
J Appl. and Comput. Topology (2018) 1:421–449
https://doi.org/10.1007/s41468-018-0013-5

1 3

Persistence diagrams with linear machine learning
models

Ippei Obayashi1 · Yasuaki Hiraoka2,3,4 · Masao Kimura5,6

Received: 6 July 2017 / Accepted: 16 April 2018 / Published online: 5 May 2018
© Springer International Publishing AG, part of Springer Nature 2018

Abstract Persistence diagrams have been widely recognized as a compact descrip-
tor for characterizing multiscale topological features in data. When many datasets
are available, statistical features embedded in those persistence diagrams can be
extracted by applying machine learnings. In particular, the ability for explicitly ana-
lyzing the inverse in the original data space from those statistical features of per-
sistence diagrams is significantly important for practical applications. In this paper,

This work is partially supported by JSPS KAKENHI Grant Number JP 16K17638, JST CREST
Mathematics15656429, JST “Materials research by Information Integration” Initiative (MI2I)
project of the Support Program for Starting Up Innovation Hub, Structural Materials for Innovation
Strategic Innovation Promotion Program D72 and D66, and New Energy and Industrial Technology
Development Organization (NEDO).

 * Ippei Obayashi
 ippei.obayashi.d8@tohoku.ac.jp

 Yasuaki Hiraoka
 hiraoka.yasuaki.6z@kyoto-u.ac.jp

 Masao Kimura
 masao.kimura@kek.jp

1 Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan

2 Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho,
Sakyo-ku, Kyoto 606-8501, Japan

3 Center for Advanced Intelligence Project, RIKEN, Wako, Japan
4 Center for Materials research by Information Integration (CMI2), National Institute

for Materials Science (NIMS), Tsukuba, Japan
5 Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research

Organization, Tsukuba, Japan
6 Department of Materials Structure Science, School of High Energy Accelerator Science,

SOKENDAI (The Graduate University for Advanced Studies), Tsukuba, Japan

http://orcid.org/0000-0002-7207-7280
http://orcid.org/0000-0001-8645-2224
http://crossmark.crossref.org/dialog/?doi=10.1007/s41468-018-0013-5&domain=pdf

422 I. Obayashi et al.

1 3

we propose a unified method for the inverse analysis by combining linear machine
learning models with persistence images. The method is applied to point clouds and
cubical sets, showing the ability of the statistical inverse analysis and its advantages.

Keywords Topological data analysis · Persistent homology · Machine learning ·
Linear models · Persistence image

Mathematics Subject Classification 55-04 · 55U99 · 62P35 · 62J07

1 Introduction

Given a dataset, its statistical features can be extracted by applying machine learn-
ing methods (Bishop 2007). Needless to say, machine learning is now one of the
central scientific and engineering subjects, and is rapidly enlarging its theoretical
foundations and ranges of practical applications. For example, in materials science,
the amount of available data has recently been increasing due to improvement of
experimental methods and computational resources. These datasets are expected to
be used for further developments of high performance materials based on machine
learnings, leading to a new concept called “materials informatics” (Rajan 2005,
2012; Buchet et al. 2018).

As another branch of data science, topological data analysis (TDA) (Carlsson
2009; Edelsbrunner and Harer 2010) has also been rapidly developed from theoreti-
cal aspects to applications in the last decade. In TDA, persistent homology and its
persistence diagram (Edelsbrunner et al. 2002; Zomorodian and Carlsson 2005) are
widely used for capturing multiscale topological features in data. Recent improve-
ments of efficient computations of persistence diagrams (Bauer et al. 2014, 2017)
enable us to apply them into practical problems such as materials science (Hiraoka
et al. 2016; Saadatfar et al. 2017; Ichinomiya et al. 2017; Kimura et al. 2017), sensor
networks (de Silva and Ghrist 2007), evolutions of virus (Chen et al. 2013) etc. As
a descriptor of data, persistence diagrams have the following significant properties:
translation and rotation invariance, and robustness for noise. Persistence diagrams
are also multi-scalable, that is, persistence diagrams can capture the geometric struc-
tures in multiple length scales. Together with developments of statistical foundations
(Bubenik 2015; Chazal et al. 2015; Fasy et al. 2014; Kusano et al. 2016, 2017; Rein-
inghaus et al. 2015; Turner et al. 2014; Robins and Turner 2016), persistence dia-
grams nowadays have been recognized as a compact descriptor for complicated data.

In a series of works on materials TDA (Hiraoka et al. 2016; Saadatfar et al. 2017;
Ichinomiya et al. 2017; Kimura et al. 2017), analyzing the inverse in the original
data space (atomic configurations or digital images) from persistence diagrams is
significantly important to explicitly study the materials structures and properties.
Therefore, toward further progress that materials TDA incorporates with materials
informatics, we need to develop a framework of machine learnings on persistence
diagrams which allows the inverse analysis.

423

1 3

Persistence diagrams with linear machine learning models

In this paper, we propose a unified method for studying the shape of data by using
persistence diagrams with machine learnings in both direct and inverse problems.
The essence of our method is to combine persistence images (Adams et al. 2017)
and linear machine learning models.

For standard machine learning methods, the input data is supposed to be given
by vectors, and therefore we need to transform persistence diagrams into vectors.
Some vectorization methods of persistence diagrams have been proposed in the lit-
eratures (Adams et al. 2017; Bubenik 2015; Kusano et al. 2016, 2017; Reininghaus
et al. 2015), and we here use persistence images. This is because it allows us to
reconstruct persistence diagrams from vectors obtained by machine learning results,
providing a key step in the inverse route of our analysis.

Taking this advantage, we apply linear models of machine learnings to persis-
tence images. Since the learned result of linear machine learning models is given
by a (dual) vector with the same dimension as input vectors, we can reconstruct the
persistence diagram from the learned result by simply reversing the construction
process of persistence images. Namely, the persistence diagram itself is obtained as
learning. Furthermore, by studying inverse problems from the reconstructed (dual)
persistence diagram to the original data space, we can explicitly characterize sta-
tistically significant topological features embedded in data. In this paper, we deal
with an inverse problem studying the locations of birth-death pairs of persistence
diagrams in the original data space. As another advantage using linear machine
learning models, we also propose an important concept called sparse persistence
diagram. This new concept allows us to discard irrelevant generators and to focus
on most significant ones in the reconstructed persistence diagram for learning tasks.

It should be remarked that, for only direct problems such as predictions from
data, nonlinear methods such as kernel methods and neural networks are possibly
appropriate, because such nonlinear transformations often make the prediction per-
formance better than linear models. However, if our interest is to understand mecha-
nisms of data structures, the inverse route going back to the original data from the
learned results is inevitable.

As summary, the contribution of this paper is to propose a unified method in top-
ological data analysis with the ability to study inverse problems by combining the
following methods:

1. Persistence images.
2. Linear machine learning models.
3. Inverse analysis of persistence diagrams.

In Sect. 2, after brief introduction of our input data formats and persistent homol-
ogy, we recall persistence images and linear models of machine learnings used in
this paper. In Sect. 3, our method is demonstrated to some problems on point clouds
and cubical sets and its performance is compared to other methods. Here, in addition
to the synthetic data, we also apply the method to a practical problem in materials
science; geometric characterization of heterogeneous chemical reactions in the iron
ore sinter. Some future problems and related topics are summarized in Sect. 4.

424 I. Obayashi et al.

1 3

2 Methods

We first explain some preliminaries about geometric models and persistent homol-
ogy. Although the theory of persistent homology has been rapidly extended in vari-
ous general settings, we here introduce the minimum necessary for later discussions.
Readers who want to understand the theory in higher generality are encouraged to
study the latest literatures.

