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Abstract  Persistence diagrams have been widely recognized as a compact descrip-
tor for characterizing multiscale topological features in data. When many datasets 
are available, statistical features embedded in those persistence diagrams can be 
extracted by applying machine learnings. In particular, the ability for explicitly ana-
lyzing the inverse in the original data space from those statistical features of per-
sistence diagrams is significantly important for practical applications. In this paper, 
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we propose a unified method for the inverse analysis by combining linear machine 
learning models with persistence images. The method is applied to point clouds and 
cubical sets, showing the ability of the statistical inverse analysis and its advantages.

Keywords  Topological data analysis · Persistent homology · Machine learning · 
Linear models · Persistence image

Mathematics Subject Classification  55-04 · 55U99 · 62P35 · 62J07

1  Introduction

Given a dataset, its statistical features can be extracted by applying machine learn-
ing methods  (Bishop 2007). Needless to say, machine learning is now one of the 
central scientific and engineering subjects, and is rapidly enlarging its theoretical 
foundations and ranges of practical applications. For example, in materials science, 
the amount of available data has recently been increasing due to improvement of 
experimental methods and computational resources. These datasets are expected to 
be used for further developments of high performance materials based on machine 
learnings, leading to a new concept called “materials informatics” (Rajan 2005, 
2012; Buchet et al. 2018).

As another branch of data science, topological data analysis (TDA) (Carlsson 
2009; Edelsbrunner and Harer 2010) has also been rapidly developed from theoreti-
cal aspects to applications in the last decade. In TDA, persistent homology and its 
persistence diagram (Edelsbrunner et al. 2002; Zomorodian and Carlsson 2005) are 
widely used for capturing multiscale topological features in data. Recent improve-
ments of efficient computations of persistence diagrams (Bauer et  al. 2014, 2017) 
enable us to apply them into practical problems such as materials science (Hiraoka 
et al. 2016; Saadatfar et al. 2017; Ichinomiya et al. 2017; Kimura et al. 2017), sensor 
networks (de Silva and Ghrist 2007), evolutions of virus (Chen et al. 2013) etc. As 
a descriptor of data, persistence diagrams have the following significant properties: 
translation and rotation invariance, and robustness for noise. Persistence diagrams 
are also multi-scalable, that is, persistence diagrams can capture the geometric struc-
tures in multiple length scales. Together with developments of statistical foundations 
(Bubenik 2015; Chazal et al. 2015; Fasy et al. 2014; Kusano et al. 2016, 2017; Rein-
inghaus et al. 2015; Turner et al. 2014; Robins and Turner 2016), persistence dia-
grams nowadays have been recognized as a compact descriptor for complicated data.

In a series of works on materials TDA (Hiraoka et al. 2016; Saadatfar et al. 2017; 
Ichinomiya et  al. 2017; Kimura et  al. 2017), analyzing the inverse in the original 
data space (atomic configurations or digital images) from persistence diagrams is 
significantly important to explicitly study the materials structures and properties. 
Therefore, toward further progress that materials TDA incorporates with materials 
informatics, we need to develop a framework of machine learnings on persistence 
diagrams which allows the inverse analysis.
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In this paper, we propose a unified method for studying the shape of data by using 
persistence diagrams with machine learnings in both direct and inverse problems. 
The essence of our method is to combine persistence images  (Adams et al. 2017) 
and linear machine learning models.

For standard machine learning methods, the input data is supposed to be given 
by vectors, and therefore we need to transform persistence diagrams into vectors. 
Some vectorization methods of persistence diagrams have been proposed in the lit-
eratures (Adams et al. 2017; Bubenik 2015; Kusano et al. 2016, 2017; Reininghaus 
et  al. 2015), and we here use persistence images. This is because it allows us to 
reconstruct persistence diagrams from vectors obtained by machine learning results, 
providing a key step in the inverse route of our analysis.

Taking this advantage, we apply linear models of machine learnings to persis-
tence images. Since the learned result of linear machine learning models is given 
by a (dual) vector with the same dimension as input vectors, we can reconstruct the 
persistence diagram from the learned result by simply reversing the construction 
process of persistence images. Namely, the persistence diagram itself is obtained as 
learning. Furthermore, by studying inverse problems from the reconstructed (dual) 
persistence diagram to the original data space, we can explicitly characterize sta-
tistically significant topological features embedded in data. In this paper, we deal 
with an inverse problem studying the locations of birth-death pairs of persistence 
diagrams in the original data space. As another advantage using linear machine 
learning models, we also propose an important concept called sparse persistence 
diagram. This new concept allows us to discard irrelevant generators and to focus 
on most significant ones in the reconstructed persistence diagram for learning tasks.

It should be remarked that, for only direct problems such as predictions from 
data, nonlinear methods such as kernel methods and neural networks are possibly 
appropriate, because such nonlinear transformations often make the prediction per-
formance better than linear models. However, if our interest is to understand mecha-
nisms of data structures, the inverse route going back to the original data from the 
learned results is inevitable.

As summary, the contribution of this paper is to propose a unified method in top-
ological data analysis with the ability to study inverse problems by combining the 
following methods:

1.	 Persistence images.
2.	 Linear machine learning models.
3.	 Inverse analysis of persistence diagrams.

In Sect. 2, after brief introduction of our input data formats and persistent homol-
ogy, we recall persistence images and linear models of machine learnings used in 
this paper. In Sect. 3, our method is demonstrated to some problems on point clouds 
and cubical sets and its performance is compared to other methods. Here, in addition 
to the synthetic data, we also apply the method to a practical problem in materials 
science; geometric characterization of heterogeneous chemical reactions in the iron 
ore sinter. Some future problems and related topics are summarized in Sect. 4.
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2 � Methods

We first explain some preliminaries about geometric models and persistent homol-
ogy. Although the theory of persistent homology has been rapidly extended in vari-
ous general settings, we here introduce the minimum necessary for later discussions. 
Readers who want to understand the theory in higher generality are encouraged to 
study the latest literatures.

2.1 � Geometric models

In this paper, we mainly consider two types of input data. The first type is given 
by a finite points P = {xi ∈ ℝ

N ∶ i = 1,… ,m} in a Euclidean space ℝN , which is 
also called a point cloud in TDA. For example, this data type is frequently used for 
expressing atomic configurations in materials science.

