and n < n′ ≤ 2n. The number of solutions of this system remains
#c.

Finally, define the following cubic form c by introducing m′ extra variables z1, . . . ,
zm′ :

Q =
m′
∑

i=1

zi qi (x1, . . . , xn′).

The number of zeros of Q is equal to 2m′
#c +2m′−1(2n′ −#c) ≥ 1

22
n′+m′

. Because Q
is defined on n′ + m′ variables it admits more than half of its input as zeros. Finally,
#3S AT reduces to counting the number of zeros of a cubic form which admits at least
half of its input as zeros.

Thus the same reduction process as for τ4 applies for TV4, and so:

Corollary 1 Computing TV4 at ζ = eiπ/4 is #P-hard.

Remark 2 Very recently, a subset of the authors refined this complexity study of TV4
in Maria and Spreer (2017). More precisely, given an n-tetrahedra triangulation T
of a 3-manifold M , they present an algorithm to compute TV4(M) in running time
O(2β1(M,Z2)n3). Note that, in particular, the exponential part of the running time is
independent of the triangulation T.

However, the methods to obtain this result fail to be applicable to TVr , r > 4.

4 A fixed-parameter tractable algorithm for Turaev–Viro invariants

Here, we present an explicit algorithm for computing the Turaev–Viro invariants TVr

of a 3-manifold triangulation, r fixed, which is FPT in the treewidth of the dual graph
of the input triangulation. As is common for treewidth-based methods, the algorithm
involves dynamic programming over a tree decomposition (X , {Bτ }).We first describe
the data that we compute and store at each bag Bτ , and then give the algorithm itself.

Our first step is to reorganise the formula for TVr (T) to be a product over tetrahedra
only. This makes it easier to work with “partial colourings” corresponding to subsets
of edges T.

Definition 3 Let T be a generalised triangulation of a 3-manifold, and let V , E , F
and T denote the vertices, edges, triangles and tetrahedra of T respectively. For each
vertex x ∈ V , each edge x ∈ E and each triangle x ∈ F , we arbitrarily choose some
tetrahedron Δ(x) that contains x .
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Now consider the definition of TVr (T). For each admissible colouring θ : E → I
and each tetrahedron t ∈ T , we define the adjusted tetrahedron weight |t |′θ :

|t |′θ = |t |θ ×
∏

v∈V
Δ(v)=t

|v|θ ×
∏

e∈E
Δ(e)=t

|e|θ ×
∏

f ∈F
Δ( f )=t

| f |θ .

It follows from Eq. (1) that the full weight of the colouring θ is just

|T|θ =
∏

t∈T

|t |′θ .

Notation 1 Let X be a rooted tree. For any non-root node τ of X, we denote the parent
node of τ by τ̂ . For any two nodes σ, τ of X, we write σ ≺ τ if σ is a descendant node
of τ .

Definition 4 Let T be a generalised triangulation of a 3-manifold, and let V , E , F and
T denote the vertices, edges, triangles and tetrahedra of T respectively. Let (X , {Bτ })
be a nice tree decomposition of T. For each node τ of the rooted tree X , we define the
following sets:

– Tτ ⊆ T is the set of all tetrahedra that appear in bags beneath τ but not in the bag
Bτ itself. More formally: Tτ = (

⋃

σ≺τ Bσ )\Bτ .
– Fτ ⊆ F is the set of all triangles that appear in some tetrahedron t ∈ Tτ .
– Eτ ⊆ E is the set of all edges that appear in some tetrahedron t ∈ Tτ .
– E∗

τ ⊆ Eτ is the set of all edges that appear in some tetrahedron t ∈ Tτ and also
some other tetrahedron t ′ /∈ Tτ ; we refer to these as the current edges at node τ .

We can make the following immediate observations:

Lemma 2 If τ is a leaf of the tree X, then we have Tτ = Fτ = Eτ = E∗
τ = ∅. If τ is

the root of the tree X, then we have Tτ = T , Fτ = F, Eτ = E, and E∗
τ = ∅.

The key idea is, at each node τ of the tree, to store explicit colours on the “current”
edges e ∈ E∗

τ and to aggregate over all colours on the “finished” edges e ∈ Eτ\E∗
τ .