2.1 Geometric models

In this paper, we mainly consider two types of input data. The first type is given
by a finite points P = {xi ∈ ℝ

N ∶ i = 1,… ,m} in a Euclidean space ℝN , which is
also called a point cloud in TDA. For example, this data type is frequently used for
expressing atomic configurations in materials science.

Our interest is to characterize multiscale topological properties in P, and to this
aim, we consider the r-ball model

where Br(xi) = {y ∈ ℝ
N ∶ ||y − xi|| ≤ r} is the ball with radius r centered at xi . By

construction, when the radius r is very small (resp. large), Pr has the same topology
as m disconnected points (resp. one point). Between these two extremal cases, Pr
may exhibit appearance and disappearance of holes by changing the radius r. Note
that we have a natural inclusion Pr ⊂ Ps for r ≤ s , meaning that the radius parameter
r can be regarded as a resolution of the point cloud P.

For practical data analysis, the r-ball model Pr is not convenient to handle in
computers, and hence we usually build simplicial complex models from Pr . For
instance, the Čech complex Čech(P, r) and the Rips complex (or Vietoris-Rips com-
plex) Rips(P, r) are simplicial complexes with the vertex set P whose k-simplex is
assigned by the following rule, respectively,

Note that, by construction, both simplicial complex models naturally define a
(right continuous) filtration. Namely, for Xr = Čech(P,r) or Xr = Rips(P, r) , it satis-
fies Xr ⊂ Xs for r ≤ s and Xs =

⋂
s<t Xt . In this section, we denote the filtration by

𝕏 = {Xr ∶ r ∈ ℝ}.

Pr =

m⋃

i=1

Br(xi),

{xi0 ,… , xik} ∈ Čech(P, r) ⇔

k⋂

s=0

Br(xis) ≠ �,

{xi0 ,… , xik} ∈ Rips(P, r) ⇔ Br(xis) ∩ Br(xit) ≠ �, 0 ≤ ∀s < ∀t ≤ k.

425

1 3

Persistence diagrams with linear machine learning models

Our next data type is given by a cubical set, which is a standard mathematical
expression for digital images. Following the notation used in the reference (Kaczyn-
ski et al. 2004), let I ⊂ ℝ be an elementary interval, i.e.,

for some � ∈ ℤ . An elementary cube Q = I1 ×⋯ × IN ⊂ ℝ
N is defined by a product

of elementary intervals Ii . Then, a subset X ⊂ ℝ
N is said to be cubical if X can be

expressed as a union of elementary cubes in ℝN.
Let us denote by N

W
 the set of all elementary cubes in the window

ΛW = [−W,W]N ⊂ ℝ
N . Given a function f ∶ N

W
→ ℝ , we can build a cubical set

in ΛW as a sublevel set

for each parameter t. In practical applications such as digital image analysis, this
function is often given by the Manhattan distance (e.g., see Fig. 2) or a gray-
scale function. It is easy to see that the cubical sets Xt also lead to a filtration
𝕏 = {Xt ∶ t ∈ ℝ}.

These are the two standard types of our input data. We note that those filtrations
satisfy the properties that Xt = � for sufficiently small t and Xt is acyclic1 for suffi-
ciently large t, respectively.

2.2 Persistent homology

Let � be a field. In this paper, the qth homology Hq(X) of a topological space X is
defined over the field � , and hence Hq(X) is given as a �-vector space. Intuitively,
the dimension of Hq(X) as a �-vector space counts the number of q-dimensional
holes in X, and each basis vector expresses the corresponding q-dimensional hole
in X, where, for example, q = 0, 1, 2 express connected components, rings, and cavi-
ties, respectively. Then, given a pair of topological spaces X ↪ Y , we can define the
induced linear map � ∶ Hq(X) → Hq(Y) , which characterizes whether a hole in X
persists in Y or not.

The input to the persistent homology is given by a filtration 𝕏 = {Xt ∶ t ∈ ℝ} of
topological spaces. In this paper, Xt is given by a simplicial complex or a cubical
set. For simplicity, we also assume the properties for filtrations remarked in the final
paragraph in Sect. 2.1, although we do not really need it by modifying the argument
here. Then, the qth persistent homology Hq(�) = (Hq(Xt),�

t
s
) of the filtration � is

defined by the family of homologies {Hq(Xt) ∶ t ∈ ℝ} and the induced linear maps
�t
s
∶ Hq(Xs) → Hq(Xt) for all s ≤ t.
Under the assumption of our filtrations, the persistent homology Hq(�) can be

uniquely decomposed by using the so-called interval representations:

I = [�,� + 1] or I = [�,�]

(1)Xt =
⋃

{Q ∈ N
W
∶ f (Q) ≤ t}

1 A topological space X with H̃q(X) = 0 for any q is called acyclic, where H̃q(X) is the reduced homol-
ogy of X.

426 I. Obayashi et al.

1 3

where bi, di ∈ ℝ with bi < di . Here, I(bi, di) = (Ut, f
t
s
) consists of a family of vector

spaces

and the identity map f t
s
= id

�
 for bi ≤ s ≤ t < di . Note that the 0th persistent homol-

ogy in (2) is understood as the reduced sense, meaning that one connected com-
ponent which persists for any large t ∈ ℝ is removed. Each interval representation
I(bi, di) is also called a generator of Hq(�).

Each generator I(bi, di) expresses that a q-dimensional hole appears in � at
the parameter t = bi , persists up to t < di , and then disappears at t = di . We call
bi, di, di − bi the birth time, death time, and lifetime of I(bi, di) , respectively.

Under the unique decomposition (2), the qth persistence diagram Dq(�) of � is
defined by a multiset2

where Δ = {(b, d) ∈ ℝ
2 ∶ b < d} . It is known that the birth-death pair

(bi, di) ∈ Dq(�) with large lifetime can be regarded as reliable topological structure
in � , while that with small lifetime is likely to be a noisy structure. This statement is
justified by the stability theorem of persistent homology (Cohen-Steiner et al. 2007).

For a review about computational aspect of persistent homology, we refer the
readers to the paper (Otter et al. 2017).

(2)Hq(�) ≃

p⨁

i=1

I(bi, di),

Ut =

{
�, bi ≤ t < di,

0, otherwise,

Dq(�) = {(bi, di) ∈ Δ ∶ i = 1,… , p},

r

r = b1 r = b2 r = d2 r = d1r = 0

d1

d2

b2b1

Fig. 1 Left top: Filtration of the r-ball models. Left bottom: Filtration of the corresponding Čech com-
plexes. Right: The 1st persistence diagram. (1) A ring is bone at r = b

1
 . (2) Another ring is bone at

r = b
2
 . (3) The second ring dies at r = d

2
 . (4) The first ring dies at r = d

1

2 A multiset is a set with multiplicity of each point.

427

1 3

Persistence diagrams with linear machine learning models

2.3 Examples

Here, we show several examples to make clear the concepts explained so far. To this
aim, the examples are chosen to be simple enough for demonstration.

We first consider an example of a point cloud given by four points on the plane
shown in the left (r = 0) of Fig. 1. As we explained, each point is replaced by a
ball and we study topological changes during the fattening process of the balls by
increasing the radii. This fattening process is drawn on the left top of Fig. 1, while
the sequence below expresses its Čech complex filtration.

