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Abstract We generalize the persistence diagram of Cohen-Steiner, Edelsbrunner,

and Harer to the setting of constructible persistence modules valued in a symmetric

monoidal category. We call this the type A persistence diagram of a persistence

module. If the category is also abelian, then we define a second type B persistence

diagram. In addition, we show that both diagrams are stable to all sufficiently small

perturbations of the module. The type B persistence diagram carries less informa-

tion than the type A persistence diagram, but it enjoys a stronger stability theorem.
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1 Introduction

Let f : M ! R be a Morse function on a compact manifold M. The function f filters

M by sublevel sets Mf � r ¼ fx 2 M j f ðxÞ� rg: Apply homology with coefficients

in a field and we call the resulting object F a constructible persistence module of

vector spaces. The persistence diagram and the barcode are two invariants of a

persistence module obtained as follows.

• By Images: Edelsbrunner et al. (2002) define the persistent homology group Ft
s,

for s\t, as the image of Fðs\tÞ. Cohen-Steiner et al. (2007) define the
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persistence diagram of F as a finite set of points in the plane above the diagonal

satisfying the following property. For each s\t, the number of points in the

upper-left quadrant defined by (s, t) is the rank of Ft
s.

• By Indecomposables: The module F is isomorphic to a finite direct sum of

indecomposable persistence modules F ffi F1 � � � � � Fn: Any two ways of

writing F as a sum of indecomposables are the same up to a reordering of the

indecomposables. Furthermore, each indecomposable Fi is an interval persis-

tence module. That is, there are a pair of values r\t, where t may be infinite,

such that FiðsÞ is a copy of the field for all values r� s\t and zero elsewhere.1

Zomorodian and Carlsson (2005) define the barcode of F as its list of

indecomposables. See also Gunnar Carlsson and Vin de Silva (2010).

A barcode translates to a persistence diagram by plotting the left endpoint versus the

right endpoint of each interval persistence module. A persistence diagram translates

to a barcode by turning each point (s, t) in to an interval persistence module starting

at s and ending at t. In this way, the persistence diagram is equivalent to a barcode.

However, the two definitions are very different in philosophy.

Suppose the homology of each sublevel set Mf � r is calculated using integer

coefficients. Then the resulting object F is a constructible persistence module of

finitely generated abelian groups. However, an indecomposable persistence module

of finitely generated abelian groups need not look anything like an interval

persistence module. For example, the module in Fig. 4 is indecomposable.

Indecomposables are hard to interpret especially under perturbations to the module.

We generalize the persistence diagram of Cohen-Steiner, Edelsbrunner, and

Harer to the setting of constructible persistence modules F valued in a symmetric

monoidal category C with images. The category of sets, the category of vector

spaces, and the category of finitely generated abelian groups are examples of such

categories. We call this diagram the type A persistence diagram of F. If C is also

abelian, then we define a second type B persistence diagram of F. The category of

vector spaces and the category of abelian groups are examples of abelian categories.

The type B persistence diagram of F may contain less information than the type A
persistence diagram of F. However, the advantage of a type B diagram is a stronger

statement of stability. Depending on C, our persistence diagrams may not be a

complete invariant of a persistence module.

Persistence is motivated by data analysis and data is noisy. A small perturbation

to a persistence module should not result in a drastic change to its persistence

diagram. We use the standard interleaving distance to measure differences between

persistence modules (Chazal et al. 2009). We define a new metric we call erosion

distance to measure differences between persistence diagrams. In Theorem 8.2, we

show that if the interleaving distance between two constructible persistence modules

valued in an abelian category C is e, then the erosion distance between their type B
persistence diagrams is at most e. We call this continuity of type B persistence

diagrams. If C is simply a symmetric monoidal category, then Theorem 8.1 is a

weaker one-way statement of continuity for type A persistence diagrams. We call

1 The interval persistence module Fi is fully described by the half open interval [s, t).
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this semicontinuity of type A persistence diagrams. These theorems show that the

information contained in both diagrams is stable to all sufficiently small

perturbations of the module.

Cohen-Steiner, Edelsbrunner, and Harer define a stronger metric on the set of

persistence diagrams they call bottleneck distance. They show that for two Morse

functions f ; g : M ! R, the bottleneck distance between their persistence diagrams is

at most max jf � gj. They do this by looking at the 1-parameter family of persistence

modules obtained from the linear interpolation h : M� ½0; 1� ! R taking h0 ¼ f to

h1 ¼ g. Using the Box Lemma, which is a local statement of stability, they track each

point in the persistence diagram of h0 all the way to the persistence diagram of h1.

Theorem 8.1 resembles the Box Lemma and assumingC has colimits, there is a way to

construct a 1-parameter 1-Lipschitz family of persistence modules between any two

interleaved persistence modules (Peter Bubenik et al. 2017). This suggests that

bottleneck stabilitymight extend to typeA persistence diagrams.We leave the issue of

bottleneck stability for future investigations.

2 Persistence modules

Let ðC;hÞ be an essentially small symmetric monoidal category with images. By

essentially small, we mean that the collection of isomorphism classes of objects in C
is a set. A symmetric monoidal category is, roughly speaking, a category C with a

binary operation h on its objects and an identity object e 2 C satisfying the

following properties:

• (Symmetry) ahb ffi bha, for all objects a; b 2 C
• (Associativity) ahðbhcÞ ffi ðahbÞhc, for all objects a; b; c 2 C
• (Identity) ahe ffi a, for all objects a 2 C.