For this we need some further definitions and notation.

Definition 5 Again let T be a generalised triangulation of a 3-manifold, and let
(X , {Bτ }) be a nice tree decomposition of T. Fix some integer r ≥ 3, and consider the
set of colours I = {0, 1/2, 1, 3/2, . . . , (r −2)/2} as used in defining the Turaev–Viro
invariants TVr .

Let τ be any node of X . We examine “partial colourings” that only assign colours
to the edges in Eτ or E∗

τ :

– Consider any colouring θ : Eτ → I . We call θ admissible if, for each triangle
in Fτ , the three edges e, f , g bounding the triangle yield an admissible triple
(θ(e), θ( f ), θ(g)).

– Define Ψτ to be the set of all colourings ψ : E∗
τ → I that can be extended to any

admissible colouring θ : Eτ → I .
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– Consider any colouringψ ∈ Ψτ (soψ : E∗
τ → I ).Wedefine the “partial invariant”

TVr (T, τ, ψ) =
∑

θ admissible
θ=ψ on E∗

τ

∏

t∈Tτ

|t |′θ .

Essentially, the partial invariant TVr (T, τ, ψ) considers all admissible ways θ of
extending the colouring ψ from the current edges E∗

τ to also include the “finished”
edges in Eτ , and then sums the partial weights |t |′θ for all such extensions θ using only
the tetrahedra in Tτ .

We can now give a description of our algorithm for TVr .

Algorithm 1 LetTbe a generalised triangulation of a 3-manifold.We computeTVr (T)

for given r and a given 2r -th root of unity ζ as follows.
Build a nice tree decomposition (X , {Bτ }) of T. Then work through each node τ

of X from the leaves of X to the root, and compute Ψτ and TVr (T, τ, ψ) for each
ψ ∈ Ψτ as follows.

1. If τ is a leaf bag, then E∗
τ = Eτ = ∅, Ψτ contains just the trivial colouring ψ on

∅, and TVr (T, τ, ψ) = 1.
2. If τ is some other introduce bag with child node σ , then Tτ = Tσ . This means that

Ψτ = Ψσ , and for each ψ ∈ Ψτ we have TVr (T, τ, ψ) = TVr (T, σ, ψ).
3. If τ is a forget bag with child node σ , then Tτ = Tσ ∪{t} for the unique “forgotten”

tetrahedron t ∈ Bτ\Bσ . Moreover, E∗
τ extends E∗

σ by including the six edges of t
(if they were not already present).
For each colouringψ ∈ Ψσ , enumerate all possible ways of colouring the six edges
of t that are consistent with ψ on any edges of t that already appear in E∗

σ , and
are admissible on the four triangular faces of t . Each such colouring on t yields
an extension ψ ′ : E∗

τ → I of ψ : E∗
σ → I . We include ψ ′ in Ψτ , and record the

partial invariant TVr (T, τ, ψ ′) = TVr (T, σ, ψ).
4. If τ is a join bag with child nodes σ1, σ2, then Tτ is the disjoint union Tσ1 ∪̇ Tσ2 .

Here E∗
τ is a subset of E∗

σ1
∪ E∗

σ2
.

For each pair of colourings ψ1 ∈ Ψσ1 and ψ2 ∈ Ψσ2 , if ψ1 and ψ2 agree on the
common edges in E∗

σ1
∩ E∗

σ2
then record the pair (ψ1, ψ2).

Each such pair yields a “combined colouring” in Ψτ , which we denote by ψ1 ·
ψ2 : E∗

τ → I ; note that different pairs (ψ1, ψ2) might yield the same colouring
ψ1 · ψ2 since some edges from E∗

σ1
∪ E∗

σ2
might not appear in E∗

τ . Then Ψτ

consists of all such combined colourings ψ1 · ψ2 from recorded pairs (ψ1, ψ2).
Moreover, for each combined colouring ψ ∈ Ψτ we compute the partial invariant
TVr (T, τ, ψ) by aggregating over all duplicates:

TVr (T, τ, ψ) =
∑

(ψ1,ψ2) recorded
ψ1·ψ2=ψ

TVr (T, σ1, ψ1) · TVr (T, σ2, ψ2).