At the radius r = b1 , the first ring is born, and we record its birth parameter as
b1 . Similarly, the second ring appears at the birth parameter r = b2 . On the other
hand, at radius r = d1, d2 , those rings disappear and we record them as their death

(a) (b) (c)

(d)

Fig. 2 a Input binary image. b Manhattan distance. c 0th reduced persistence diagram. d Filtration of
binary images with respect to the Manhattan distance. The colored squares in d:-3 and d:-2 indicate the
initial locations of three connected components. The blue square in d:-3 indicates the connected compo-
nent removed in the reduced persistent homology (color figure online)

428 I. Obayashi et al.

1 3

parameters. Hence, the 1st persistence diagram of the Čech complex filtration is
given by {(b1, d1), (b2, d2)} , which is shown on the right of Fig. 1.

Next, we consider an example of a cubical set. The input data is given by a binary
image (a) in Fig. 2, and we consider a function f assigning an integer on each pixel
shown in (b). Here, positive (resp. negative) numbers are assigned to the gray (resp.
white) pixels using the Manhattan distance. The function f is called the signed dis-
tance function or signed distance transform with Manhattan distance. Then, fol-
lowing the construction (1) of sublevel sets, we obtain a filtration of cubical sets of
white pixels shown in (d). The signed distance transform is already used by various
digital image analysis, including TDA (Delgado-Friedrichs et al. 2014, 2015; Rob-
ins et al. 2016). These researches used the signed distance transform with Euclidean
metric, but we use Manhattan metric as an approximation of Euclidean metric for
easy handling of the singed distance transform on a computer.

In this example, three connected components appear in the filtration and those
birth events are colored in blue and red. The death of those generators corresponds
to a merging to another connected component. Then, the 0th reduced persistence
diagram is given by {(−2,−1), (−2, 3)} , shown in (c). Note that the first connected
component born at −3 is removed in the reduced persistence diagram. We also note
that, from the assignment f using Manhattan distance, all birth parameters take nega-
tive values. Figure 3 summarizes typical geometric structures captured by the 0th
persistence diagram based on the Manhattan distance.

For deep analysis using persistence diagrams, we often want to know the origin
of each birth-death pair. One easy and useful way is to utilize a death simplex (resp.
death cube) for a point cloud (resp. cubical set). In the Čech filtration model of
Fig. 1, two generators (i.e., rings) die when each red simplex fills the corresponding
ring, and those simplices show the locations of the generators. We call these loca-
tions death positions of the generators. Even for generators with higher dimensions
and also for the setting of cubical sets, this idea works in a similar way.

birth
0

de
at
h

(c)

(a) (b)

(d)

(e)

(a) (b)

(c) (d)

(e)

Fig. 3 Cubical sets drawn in the dashed circles (a–e) express typical geometric structures in the 0th per-
sistence diagram. a Large islands. b Small islands. c Large islands with narrow bridges. d Narrow bands.
e Broad bands. For a and b, the births correspond to the radii of the islands. For d and e, the births and
deaths correspond to the half widths of the bands

429

1 3

Persistence diagrams with linear machine learning models

On the other hand, for generators with dimension zero, birth events may possess
the information of locations. In Fig. 2d, there are two red squares and they express
the central locations of each connected component. We call these locations birth
positions of the corresponding birth-death pairs.

We note that the birth/death positions are easily obtained in standard algo-
rithms of computing persistence diagrams, and hence no additional computations
are required. These techniques, which will be demonstrated in the later section, are
exploited for some practical analysis in materials science (Kimura et al. 2017; Rob-
ins et al. 2016).3 It should be remarked that, if one wants to obtain further infor-
mation about the inverse of birth-death pairs, the technique of optimal cycles (Dey
et al. 2011; Escolar and Hiraoka 2016) can be another choice, although it requires a
much computer resource.

2.4 Persistence images

Recall that a persistence diagram is a multi-set on ℝ2 . Hence, we need to vectorize
persistence diagrams to apply machine learning models. In this paper, we use the
persistence image (Adams et al. 2017) for vectorization.

Given a qth persistence diagram Dq = {(bk, dk) ∈ Δ ∶ k = 1,… ,�} , the persis-
tence image � is defined by a function on ℝ2 as

Here, C > 0 , p > 0 , 𝜎 > 0 are parameters, w(b, d) is a weight function, and we
regard the function � as a vector in a function space L2(ℝ2) . We remark that the
weight function is chosen so that we can respect the significance of generators
according to its lifetimes in the statistical analysis. As we see in Sect. 3, the param-
eters are usually determined to be appropriate values using cross validations.

For computations, we discretize the persistence image � and construct a histo-
gram on the plane with an appropriate finite mesh. Obviously, since all birth-death
pairs are located in {(b, d) ∈ [b−, b+] × [d−, d+] ∶ b < d} with some constants
b−, b+, d−, d+ , the histogram is constructed on this area. Then, we obtain a vec-
tor from the discretization of � by ordering the elements on the grids in a prefixed
order. Note that the dimension of the vector is equal to the number of grids used for
the histogram. In the following, we also call the discretization of � the persistence
image. See Algorithm 1 for the explicit algorithm of this construction.

(3)
�(x, y) =

�∑

k=1

w(bk, dk) exp

(
−
(bk − x)2 + (dk − y)2

2�2

)
,

w(b, d) = arctan(C(d − b)p).

3 In Robins et al. (2016), the birth/death positions are called critical points.

430 I. Obayashi et al.

1 3

We note that there are several methods for vectorizations of persistence diagrams.
One important advantage using persistence images is that we can easily reconstruct
a histogram from a vector, and hence can obtain a corresponding persistence dia-
gram. However, it is not straightforward in general to reconstruct persistence dia-
grams from vectors in nonlinear vectorizations. This advantage is effectively used in
our method.

We also remark that, precisely speaking, the weight function (3) is not used in the
original paper (Adams et al. 2017) but first studied in the paper (Kusano et al. 2017),
in which performance comparisons with different weights for persistence images
and also with other vectorizations are thoroughly discussed. For details, we refer the
readers to the paper (Kusano et al. 2017).

2.5 Linear machine learning models

In this section, we briefly recall the logistic regression and the linear regression as
standard supervised machine learning methods (Bishop 2007).

In the linear regression model, we consider a pair of an input vector x ∈ ℝ
n

(called explanatory variable) and its output value y ∈ ℝ (called response variable),
and study the relation between them in the linear form

where w ∈ ℝ
n and b ∈ ℝ are unknown parameters and the noise is randomly deter-

mined from a normal distribution with mean 0. From a set of known input–output
pairs {(xi, yi)}Mi=1 , called a training set, we find an optimal w and b for the model.
Such optimal parameters are derived by minimizing the following mean squared
loss error function with respect to w and b:

In the logistic regression model for a binary classification task, we consider a pair of
an input vector x ∈ ℝ

n and its output value y ∈ {0, 1} , and study the relation of clas-
sification 0/1 based on the following form

y = w ⋅ x + b + (noise),

(4)E(w, b) =
1

2M

M∑

i=1

(w ⋅ xi + b − yi)
2.

431

1 3

Persistence diagrams with linear machine learning models

where w ∈ ℝ
n and b ∈ ℝ are unknown parameters. From training data {(xi, yi)}Mi=1 ,

we find an optimal w and b in a similar way to the linear regression. Here, optimal
parameters are given by minimizing the following cross entropy error function:

We note that, for both the linear regression and logistic regression, these optimiza-
tion problems are equivalent to the maximization of the log likelihood.