See Weibel (2013, page 114) for a precise definition of a symmetric monoidal

category. By images, we mean that for every morphism f : a ! b, there is a

monomorphism h : z ! b and amorphism g : a ! z such that f ¼ h 	 g. Furthermore,

for a monomorphim h0 : z0 ! b and amorphism g0 : a ! z0 such that f ¼ h0 	 g0, there
is a unique morphism u : z ! z0 such that the following diagram commutes:

See Mitchell (1965, page 12) for a discussion of images.

Definition 2.1 A persistence module is a functor F : ðR; �Þ ! C out of the poset

of real numbers.
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Let S ¼ fs1\ � � �\sng be a finite set of real numbers. Let e 2 C be an identity

object.

Definition 2.2 A persistence module F is S-constructible if

• for p� q\s1, Fðp� qÞ is the identity on e

• for si � p� q\siþ1, Fðp� qÞ is an isomorphism

• for sn � p� q, Fðp� qÞ is an isomorphism.

We say F is constructible if there is a finite set S such that F is S-constructible. If F
is S-constructible then it is also T-constructible for any T 
 S.

We draw examples from the following five essentially small symmetric monoidal

categories with images.

Example 2.1 Let FinSet be the category of finite sets. FinSet is a symmetric

monoidal category under finite colimits (disjoint unions). A constructible persistence

module valued in this category is often called a merge tree (Morozov et al. 2013).

The following four categories have more structure: they are abelian (see Weibel

2013, page 124) and Krull-Schmidt (see Appendix). In short, an abelian category is a

category that behaves like the category of abelian groups. Finite products and

coproducts are the same. Every morphism has a kernel and a cokernel. Every

monomorphism is the kernel of some morphism, and every epimorphism is the

cokernel of somemorphism. The symmetricmonoidal operationh is the direct sum�.

Example 2.2 Let Vec be the category of finite dimensional k-vector spaces, for
some fixed field k. Each vector space a 2 Vec is isomorphic to k1 � k2 � � � � � kn,
where n is the dimension of a. Note that every short exact sequence 0 ! a ! b !
c ! 0 splits. That is, b ffi a� c.

Example 2.3 Let Ab be the category of finitely generated abelian groups. An

indecomposable of Ab is isomorphic to the infinite cyclic group Z or to a primary

cyclic group Z=pmZ, for a prime p and a positive integer m. By the fundamental

theorem of finitely generated abelian groups, each object is uniquely isomorphic to

Zn � Z

pm1

1 Z
� Z

pm2

2 Z
� � � � � Z

pmk

k Z
;

for some n� 0 and primary cyclic groups Z=pmi

i Z. Not every short exact sequence

in this category splits. Consider the following short exact sequence

Of course Z=4Z is not isomorphic to Z=2Z� Z=2Z. A finitely generated abelian

group is simple iff it is isomorphic to Z=pZ for p prime. That is, Z=pZ has no

subgroups other than 0 and itself.

Example 2.4 Let FinAb be the category of finite abelian groups. An indecom-

posable of FinAb is isomorphic to a primary cyclic group Z=pmZ, for prime p and a
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positive integer m. By the fundamental theorem of finitely generated abelian groups,

each object is uniquely isomorphic to

Z

pm1

1 Z
� Z

pm2

2 Z
� � � � � Z

pmk

k Z
:

As shown in the previous example, not every short exact sequence in this category

splits.

Example 2.5 Let RepðNÞ be the category of functors from the commutative

monoid of natural numbers N ¼ f0; 1; . . .g to Vec. We think of N as a category

with a single object and an endomorphism for each n 2 N where n 	 m is nþ m. A

functor in RepðNÞ is completely determined by where it sends 1. RepðNÞ is

therefore equivalent to the category whose objects are endomorphisms A : a ! a in

Vec and whose morphisms f : A ! B are maps f̂ : a ! b such that the following

diagram commutes:

We represent each object of RepðNÞ by a square matrix of elements in k. Suppose

k is algebraically closed. Then such a matrix decomposes into a Jordan normal form

J1

. .
.

Jn

0
BB@

1
CCA

where each Jordan block is of the form

Ji ¼

ki 1

ki . .
.

. .
.

1

ki

0
BBBBB@

1
CCCCCA
:

The indecomposables of RepðNÞ are Jordan blocks. An object of RepðNÞ is simple

iff its a Jordan block of dimension one.

Not every short exact sequence in RepðNÞ splits. Let A : k ! k be given by ðkÞ,

let B : k2 ! k2 be given by
k 1

0 k

� �
, and let f : A ! B be given by f̂ ðxÞ ¼ ðx; 0Þ.

The quotient C ¼ B=imf is isomorphic to A. This gives us a short exact sequence
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that does not split because B is not isomorphic to ðkÞ � ðkÞ ¼ k 0

0 k

� �
.

Let PModðCÞ be the full subcategory of the functor category ðR; �Þ;C½ �
consisting of constructible persistence modules. Henceforth, all persistence modules

are constructible.