Our interest is to characterize multiscale topological properties in P, and to this 
aim, we consider the r-ball model

where Br(xi) = {y ∈ ℝ
N ∶ ||y − xi|| ≤ r} is the ball with radius r centered at xi . By 

construction, when the radius r is very small (resp. large), Pr has the same topology 
as m disconnected points (resp. one point). Between these two extremal cases, Pr 
may exhibit appearance and disappearance of holes by changing the radius r. Note 
that we have a natural inclusion Pr ⊂ Ps for r ≤ s , meaning that the radius parameter 
r can be regarded as a resolution of the point cloud P.

For practical data analysis, the r-ball model Pr is not convenient to handle in 
computers, and hence we usually build simplicial complex models from Pr . For 
instance, the Čech complex Čech(P, r) and the Rips complex (or Vietoris-Rips com-
plex) Rips(P, r) are simplicial complexes with the vertex set P whose k-simplex is 
assigned by the following rule, respectively,

Note that, by construction, both simplicial complex models naturally define a 
(right continuous) filtration. Namely, for Xr = Čech(P,r) or Xr = Rips(P, r) , it satis-
fies Xr ⊂ Xs for r ≤ s and Xs =

⋂
s<t Xt . In this section, we denote the filtration by 

𝕏 = {Xr ∶ r ∈ ℝ}.

Pr =

m⋃

i=1

Br(xi),

{xi0 ,… , xik} ∈ Čech(P, r) ⇔

k⋂

s=0

Br(xis) ≠ �,

{xi0 ,… , xik} ∈ Rips(P, r) ⇔ Br(xis) ∩ Br(xit ) ≠ �, 0 ≤ ∀s < ∀t ≤ k.
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Our next data type is given by a cubical set, which is a standard mathematical 
expression for digital images. Following the notation used in the reference (Kaczyn-
ski et al. 2004), let I ⊂ ℝ be an elementary interval, i.e.,

for some � ∈ ℤ . An elementary cube Q = I1 ×⋯ × IN ⊂ ℝ
N is defined by a product 

of elementary intervals Ii . Then, a subset X ⊂ ℝ
N is said to be cubical if X can be 

expressed as a union of elementary cubes in ℝN.
Let us denote by N

W
 the set of all elementary cubes in the window 

ΛW = [−W,W]N ⊂ ℝ
N . Given a function f ∶ N

W
→ ℝ , we can build a cubical set 

in ΛW as a sublevel set

for each parameter t. In practical applications such as digital image analysis, this 
function is often given by the Manhattan distance (e.g., see Fig.  2) or a gray-
scale function. It is easy to see that the cubical sets Xt also lead to a filtration 
𝕏 = {Xt ∶ t ∈ ℝ}.

These are the two standard types of our input data. We note that those filtrations 
satisfy the properties that Xt = � for sufficiently small t and Xt is acyclic1 for suffi-
ciently large t, respectively.

2.2 � Persistent homology

Let � be a field. In this paper, the qth homology Hq(X) of a topological space X is 
defined over the field � , and hence Hq(X) is given as a �-vector space. Intuitively, 
the dimension of Hq(X) as a �-vector space counts the number of q-dimensional 
holes in X, and each basis vector expresses the corresponding q-dimensional hole 
in X, where, for example, q = 0, 1, 2 express connected components, rings, and cavi-
ties, respectively. Then, given a pair of topological spaces X ↪ Y  , we can define the 
induced linear map � ∶ Hq(X) → Hq(Y) , which characterizes whether a hole in X 
persists in Y or not.

The input to the persistent homology is given by a filtration 𝕏 = {Xt ∶ t ∈ ℝ} of 
topological spaces. In this paper, Xt is given by a simplicial complex or a cubical 
set. For simplicity, we also assume the properties for filtrations remarked in the final 
paragraph in Sect. 2.1, although we do not really need it by modifying the argument 
here. Then, the qth persistent homology Hq(�) = (Hq(Xt),�

t
s
) of the filtration � is 

defined by the family of homologies {Hq(Xt) ∶ t ∈ ℝ} and the induced linear maps 
�t
s
∶ Hq(Xs) → Hq(Xt) for all s ≤ t.
Under the assumption of our filtrations, the persistent homology Hq(�) can be 

uniquely decomposed by using the so-called interval representations:

I = [�,� + 1] or I = [�,�]

(1)Xt =
⋃

{Q ∈ N
W
∶ f (Q) ≤ t}

1  A topological space X with H̃q(X) = 0 for any q is called acyclic, where H̃q(X) is the reduced homol-
ogy of X.
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where bi, di ∈ ℝ with bi < di . Here, I(bi, di) = (Ut, f
t
s
) consists of a family of vector 

spaces

and the identity map f t
s
= id

�
 for bi ≤ s ≤ t < di . Note that the 0th persistent homol-

ogy in (2) is understood as the reduced sense, meaning that one connected com-
ponent which persists for any large t ∈ ℝ is removed. Each interval representation 
I(bi, di) is also called a generator of Hq(�).

Each generator I(bi, di) expresses that a q-dimensional hole appears in � at 
the parameter t = bi , persists up to t < di , and then disappears at t = di . We call 
bi, di, di − bi the birth time, death time, and lifetime of I(bi, di) , respectively.

Under the unique decomposition (2), the qth persistence diagram Dq(�) of � is 
defined by a multiset2

where Δ = {(b, d) ∈ ℝ
2 ∶ b < d} . It is known that the birth-death pair 

(bi, di) ∈ Dq(�) with large lifetime can be regarded as reliable topological structure 
in � , while that with small lifetime is likely to be a noisy structure. This statement is 
justified by the stability theorem of persistent homology (Cohen-Steiner et al. 2007).

For a review about computational aspect of persistent homology, we refer the 
readers to the paper (Otter et al. 2017).

(2)Hq(�) ≃

p⨁

i=1

I(bi, di),

Ut =

{
�, bi ≤ t < di,

0, otherwise,

Dq(�) = {(bi, di) ∈ Δ ∶ i = 1,… , p},

r

r = b1 r = b2 r = d2 r = d1r = 0

d1

d2

b2b1

Fig. 1   Left top: Filtration of the r-ball models. Left bottom: Filtration of the corresponding Čech com-
plexes. Right: The 1st persistence diagram. (1) A ring is bone at r = b

1
 . (2) Another ring is bone at 

r = b
2
 . (3) The second ring dies at r = d

2
 . (4) The first ring dies at r = d

1

2  A multiset is a set with multiplicity of each point.
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2.3 � Examples

Here, we show several examples to make clear the concepts explained so far. To this 
aim, the examples are chosen to be simple enough for demonstration.