In our method, the input vector x ∈ ℝ
n is given by vectorized persistence diagrams

using persistence images. Then, the learned vector w becomes a dual vector to the persis-
tence images, and especially, its dimension is the same as x. Hence, w can be expressed
as a (dual) persistence diagram by the reverse process of the vectorization using persis-
tence images. In this way, our method outputs persistence diagrams as learning results.

For practical applications, we often encounter the problem of over-fittings, if the
dimension n of input vectors is relatively large compared to the sample size (the
number of datasets) M. Under this condition, the result of the optimization prob-
lem excessively fits the training set and does not give appropriate performance for
untrained data. In our setting, since the dimension of vectors obtained from per-
sistence images is very large, we usually face the over-fitting problem. The vectors
given by persistence images also have another statistical problem called multicol-
linearity (Bingham 2010). Adjacent grids elements of a vector by persistence image
are strongly correlated because of Gaussian diffusion, and such a strong correlation
causes the difficulty of determining coefficients and the numerical instability.

One effective way for avoiding the over-fitting and multicollinearity is to add a
regularization (penalty) term R(w) into the error function. Namely, we minimize the
following modified error functions for w and b

where 𝜆 > 0 is a weight parameter controlling the regularization effect. Typical reg-
ularization terms are given as

The former is called an �2-regularization and the latter is called an �1-regularization.
A linear regression with the �2-regularization is called ridge, while a linear regres-
sion with the �1-regularization is called lasso (Robert 1996).

(5)

P(y = 1 ∣ w, b) = g(w ⋅ x + b),

P(y = 0 ∣ w, b) = 1 − P(y = 1 ∣ w, b) = g(−w ⋅ x − b),

g(z) = 1∕(e−z + 1),

(6)
L(w, b) = −

1

M

∑M

i=1

�
yi log ŷi + (1 − yi) log(1 − ŷi)

�
,

ŷi = g(w ⋅ xi + b).

E(w, b) + �R(w) (for a linear regression) ,

L(w, b) + �R(w) (for a logistic regression),

R(w) =
1

2
‖w‖2

2
, R(w) = ‖w‖1.

432 I. Obayashi et al.

1 3

The advantage of the �2-regularization is its good mathematical property. For
example, the �2-regularization term is differentiable but the �1-regularization term
is not. The ridge optimization problem has the closed form solution. However, the
lasso does not have such forms.

On the other hand, the �1-regularization has a significant property of the sparsity.
A vector w is called sparse if its elements are all zero except for only a few elements.
It is well-known that the learned vector w under �1-regularization becomes a sparse
vector, and hence we obtain a sparse persistence diagram as a result of learning. As
we will see later, the sparseness of the learned persistence diagram is often very use-
ful, when we interpret the learned results.

The parameter � of the regularization term controls the complexity of the
learned result (Bishop 2007). When the weight � becomes larger, the regulari-
zation term R(w) becomes smaller. This means that w becomes more sparse in
the �1-regularization. Such a reduction of the complexity is useful for finding the
most essential elements for regressions. However, when � is too large, the learned
results may drop important information. Therefore, we need to determine a suit-
able � in practice. A validation set or cross validation method are often applied to
choose such a parameter (Bishop 2007). The effect of changing � in our method is
discussed in Sect. 3.

2.6 Summary of our method

1. Prepare an input data {(gi, yi)}Mi=1 . Here, each gi is a point cloud or a digital image,
and yi is a real value for the linear regression or 0/1 value for the logistic regression.

2. Compute the persistence diagram D(i) from gi.
3. Compute the vectorization xi ∈ ℝ

n of D(i) using the persistence image.
4. Apply the linear regression or the logistic regression with a regularization term to

the data {(xi, yi)}Mi=1 and find w ∈ ℝ
n and b ∈ ℝ . Choose the �2 - or �1-regulariza-

tion, depending on the purpose.
5. The learned result w is visualized by the reconstruction of the persistence dia-

gram from w. From the reconstructed dual persistence diagram, one may extract
important areas on the diagram.

6. For explicitly identifying the geometric structure of those important areas on the
diagram, one can study the birth/death positions.

3 Results and discussions

In this section, we demonstrate the performance of our methods for logistic regres-
sions and linear regressions with binary images and point clouds. Here, we use fil-
trations of cubical sets using Manhattan distance (black: positive, white: negative)
for binary images, while alpha complex filtrations,4 which are homotopic to Čech

4 CGAL: https ://www.cgal.org/ (Da. et al. 2017).

https://www.cgal.org/

433

1 3

Persistence diagrams with linear machine learning models

complex filtrations, are applied for point clouds. All examples are experimented
using scikit-learn5 and HomCloud.6 Here, let us summarize the details of these soft-
wares used in our analysis in the following.

In scikit-learn, LogisticRegression and LogisticRegressionCV classes in sklearn.
linear_model module are used for the logistic regression, while Lasso, LassoCV,
Ridge and RidgeCV classes in sklearn.linear_model module are used for the linear
regression. Here, we remark that these classes automatically determine the weight
of the regularization term by using cross validations, and we follow the default cross
validation strategies of scikit-learn (stratified threefolds for logistic regressions,
leave-one-out for ridge, and threefolds for lasso).

In HomCloud, persistence diagrams are computed using DIPHA.7 Manhattan
distance for cubical filtrations are computed using the distance transform function
provided by scipy’s ndimage module8 To identify birth/death positions, we assign
the indices to all pixels sorted by the Manhattan distance in increasing order. Then,
the birth-death pairs computed in DIPHA are expressed by the indices, and we can
easily identify the corresponding pixel of each birth/death position from its index.

3.1 Logistic regression on binary images—an easy example

First, we examine the logistic regression on persistence diagrams of binary images.
Here, the binary image data is randomly generated by Algorithm 2 in Appendix 1,
where a pair of parameters (N, S) is used to generate two types of images. One pair
(A) is set to be N = 100, S = 30 and the other (B) is N = 250, S = 10 . Figure 4

Fig. 4 Input binary images and their 0th persistence diagrams. The left and right two images are sam-
pled from the parameter pairs (A) and (B), respectively

5 Scikit-learn: http://sciki t-learn .org/ (Pedregosa et al. 2011).
6 http://www.wpi-aimr.tohok u.ac.jp/hirao ka_labo/homcl oud/index .en.html.
7 DIPHA: A Distributed Persistent Homology Algorithm (Bauer et al. 2014).
8 SciPy: Open Source Scientific Tools for Python, 2001-, http://www.scipy .org/ (Jones et al. 2011–).

http://scikit-learn.org/
http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/homcloud/index.en.html
http://www.scipy.org/

434 I. Obayashi et al.

1 3

shows the samples of both data (left: (A), right: (B)). We may intuitively observe
that the images from (B) have somewhat finer structures than the images from (A).
Our task is the classification of the parameters (A) and (B) from images, where we
assign 0 and 1 for (A) and (B), respectively.

For each parameter pair, 300 images are generated (total 2 × 300) and 200 of
these images are sampled as a training set (total 2 × 200). Then, 2 × 100 remaining
images are used as a test set to evaluate the learned result. Here, 0th persistence dia-
grams are applied for the task. The parameters of the persistence images are set to
be � = 2.0,C = 0.5, p = 1.0 and the mesh for the discretized persistence images is
obtained by dividing the rectangle [− 40.5, 10.5] × [− 30.5, 20.5] into 51 × 51 grids.
The �2-regularization is used and the weight parameter � of the regularization term
is determined by the cross validation.

In this example, the score, evaluated as the mean accuracy, of the learned result is
1.0, that is, we can perfectly identify the parameter pairs behind the images. In fact,
we could also distinguish these two parameter pairs by simply counting the number
of connected components, if we had this prior knowledge. In Sect. 3.2, we examine
a more sophisticated classification problem. For a while, let us use this example in
order to explain some properties of our method.