3 Interleaving distance

There is a natural distance between persistence modules. For e 2 R, let

Shifte : ðR; �Þ ! ðR; �Þ

be the poset map that sends r to r þ e. If F 2 PMod is S-constructible, then F 	
Shifte is ðSþ eÞ-constructible. Thus Shifte gives rise to a functor

De : PModðCÞ ! PModðCÞ:

For each e� 0, there is a canonical morphism reF : F ! DeðFÞ given by

reFðrÞ ¼ Fðr� r þ eÞ.

Definition 3.1 Two modules F;G 2 PModðCÞ are e-interleaved if there are

morphisms / : F ! DeðGÞ and w : G ! DeðFÞ such that r2eF ¼ DeðwÞ 	 / and

r2eG ¼ Deð/Þ 	 w.

Any two persistence modules F an G are constructible with respect to a common

set T ¼ ft1\ � � �\tmg. Both F and G are therefore constant over the half-open

intervals ½ti; tiþ1Þ and ½tm;1Þ. As a consequence, if there is an interleaving between

F and G, then there is a minimum interleaving between F and G.

Definition 3.2 The interleaving distance dIðF;GÞ between two persistence

modules is the minimum over all e� 0 such that F and G are e-interleaved. If F
and G are not interleaved, let dIðF;GÞ ¼ 1.

Example 3.1 Let f : M ! R be a Morse function on a compact manifold M. The

function f filters M by sublevel sets Mf � r. Apply homology with coefficients in k

and the resulting object is in PModðVecÞ. Apply homology with integer coefficients

and the resulting object is in PModðAbÞ. Apply homology with coefficients in a

finite abelian group G and the resulting object is in PModðFinAbÞ. Suppose

e[ jf � gj. Then Mf � r � Mg� rþe � Mf � rþ2e implying, by functoriality of

homology, an e-interleaving between the two persistence modules.

Remark 3.1 The idea of interleavings appears in Cohen-Steiner et al. (2007) but it

is not named until (Chazal et al. 2009). Since then, interleavings have been

abstracted to other settings (Morozov et al. 2013; Peter Bubenik and Jonathan Scott

2014; Justin Curry 2014; Peter Bubenik et al. 2015; Lesnick 2015; De Silva et al.

2016).
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4 Persistence diagrams

We now generalize the persistence diagram of Cohen-Steiner, Edelsbrunner, and

Harer.

Definition 4.1 Define ðDgm;
Þ as the poset of all half-open intervals ½q; rÞ  R,

for q\r, and all half-infinite intervals ½q;1Þ  R. The poset relation is the

containment relation.

Let S ¼ fs1\ � � �\sng be a finite set of real numbers and G an abelian group. In

the setting of Cohen-Steiner, Edelsbrunner, and Harer, the group G is the integers.

From this we shall construct the persistence diagram.

Definition 4.2 A map X : Dgm ! G is S-constructible if for every J 
 I such that

J \ S ¼ I \ S, XðIÞ ¼ XðJÞ. We say a map X : Dgm ! G is constructible if it is S-

constructible for some set S.

In the setting of Cohen-Steiner, Edelsbrunner, and Harer, X is the rank function.

Definition 4.3 A map Y : Dgm ! G is S-finite if YðIÞ 6¼ e implies I ¼ ½si; sjÞ or
I ¼ ½si;1Þ. We say a map Y : Dgm ! G is finite if it is T-finite for some set T.

Definition 4.4 A persistence diagram is a finite map Y : Dgm ! G.

We visualize the poset Dgm as the set of points in the extended plane R� R [
f1g above the diagonal. We visualize a persistence diagram Y by marking each

I 2 Dgm for which YðIÞ 6¼ ½e� with the group element Y(I). See Figs. 2, 3, 4, 5, and

6.

Theorem 4.1 (Möbius Inversion Formula) For any S-constructible map

X : Dgm ! G, there is an S-finite map Y : Dgm ! G satisfying the Möbius

inversion formula

XðIÞ ¼
X

J2Dgm:J
I

YðJÞ;

for each I 2 Dgm.

Proof Let S ¼ fs1\ � � �\sng. Define

Y ½si; sjÞ
� �

¼ X ½si; sjÞ
� �

� X ½si; sjþ1Þ
� �

þ X ½si�1; sjþ1Þ
� �

� X ½si�1; sjÞ
� �

ð1Þ

Y ½si;1Þð Þ ¼ X ½si;1Þð Þ � X ½si�1;1Þð Þ: ð2Þ

Here we interpret s0 as any value less than s1 and snþ1 as any value greater than sn.