We first consider an example of a point cloud given by four points on the plane 
shown in the left ( r = 0 ) of Fig.  1. As we explained, each point is replaced by a 
ball and we study topological changes during the fattening process of the balls by 
increasing the radii. This fattening process is drawn on the left top of Fig. 1, while 
the sequence below expresses its Čech complex filtration.

At the radius r = b1 , the first ring is born, and we record its birth parameter as 
b1 . Similarly, the second ring appears at the birth parameter r = b2 . On the other 
hand, at radius r = d1, d2 , those rings disappear and we record them as their death 

(a) (b) (c)

(d)

Fig. 2   a Input binary image. b Manhattan distance. c 0th reduced persistence diagram. d Filtration of 
binary images with respect to the Manhattan distance. The colored squares in d:-3 and d:-2 indicate the 
initial locations of three connected components. The blue square in d:-3 indicates the connected compo-
nent removed in the reduced persistent homology (color figure online)
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parameters. Hence, the 1st persistence diagram of the Čech complex filtration is 
given by {(b1, d1), (b2, d2)} , which is shown on the right of Fig. 1.

Next, we consider an example of a cubical set. The input data is given by a binary 
image (a) in Fig. 2, and we consider a function f assigning an integer on each pixel 
shown in (b). Here, positive (resp. negative) numbers are assigned to the gray (resp. 
white) pixels using the Manhattan distance. The function f is called the signed dis-
tance function or signed distance transform with Manhattan distance. Then, fol-
lowing the construction (1) of sublevel sets, we obtain a filtration of cubical sets of 
white pixels shown in (d). The signed distance transform is already used by various 
digital image analysis, including TDA (Delgado-Friedrichs et al. 2014, 2015; Rob-
ins et al. 2016). These researches used the signed distance transform with Euclidean 
metric, but we use Manhattan metric as an approximation of Euclidean metric for 
easy handling of the singed distance transform on a computer.

In this example, three connected components appear in the filtration and those 
birth events are colored in blue and red. The death of those generators corresponds 
to a merging to another connected component. Then, the 0th reduced persistence 
diagram is given by {(−2,−1), (−2, 3)} , shown in (c). Note that the first connected 
component born at −3 is removed in the reduced persistence diagram. We also note 
that, from the assignment f using Manhattan distance, all birth parameters take nega-
tive values. Figure 3 summarizes typical geometric structures captured by the 0th 
persistence diagram based on the Manhattan distance.

For deep analysis using persistence diagrams, we often want to know the origin 
of each birth-death pair. One easy and useful way is to utilize a death simplex (resp. 
death cube) for a point cloud (resp. cubical set). In the Čech filtration model of 
Fig. 1, two generators (i.e., rings) die when each red simplex fills the corresponding 
ring, and those simplices show the locations of the generators. We call these loca-
tions death positions of the generators. Even for generators with higher dimensions 
and also for the setting of cubical sets, this idea works in a similar way.

birth
0

de
at
h

(c)

(a) (b)

(d)

(e)

(a) (b)

(c) (d)

(e)

Fig. 3   Cubical sets drawn in the dashed circles (a–e) express typical geometric structures in the 0th per-
sistence diagram. a Large islands. b Small islands. c Large islands with narrow bridges. d Narrow bands. 
e Broad bands. For a and b, the births correspond to the radii of the islands. For d and e, the births and 
deaths correspond to the half widths of the bands
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On the other hand, for generators with dimension zero, birth events may possess 
the information of locations. In Fig. 2d, there are two red squares and they express 
the central locations of each connected component. We call these locations birth 
positions of the corresponding birth-death pairs.

We note that the birth/death positions are easily obtained in standard algo-
rithms of computing persistence diagrams, and hence no additional computations 
are required. These techniques, which will be demonstrated in the later section, are 
exploited for some practical analysis in materials science (Kimura et al. 2017; Rob-
ins et  al. 2016).3 It should be remarked that, if one wants to obtain further infor-
mation about the inverse of birth-death pairs, the technique of optimal cycles (Dey 
et al. 2011; Escolar and Hiraoka 2016) can be another choice, although it requires a 
much computer resource.

2.4 � Persistence images

Recall that a persistence diagram is a multi-set on ℝ2 . Hence, we need to vectorize 
persistence diagrams to apply machine learning models. In this paper, we use the 
persistence image (Adams et al. 2017) for vectorization.

Given a qth persistence diagram Dq = {(bk, dk) ∈ Δ ∶ k = 1,… ,�} , the persis-
tence image � is defined by a function on ℝ2 as

Here, C > 0 , p > 0 , 𝜎 > 0 are parameters, w(b,  d) is a weight function, and we 
regard the function � as a vector in a function space L2(ℝ2) . We remark that the 
weight function is chosen so that we can respect the significance of generators 
according to its lifetimes in the statistical analysis. As we see in Sect. 3, the param-
eters are usually determined to be appropriate values using cross validations.

For computations, we discretize the persistence image � and construct a histo-
gram on the plane with an appropriate finite mesh. Obviously, since all birth-death 
pairs are located in {(b, d) ∈ [b−, b+] × [d−, d+] ∶ b < d} with some constants 
b−, b+, d−, d+ , the histogram is constructed on this area. Then, we obtain a vec-
tor from the discretization of � by ordering the elements on the grids in a prefixed 
order. Note that the dimension of the vector is equal to the number of grids used for 
the histogram. In the following, we also call the discretization of � the persistence 
image. See Algorithm 1 for the explicit algorithm of this construction.

(3)
�(x, y) =

�∑

k=1

w(bk, dk) exp

(
−
(bk − x)2 + (dk − y)2

2�2

)
,

w(b, d) = arctan(C(d − b)p).

3  In Robins et al. (2016), the birth/death positions are called critical points.
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We note that there are several methods for vectorizations of persistence diagrams. 
One important advantage using persistence images is that we can easily reconstruct 
a histogram from a vector, and hence can obtain a corresponding persistence dia-
gram. However, it is not straightforward in general to reconstruct persistence dia-
grams from vectors in nonlinear vectorizations. This advantage is effectively used in 
our method.

We also remark that, precisely speaking, the weight function (3) is not used in the 
original paper (Adams et al. 2017) but first studied in the paper (Kusano et al. 2017), 
in which performance comparisons with different weights for persistence images 
and also with other vectorizations are thoroughly discussed. For details, we refer the 
readers to the paper (Kusano et al. 2017).

2.5 � Linear machine learning models

In this section, we briefly recall the logistic regression and the linear regression as 
standard supervised machine learning methods (Bishop 2007).

