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Abstract In this expository article, we survey the rapidly emerging area of random

geometric simplicial complexes. Random geometric complexes may be viewed as

higher-dimensional generalizations of random geometric graphs, where vertices are

generated by a random point process, and edges are placed based on proximity.

Extending the notion of connected components and cycles in graphs, the main

object of study has been the homology of these complexes. We review the results

known to date about the probabilistic behavior of the homology (and related

structures) generated by these random complexes.
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1 Introduction

Perhaps the most studied model of random graphs is the Erd}os–Rényi model

G(n, p), where every edge appears independently with probability p. Textbooks

overviewing this subject include those by Bollobás (2001) and Janson et al. (2000).
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Simplicial complex analogues of G(n, p) and their topological properties have been

the subject of a lot of activity in recent years. See for example Babson et al. (2011);

Kahle (2014a); Linial and Meshulam (2006); Meshulam and Wallach (2009) and the

references in the survey article Kahle (2014b).

For certain applications, however, and especially for modeling real-world

networks such as social networks, the edge-independent model G(n, p) is not

considered to be particularly realistic. For example, we might expect in a social

network that if we know that X is friends with Y and Z, then it becomes much more

likely than it would be otherwise that Y is friends with Z.

Many other models of random graphs have been studied in recent years, and one

family of models that has received a lot of attention is the random geometric

graphs—see Penrose’s monograph (2003) for an overview. The random geometric

graph G(n, r) is made by choosing n points independently and identically distributed

(i.i.d.), according to a probability measure on Euclidean space Rd (or any other

metric space), and these points correspond to the vertices of the graph. Two vertices

x and y are connected by an edge if and only if the distance between x and y satisfies

dðx; yÞ� r. Since one is usually interested in asymptotic properties as n ! 1, we

usually think of the threshold distance r as a function of n.

This is a very general setup, and many variations on this basic model have been

studied. The most closely related model to the n points i.i.d. model is a geometric

graph on a Poisson point process with expected number of points n. A Poisson point

process replaces the independence of points with spatial independence. There is a

lot of technology available for transferring theorems between these two models.

See, for example, Section 1.7 of Penrose (2003). One might also consider more

general point processes than Poisson. For example, Yogeshwaran and Adler (2015)

studied random geometric graphs and complexes over more general stationary point

processes. This family includes certain attractive and repulsive point processes, as

well as stationary determinantal processes. In addition, we can consider random

geometric graphs in metric measure spaces, such as Riemannian manifolds equipped

with probability measures. The topological and geometric properties of such graphs

(and their higher-dimensional analogues) were recently studied in Bobrowski and

Mukherjee (2014); Bobrowski and Oliveira (2017).

There are several natural ways of extending a geometric graph to a simplicial

complex, in particular the Čech complex and the Vietoris–Rips complex, whose

definitions we review in Sect. 2. Our interest in the topology of random geometric

complexes will be mainly confined to their homology. Briefly, if X is a topological

space, its degree k-homology, denoted by HkðXÞ is a vector space (assuming field

coefficients). The vector space H0ðXÞ contains information about the connected

components in X, and its dimension is the number of components. For k[ 0, HkðXÞ
contains information about k-dimensional ‘cycles‘ or ‘holes’ (see more details in

Sect. 2). The Betti numbers of X are defined as bkðXÞ ¼ dimHkðXÞ.
One motivation for studying the topological features of random geometric

complexes comes from topological data analysis (TDA). In TDA one builds a

simplicial complex (or filtered simplicial complex) on data, and infers qualitative

features of the data from homology (or persistent homology) of the point cloud.
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Studying the topology of random geometric complexes is related to developing

probabilistic null hypotheses for topological statistics. We discuss this further in

Sect. 9. The seminal work by Niyogi-Smale-Weinberger (2008, 2011) introduced a

probabilistic analysis to homology recovery algorithms. This was further extended

in Balakrishnan et al. (2012); Bobrowski and Mukherjee (2014); Bobrowski et al.

(2017); Fasy et al. (2014). For surveys of persistent homology in topological data

analysis, see Carlsson (2009) and Ghrist (2008).