Define YðIÞ ¼ e for all other I 2 Dgm. Let us check that Y satisfies the Möbius

inversion formula. Fix an interval I 2 Dgm. Suppose I ¼ ½si; sjÞ. We have
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X
J2Dgm:J
I

YðJÞ ¼
Xn
k¼j

Xi

h¼1

Y ½sh; skÞð Þ þ
Xi

h¼1

Y ½sh;1Þð Þ

¼
Xn
k¼j

Xi

h¼1

X ½sh; skÞð Þ � X ½sh; skþ1Þð Þ½

þX ½sh�1; skþ1Þð Þ � X ½sh�1; skÞð Þ�

þ
Xi

h¼1

X ½sh;1Þð Þ � X ½sh�1;1Þð Þ½ �

¼
Xn
k¼j

X ½si; skÞð Þ � X ½si; skþ1Þð Þ½ � þ X ½si;1Þð Þ

¼ X ½si; sjÞ
� �

:

Suppose I is of the form ½si;1Þ. We have

X
J2Dgm:J
I

YðJÞ ¼
Xi

h¼1

Y ½sh;1Þð Þ

¼
Xi

h¼1

X ½sh;1Þð Þ � X ½sh�1;1Þð Þ½ �

¼ X ½si;1Þð Þ:

Suppose I is not of the form ½si; sjÞ. Then there is an I0 2 Dgm of the form ½si; sjÞ or
½si;1Þ such that I0 \ S ¼ I \ S. We have

X
J2Dgm:J
I

YðJÞ ¼
X

J2Dgm:J
I0

YðJÞ ¼ X I0ð Þ ¼ XðIÞ:

h

The persistence diagram Y of Cohen-Steiner, Edelsbrunner, and Harer is the

Möbius inversion of the rank function X.

Remark 4.1 The Möbius inversion formula applies to any constructible map from

a poset to an abelian group. See Rota (1964), Bender and Goldman (1975) and

Leinster (2012). This suggests a notion of a persistence diagram for constructible

persistence modules not just over ðR; �Þ but over more general posets. See Peter

Bubenik and Jonathan Scott (2014) and Peter Bubenik et al. (2015).

5 Erosion distance

The interleaving distance suggests a natural metric between persistence diagrams.

But first, we need a notion of a morphism between persistence diagrams.
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Let ðG;�Þ be an abelian group with a translation invariant partial ordering on its

elements. That is if a � b, then aþ c � bþ c for any c 2 G. Let e 2 G be the

additive identity.

Definition 5.1 Let Y1; Y2 : Dgm ! ðG;�Þ be two persistence diagrams. A

morphism Y1 ! Y2 of persistence diagrams is the relation
X

J2Dgm:J
I

Y1ðJÞ �
X

J2Dgm:J
I

Y2ðJÞ;

for each I 2 Dgm. Let PDgmðGÞ be the poset of persistence diagrams valued in

ðG;�Þ.

For any e� 0, let Growe : Dgm ! Dgm be the poset map that sends each [p, q)

to ½p� e; qþ eÞ and each ½p;1Þ to ½p� e;1Þ. For a morphism Y1 ! Y2 in

PDgmðGÞ, we have Y1 	Growe ! Y2 	Growe. Thus Growe gives rise to a functor

re : PDgmðGÞ ! PDgmðGÞ

given by precomposition with Growe. For each e� 0, we have reðYÞ ! Y . The

persistence diagram reðYÞ is visualized as the persistence diagram Y with all its

points shifted towards the diagonal by a distance
ffiffiffi
2

p
e. See Fig. 1.

Definition 5.2 An e-erosion between two persistence diagrams Y1; Y2;2
PDgmðGÞ is a pair of morphisms reðY2Þ ! Y1 and reðY1Þ ! Y2.

Any two persistence diagrams are finite with respect to a common set

T ¼ ft1\ � � �\tng. As a consequence, if there is an e-erosion between Y1 and

Y2, then there is a minimum e for which there is an e-erosion.

Definition 5.3 The erosion distance dEðY1; Y2Þ is the minimum over all e� 0 such

that there is an e-erosion between Y1 and Y2. If there is no e-erosion, let

dEðY1; Y2Þ ¼ 1.

Fig. 1 The e-erosion reðYÞ
(circle) of a persistence diagram
Y (dots) slides each point of Y to
the lower-right corner of the
square of side length 2e centered
at that point. Points close to the
diagonal disappear into the
diagonal. Note that reðYÞ ! Y
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Proposition 5.1 Let X : Dgm ! G be a constructible map and let Y : Dgm ! G
be a finite map that satisfies the Möbius inversion formula

XðIÞ ¼
X

J2Dgm:J
I

YðJÞ;

for each I 2 Dgm. Then

X 	GroweðIÞ ¼
X

J2Dgm:J
I

reðYÞðJÞ;

for each I 2 Dgm. In other words, Growe commutes with the Möbius inversion

formula.

Proof We have
X

J2Dgm:J
I

reðYÞðJÞ ¼
X

J2Dgm:J
I

Y 	GroweðJÞ

¼ X 	GroweðIÞ

h

Remark 5.1 The erosion distance first appears in Edelsbrunner et al. (2011) which

is an early attempt to develop a theory of persistence for maps from a surface to the

Euclidean plane.

6 Grothendieck groups

We are interested in two abelian groups: the Grothendieck group A of an essentially

small symmetric monoidal category and the Grothendieck group B of an essentially

small abelian category. See Weibel (2013) for an introduction to the two

Grothendieck groups. Note that every abelian category is a symmetric monoidal

category under the direct sum � and the additivity identity is the zero object.