Once we have processed the entire tree, the root node ρ of X has E∗
ρ = ∅, Ψρ

contains just the trivial colouring ψ on ∅, and TVr (T, ρ, ψ) for this trivial colouring
is equal to the Turaev–Viro invariant TVr (T).
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The time complexity of this algorithm is simple to analyse. Each leaf bag or intro-
duce bag can be processed in O(1) time (of course for the introduce bag wemust avoid
a deep copy of the data at the child node). Each forget bag produces |Ψτ | ≤ (r −1)|E∗

τ |
colourings, each of which takes O(|E∗

τ |) time to analyse.

Naïvely, each join bag requires us to process |Ψσ1 | · |Ψσ2 | ≤ (r −1)|E
∗
σ1

|+|E∗
σ2

| pairs
of colourings (ψ1, ψ2). However, we can optimise this. Since we are only interested
in colourings that agree on E∗

σ1
∩ E∗

σ2
, we can first partition Ψσ1 and Ψσ2 into buckets

according to the colours on E∗
σ1

∩ E∗
σ2
, and then combine pairs from each bucket

individually. This reduces our work to processing atmost (r −1)|E
∗
σ1

∪E∗
σ2

| pairs overall.
Each pair takes O(|E∗

τ |) time to process, and the preprocessing cost for partitioning

Ψσi is O(|Ψσi | · log |Ψσi | · |E∗
σi

|) = O((r − 1)|E
∗
σi

| · |E∗
σi

|2 log r).
Suppose that our tree decomposition has width k. At each tree node τ , every edge

in E∗
τ must belong to some tetrahedron in the bag Bτ , and so |E∗

τ | ≤ 6(k + 1).
Likewise, at each join bag described above, every edge in E∗

σ1
or E∗

σ2
must belong

to some tetrahedron in the bag Bσi and therefore also the parent bag Bτ , and so
|E∗

σ1
∪ E∗

σ2
| ≤ 6(k + 1). From the discussion above, it follows that every bag can be

processed in time O
(

(r − 1)6(k+1) · k2 log r
)

, and so:

Theorem 1 Given a generalised triangulation T of a 3-manifold with n tetrahedra,
and a nice tree decomposition of T with width k and O(n) bags, Algorithm 1 computes
TVr (T) in O(n · (r − 1)6(k+1) · k2 log r) arithmetic operations in Q(ζ ).

Theorem1 shows that, if we have access to a tree decomposition of smallwidth, then
computing TVr , r fixed, becomes a linear time procedure, even for large inputs. This
of course is the main benefit of fixed-parameter tractability. In our setting, however,
we have an added advantage: TVr is a topological invariant, and does not depend on
our particular choice of triangulation.

Therefore, if we are faced with a large treewidth triangulation, we can retriangulate
the manifold (for instance, using bistellar flips and related local moves), in an attempt
to make the treewidth smaller. While this is not always possible in theory (Huszár
2018), it is extremely effective in practice, as seen in Sect. 6.

Once we have a triangulation with dual graph of small treewidth, our approach
relies on our ability to actually compute explicit small-width tree decompositions
efficiently. Computing the treewidth of an arbitrary graph is NP-hard (Arnborg et al.
1987), but fixed-parameter tractable with respect to the treewidth (Bodlaender 1996).
Consequently, together with Theorem 1, computing the Turaev–Viro invariant TVr (T)

of a triangulationT is fixed-parameter tractable in the treewidth of the dual graph ofT.
The running time of the exact algorithm (Bodlaender 1996) is kO(k3)n for treewidth-k
graphs, which makes it intractable in practice. However, efficient approximation algo-
rithms for tree decomposition exist (Amir 2010; Bodlaender et al. 2016; Feige et al.
2008). In particular, the 5-approximation algorithm of Bodlaender et al. (2016) has
complexity 2O(k)n, and consequently produces tree decompositions of width reason-
ably close to the actual treewidth while maintaining a singly exponential complexity
in the treewidth k. In particular, this yields an algorithm for the overall computation
of the Turaev–Viro invariant TVr (T), r fixed, with singly exponential complexity in
k, and a linear complexity in n, on a triangulation Twith n tetrahedra and treewidth k.
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In the experimental section of this article, we use the polynomial time
GreedyFillIn heuristic (Bodlaender and Koster 2010) which constructs tree
decompositions that, in practice, are close to the actual treewidth, see Sect. 6.