In the linear regression model, we consider a pair of an input vector x ∈ ℝ
n 

(called explanatory variable) and its output value y ∈ ℝ (called response variable), 
and study the relation between them in the linear form

where w ∈ ℝ
n and b ∈ ℝ are unknown parameters and the noise is randomly deter-

mined from a normal distribution with mean 0. From a set of known input–output 
pairs {(xi, yi)}Mi=1 , called a training set, we find an optimal w and b for the model. 
Such optimal parameters are derived by minimizing the following mean squared 
loss error function with respect to w and b:

In the logistic regression model for a binary classification task, we consider a pair of 
an input vector x ∈ ℝ

n and its output value y ∈ {0, 1} , and study the relation of clas-
sification 0/1 based on the following form

y = w ⋅ x + b + (noise),

(4)E(w, b) =
1

2M

M∑

i=1

(w ⋅ xi + b − yi)
2.
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where w ∈ ℝ
n and b ∈ ℝ are unknown parameters. From training data {(xi, yi)}Mi=1 , 

we find an optimal w and b in a similar way to the linear regression. Here, optimal 
parameters are given by minimizing the following cross entropy error function:

We note that, for both the linear regression and logistic regression, these optimiza-
tion problems are equivalent to the maximization of the log likelihood.

In our method, the input vector x ∈ ℝ
n is given by vectorized persistence diagrams 

using persistence images. Then, the learned vector w becomes a dual vector to the persis-
tence images, and especially, its dimension is the same as x. Hence, w can be expressed 
as a (dual) persistence diagram by the reverse process of the vectorization using persis-
tence images. In this way, our method outputs persistence diagrams as learning results.

For practical applications, we often encounter the problem of over-fittings, if the 
dimension n of input vectors is relatively large compared to the sample size (the 
number of datasets) M. Under this condition, the result of the optimization prob-
lem excessively fits the training set and does not give appropriate performance for 
untrained data. In our setting, since the dimension of vectors obtained from per-
sistence images is very large, we usually face the over-fitting problem. The vectors 
given by persistence images also have another statistical problem called multicol-
linearity (Bingham 2010). Adjacent grids elements of a vector by persistence image 
are strongly correlated because of Gaussian diffusion, and such a strong correlation 
causes the difficulty of determining coefficients and the numerical instability.

One effective way for avoiding the over-fitting and multicollinearity is to add a 
regularization (penalty) term R(w) into the error function. Namely, we minimize the 
following modified error functions for w and b

where 𝜆 > 0 is a weight parameter controlling the regularization effect. Typical reg-
ularization terms are given as

The former is called an �2-regularization and the latter is called an �1-regularization. 
A linear regression with the �2-regularization is called ridge, while a linear regres-
sion with the �1-regularization is called lasso (Robert 1996).

(5)

P(y = 1 ∣ w, b) = g(w ⋅ x + b),

P(y = 0 ∣ w, b) = 1 − P(y = 1 ∣ w, b) = g(−w ⋅ x − b),

g(z) = 1∕(e−z + 1),

(6)
L(w, b) = −

1

M

∑M

i=1

�
yi log ŷi + (1 − yi) log(1 − ŷi)

�
,

ŷi = g(w ⋅ xi + b).

E(w, b) + �R(w) (for a linear regression) ,

L(w, b) + �R(w) (for a logistic regression),

R(w) =
1

2
‖w‖2

2
, R(w) = ‖w‖1.
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The advantage of the �2-regularization is its good mathematical property. For 
example, the �2-regularization term is differentiable but the �1-regularization term 
is not. The ridge optimization problem has the closed form solution. However, the 
lasso does not have such forms.

On the other hand, the �1-regularization has a significant property of the sparsity. 
A vector w is called sparse if its elements are all zero except for only a few elements. 
It is well-known that the learned vector w under �1-regularization becomes a sparse 
vector, and hence we obtain a sparse persistence diagram as a result of learning. As 
we will see later, the sparseness of the learned persistence diagram is often very use-
ful, when we interpret the learned results.

The parameter � of the regularization term controls the complexity of the 
learned result  (Bishop 2007). When the weight � becomes larger, the regulari-
zation term R(w) becomes smaller. This means that w becomes more sparse in 
the �1-regularization. Such a reduction of the complexity is useful for finding the 
most essential elements for regressions. However, when � is too large, the learned 
results may drop important information. Therefore, we need to determine a suit-
able � in practice. A validation set or cross validation method are often applied to 
choose such a parameter (Bishop 2007). The effect of changing � in our method is 
discussed in Sect. 3.

2.6 � Summary of our method

1.	 Prepare an input data {(gi, yi)}Mi=1 . Here, each gi is a point cloud or a digital image, 
and yi is a real value for the linear regression or 0/1 value for the logistic regression.

2.	 Compute the persistence diagram D(i) from gi.
3.	 Compute the vectorization xi ∈ ℝ

n of D(i) using the persistence image.
4.	 Apply the linear regression or the logistic regression with a regularization term to 

the data {(xi, yi)}Mi=1 and find w ∈ ℝ
n and b ∈ ℝ . Choose the �2 - or �1-regulariza-

tion, depending on the purpose.
5.	 The learned result w is visualized by the reconstruction of the persistence dia-

gram from w. From the reconstructed dual persistence diagram, one may extract 
important areas on the diagram.

6.	 For explicitly identifying the geometric structure of those important areas on the 
diagram, one can study the birth/death positions.

3 � Results and discussions

In this section, we demonstrate the performance of our methods for logistic regres-
sions and linear regressions with binary images and point clouds. Here, we use fil-
trations of cubical sets using Manhattan distance (black: positive, white: negative) 
for binary images, while alpha complex filtrations,4 which are homotopic to Čech 

4  CGAL: https​://www.cgal.org/ (Da. et al. 2017).

https://www.cgal.org/
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complex filtrations, are applied for point clouds. All examples are experimented 
using scikit-learn5 and HomCloud.6 Here, let us summarize the details of these soft-
wares used in our analysis in the following.

In scikit-learn, LogisticRegression and LogisticRegressionCV classes in sklearn.
linear_model module are used for the logistic regression, while Lasso, LassoCV, 
Ridge and RidgeCV classes in sklearn.linear_model module are used for the linear 
regression. Here, we remark that these classes automatically determine the weight 
of the regularization term by using cross validations, and we follow the default cross 
validation strategies of scikit-learn (stratified threefolds for logistic regressions, 
leave-one-out for ridge, and threefolds for lasso).