6.1 Symmetric monoidal category

Let C be an essentially small monoidal category. The set IðCÞ of isomorphism

classes in C is a commutative monoid under h. We write the isomorphism class of

an object a 2 C as ½a� 2 IðCÞ, the binary operation in IðCÞ as ½a� þ ½b� ¼ ½ahb�,
and the additive identity of IðCÞ as [e].

Definition 6.1.1 The Grothendieck group AðCÞ of C is the group completion of

the commutative monoid IðCÞ.

Explicitly, an element of AðCÞ is of the form ½a� � ½b� with addition

coordinatewise, and ½a� ¼ ½c� iff ½a� þ ½d� ¼ ½c� þ ½d�, for some element

½d� 2 IðCÞ. If C is additive and Krull-Schmidt (see Appendix), then each object

in C is isomorphic to a unique direct sum of indecomposables. This means AðCÞ is
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the free abelian group generated by the set of isomorphism classes of indecom-

posables. The Grothendieck group AðCÞ has a natural translation-invariant partial

ordering. We define ½a� � ½b� iff ½b� � ½a� 2 IðCÞ. If ½a� � ½b�, then ½a� þ ½c� �
½b� þ ½c� for any ½c� 2 AðCÞ. See Weibel (2013, page 72) for an introduction to

translation-invariant partial orderings on Grothendieck groups.

Example 6.1.1 Every finite set is a finite disjoint union of the singleton set. We

have

AðFinSetÞ ffi Z:

Example 6.1.2 Every finite dimensional vector space is isomorphic to a finite

direct sum of k. We have

AðVecÞ ffi Z:

Example 6.1.3 An indecomposable of Ab is the free cyclic group or a primary

cyclic group. We have

AðAbÞ ffi Z�aðm;pÞZ;

over all primes p and positive integers m.

Example 6.1.4 An indecomposable of FinAb is a primary cyclic group. We have

AðFinAbÞ ffi aðm;pÞZ

over all primes p and positive integers m.

Example 6.1.5 An indecomposable of RepðNÞ is a Jordan block. We have

A RepðNÞð Þ ffi aðm;kÞZ;

over all positive integers m and elements k in the field k.

6.2 Abelian category

Suppose C is an essentially small abelian category. We say two elements [b] and

½a� þ ½c� in AðCÞ are related, written ½b� � ½a� þ ½c�, if there is a short exact sequence
0 ! a ! b ! c ! 0.

Definition 6.2.1 The Grothendieck group BðCÞ of C is the quotient group

AðCÞ=� . That is, BðCÞ is the abelian group with one generator for each

isomorphism classes [a] in C and one relation ½b� � ½a� þ ½c� for each short exact

sequence 0 ! a ! b ! c ! 0.

Let p : AðCÞ ! BðCÞ be the quotient map. Note that p IðCÞð Þ is a commutative

monoid that generates BðCÞ. This allows us to define a translation-invariant partial
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ordering on BðCÞ as follows. We define ½a� � ½b� iff ½b� � ½a� 2 p IðCÞð Þ. If

½a� � ½b�, then ½a� þ ½c� � ½b� þ ½c� for any ½c� 2 BðCÞ. The quotient map p is a poset

map.

Example 6.2.1 Every short exact sequence in Vec splits. We have

BðVecÞ ffi Z:

The quotient map p : AðVecÞ ! BðVecÞ is the identity.

Example 6.2.2 Every primary cyclic group Z=pmZ fits into a short exact sequence

0 ! Z ! Z ! Z

pmZ
! 0:

This means ½Z� � ½Z� þ Z
pmZ

h i
and therefore 0� Z

pmZ

h i
. We have

BðAbÞ ffi Z:

The quotient map p : AðAbÞ ! BðAbÞ forgets the torsion part of every finitely

generated abelian group.

Example 6.2.3 Every primary cyclic group Z=pmZ fits into a short exact sequence

0 ! Z

pZ
! Z

pmZ
! Z

pm�1Z
! 0:

This means

Z

pmZ

� �
�m

Z

pZ

� �
:

Furthermore, Z
pZ

is a simple object so it can not be broken by a short exact sequence.

We have

BðFinAbÞ ffi a
p
Z

over all p prime. The quotient map p : AðFinAbÞ ! BðFinAbÞ takes each primary

cyclic group Z
pmZ

h i
to m in the p factor of BðFinAbÞ.

Example 6.2.4 Every Jordan block fits into a short exact sequence. For example,

0 ! ðkÞ !
k 1 0

0 k 1

0 0 k

0
B@

1
CA !

k 1

0 k

� �
! 0

and
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0 ! ðkÞ !
k 1

0 k

� �
! ðkÞ ! 0:

This means

k 1 0

0 k 1

0 0 k

0
B@

1
CA� 3ðkÞ:

Furthermore, each one-dimensional Jordan block ðkÞ is simple so it can not be

broken by a short exact sequence. We have

B RepðNÞð Þ ffi ak2kZ:

The quotient map p : A RepðNÞð Þ ! B RepðNÞð Þ takes each Jordan block of

dimension m 2 N with eigenvalue k 2 k to m in the k factor of B RepðNÞð Þ.