Note that if—for one reason or another—we fail to obtain a small-width tree decom-
position of the dual graph of our input triangulation, every tree node has |E∗

τ | ≤ �,
where � is the number of edges in the triangulation. Therefore the time complexity of
Algorithm 1 reduces to O(n · (r − 1)� · �2 log r), which is only a little slower than the
backtracking algorithm (Lemma 1). This is in sharp contrast to many FPT algorithms
from the literature, which—although fast for small parameters—suffer from extremely
poor performance when the parameter becomes large.

5 Generalisation to the Turaev–Viro–Barrett–Westburymodel

The FPT algorithm described in Sect. 4, generalises to every 3-manifold invariant
which can be defined using a triangulation T of the manifold and a state-sum over
“local data” on T, that is, colourings of the edges of T, of the form of Eqs. (1) and
(2)—for an arbitrary set of weights | · |θ .

In this sectionwedescribe avery large family of 3-manifold invariants satisfying this
condition, and due to Barrett and Westbury (1996). More precisely, the Turaev–Viro–
Barrett–Westbury model defines a 3-manifold invariant for every (finite semisimple)
spherical category, and substantially generalises the Turaev–Viro construction given
in Sect. 2.1.

Roughly speaking, a spherical category is a category which admits the notion of
local data (edge colourings)—stored in triangles and tetrahedra of the triangulation—
from which a state-sum can be formed. The value of the state sum can then be shown
to be invariant under bistellar flips on the triangulation. This is done by using a
generalised version of what is called the Biedenharn–Elliott identity (Turaev 2010,
Theorem VI.5.4.1). In particular this proves that the state sum defines a topological
invariant.

For our purposes, the following properties of a spherical category C are important
(we refer to Barrett andWestbury 1996 for a precise definition of a spherical category):

– C is equipped with a tensor product of objects (a, b) �→ a ⊗ b and of morphisms
( f , g) �→ f ⊗ g;

– C admits a trace function tr : Hom(a, a) → F, taking values in a fixed field F,
for every object a. Given two morphisms f : a → a and g : b → b, the trace
function satisfies tr( f ⊗ g) = tr( f )tr(g), where the multiplication is in F;

– C admits a finite set of nonequivalent non-zero simple objects J ; and
– every Hom set is a finitely generated abelian group, and C defines an evaluation

map ev : Hom(a, b) ⊗ Hom(b, a) → F by ev( f ⊗ g) = tr( f ◦ g).

A topological invariant is formed by taking a state-sum over all colourings of
the edges E of the triangulation T by simple objects of J . For each such colouring
θ : E → J we associate a value Z(T, θ) ∈ F, computed in the following fashion. Fix
an orientation of T, and let T be a tetrahedron of the triangulation whose triangular
faces are t1, t2, t3 and t4. Assign to T the space V (T , θ) = ⊗

i=1...4 H(ti , θ), where,
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for a triangle ti coloured (a, b, c) ∈ J 3 by θ , H(ti , θ) is either Hom(b, a ⊗ c) or
Hom∗(b, a ⊗ c) ∼= Hom(a ⊗ c, b), depending on whether the orientations of (a, b, c)
and T agree or not. Define the space V (T, θ) to be the non-ordered tensor product
of the V (T , θ) taken over all tetrahedra T of T. Finally, every coloured tetrahedron
T ∈ T is assigned an element Z(T , θ) ∈ V (T , θ), called a 6j-symbol.