Studying the limiting behavior of random geometric complexes, the first

observation we make is that there exist three main regimes in which the limiting

properties of the complexes are significantly different. The term that controls the

limiting behavior is K ¼ nrd, which can be thought of as the average number of

points in a ball of radius r (up to a constant).

The subcritical (sometimes called ‘sparse’ or ‘dust’) regime, is when K ! 0. In

this regime the geometric complex is highly disconnected, and this is where

homology first appears.

The critical regime (sometimes called ‘the thermodynamic regime’) is when

K ¼ k 2 ð0;1Þ. Here, the dimension of homology reaches its peak linear growth,

and this is also where percolation occurs (the formation of a ‘giant’ component) —

see the discussion in Sect. 3.2.

Finally, in the supercritical regime we have K ! 1. In this regime it is known

that the number of components slowly decays, until we reach the connectivity

threshold. An analogous process occurs for higher homology — cycles get filled,

until eventually every k-cycle is a boundary and homology Hk vanishes. But in

contrast, for higher homology k� 1 there is another phase transition where

homology Hk first appears.

We note that the connectivity (or H0) properties of random geometric graphs

were extensively studied in the past, see Penrose (2003) for a comprehensive

review. Thus, in this survey we will mainly focus on more recent results related to

higher degrees of homology (Hk; k� 1).

The rest of this survey is structured as follows. In Sect. 2 we present the concepts

and notation that will be used later. Section 3 quickly reviews classical results about

the connectivity of random geometric graphs for completeness. Section 4 presents a

summary of the main results known to date about the limiting behavior of the

homology of random geometric complexes. In Sect. 5 we review an alternative

approach to study the homology of random Čech complexes using Morse theory for

the distance function. Sections 6 and 7 review two extensions to the results in

Sect. 4—one for compact manifolds and the other for stationary point processes.

Section 8 discusses the case where the distribution underlying the point process has

an unbounded support, from an extreme value analysis perspective. In Sect. 9 we

discuss work in progress that studies the persistent homology generated by random

geometric complexes. Finally, in Sect. 10 we present a list of open problems and

future work in this area.
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2 Preliminaries

In this section we wish to briefly introduce the concepts and notation that will be

used throughout this survey.

2.1 Homology

We wish to introduce the concept of homology here in an intuitive rather than a

rigorous way. For a comprehensive introduction to homology, see Hatcher (2002)

and Munkres (1984). Let X be a topological space. The homology of X is a set of

abelian groups HkðXÞf g1k¼0, which are topological invariants of X.

In this paper we consider homology with coefficients in a field F, in this case

HkðXÞ is actually a vector space. The zeroth homology H0ðXÞ is generated by

elements that represent connected components of X. For example, if X has three

connected components, then H0ðXÞ ffi F� F� F (here ffi denotes group isomor-

phism), and each of the three generators corresponds to a different connected

component of X. For k� 1, the k-th homology HkðXÞ is generated by elements

representing k-dimensional ‘‘holes’’ or ‘‘cycles’’ in X. An intuitive way to think

about a k-dimensional hole is as the result of taking the boundary of a ðk þ 1Þ-
dimensional body. For example, if X is a circle then H1ðXÞ ffi F, if X is a 2-

dimensional sphere then H2ðXÞ ffi F, and in general if X is a n-dimensional sphere,

then

HkðXÞ ffi
F k ¼ 0; n

0f g otherwise :

�

For another example, consider the 2-dimensional torus T. The torus has a single

connected component so H0ðTÞ ffi F, and a single 2-dimensional hole (the void

inside the surface) implying that H2ðTÞ ffi F. As for 1-cycles (or closed loops) the

torus has two linearly independent loops, and so H1ðTÞ ffi F� F.

The dimension of the k-th homology group is called the k-th Betti number,

denoted by bkðXÞ :¼ dimðHkðXÞÞ.

2.2 Geometric complexes

The geometric complexes we will be studying are the Čech and the Vietoris-Rips

complexes, defined as follows. We will use BrðxÞ to denote the ball of radius

r around a point x.