7 Diagram of a module

Fix an essentially small symmetric monoidal category C with images. We now

assign to each persistence module F 2 PModðCÞ a persistence diagram

FA 2 PDgm AðCÞð Þ. If C is also abelian, then we assign to F a second persistence

diagram FB 2 PDgm BðCÞð Þ.
We start by constructing a map

dFI : Dgm ! IðCÞ:

Recall IðCÞ is the commutative monoid of isomorphism classes of objects in C.
Suppose F is S ¼ fs1\ � � �\sng-constructible. Then there is a d[ 0 such that

si�1\si � d, for each 1\i� n. Choose a value s0 [ sn. Define

dFI ðIÞ ¼
im Fðp\si � dÞ½ � for I ¼ ½p; siÞ
im Fðp\s0Þ½ � for I ¼ ½p;1Þ
im Fðp\qÞ½ � for all other I ¼ ½p; qÞ:

8><
>:

Note that if F is also T-constructible, then dFI constructed using T is the same as

dFI constructed using S. Now compose with the inclusion map IðCÞ,!AðCÞ and
we have an S-constructible map

dFA : Dgm ! AðCÞ:

Suppose C is abelian. Then by composing with the quotient map p : AðCÞ ! BðCÞ,
we have an S-constructible map

dFB : Dgm ! BðCÞ:
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Definition 7.1 The type A persistence diagram of F is the Möbius inversion

FA : Dgm ! AðCÞ

of dFA : Dgm ! AðCÞ.

Definition 7.2 The type B persistence diagram of F is the Möbius inversion

FB : Dgm ! BðCÞ

of dFB : Dgm ! BðCÞ.

Note that if F is S-constructible, then both FA and FB are S-finite persistence

diagrams.

Proposition 7.1 (Positivity) For each I 2 Dgm, ½e� � FBðIÞ.

Proof Suppose F is S ¼ fs1\ � � �\sng-constructible. We need only show the

inequality for intervals I of the form ½si; sjÞ and ½si;1Þ. For all other I, FBðIÞ ¼ ½e�.
Suppose I ¼ ½si; sjÞ. Consider the following subdiagram of F, for a sufficiently

small d[ 0:

Here we interpret s0 as any value less than s1 and snþ1 as any value greater than sn.

By Eq. 1,

FB ½si; sjÞ
� �

¼ dFB ½si; sjÞ
� �

� dFB ½si; sjþ1Þ
� �

þ dFB ½si�1; sjþ1Þ
� �

� dFB ½si�1; sjÞ
� �

Observe

dFB ½si; sjÞ
� �

�dFB ½si; sjþ1Þ
� �

¼ im Fðsi\sj � dÞ
	 


� im Fðsi\sj � dÞ
im Fðsi\sj � dÞ \ ker Fðsj � d\sjþ1 � dÞ

� �

¼ im Fðsi\sj � dÞ
	 


� im Fðsi\sj � dÞ
	 


þ im Fðsi\sj � dÞ \ ker Fðsj � d\sjþ1 � dÞ
	 


¼ im Fðsi\sj � dÞ \ ker Fðsj � d\sjþ1 � dÞ
	 


:

Here the intersection is interpreted as the pullback of the two subobjects. By a

similar argument,

dFB ½si�1; sjþ1Þ
� �

� dFB ½si�1; sjÞ
� �

¼ � im Fðsi�1\sj � dÞ \ ker Fðsj � d\sjþ1 � dÞ
	 


:

Note that
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im Fðsi�1\sj � dÞ \ ker Fðsj � d\sjþ1 � dÞ

is a subobject of

im Fðsi\sj � dÞ \ ker Fðsj � d\sjþ1 � dÞ:

Therefore

FB ½si; sjÞ
� �

¼ im Fðsi\sj � dÞ \ ker Fðsj � d\sjþ1 � dÞ
im Fðsi�1\sj � dÞ \ ker Fðsj � d\sjþ1 � dÞ

� �
� ½e�:

Suppose I ¼ ½si;1Þ. Then by a similar argument using Eq. 2, we have

FB ½si;1Þð Þ ¼ im Fðsi\snþ1Þ
im Fðsi�1\snþ1Þ

� �
� ½e�:

h

Example 7.1 See Fig. 2 for an example of a persistence module in PModðFinSetÞ
and its type A persistence diagram. Note that FinSet is not an abelian category so it

does not have a type B persistence diagram.

(a)

(b)

Fig. 2 Here we have an example of a persistence module in PModðFinSetÞ and its type A persistence
diagram. The type B persistence diagram is not defined
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Example 7.2 See Fig. 3 for an example of a persistence module in PModðVecÞ
and its type A and type B persistence diagrams. Note that the quotient map p :
AðVecÞ ! BðVecÞ is an isomorphism and therefore the two diagrams are the same.

Example 7.3 See Fig. 4 for an example of a persistence module in PModðAbÞ and
its type A persistence diagram. Note that the quotient map p : AðCÞ ! BðCÞ
forgets torsion and therefore the type B persistence diagram is, for this example,

zero.

Example 7.4 See Fig. 5 for an example of a persistence module in PModðFinAbÞ
and its type A and type B persistence diagrams.

Example 7.5 See Fig. 6 for an example of a persistence module in

PMod RepðNÞð Þ and its type A and type B persistence diagrams.