In HomCloud, persistence diagrams are computed using DIPHA.7 Manhattan 
distance for cubical filtrations are computed using the distance transform function 
provided by scipy’s ndimage module8 To identify birth/death positions, we assign 
the indices to all pixels sorted by the Manhattan distance in increasing order. Then, 
the birth-death pairs computed in DIPHA are expressed by the indices, and we can 
easily identify the corresponding pixel of each birth/death position from its index.

3.1 � Logistic regression on binary images—an easy example

First, we examine the logistic regression on persistence diagrams of binary images. 
Here, the binary image data is randomly generated by Algorithm 2 in Appendix 1, 
where a pair of parameters (N, S) is used to generate two types of images. One pair 
(A) is set to be N = 100, S = 30 and the other (B) is N = 250, S = 10 . Figure  4 

Fig. 4   Input binary images and their 0th persistence diagrams. The left and right two images are sam-
pled from the parameter pairs (A) and (B), respectively

5  Scikit-learn: http://sciki​t-learn​.org/ (Pedregosa et al. 2011).
6  http://www.wpi-aimr.tohok​u.ac.jp/hirao​ka_labo/homcl​oud/index​.en.html.
7  DIPHA: A Distributed Persistent Homology Algorithm (Bauer et al. 2014).
8  SciPy: Open Source Scientific Tools for Python, 2001-, http://www.scipy​.org/ (Jones et al. 2011–).

http://scikit-learn.org/
http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/homcloud/index.en.html
http://www.scipy.org/
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shows the samples of both data (left: (A), right: (B)). We may intuitively observe 
that the images from (B) have somewhat finer structures than the images from (A). 
Our task is the classification of the parameters (A) and (B) from images, where we 
assign 0 and 1 for (A) and (B), respectively.

For each parameter pair, 300 images are generated (total 2  ×  300) and 200 of 
these images are sampled as a training set (total 2 × 200). Then, 2 × 100 remaining 
images are used as a test set to evaluate the learned result. Here, 0th persistence dia-
grams are applied for the task. The parameters of the persistence images are set to 
be � = 2.0,C = 0.5, p = 1.0 and the mesh for the discretized persistence images is 
obtained by dividing the rectangle [− 40.5, 10.5] × [− 30.5, 20.5] into 51 × 51 grids. 
The �2-regularization is used and the weight parameter � of the regularization term 
is determined by the cross validation.

In this example, the score, evaluated as the mean accuracy, of the learned result is 
1.0, that is, we can perfectly identify the parameter pairs behind the images. In fact, 
we could also distinguish these two parameter pairs by simply counting the number 
of connected components, if we had this prior knowledge. In Sect. 3.2, we examine 
a more sophisticated classification problem. For a while, let us use this example in 
order to explain some properties of our method.

Figure 5a shows the reconstructed persistence diagram from the learned vector w, 
and (b) shows the area at which the magnitude is above a certain threshold. Recall-
ing the classification rule (5), nonzero elements in w (and hence nonzero generators 
in its reconstructed persistence diagram) work for making classification decisions. 
Namely, from the 0/1 assignment rule, the reconstructed persistence diagram con-
cludes that generators in the blue (resp. red) area statistically contribute to the clas-
sification (A) (resp. (B)).

(a)

(c-1) (c-2) (c-3) (c-4)

(b)

Fig. 5   a The reconstructed persistence diagram from the learned vector w. The blue (resp. red) area con-
tributes to the class 0 (resp. 1). b A thresholding of (a). c 1–4 The birth positions of the generators in 
blue and red areas in (b) are plotted with the same color (color figure online)
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Furthermore, by plotting the birth positions of these generators, we can explic-
itly identify the geometric structures which characterize the classification task. Fig-
ure 5c1–4 show those birth positions, where the blue (resp. red) points correspond to 
the blue (resp. red) area in (b). Recalling the interpretation in Fig. 3, we find that the 
characteristic geometric structures of (B) are explained by small islands and narrow 
bands whose inner radii are 4 ∼ 10 pixels; this is consistent to our intuition that (B) 
contains finer structures.

Using this example, let us study the effect of the weight parameter � for the regu-
larization. Figure 6 shows the reconstructed persistence diagrams from the learned 
vectors for several weight parameters � . When � becomes larger, in addition to the 
fact that the magnitude of the persistence diagram becomes smaller, its distribution 
becomes simpler. This is because the weigh parameter � of the regularization con-
trols the complexity of the learned result, which is expressed in the distribution of 
the reconstructed persistence diagram.

We also compare with the �1-regularization in this example. Figure 7 shows the 
reconstructed persistence diagrams using the �1-regularization with several param-
eters � . As mentioned in Sect.  2.5, an important property of the �1-regularization 
is the sparseness of the learned result w. In our method, this property is reflected 
as sparse persistence diagram. Hence, again recalling the classification rule (5), 
the selected few grids in the sparse persistence diagram are supposed to work most 
effectively for the classification task. In other words, the birth-death pairs around 

(a) (b) (c)

Fig. 6   The reconstructed persistence diagrams with several weight parameters � . a � = 0.35938 (deter-
mined by the cross validation), b � = 10 , and c � = 100

(a) (b) (c)

Fig. 7   The reconstructed persistence diagrams using the �1-regularization with several weight param-
eters � . a � = 0.01 , b � = 0.1 , c � = 1
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the grids are especially important for the classification. Furthermore, the number of 
selected grids decreases for large � as before, providing us with more compressed 
result and easier understandings of the learning.

3.2 � Logistic regression on binary images—a hard example

Next, let us set the parameter pairs for generating random binary images so that the 
classification task becomes more difficult. Here, one parameter pair (C) is set to be 
N = 160, S = 34 and the other pair (D) is N = 270, S = 18 . Figure 8 shows the sam-
ple input data [left: (C), right: (D)].

In this example, it seems difficult to distinguish two parameter pairs based on our 
intuition. In fact, simple descriptors such as the average numbers of connected com-
ponents and white pixels do not work at all in this case.

Fig. 8   Input binary images and their 0th persistence diagrams. The left and right images are sampled 
from the parameter pairs (C) and (D), respectively

(a) (b)

Fig. 9   The reconstructed persistence diagrams using the �2-regularization for the parameter pairs (C) 
and (D). a � = 0.0059948 (chosen by cross validation), b � = 1
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The setting for the classification is the same as before, i.e., 2 × 200 for training 
and 2 × 100 for the test, and we assign 0 and 1 to (C) and (D), respectively. In this 
case, the score on the test set is 0.92 (baseline: 0.5). Figure  9a shows the recon-
structed persistence diagram as the learned result using the �2-regularization with 
the weight � = 0.0059948 determined by the cross validation.