Definition 2.1 [Čech complex] Let X ¼ x1; x2; . . .; xnf g be a collection of points

in Rd, and let r[ 0. The Čech complex CrðXÞ is constructed as follows:

1. The 0-simplices (vertices) are the points in X .

2. A k-simplex ½xi0 ; . . .; xik � is in CrðXÞ if
Tk

j¼0 Br=2ðxijÞ 6¼ ;.
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Definition 2.2 Let X ¼ x1; x2; . . .; xnf g be a collection of points in Rd, and let

r[ 0. The Vietoris–Rips complex RrðXÞ is constructed as follows:

1. The 0-simplices (vertices) are the points in X .

2. A k-simplex ½xi0 ; . . .; xik � is in RrðXÞ if xij � xil
�� ��� r for all 0� j; l� k.

Figure 1 shows an example for the Čech and Rips complexes constructed from

the same set of points and the same radius r, and highlights the difference between

them. As mentioned above, our interest in these complexes will be mostly focused

on their homology which is introduced in the next section.

Associated with the Čech complex CrðXÞ is the union of balls used to generate it

(in the underlying metric space), which we define as

Br=2ðXÞ :¼
[
x2X

Br=2ðxÞ: ð1Þ

The spaces CrðXÞ and Br=2ðXÞ are of a completely different nature. Nevertheless,

the following lemma claims that they are very similar in the topological sense. This

lemma is a special case of a more general topological statement originated in

Borsuk (1948) and commonly referred to as the ‘Nerve Lemma’.

Lemma 2.3 (The Nerve Lemma, Borsuk (1948)) Let CrðXÞ and Br=2ðXÞ as

defined above. If for every xi1 ; . . .; xik the intersection Br=2ðxi1Þ \ � � � \ Br=2ðxikÞ is

either empty or contractible (homotopy equivalent to a point), then

CrðXÞ ’ Br=2ðXÞ, and in particular,

HkðCrðXÞÞ ffi HkðBr=2ðXÞÞ; 8k� 0:

This lemma is highly useful in the study of the random Čech complex, since it

allows us to translate questions about the random complex into questions about

coverage properties, and enables the use of Morse theory (see Sect. 5). One

immediate consequence of the Nerve Lemma is that if X 	 Rd then HkðCrðXÞÞ ¼ 0

for all k� d.

Fig. 1 On the left - the Čech complex CrðXÞ, on the right - the Rips complex RðX ; rÞ with the same set of
vertices and the same radius. We see that the three left-most balls do not have a common intersection and
therefore do not generate a 2-dimensional face in the Čech complex. However, since all the pairwise
intersections occur, the Rips complex does include the corresponding face
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2.3 Point processes

Most of the results on random geometric complexes focus on two very similar point

processes. In both cases we start with a probability density function f : Rd ! R,

which we always assume to be measurable and bounded.

• The binomial process Xn ¼ fX1;X2; . . .;Xng is a set of i:i:d: (independent and

identically distributed) random variables in Rd generated by the density function

f.

• The Poisson process Pn is a spatial Poisson process in Rd with intensity function

l ¼ nf . The distribution of Pn satisfies the following properties:

1. For every compact set A 	 Rd we have Pn \ Aj j 
 Poisson ðlðAÞÞ, where

lðAÞ ¼
R
A
lðxÞdx:

2. For every two disjoint sets A;B 	 Rd, we have that Pn \ Aj j and Pn \ Bj j
are independent.

This process is also a special case of a ‘Boolean model’.

Note Pnj j 
 Poisson ðnÞ, so that E Pnj jf g ¼ n. In addition, given that Pnj j ¼ M, the

process Pn consists of M i:i:d: points distributed according to the density function f.

In other words, the two processes X n and Pn are very similar. We will state most of

the results in terms of the binomial process X n, and unless otherwise stated, the

same results apply to the Poisson process Pn.