(a)

(b)

Fig. 3 Here we have an example of a persistence module in PModðVecÞ and its type A and B
persistence diagrams
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8 Stability

We now relate the interleaving distance between persistence modules to the erosion

distance between their persistence diagrams.

For the first theorem, we make a simplifying assumption on C that makes it

possible to chase diagrams. We assume that C is concrete and that its images are

concrete. That is, C embeds into the category Set and an image of a morphism in C
is the image of the corresponding set map. Note that all our examples satisfy this

criteria. By the Freyd–Mitchell embedding theorem (Weibel 1995, page 28), an

essentially small abelian category C embeds into the category of R-modules, for

some ring R, and the image of a morphism in C is the image under the

corresponding set map. Therefore, all essentially small abelian categories satisfy our

criteria.

Theorem 8.1 (Semicontinuity) Let C be an essentially small symmetric monoidal

category with images. Consider an S ¼ fs1\ � � �\sng-constructible F 2 PModðCÞ
and let

q ¼ 1

4
min

1\i� n
ðsi � si�1Þ:

(a)

(b)

Fig. 4 Here we have an example of a persistence module in PModðAbÞ and its type A persistence
diagram. The map from 4 to 6 is the quotient of Z=4Z by the image of the previous map. The type B
persistence diagram is zero
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Let G 2 PModðCÞ be any persistence module such that e ¼ dIðF;GÞ\q. For
each interval ½si; sjÞ,

FA ½si; sjÞ
� �

¼
X

J2Dgm:

½si�1 þ e; sjþ1 � eÞ 
 J 
 ½si þ e; sj � eÞ
and si�1 þ e; sjþ1 � e 62 J

GAðJÞ

If i ¼ 1, then we interpret s0 as any value less than s1 and if j ¼ n, then we interpret

snþ1 as any value greater than sn. Similarly, for each interval ½si;1Þ,

FA ½si;1Þð Þ ¼
X

J2Dgm:

½si�1 þ e;1Þ 
 J 
 ½si þ e;1Þ
and si�1 þ e 62 J

GAðJÞ

Proof Let / : F ! DeðGÞ and w : G ! DeðFÞ be an e-interleaving. Consider the
following commutative diagram:

(a)

(b) (c)

Fig. 5 Here we have an example of a persistence module in PModðFinAbÞ and its type A and type B
persistence diagrams. This is the same example module as in Fig. 4
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ð3Þ

By S-constructibility of F, the two vertical compositions are isomorphisms. By a

diagram chase, we see that

dFA ½si; sjÞ
� �

¼ dGA ½si þ e; sj � eÞ
� �

:

Thus

(a)

(b) (c)

Fig. 6 Here we have an example of a persistence module in PModðAbÞ and its type A and type B
persistence diagrams. The map from 4 to 6 is the quotient by the image of f
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FA ½si; sjÞ
� �

¼dFA ½si; sjÞ
� �

� dFA ½si; sjþ1Þ
� �

þ dFA ½si�1; sjþ1Þ
� �

� dFA ½si�1; sjÞ
� �

¼dGA ½si þ e; sj � eÞ
� �

� dGA ½si þ e; sjþ1 � eÞ
� �

þ dGA ½si�1 þ e; sjþ1 � eÞ
� �

� dGA ½si�1 þ e; sj � eÞ
� �

¼
X

J2Dgm:

½si�1 þ e; sjþ1 � eÞ 
 J 
 ½si þ e; sj � eÞ
and si�1 þ e; sjþ1 � e 62 J

GAðJÞ:

The second claim for ½si;1Þ follows by a similar argument. h

Semicontinuity is saying there is an open neighborhood of F in the metric space

of persistence modules such that for each G in this open neighborhood, FA lives on

in GA. However, semicontinuity is unsatisfying in two interesting ways. First, the e
must be smaller than q which is half the injectivity radius of S in R. Second, the

claim is assymetric. The fundamental limitation here is that not all short exact

sequences in C split.

Theorem 8.2 (Continuity) Let C be an essentially small, concrete, abelian

category. For any two persistence modules F;G 2 PModðCÞ, we have

dE FB;GBð Þ� dIðF;GÞ:

Proof Let e ¼ dIðF;GÞ. For each I 2 Dgm such that FAðIÞ 6¼ ½e�, we must show

dFA 	GroweðIÞ � dGAðIÞ

and for each I 2 Dgm such that GBðIÞ 6¼ ½e�, we must show

dGA 	GroweðIÞ � dFAðIÞ:

We will prove the first inequality and the second inequality follows by simply

interchanging the roles of F and G in the proof.