In this learning, the distribution of the reconstructed persistence diagram looks 
complicated to observe clear features. Hence, let us increase the weight parameter 
� for simplifying the distribution. Figure 9b shows the result with � = 1 , where its 
score of the learning is 0.91. It should be noted that, although the score becomes 
only a little worse, the distribution turns out to be simple enough to conclude that 
the red area is dominant in the region with the birth scale > − 20 . From this sim-
plification, we can explicitly obtain geometric reasonings for this classification in a 
similar way to Sect. 3.1.

Now we compare our method to other standard methods for image classifications. 
The list of methods and those scores are summarized in Table 1. These demonstra-
tions show that persistence images with the logistic regression have better accuracy 
than the others. In particular, we note that the performance of our method is better 
than the bag of keypoints approach with sift feature, which is one of the standard 
techniques for image classifications (Lowe 1999; Sivic and Zisserman 2003; Csurka 
et al. 2004; Nowak et al. 2006)

This is because such standard image classification techniques are developed 
mainly for clearly distinguishable and well-structured objects such as photos of faces, 
artificial objects, or landscapes, and not for images like this example. This suggests 
that our approach using persistence diagrams has an advantage to disordered images, 
which are frequently observed in materials science data (Kimura et al. 2017).

We remark that OpenCV’s python interface9 is used for the computation of sift 
feature (cv2.xfeatures2d module) and bag of keypoints (cv2.BOWImgDescriptorEx-
tractor). For the classification task, we use SVC class in sklearn.svm module for 
support vector classifier with �2 kernel from sklearn.metrics.pairwise module).

3.3 � Logistic regression on point clouds

In this example, the input point clouds are prepared from two different random point 
processes; one is Poisson point process (PPP) and the other is Ginibre point process 

Table 1   Performance 
comparison (PI: persistence 
image, SVM: support vector 
machine).

Method Mean accuracy

PI, logistic regression, �2-penalty 0.92
Bag of keypoints using sift with grid sampling, 

SVM classifier with �2 kernel
0.85

# of connected components of black pixels 0.73
# of connected components of white pixels 0.50
# of white pixels 0.50

9  https​://openc​v.org/

https://opencv.org/
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(GPP) on a unit disk. It is known that PPP has no interaction between points, while 
GPP has a repulsive interaction. The parameters for these two point processes 
are adjusted so that the mean number of points on the disk is 30. The task in this 

Fig. 10   Random point clouds (Left: PPP, Right: GPP) and their 1st persistence diagrams

(a) (b)

(c) (d)

Fig. 11   a The reconstructed persistence diagram. The blue (resp. red) area contributes to the class 0 
(resp. 1). b A thresholding of (a). c The death positions (triangles) in PPP. d The death positions (trian-
gles) in GPP (color figure online)
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example is to identify PPP or GPP for test point clouds. To this task, we apply our 
method to the 1st persistence diagrams with the �2-logistic regression.

Figure  10 shows point clouds generated by PPP and GPP. The parameters of 
the persistence images are set to be � = 0.003,C = 80, p = 1.0 and the mesh for 
the discretized persistence diagrams is obtained by dividing the square [0, 0.15]2 
into 150 × 150 grids. For each point process, 300 point clouds are generated (total 
2 × 300 ) and 200 of these point clouds are sampled as a training set (total 2 × 200 ), 
where we assign 0 and 1 for PPP and GPP, respectively. The remaining 2 × 100 
point clouds are used as a test set for evaluation. Here, the weight parameter � of 
the �2-regularization is determined by the cross validation. The score of the learned 
result is 0.94.

Figure  11a shows the reconstructed persistence diagram from the learned vec-
tor w and (b) shows the positive and negative areas of (a) with a certain thresh-
old. Recall that, from the 0/1 assignment, the generators in the blue (resp. red) area 
contributes to classifying into PPP (resp. GPP). From the learned persistence dia-
gram, we observe that the red area is located on the region with large birth values. 
This is consistent to the fact that GPP has a repulsive interaction, and hence it pre-
vents the point cloud from constructing rings with small birth values. Figure 11c, d 
show the death positions of the generators in the blue and red areas of (b) with the 
same colors, where (c) (resp. (d)) corresponds to PPP (resp. GPP). Similarly to the 

(a)

(b)

Fig. 12   Input point clouds and their 1st persistence diagrams. a A square lattice with noise. b A regular 
honeycomb pattern with noise
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discussion in Fig. 5, these death positions express characteristic geometric features 
used for learnings more explicitly.

We remark that PPP and GPP can also be distinguished by using other descriptors 
such as average nearest neighbor distances. An advantage of our method is that we 
do not need any prior knowledge, providing us with more universal method com-
pared to problem-specific descriptors. In fact, the analysis using average nearest 
neighbor distance can be realized by the 0th persistence diagram.

Now let us test another example for point clouds. The task is classifying two 
types of point clouds; one is a square lattice with Gaussian noise, and the other is 
a regular honeycomb point pattern with Gaussian noise. Figure 12 shows the input 
point clouds and their 1st persistence diagrams. In this example, the average dis-
tance between two nearest neighbors is one for both cases, and hence it is difficult to 
distinguish these two types of point clouds using average nearest neighbor distances. 
In Pearson et al. (2015), persistent homology is used to quantitatively measure the 
regularity of noisy triangular lattice patterns generated by the numerical simulation 
of ion bombardment. The example will be helpful for that problem.

We set the number of points to be 20 and the standard deviation of the noise to be 
� = 0.1 . Figure 13 shows the reconstruct persistence diagram from the learned vec-
tor w. The yellow circle (resp. rectangle) in the diagram shows the birth–death pair 
of the regular hexagon (resp. square). One interesting feature in this result is that the 
positive peak position in the reconstructed diagram is shifted to the diagonal from 
yellow circle. Probably this is because such a regular shape is optimal in order to 
leave from the diagonal, and many birth–death pairs in noisy honeycomb patterns 
tend to move toward the diagonal.

3.4 � Linear regression on binary images

In this example, we examine the linear regression on binary images. The input 
binary images are generated by Algorithm 2 with N = 150 and S is randomly cho-
sen from {20, 21,⋯ , 29} uniformly. The task is to determine the random parameter 
S from images. Figure 14 shows sample images with S = 21 and S = 28 and those 
persistence diagrams.