Note that, because every triangle is shared by exactly two tetrahedra with oppo-
site orientations, every triangle coloured (a, b, c) induces the appearance of spaces
Hom(b, a ⊗ c) and Hom(a ⊗ c, b) in the tensor product V (T, θ). The state-sum is
then defined by

Z(T) = K −#V
∑

θ :E→J

Z(T, θ)
∏

e∈E

dimq(θ(e)) (3)

where

– K is a constant depending solely on the category C, called the dimension of C;
– dimq(a) is the quantum dimension of the object a, defined by tr(1a);
– Z(T, θ) := ev(

⊗

T Z(T , θ)) is the evaluation of V (T, θ), i.e., the product (in F)
over all triangles ofTof the evaluationmaponHom(b, a⊗c)⊗Hom(a⊗c, b) → F

applied to the element given by the tensor product of the 6j-symbols.

As an example, we recover the Turaev–Viro invariant TVr from this construction.
Using the notations of Sect. 2.1, the simple objects of J are labelled by half integers
from 0 to (r − 2)/2, and every state space H(t, θ) of a triangle whose edges are
coloured with objects a, b, c ∈ J is either the space 0, if a, b and c form a non
admissible triple (in the sense of Sect. 2.1), or C otherwise. In Eq. (1), the product
of vertex weights |v|θ gives K −#V in Eq. (3) (vertex weights are independent of θ ).
The product of edge weights |e|θ yields the product of dimq(e) (edge weights are
independent of the triangulation).

The dynamic programming approach of the fixed-parameter tractable algorithm of
Sect. 4 is independent of the weight system in the state-sum formula of the invariant.
Consequently, it adapts directly to the general definition of Turaev–Viro–Barrett–
Westbury invariants.

Corollary 2 Given a generalised triangulation T of a 3-manifold with n tetrahedra,
a nice tree decomposition of T of width k and O(n) bags, and a finite semisimple
spherical category C, there exists a fixed-parameter tractable algorithm with respect
to k to compute the C-Turaev–Viro–Barrett–Westbury invariant of T in O(n · (r −
1)6(k+1) · k2 log r) arithmetic operations in the field F of C, provided C admits r
distinct inequivalent simple objects, and all weights in Eq. 3 are precomputed.

6 Implementation and experimentation

In this section we describe an implementation of Algorithm 1 (the fixed-parameter
tractable algorithm), and compare it to the backtracking algorithm via exhaustive
experimentation.

The FPT algorithm is implemented in the open-source software package Regina
(Burton et al. 1999): the source code is available from Regina’s public git reposi-
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tory. For consistency we compare it to Regina’s long-standing implementation of the
backtracking algorithm.2

In our implementation, we do not compute treewidths precisely (an NP-complete
problem)—instead, we implement the quadratic-time GreedyFillIn heuristic
(Bodlaender and Koster 2010), which is reported to produce small widths in practice
(van Dijk et al. 2006). This way, costs of building tree decompositions are insignifi-
cant (but included in the running times). For both algorithms, we use relatively naïve
implementations of arithmetic in cyclotomic fields—these are asymptotically slower
than described in Sect. 3, but have very small constants.

We use two data sets for our experiments, both taken from large census databases of
3-manifolds to ensure that the experiments are comprehensive and not cherry-picked.

The first census contains all 13,400 closed prime orientable manifolds that can
be formed from n ≤ 11 tetrahedra (Burton 2011; Matveev 2003). This simulates
“real-world” computation—the Turaev–Viro invariants were used to build this census.
Since the census includes all minimal triangulations of these manifolds, we choose
the representative whose heuristic tree decomposition has smallest width (since we
are allowed to retriangulate).

The second data set contains some of the 11,031 triangulations from the (much
larger) Hodgson–Weeks census of closed hyperbolic manifolds (Hodgson and Weeks
1994). This shows performance on larger triangulations, with n ranging from 9 to 20.

Figures 3 and 4 compare the performance of both algorithms for each data set.
All running times are for TV7 at ζ = eiπ/7 (the largest r for which the experiments
were feasible), and are measured on a single 3GHz Intel Core i7 CPU. Both plots use
a log-log scale with one data point per input triangulation. The results are striking:
the FPT algorithm runs faster in over 99% of cases, including most of the cases with
largest treewidth. In the worst example the FPT algorithm runs 3.7× slower than
the backtracking, but both data sets have examples that run > 440× faster. It is also
pleasing to see a clear impact of the treewidth on the performance of the FPT algorithm,
as one would expect.