Figure 5a shows the reconstructed persistence diagram from the learned vector w,
and (b) shows the area at which the magnitude is above a certain threshold. Recall-
ing the classification rule (5), nonzero elements in w (and hence nonzero generators
in its reconstructed persistence diagram) work for making classification decisions.
Namely, from the 0/1 assignment rule, the reconstructed persistence diagram con-
cludes that generators in the blue (resp. red) area statistically contribute to the clas-
sification (A) (resp. (B)).

(a)

(c-1) (c-2) (c-3) (c-4)

(b)

Fig. 5 a The reconstructed persistence diagram from the learned vector w. The blue (resp. red) area con-
tributes to the class 0 (resp. 1). b A thresholding of (a). c 1–4 The birth positions of the generators in
blue and red areas in (b) are plotted with the same color (color figure online)

435

1 3

Persistence diagrams with linear machine learning models

Furthermore, by plotting the birth positions of these generators, we can explic-
itly identify the geometric structures which characterize the classification task. Fig-
ure 5c1–4 show those birth positions, where the blue (resp. red) points correspond to
the blue (resp. red) area in (b). Recalling the interpretation in Fig. 3, we find that the
characteristic geometric structures of (B) are explained by small islands and narrow
bands whose inner radii are 4 ∼ 10 pixels; this is consistent to our intuition that (B)
contains finer structures.

Using this example, let us study the effect of the weight parameter � for the regu-
larization. Figure 6 shows the reconstructed persistence diagrams from the learned
vectors for several weight parameters � . When � becomes larger, in addition to the
fact that the magnitude of the persistence diagram becomes smaller, its distribution
becomes simpler. This is because the weigh parameter � of the regularization con-
trols the complexity of the learned result, which is expressed in the distribution of
the reconstructed persistence diagram.

We also compare with the �1-regularization in this example. Figure 7 shows the
reconstructed persistence diagrams using the �1-regularization with several param-
eters � . As mentioned in Sect. 2.5, an important property of the �1-regularization
is the sparseness of the learned result w. In our method, this property is reflected
as sparse persistence diagram. Hence, again recalling the classification rule (5),
the selected few grids in the sparse persistence diagram are supposed to work most
effectively for the classification task. In other words, the birth-death pairs around

(a) (b) (c)

Fig. 6 The reconstructed persistence diagrams with several weight parameters � . a � = 0.35938 (deter-
mined by the cross validation), b � = 10 , and c � = 100

(a) (b) (c)

Fig. 7 The reconstructed persistence diagrams using the �1-regularization with several weight param-
eters � . a � = 0.01 , b � = 0.1 , c � = 1

436 I. Obayashi et al.

1 3

the grids are especially important for the classification. Furthermore, the number of
selected grids decreases for large � as before, providing us with more compressed
result and easier understandings of the learning.

3.2 Logistic regression on binary images—a hard example

Next, let us set the parameter pairs for generating random binary images so that the
classification task becomes more difficult. Here, one parameter pair (C) is set to be
N = 160, S = 34 and the other pair (D) is N = 270, S = 18 . Figure 8 shows the sam-
ple input data [left: (C), right: (D)].

In this example, it seems difficult to distinguish two parameter pairs based on our
intuition. In fact, simple descriptors such as the average numbers of connected com-
ponents and white pixels do not work at all in this case.

Fig. 8 Input binary images and their 0th persistence diagrams. The left and right images are sampled
from the parameter pairs (C) and (D), respectively

(a) (b)

Fig. 9 The reconstructed persistence diagrams using the �2-regularization for the parameter pairs (C)
and (D). a � = 0.0059948 (chosen by cross validation), b � = 1

437

1 3

Persistence diagrams with linear machine learning models

The setting for the classification is the same as before, i.e., 2 × 200 for training
and 2 × 100 for the test, and we assign 0 and 1 to (C) and (D), respectively. In this
case, the score on the test set is 0.92 (baseline: 0.5). Figure 9a shows the recon-
structed persistence diagram as the learned result using the �2-regularization with
the weight � = 0.0059948 determined by the cross validation.

In this learning, the distribution of the reconstructed persistence diagram looks
complicated to observe clear features. Hence, let us increase the weight parameter
� for simplifying the distribution. Figure 9b shows the result with � = 1 , where its
score of the learning is 0.91. It should be noted that, although the score becomes
only a little worse, the distribution turns out to be simple enough to conclude that
the red area is dominant in the region with the birth scale > − 20 . From this sim-
plification, we can explicitly obtain geometric reasonings for this classification in a
similar way to Sect. 3.1.

Now we compare our method to other standard methods for image classifications.
The list of methods and those scores are summarized in Table 1. These demonstra-
tions show that persistence images with the logistic regression have better accuracy
than the others. In particular, we note that the performance of our method is better
than the bag of keypoints approach with sift feature, which is one of the standard
techniques for image classifications (Lowe 1999; Sivic and Zisserman 2003; Csurka
et al. 2004; Nowak et al. 2006)

This is because such standard image classification techniques are developed
mainly for clearly distinguishable and well-structured objects such as photos of faces,
artificial objects, or landscapes, and not for images like this example. This suggests
that our approach using persistence diagrams has an advantage to disordered images,
which are frequently observed in materials science data (Kimura et al. 2017).

We remark that OpenCV’s python interface9 is used for the computation of sift
feature (cv2.xfeatures2d module) and bag of keypoints (cv2.BOWImgDescriptorEx-
tractor). For the classification task, we use SVC class in sklearn.svm module for
support vector classifier with �2 kernel from sklearn.metrics.pairwise module).

3.3 Logistic regression on point clouds

In this example, the input point clouds are prepared from two different random point
processes; one is Poisson point process (PPP) and the other is Ginibre point process

Table 1 Performance
comparison (PI: persistence
image, SVM: support vector
machine).

Method Mean accuracy

PI, logistic regression, �2-penalty 0.92
Bag of keypoints using sift with grid sampling,

SVM classifier with �2 kernel
0.85

of connected components of black pixels 0.73
of connected components of white pixels 0.50
of white pixels 0.50

9 https ://openc v.org/

https://opencv.org/

438 I. Obayashi et al.

1 3

(GPP) on a unit disk. It is known that PPP has no interaction between points, while
GPP has a repulsive interaction. The parameters for these two point processes
are adjusted so that the mean number of points on the disk is 30. The task in this

Fig. 10 Random point clouds (Left: PPP, Right: GPP) and their 1st persistence diagrams

(a) (b)

(c) (d)

Fig. 11 a The reconstructed persistence diagram. The blue (resp. red) area contributes to the class 0
(resp. 1). b A thresholding of (a). c The death positions (triangles) in PPP. d The death positions (trian-
gles) in GPP (color figure online)

439

1 3

Persistence diagrams with linear machine learning models

example is to identify PPP or GPP for test point clouds. To this task, we apply our
method to the 1st persistence diagrams with the �2-logistic regression.

Figure 10 shows point clouds generated by PPP and GPP. The parameters of
the persistence images are set to be � = 0.003,C = 80, p = 1.0 and the mesh for
the discretized persistence diagrams is obtained by dividing the square [0, 0.15]2
into 150 × 150 grids. For each point process, 300 point clouds are generated (total
2 × 300) and 200 of these point clouds are sampled as a training set (total 2 × 200),
where we assign 0 and 1 for PPP and GPP, respectively. The remaining 2 × 100
point clouds are used as a test set for evaluation. Here, the weight parameter � of
the �2-regularization is determined by the cross validation. The score of the learned
result is 0.94.