From the construction of Algorithm 2, we know that S controls the area of white 
pixels. Hence, to our task, we study the following descriptors:

Fig. 13   The reconstructed 
persistence diagram. The yellow 
circle (resp. rectangle) shows 
the birth–death pair correspond-
ing to the regular hexagon (resp. 
square) (color figure online)
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	 (i)	 persistence image.
	 (i)	 the number of white pixels.
	 (iii)	 the combination of (i) and (ii).

as explanatory variables and compare these performances. Here, the third descriptor 
means that the response variable S is explained by the following model

(7)S = v ⋅ (# ofwhite pixels) + w ⋅ (PI) + b + (noise),

(a)

(b)

Fig. 14   Sample images for the linear regression and their 0th persistence diagrams. a S = 21 , b S = 28

Table 2   R2 coefficients on the test set of the linear regression problem. These values become larger 
when the learned model gives better predictions

Method R
2 coefficient

(i) PI with ridge ( �2) 0.86

PI with lasso ( �1) 0.86
(ii) # of white pixels 0.88
(iii) Both with ridge 0.93

Both with lasso 0.94
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where v, b ∈ ℝ and w ∈ ℝ
n are unknown parameters and determined from a training 

set. For (i) and (iii), we apply both �2 - and �1-regularizations. The weight parameter 
� of the regularization is determined by the cross validation.

The training set and test set consist of randomly generated 500 images and 100 
images, respectively. The learned results are assessed using the R2 coefficients of 
determination (Bingham 2010) on the test set, which are shown in Table 2. As we 
observe, our methods (i) using �1 - and �2-regularizations attain almost the same per-
formance as (ii), while the combination (iii) improves the performance better.

(a) (b)

(c) (d)

Fig. 15   The reconstructed persistence diagrams. a PI with ridge. b PI with lasso. c Both with ridge. d 
Both with lasso

(a) (b)

Fig. 16   The weighted persistence diagrams for Fig. 14a, b
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Figure  15 shows the reconstructed persistence diagrams obtained from (i) and 
(iii). By construction of our regression model, the areas with positive (resp. nega-
tive) values on the diagrams positively (resp. negatively) contribute to the response 
variable S. Even in the linear regression model, we can observe the sparseness prop-
erty for the �1-regularization, which is useful for extracting the most essential fea-
tures for the response variable S from sample data.

From the mixed model (7), we can estimate the contributions of (i) and (ii) in (iii) 
for predictions. For example, the following prediction results applied to Figure  14 
(a) and (b) with the �1-regularization imply that the prediction mainly consists of the 
term v ⋅ (# of white pixels) and is modified negatively by the term w ⋅ (PI).

Furthermore, by showing the weighted persistence diagram (wixi)
n
i=1

 for the test 
persistence diagram x, we can explicitly clarify the important generators for modi-
fications. Figures 16 shows the weighted persistence diagrams of Fig. 14a, b, and in 
this case, we find that generators around (− 10,− 4) effectively work for predictions 
of S.

For applications in materials science, S can be regarded as a certain physical 
quantity such as conductivity of battery materials. Then, by this approach, we can 
identify geometric structures in the images which most effectively affect that physi-
cal quantity.

3.5 � Application on heterogeneous chemical reactions

We apply our method to X-ray CT images studied in the practical research problem 
of iron ore sinters. The analysis here is originally shown in the supplementary notes 
in the paper (Kimura et al. 2017). In this section, we show the comparison of perfor-
mance in more detail.

S ≈ (prediction of S) = v ⋅ (# of white pixels) + w ⋅ (PI) + b

21 ≈ 20.628 = 30.272 + (−5.917) + (−3.728)

28 ≈ 27.959 = 35.718 + (−4.031) + (−3.728)

(a) (b) (c) (d)

Fig. 17   X-ray CT images of iron ore sinters in the early (a) and intermediate stage (b). The sinters are 
composed from iron oxide (white regions), calcium ferrites (gray), and pores (black). The iron oxide 
regions in the early (c) and intermediate stage (d) are deconvoluted by the image analysis algorithms 
from (a) and (b), respectively
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An iron ore sinter is an initial material for iron making process. It is produced by 
liquid-sintering iron oxide grains with calcium ferrites (CFs) at high temperature, 
and then is reduced in blast furnaces to produce pig iron. Figure 17 shows sliced 
images extracted from the three-dimensional X-CT dataset of iron ore sinters that 
experienced different degrees of reduction. Here, Fig.  17a, b exemplify images at 
the early and intermediate stage of reduction.10 The mechanical property of iron ore 
sinters, degraded by localized stress or micro cracks, is important for efficient iron-
making, and to control their mechanical property, we need to characterize chemi-
cal reactions progressing heterogeneously during reduction. For more details of the 
background and the experiment, we refer the readers to the original paper (Kimura 
et al. 2017).

The task of this example is to identify the characteristic change of heterogene-
ous distribution in chemical states of iron oxide during the reduction process of iron 
ore sinters. To this aim, we prepare 60 images for each of early and intermediate 
stage of reduction, extracted from the three-dimensional X-CT dataset. From these 
images, the regions of iron oxide are deconvoluted by standard image processing 
techniques such as denoising and thresholding. Figure 17c, d show the region of iron 
oxides, obtained by this process from (a) and (b), respectively. For characterizing the 
heterogeneous distributions in the early and intermediate stages, we use the logistic 
regression on persistence diagrams with �2-regularization term. For the comparison, 
we also apply the following image analyses to the data:

–	 SVM classifier with �2-kernel by using the bag of keypoints with sift feature.
–	 logistic regression with �1-regularization term by using the bag of keypoints with 

sift feature.
–	 the number of connected components as a descriptor.
–	 the number of white pixels as a descriptor.

Since the data size is small, we use the following approach to compute the mean 
accuracy:

Table 3   Mean accuracies for 
the classification task

Method Mean accuracy

Logistic regression on PI with �1-regularization 0.83
SVM classifier with �2-kernel by using the bag of 

keypoints with sift feature
0.74

Logistic regression with �1-regularization by using 
the bag of keypoints with sift feature

0.71

# of connected components 0.81
# of white pixels 0.56

10  In the paper (Kimura et al. 2017), images in the final stage are also used. In this paper, we only use 
early and intermediate stage images to focus on the initial changes in the reaction.