Suppose F is S ¼ fs1\ � � �\sng-constructible. By constructibility, it is sufficient
to show the first inequality for I of the form ½si þ e; sj � eÞ and ½si þ e;1Þ. Suppose
I ¼ ½si þ e; sj � eÞ. Let / : F ! DeðGÞ and w : G ! DeðFÞ be an e-interleaving.
Consider the following commutative diagram:

ð4Þ

By commutativity,
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im Fðsi\sj � dÞ ffi im Gðsi þ e\sj � e� dÞ
im Gðsi þ e\sj � e� dÞ \ ker wðsj � e� dÞ :

Therefore

dFB ½si\sjÞ
� �

¼ dGðsi þ e\sj � eÞ � ½ker wðsj � e� dÞ�
� dGB ½si þ e\sj � eÞ

� �

This proves the claim. Suppose I ¼ ½si;1Þ. Then

dFB ½si\1Þð Þ � dGB ½si þ e\1Þð Þ:

by a similar commutative diagram. h

9 Concluding remarks

Torsion in data We hope our theory will allow for the study of torsion in data. For

example, let P  Rn be a finite set of points. Let f : Rn ! R be a function

dependent on P, for example f ðxÞ ¼ minp2P jjx� pjj2. Apply homology with integer

coefficients to the sublevel set filtration induced by f and we have a constructible

persistence module F 2 PModðAbÞ. Its type A persistence diagram is measuring

torsion in data and semicontinuity applies. If continuity is required, then we may

look at the type B persistence diagram of F. However, the type B persistence

diagram forgets all torsion. Perhaps a better approach is to apply homology with

coefficients in a finite abelian group. Then the resulting persistence module is in

PModðFinAbÞ and its type B diagram encodes simple torsion.

Time series The flexibility we offer in choosing C should allow for the encoding

of more structure in data. Consider time series data. Suppose P ¼ fp1; . . .; pkg is a

finite sequence of points in Rn. There is more to P than its shape. The forward shift

pi ! piþ1 along the sequence should induce dynamics on the shape of P at each

scale. The algebraic object of study is not clear, but it will certainly have more

structure than a vector space or an abelian group.

Non-constructible modules Suppose we are given an infinite set of points P  Rn.

Then the resulting persistence module, as constructed above, is not constructible. Is

there a persistence diagram for a non-constructible persistence module?

This question is addressed by Chazal et al. (2016) for C ¼ Vec. They define a

persistence diagram for a non-constructible persistence module as a rectangular

measure l : Rect ! N, where Rect is the poset of all pairs J � I in Dgm,

satisfying a certain additivity condition. Our type B diagram should generalize to a

rectangular measure. For C abelian, we may use an argument similar to the one in

the proof of Proposition 7.1 to assign an element of BðCÞ to each J � I without

making use of constructibility. Is this assignment a rectangular measure?
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Appendix: Krull-Schmidt

We now provide a compact treatment of Krull-Schmidt categories. The following

ideas are classical and may be found in many books, for example Anderson and

Fuller (1992).

A category C is additive if all its hom-sets are abelian, composition is bilinear,

and finite products and finite coproducts are the same. The (co)product of the empty

set is the zero object of C. Suppose C is additive.

Definition A.1 A non-zero object a 2 C is indecomposable if it is not the direct

sum of two non-zero objects.

Definition A.2 An additive category C is Krull-Schmidt if each object a 2 C is

isomorphic to a finite direct sum a ffi a1 � a2 � � � � � an and each ring of endo-

morphisms EndCðaiÞ is local. That is, 0 6¼ 1 and if f1 þ f2 ¼ 1, then f1 or f2 is

invertible.

Suppose C is Krull-Schmidt.

Proposition 9.1 An object a 2 C is indecomposable iff its endomorphism ring

EndðaÞ is local.

Proof Suppose a 2 C is decomposable. That is, there is an isomorphism i : a !
a1 � a2 such that a1; a2 6¼ 0. Define p1 : a1 � a2 ! a1 � a2 as the endomorphism

that sends the first factor to zero and p2 : a1 � a2 ! a1 � a2 as the endomorphism

that sends the second factor to zero. Then the two maps q1; q2 : a ! a, where

q1 ¼ i�1 	 p1 	 i and q2 ¼ i�1 	 p2 	 i, are both non-isomorphisms in EndCðaÞ.
However, q0 þ q1 : a ! a is an isomorphism. We have a contradiction of locality.

Suppose a 2 C is indecomposable. Then, by definition of a Krull-Schmidt cat-

egory, EndCðaÞ is a local ring. h

Proposition 9.2 Each object a 2 C is isomorphic to a finite direct sum of

indecomposables.

Proof By definition of a Krull-Schmidt category, a ffi a1 � a2 � � � � � an where

each EndCðaiÞ is a local ring. By Proposition 9.1, each ai is indecomposable. h

Theorem 9.1 (Krull-Schmidt) Suppose an object c 2 C is isomorphic to a1 � a2 �
� � � � am and b1 � b2 � � � � � bn, where each ai and bj are indecomposable. Then

m ¼ n, and there is a permutation p : ½m� ! ½n� such that ai ffi bpðiÞ.

Proof By definition of an additive category, we have canonical projections pi :
�iai ! ai and qj : �jbj ! bj and canonical inclusions li : ai ! �iai and

mj : bj ! �jbj. Furthermore lj 	 pi and mj 	 qi are the identity on ai and bi,
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respectively, iff i ¼ j. Let f : a1 � a2 � � � � � am ! b1 � b2 � � � � � bn be an iso-

morphism.

Define hj : a1 ! a1 as hj ¼ p1 	 f�1 	 mj 	 qj 	 f 	 l1. Let h ¼
P

j hj : a1 ! a1.

Observe h is an isomorphism. By locality, there is an index j such that hj is an

isomorphism. This means a1 ffi bj and we specify pð1Þ ¼ j. Quotient by a1 and bj.

Repeat. h
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