Figure 11a shows the reconstructed persistence diagram from the learned vec-
tor w and (b) shows the positive and negative areas of (a) with a certain thresh-
old. Recall that, from the 0/1 assignment, the generators in the blue (resp. red) area
contributes to classifying into PPP (resp. GPP). From the learned persistence dia-
gram, we observe that the red area is located on the region with large birth values.
This is consistent to the fact that GPP has a repulsive interaction, and hence it pre-
vents the point cloud from constructing rings with small birth values. Figure 11c, d
show the death positions of the generators in the blue and red areas of (b) with the
same colors, where (c) (resp. (d)) corresponds to PPP (resp. GPP). Similarly to the

(a)

(b)

Fig. 12 Input point clouds and their 1st persistence diagrams. a A square lattice with noise. b A regular
honeycomb pattern with noise

440 I. Obayashi et al.

1 3

discussion in Fig. 5, these death positions express characteristic geometric features
used for learnings more explicitly.

We remark that PPP and GPP can also be distinguished by using other descriptors
such as average nearest neighbor distances. An advantage of our method is that we
do not need any prior knowledge, providing us with more universal method com-
pared to problem-specific descriptors. In fact, the analysis using average nearest
neighbor distance can be realized by the 0th persistence diagram.

Now let us test another example for point clouds. The task is classifying two
types of point clouds; one is a square lattice with Gaussian noise, and the other is
a regular honeycomb point pattern with Gaussian noise. Figure 12 shows the input
point clouds and their 1st persistence diagrams. In this example, the average dis-
tance between two nearest neighbors is one for both cases, and hence it is difficult to
distinguish these two types of point clouds using average nearest neighbor distances.
In Pearson et al. (2015), persistent homology is used to quantitatively measure the
regularity of noisy triangular lattice patterns generated by the numerical simulation
of ion bombardment. The example will be helpful for that problem.

We set the number of points to be 20 and the standard deviation of the noise to be
� = 0.1 . Figure 13 shows the reconstruct persistence diagram from the learned vec-
tor w. The yellow circle (resp. rectangle) in the diagram shows the birth–death pair
of the regular hexagon (resp. square). One interesting feature in this result is that the
positive peak position in the reconstructed diagram is shifted to the diagonal from
yellow circle. Probably this is because such a regular shape is optimal in order to
leave from the diagonal, and many birth–death pairs in noisy honeycomb patterns
tend to move toward the diagonal.

3.4 Linear regression on binary images

In this example, we examine the linear regression on binary images. The input
binary images are generated by Algorithm 2 with N = 150 and S is randomly cho-
sen from {20, 21,⋯ , 29} uniformly. The task is to determine the random parameter
S from images. Figure 14 shows sample images with S = 21 and S = 28 and those
persistence diagrams.

From the construction of Algorithm 2, we know that S controls the area of white
pixels. Hence, to our task, we study the following descriptors:

Fig. 13 The reconstructed
persistence diagram. The yellow
circle (resp. rectangle) shows
the birth–death pair correspond-
ing to the regular hexagon (resp.
square) (color figure online)

441

1 3

Persistence diagrams with linear machine learning models

 (i) persistence image.
 (i) the number of white pixels.
 (iii) the combination of (i) and (ii).

as explanatory variables and compare these performances. Here, the third descriptor
means that the response variable S is explained by the following model

(7)S = v ⋅ (# ofwhite pixels) + w ⋅ (PI) + b + (noise),

(a)

(b)

Fig. 14 Sample images for the linear regression and their 0th persistence diagrams. a S = 21 , b S = 28

Table 2 R2 coefficients on the test set of the linear regression problem. These values become larger
when the learned model gives better predictions

Method R
2 coefficient

(i) PI with ridge (�2) 0.86

PI with lasso (�1) 0.86
(ii) # of white pixels 0.88
(iii) Both with ridge 0.93

Both with lasso 0.94

442 I. Obayashi et al.

1 3

where v, b ∈ ℝ and w ∈ ℝ
n are unknown parameters and determined from a training

set. For (i) and (iii), we apply both �2 - and �1-regularizations. The weight parameter
� of the regularization is determined by the cross validation.

The training set and test set consist of randomly generated 500 images and 100
images, respectively. The learned results are assessed using the R2 coefficients of
determination (Bingham 2010) on the test set, which are shown in Table 2. As we
observe, our methods (i) using �1 - and �2-regularizations attain almost the same per-
formance as (ii), while the combination (iii) improves the performance better.

(a) (b)

(c) (d)

Fig. 15 The reconstructed persistence diagrams. a PI with ridge. b PI with lasso. c Both with ridge. d
Both with lasso

(a) (b)

Fig. 16 The weighted persistence diagrams for Fig. 14a, b

443

1 3

Persistence diagrams with linear machine learning models

Figure 15 shows the reconstructed persistence diagrams obtained from (i) and
(iii). By construction of our regression model, the areas with positive (resp. nega-
tive) values on the diagrams positively (resp. negatively) contribute to the response
variable S. Even in the linear regression model, we can observe the sparseness prop-
erty for the �1-regularization, which is useful for extracting the most essential fea-
tures for the response variable S from sample data.

From the mixed model (7), we can estimate the contributions of (i) and (ii) in (iii)
for predictions. For example, the following prediction results applied to Figure 14
(a) and (b) with the �1-regularization imply that the prediction mainly consists of the
term v ⋅ (# of white pixels) and is modified negatively by the term w ⋅ (PI).

Furthermore, by showing the weighted persistence diagram (wixi)
n
i=1

 for the test
persistence diagram x, we can explicitly clarify the important generators for modi-
fications. Figures 16 shows the weighted persistence diagrams of Fig. 14a, b, and in
this case, we find that generators around (− 10,− 4) effectively work for predictions
of S.

For applications in materials science, S can be regarded as a certain physical
quantity such as conductivity of battery materials. Then, by this approach, we can
identify geometric structures in the images which most effectively affect that physi-
cal quantity.

3.5 Application on heterogeneous chemical reactions

We apply our method to X-ray CT images studied in the practical research problem
of iron ore sinters. The analysis here is originally shown in the supplementary notes
in the paper (Kimura et al. 2017). In this section, we show the comparison of perfor-
mance in more detail.

S ≈ (prediction of S) = v ⋅ (# of white pixels) + w ⋅ (PI) + b

21 ≈ 20.628 = 30.272 + (−5.917) + (−3.728)

28 ≈ 27.959 = 35.718 + (−4.031) + (−3.728)

(a) (b) (c) (d)

Fig. 17 X-ray CT images of iron ore sinters in the early (a) and intermediate stage (b). The sinters are
composed from iron oxide (white regions), calcium ferrites (gray), and pores (black). The iron oxide
regions in the early (c) and intermediate stage (d) are deconvoluted by the image analysis algorithms
from (a) and (b), respectively

444 I. Obayashi et al.

1 3

An iron ore sinter is an initial material for iron making process. It is produced by
liquid-sintering iron oxide grains with calcium ferrites (CFs) at high temperature,
and then is reduced in blast furnaces to produce pig iron. Figure 17 shows sliced
images extracted from the three-dimensional X-CT dataset of iron ore sinters that
experienced different degrees of reduction. Here, Fig. 17a, b exemplify images at
the early and intermediate stage of reduction.10 The mechanical property of iron ore
sinters, degraded by localized stress or micro cracks, is important for efficient iron-
making, and to control their mechanical property, we need to characterize chemi-
cal reactions progressing heterogeneously during reduction. For more details of the
background and the experiment, we refer the readers to the original paper (Kimura
et al. 2017).