445

1 3

Persistence diagrams with linear machine learning models﻿	

1.	 Randomly pick up 5 × 2 images from the early and intermediate stages.
2.	 Learn from the remaining 55 × 2 images.
3.	 Compute the mean accuracy on the selected 5 × 2 images.
4.	 Repeat the above experiments 100 times and compute the average of the accura-

cies.

Table 3 shows the mean accuracies of the example.
The table shows that the logistic regression on the persistence images gives the 

highest score, and our method is the best descriptor in the list to describe geomet-
ric features of practical materials data: the heterogeneous distribution of iron oxide 
region. However, we note that this is not the point we want to emphasize here in this 
analysis. As we explained at the beginning of this section, our goal is to explicitly 
identify the change of the heterogeneous distribution during the sintering process, 
and hence, the classification performance itself is the minimum request to be guar-
anteed for analysis.

As we already explained in the previous sections using the synthetic data, the 
inverse analysis of the reconstructed persistence diagram provides us with an appro-
priate method for finding geometric features corresponding to the most important 
correlations. Figure  18a shows the reconstructed persistence diagram from the 
learned vector, where the classification label 0 and 1 are assigned for the early and 
intermediate stage, respectively. Hence, the negative (resp. positive) birth–death 
regions in the reconstructed persistence diagram contribute to classify into the early 
(resp. intermediate) stage. High values of the learned vectors, marked as ( � ) and 
( � ), were converted into real space and are shown in Fig.  18b, c. Namely, these 
marked red and blue points are the geometric features statistically characterizing the 
key geometric features in heterogeneous distributions of iron oxides at the early and 
intermediate state of reduction, respectively.

This result was verified by another type analysis using the number of connected 
components (Kimura et al. 2017). The classification task using the number of con-
nected components achieves a sufficiently good score, and it means that the number 

(a)
(b) (c)

Fig. 18   a Reconstructed persistence diagram. Red and blue marks show typical geometrical features 
found in the early and intermediate state of reduction. High values of the learned vectors, marked as ( � ) 
and ( � ), were converted into real space and are shown in (b) and (c) for the early and intermediate state 
of reduction, respectively (color figure online)
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of connected components becomes larger from the early to intermediate stage. If our 
interest is simply the classification, the number of connected components can be a 
good candidate for the descriptor. However, since our goal is to explicitly extract the 
geometric features behind this classification, this simple descriptor is not sufficient 
for our purpose. In fact, the number of connected components cannot clarify which 
connected components are important to distinguish data at the early and intermedi-
ate stage. In contrast, our method using the reconstructed persistence diagram suc-
cessfully revealed that the small connected components whose radii are less than 6 
pixels are important to distinguish them.

It is often the case that prior knowledge on the obtained data is too limited to ana-
lyze in practical problems. In such a case, a wrong selection from simple descrip-
tors may cause the serious difference in the machine learning tasks such as selecting 
the number of connected components or that of white pixels in this analysis (see 
Table 3). However, our method can find the characteristic geometric features in a 
more systematic and straightforward way without any prior knowledge.

We also applied an inverse analysis to the logistic regression with �1 - regulariza-
tion with the bag of keypoints approach. Since each keypoint characterizes a local 
region in the original image data, we can identify the corresponding region from the 
learned result by using the feature selection technique. Figure 19 shows the result of 
the inverse analysis. The shapes around blue (resp. red) circles statistically contrib-
ute to the classification into the early stage (resp. intermediate stage). Since the ratio 
of the numbers of red and blue circles becomes larger from the early to intermediate 
stages, these circles are expected to capture some differences between the early and 
intermediate stages. But, as we observe, it is very difficult to understand the typical 
geometric features to distinguish the two stages. This example concludes that the sift 
feature is more obscure as a descriptor than the persistence diagrams.

In the original paper (Kimura et  al. 2017), we discussed more comprehensive 
analysis by using even final stage data and the principal components analysis on 
persistence diagrams for identifying specific geometric features (or trigger sites) 

(a) (b)

Fig. 19   Characteristic regions identified by the combination of sift feature, bag of keypoints, logistic 
regression with �1-regularization term. a Early stage, b intermediate stage (color figure online)
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determining macroscopic mechanical properties, through the initiation of micro 
cracks, in heterogeneous chemical reactions.

4 � Conclusion

In this paper, we have proposed a unified method by combining persistence images 
and linear machine learning models with the ability to study the inverse problem in 
the original data space. One of the important properties of our method is that a per-
sistence diagram is obtained as a learned result. From such a reconstructed dual per-
sistence diagram and the inverse analysis using birth/death positions, we can explic-
itly characterize significant geometric features embedded in dataset. We have also 
presented sparse persistence diagrams as an important concept of machine learnings 
in topological data analysis.

Although we applied our method to linear regressions and logistic regressions, 
it is obviously not limited to them, and many other linear machine learning models 
such as support vector machine with a linear kernel and elastic nets are also applica-
ble. Moreover, we can similarly apply our method to point clouds and cubical sets in 
higher dimensions.

The proposed method is recently applied to several practical problems. For exam-
ple, in the paper (Kimura et al. 2017), the authors develop a method for predicting 
locations of micro cracks generated by reduction reaction process of iron ore sin-
ters. In Sect.  3.5, we have analyzed several related topics in this problem. In that 
application, they apply the persistence images with the �1-linear regression to a huge 
amount of X-CT images, and select the crack areas as a response variable. Then, it 
follows that the reconstructed persistence diagram from the learned vector identifies 
generators which have significant effects on crack formations, and hence, by study-
ing their birth/death positions, we can explicitly detect the location of micro cracks. 
We believe that the same analysis is also useful to other problems dealing with large 
amount of images such as pathology.
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A Algorithm for generating random images

The algorithm for generating random binary images is given by Algorithm 2. It con-
sists of six parameters, W,N, S ∈ ℕ, 𝜎1 > 0, 𝜎2 > 0 , and t > 0 . The area of white 
pixels in the generated image is given by the orbits of the Brownian motion of N 
particles on a flat torus with the size W ×W . The parameters S and �1 determine the 
length of each orbit and �2 and t determine the radii of particles. In this paper we 
fix W = 300 , �1 = 4 , �2 = 2 , t = 0.01 , and only N and S are changed. When N and S 
become larger, the generated image tend to have more white pixels.
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These kinds of random images are frequently obtained by experimental meas-
urements in materials science such as X-CT and TEM (Kimura et al. 2017). These 
seemingly disordered images are supposed to be utilized for materials informatics, 
and one of the motivations of this paper is to develop a universal framework for this 
purpose.
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