7 An alternate geometric interpretation

In this section, we give a geometric interpretation of admissible colourings on a trian-
gulation of a 3-manifold T in terms of normal arcs, i.e., straight lines in the interior
of a triangle which are pairwise disjoint and meet the edges of a triangle, but not its
vertices (see Fig. 5). More precisely, we have the following

Theorem 2 Given a 3-manifold triangulation T, and r ≥ 3, an admissible colouring
of the edges of T with r − 1 colours corresponds to a system of normal arcs in the 2-
skeleton with ≤ r −2 arcs per triangle forming a collection of cycles on the boundary
of each tetrahedron of T.

2 The Manifold Recogniser (Matveev et al. 2012) also implements a backtracking algorithm, but it is not
open-source and so comparisons are more difficult.
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Fig. 3 Running times for the 13,400 closed census manifolds. The term “width k” (an upper bound for
the actual treewidth) denotes the width of the tree decomposition for the triangulation obtained from
GreedyFillIn heuristic, and used for the FPT algorithm

Fig. 4 Running times for the first 500 Hodgson–Weeks census manifolds. The term “width k” (an upper
bound for the actual treewidth) indicates the width of the tree decomposition for the triangulation obtained
from GreedyFillIn heuristic, and used for the FPT algorithm
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Fig. 5 Constructing a system of
normal arcs from edge
colourings

Proof Following the definition of an admissible colouring from Sect. 2.1, the colours
of the edges e1, e2, e3 of a triangle f of T must satisfy the parity condition and the
triangle inequalities.

For a colouring θ(e) of an edge e, we define φ(e) = 2θ(e) which is an integer; we
also use the term “colouring” for φ. We interpret the colourings φ(e1), φ(e2), φ(e3) ∈
{0, 1, . . . , r−2} as the number of intersections of normal arcswith the respective edges
of the triangulation (see Fig. 5).Without loss of generality, letφ(e1) ≥ φ(e2) ≥ φ(e3).
We construct a system of normal arcs by first drawing φ(e2) arcs between edge e1 and
e3 andφ(e1)−φ(e2) arcs between edge e1 and e3. This is always possible sinceφ(e1) ≤
φ(e2) + φ(e3) by the triangle inequality. Furthermore, the parity condition ensures
that an even number of unmatched intersections remains which, by construction, all
have to be on edge e3. If this number is zero we are done. Otherwise we start replacing
normal arcs between e1 and e2 by pairs of normal arcs, one between e1 and e3 and one
between e2 and e3 (see Fig. 5). In each step, the number of unmatched intersection
points decreases by two. By the assumption φ(e2) ≥ φ(e3), this yields a system of
normal arcs in f which leaves no intersection on the boundary edges unmatched. This
system of normal arcs is unique for each admissible triple of colours. By the upper
bound constraint, we get at most r − 2 normal arcs on f .

Looking at the boundary of a tetrahedron t of T these normal arcs form a collection
of closed cycles. To see this, note that each intersection point of a normal arc in a
triangle with an edge is part of exactly one normal arc in that triangle and that there
are exactly two triangles sharing a given edge.

Now, let T be a closed n-tetrahedron 3-manifold triangulation, t a tetrahedron of
T, f1 and f2 two triangles of t with common edge e of colour φ(e), and ai and bi

the respective non-negative numbers of the two normal arc types in fi meeting e,
i ∈ {1, 2}. Since the system of normal arcs on t forms a collection of cycles on the
boundary of t , we must have a1 + b1 = a2 + b2 ≤ r − 2, giving rise to a total of
6n linear equations and 12n linear inequalities on 6n variables which all admissible
colourings on T must satisfy. Thus, finding admissible colourings on T translates to
the enumeration of integer lattice points within the polytope defined by the above
equalities and inequalities.

Now, if we drop the upper bound constraint above, we get a cone. Computing the
Hilbert basis of integer lattice points of this cone yields a finite description of all
admissible colourings for any r ≥ 3 and, thus, the essential information to compute
TVr (T) for arbitrary r . Transforming this approach into a practical algorithm is work
in progress.

Acknowledgements Wewould like to thank the anonymous referees for valuable suggestions which helped
to improve the paper.
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