The task of this example is to identify the characteristic change of heterogene-
ous distribution in chemical states of iron oxide during the reduction process of iron
ore sinters. To this aim, we prepare 60 images for each of early and intermediate
stage of reduction, extracted from the three-dimensional X-CT dataset. From these
images, the regions of iron oxide are deconvoluted by standard image processing
techniques such as denoising and thresholding. Figure 17c, d show the region of iron
oxides, obtained by this process from (a) and (b), respectively. For characterizing the
heterogeneous distributions in the early and intermediate stages, we use the logistic
regression on persistence diagrams with �2-regularization term. For the comparison,
we also apply the following image analyses to the data:

– SVM classifier with �2-kernel by using the bag of keypoints with sift feature.
– logistic regression with �1-regularization term by using the bag of keypoints with

sift feature.
– the number of connected components as a descriptor.
– the number of white pixels as a descriptor.

Since the data size is small, we use the following approach to compute the mean
accuracy:

Table 3 Mean accuracies for
the classification task

Method Mean accuracy

Logistic regression on PI with �1-regularization 0.83
SVM classifier with �2-kernel by using the bag of

keypoints with sift feature
0.74

Logistic regression with �1-regularization by using
the bag of keypoints with sift feature

0.71

of connected components 0.81
of white pixels 0.56

10 In the paper (Kimura et al. 2017), images in the final stage are also used. In this paper, we only use
early and intermediate stage images to focus on the initial changes in the reaction.

445

1 3

Persistence diagrams with linear machine learning models

1. Randomly pick up 5 × 2 images from the early and intermediate stages.
2. Learn from the remaining 55 × 2 images.
3. Compute the mean accuracy on the selected 5 × 2 images.
4. Repeat the above experiments 100 times and compute the average of the accura-

cies.

Table 3 shows the mean accuracies of the example.
The table shows that the logistic regression on the persistence images gives the

highest score, and our method is the best descriptor in the list to describe geomet-
ric features of practical materials data: the heterogeneous distribution of iron oxide
region. However, we note that this is not the point we want to emphasize here in this
analysis. As we explained at the beginning of this section, our goal is to explicitly
identify the change of the heterogeneous distribution during the sintering process,
and hence, the classification performance itself is the minimum request to be guar-
anteed for analysis.

As we already explained in the previous sections using the synthetic data, the
inverse analysis of the reconstructed persistence diagram provides us with an appro-
priate method for finding geometric features corresponding to the most important
correlations. Figure 18a shows the reconstructed persistence diagram from the
learned vector, where the classification label 0 and 1 are assigned for the early and
intermediate stage, respectively. Hence, the negative (resp. positive) birth–death
regions in the reconstructed persistence diagram contribute to classify into the early
(resp. intermediate) stage. High values of the learned vectors, marked as (�) and
(�), were converted into real space and are shown in Fig. 18b, c. Namely, these
marked red and blue points are the geometric features statistically characterizing the
key geometric features in heterogeneous distributions of iron oxides at the early and
intermediate state of reduction, respectively.

This result was verified by another type analysis using the number of connected
components (Kimura et al. 2017). The classification task using the number of con-
nected components achieves a sufficiently good score, and it means that the number

(a)
(b) (c)

Fig. 18 a Reconstructed persistence diagram. Red and blue marks show typical geometrical features
found in the early and intermediate state of reduction. High values of the learned vectors, marked as (�)
and (�), were converted into real space and are shown in (b) and (c) for the early and intermediate state
of reduction, respectively (color figure online)

446 I. Obayashi et al.

1 3

of connected components becomes larger from the early to intermediate stage. If our
interest is simply the classification, the number of connected components can be a
good candidate for the descriptor. However, since our goal is to explicitly extract the
geometric features behind this classification, this simple descriptor is not sufficient
for our purpose. In fact, the number of connected components cannot clarify which
connected components are important to distinguish data at the early and intermedi-
ate stage. In contrast, our method using the reconstructed persistence diagram suc-
cessfully revealed that the small connected components whose radii are less than 6
pixels are important to distinguish them.

It is often the case that prior knowledge on the obtained data is too limited to ana-
lyze in practical problems. In such a case, a wrong selection from simple descrip-
tors may cause the serious difference in the machine learning tasks such as selecting
the number of connected components or that of white pixels in this analysis (see
Table 3). However, our method can find the characteristic geometric features in a
more systematic and straightforward way without any prior knowledge.

We also applied an inverse analysis to the logistic regression with �1 - regulariza-
tion with the bag of keypoints approach. Since each keypoint characterizes a local
region in the original image data, we can identify the corresponding region from the
learned result by using the feature selection technique. Figure 19 shows the result of
the inverse analysis. The shapes around blue (resp. red) circles statistically contrib-
ute to the classification into the early stage (resp. intermediate stage). Since the ratio
of the numbers of red and blue circles becomes larger from the early to intermediate
stages, these circles are expected to capture some differences between the early and
intermediate stages. But, as we observe, it is very difficult to understand the typical
geometric features to distinguish the two stages. This example concludes that the sift
feature is more obscure as a descriptor than the persistence diagrams.

In the original paper (Kimura et al. 2017), we discussed more comprehensive
analysis by using even final stage data and the principal components analysis on
persistence diagrams for identifying specific geometric features (or trigger sites)

(a) (b)

Fig. 19 Characteristic regions identified by the combination of sift feature, bag of keypoints, logistic
regression with �1-regularization term. a Early stage, b intermediate stage (color figure online)

447

1 3

Persistence diagrams with linear machine learning models

determining macroscopic mechanical properties, through the initiation of micro
cracks, in heterogeneous chemical reactions.

4 Conclusion

In this paper, we have proposed a unified method by combining persistence images
and linear machine learning models with the ability to study the inverse problem in
the original data space. One of the important properties of our method is that a per-
sistence diagram is obtained as a learned result. From such a reconstructed dual per-
sistence diagram and the inverse analysis using birth/death positions, we can explic-
itly characterize significant geometric features embedded in dataset. We have also
presented sparse persistence diagrams as an important concept of machine learnings
in topological data analysis.

Although we applied our method to linear regressions and logistic regressions,
it is obviously not limited to them, and many other linear machine learning models
such as support vector machine with a linear kernel and elastic nets are also applica-
ble. Moreover, we can similarly apply our method to point clouds and cubical sets in
higher dimensions.

The proposed method is recently applied to several practical problems. For exam-
ple, in the paper (Kimura et al. 2017), the authors develop a method for predicting
locations of micro cracks generated by reduction reaction process of iron ore sin-
ters. In Sect. 3.5, we have analyzed several related topics in this problem. In that
application, they apply the persistence images with the �1-linear regression to a huge
amount of X-CT images, and select the crack areas as a response variable. Then, it
follows that the reconstructed persistence diagram from the learned vector identifies
generators which have significant effects on crack formations, and hence, by study-
ing their birth/death positions, we can explicitly detect the location of micro cracks.
We believe that the same analysis is also useful to other problems dealing with large
amount of images such as pathology.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

A Algorithm for generating random images

The algorithm for generating random binary images is given by Algorithm 2. It con-
sists of six parameters, W,N, S ∈ ℕ, 𝜎1 > 0, 𝜎2 > 0 , and t > 0 . The area of white
pixels in the generated image is given by the orbits of the Brownian motion of N
particles on a flat torus with the size W ×W . The parameters S and �1 determine the
length of each orbit and �2 and t determine the radii of particles. In this paper we
fix W = 300 , �1 = 4 , �2 = 2 , t = 0.01 , and only N and S are changed. When N and S
become larger, the generated image tend to have more white pixels.

448 I. Obayashi et al.

1 3

These kinds of random images are frequently obtained by experimental meas-
urements in materials science such as X-CT and TEM (Kimura et al. 2017). These
seemingly disordered images are supposed to be utilized for materials informatics,
and one of the motivations of this paper is to develop a universal framework for this
purpose.

References

Adams, H., Chepushtanova, S., Emerson, T., Hanson, E., Kirby, M., Motta, F., Neville, R., Peterson, C.,
Shipman, P., Ziegelmeier, L.: Persistence images: a stable vector representation of persistent homol-
ogy. J. Mach. Learn. Res. 18(8), 1–35 (2017)

Bauer, U., Kerber, M., Reininghaus, J.: Distributed computation of persistent homology. Proceedings of
the Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX) (2014)

Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: Phat—persistent homology algorithms toolbox. J.
Symb. Comput. 78, 76–90 (2017)

Bingham, N.H., Fry, J.M.: Regression—Linear Models in Statistics. Springer, Berlin (2010)
Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer,

Berlin (2007)
Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1),

77–102 (2015)
Buchet, M., Hiraoka, Y., Obayashi, I.: Persistent homology and materials informatics. In: Tanaka, I. (ed.)

Nanoinformatics, pp. 75–95. Springer, Berlin (2018)
Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009)
Chazal, F., Glisse, M., Labruére, C., Michel, B.: Convergence rates for persistence diagram estimation in

topological data analysis. J. Mach. Learn. Res. 16, 3603–3635 (2015)
Chan, J.M., Carlsson, G., Rabadan, R.: Topology of viral evolution. PNAS 110(46), 18566–18571 (2013)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom.

37(1), 103–120 (2007)
Csurka, G., Bray, C., Dance, C. Fan, L.: Visual categorization with bags of keypoints. In: Proceeding of

ECCV Workshop on Statistical Learning in Computer Vision, pp. 59–74 (2004)
Da, T.K.F., Loriot, S., Yvinec, M.: 3D Alpha Shapes. CGAL User and Reference Manual 4.11, CGAL

Editorial Board (2017)
Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Morse theory and persistent homology for topological

analysis of 3D images of complex materials. In: 2014 IEEE International Conference on Image Pro-
cessing (ICIP), pp. 4872–4876 (2014)

Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital images
using discrete Morse theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 654–666 (2015)

de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebraic Geom. Topol. 7,
339–358 (2007)

449

1 3

Persistence diagrams with linear machine learning models

Dey, T.K., Hirani, A.N., Krishnamoorthy, B.: Optimal homologous cycles, total unimodularity and linear
programming. SIAM J. Comput. 40(4), 1026–1044 (2011)

Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret.
Comput. Geom. 28(4), 511–533 (2002)

Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, Providence (2010)
Escolar, E.G., Hiraoka, Y.: Optimal cycles for persistent homology via linear programming. Optimization

in the Real World Toward Solving Real-World Optimization Problems, pp. 79–96. Springer Japan,
Osaka (2016)

Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., Singh, A.: Confidence sets for persis-
tence diagrams. Ann. Stat. 42(6), 2301–2339 (2014)

Hiraoka, Y., Nakamura, T., Hirata, A., Escolar, E.G., Matsue, K., Nishiura, Y.: Hierarchical structures of
amorphous solids characterized by persistent homology. Proc. Nat. Acad. Sci. USA 113, 7035–7040
(2016)

Ichinomiya, T., Obayashi, I., Hiraoka, Y.: Persistent homology analysis of craze formation. Phys. Rev. E
95(1), 012504 (2017)

Jones, E., Oliphant, T., Peterson, .P, et al.: SciPy: Open source scientific tools for Python. http://www.
scipy .org/ (2001–) [Online; accessed 2018-01-20]

Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer, Berlin (2004)
Kimura, M., Obayashi, I., Takeuchi, Y., Hiraoka, Y.: Finding trigger sites in heterogeneous reactions

using persistent-homology without preliminary material scientific information. Sci. Rep. 8, 3553
(2018)

Kusano, G., Fukumizu, K., Hiraoka, Y.: Persistence weighted Gaussian kernel for topological data anal-
ysis. Proceedings of the 33rd International Conference on Machine Learning, JMLR: W&CP 48.
2004-2013 (2016)

Kusano, G., Fukumizu, K., Hiraoka, Y.: Kernel method for persistence diagrams via kernel embedding
and weight factor. Accepted in Journal of Machine Learning Research

Lowe, D.G.: Object recognition from local scale invariant features. In: Proc. of IEEE International Con-
ference on Computer Vision, pp. 1150–1157 (1999)

Nowak, E., Jurie, F., Triggs, B.: Sampling Strategies for Bag-of-Features Image Classification. In: Com-
puter Vision – ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May
7-13, 2006, Proceedings, Part IV, pp. 490–503 (2006)

Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of
persistent homology. arXiv :1506.08903

Pearson, D.A., Bradley, R.M., Motta, F.C., Shipman, P.D.: Producing nanodot arrays with improved hex-
agonal order by patterning surfaces before ion sputtering. Phys. Rev. E 92(6), 062401 (2015)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Erplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duches-
nay, E.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

Rajan, K.: Materials informatics. Mater. Today 8(10), 38–45 (2005)
Rajan, K.: Materials informatics. Mater. Today 15(11), 470 (2012)
Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A Stable Multi-Scale Kernel for Topological Machine

Learning. 2015 IEEE Conference on Computer Vision and Pattern Recognition, 4741–4748 (2015)
Robert, T.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1),

267–288 (1996)
Robins, V., Turner, K.: Principal component analysis of persistent homology rank functions with case

studies of spatial point patterns, sphere packing and colloids. Phys. D 334, 99–117 (2016)
Robins, V., Saadatfar, M., Delgado-Friedrichs, O., Sheppard, A.P.: Percolating length scales from top-

ological persistence analysis of micro-CT images of porous materials. Water Resour. Res. 52(1),
315–329 (2016)

Saadatfar, M., Takeuchi, H., Francois, N., Robins, V., Hiraoka, Y.: Pore configuration landscape of granu-
lar crystallisation. Nat. Commun. 8, 15082 (2017). https ://doi.org/10.1038/ncomm s1508 2

Sivic, J. and Zisserman, A.: Video Google: A Text Retrieval Approach to Object Matching in Videos. In:
Proc. of IEEE International Conference on Computer Vision, pp.1470–1477 (2003)

Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence diagrams.
Discret. Comput. Geom. 52(1), 44–70 (2014)

Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput. Geom. 33(2), 249–274
(2005)

http://www.scipy.org/
http://www.scipy.org/
http://arxiv.org/abs/1506.08903
https://doi.org/10.1038/ncomms15082

	Persistence diagrams with linear machine learning models
	Abstract
	1 Introduction
	2 Methods
	2.1 Geometric models
	2.2 Persistent homology
	2.3 Examples
	2.4 Persistence images
	2.5 Linear machine learning models
	2.6 Summary of our method

	3 Results and discussions
	3.1 Logistic regression on binary images—an easy example
	3.2 Logistic regression on binary images—a hard example
	3.3 Logistic regression on point clouds
	3.4 Linear regression on binary images
	3.5 Application on heterogeneous chemical reactions

	4 Conclusion
	References