In the following we will use the notation CrðnÞ :¼ CrðX nÞ, and RrðnÞ :¼ RrðX nÞ
to state the results about the Čech and Vietoris–Rips complexes generated by the

binomial process. Consequently, bkðnÞ will represent the k-th Betti number for

either CrðnÞ or RrðnÞ (which will be clear from the context). Figure 2 illustrates the

Betti numbers of a random Čech complex, for a fixed n ¼ 10; 000. In most cases we

Fig. 2 The Betti numbers of a random Čech complex as a function of the radius r. Here we generated

n ¼ 10;000 points uniformly in ½0; 1�4. The Betti numbers were calculated using the GUDHI library (The
GUDHI Project 2015)

336 O. Bobrowski, M. Kahle

123



will be interested in the limiting behavior of these complexes as n ! 1 and

simultaneously r ¼ rðnÞ ! 0.

2.4 Convergence of sequences of random variables

Probability theory uses a number of different notions of convergence. Below we

define the ones used in this survey.

Let X1;X2; . . . be a sequence of real valued random variables, with the

cumulative distribution function of Xn given by

FnðxÞ ¼ PðXn � xÞ;

and let X be a random variable with a cumulative distribution function F.

Definition 2.4 Xn converges in distribution, or in law to X, denoted by Xn�!
L

X, if

lim
n!1

FnðxÞ ¼ FðxÞ

for every x 2 R at which F(x) is continuous.

This type of convergence is also sometimes referred to as ‘weak convergence’.

Definition 2.5 Xn converges in Lp to X, denoted by Xn�!
Lp

X, if

lim
n!1

E Xn � Xj jpf g ¼ 0:

We will mostly use the case p ¼ 2.

Definition 2.6 Xn converges to X almost surely, denoted by Xn�!
a:s:

X, if

P lim
n!1

Xn ¼ X
� �

¼ 1:

Finally, we have the following probabilistic definition related to limiting events

rather than random variables.

Definition 2.7 Let An be a sequence of events, perhaps on a sequence of

probability spaces. We say that An occurs asymptotically almost surely (a.a.s.) if

lim
n!1

PðAnÞ ¼ 1:

2.5 Some notation

Throughout this paper, we use the Landau big-O and related notations. All of these

notations are understood as the number of vertices n ! 1. In particular, we write

• an ¼ OðbnÞ if there exists a constant C and n0 [ 0 such that an �Cbn for every

n[ n0;

• an ¼ XðbnÞ if there exists a constant C[ 0 and n0 [ 0 such that an �Cbn for

every n[ n0;
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• an ¼ HðbnÞ if both an ¼ OðbnÞ and an ¼ XðbnÞ. We will also denote that by

an 
 bn;

• an ¼ oðbnÞ if limn!1 an=bnj j ¼ 0. We will also denote that by an � bn;

• an ¼ xðbnÞ if limn!1 an=bnj j ¼ 1. We will also denote that by an � bn.

In addition to the above, we use an  bn to denote that limn!1 an=bn ¼ 1.

Finally, for any set A 	 Rd we use Aj j to denote the d-dimensional volume of the

set.

3 Connectivity

The zeroth homology H0 is generated by the connected components, and its rank b0

is the number of components. Note that the connectivity properties of any simplicial

complex depend only on its one-dimensional skeleton, namely the underlying graph.

In the Čech and Vietoris–Rips complexes CrðnÞ and RrðnÞ the underlying graph is

the random geometric graph G(n, r) described above, and therefore the results

related to connectivity are the same for both complexes. As we mentioned in the

introduction, the main purpose of this survey is to review recent results related to

homology in degree k� 1. However, for completeness, we wish to include a brief

review of the key properties related to the connected components. Connectivity in

graphs is tightly related to the average degree. Note that in the G(n, r) the degree of

a vertex is the number of points lying in a ball of radius r around that vertex.

Therefore, for both the binomial and the Poisson processes, the expected degree is

proportional to the term

K :¼ n � rd: ð2Þ

As mentioned above, the limiting behavior splits into three main regimes, depending

on the limit of the term K. We will correspondingly split the discussion on the

limiting results.

3.1 The subcritical regime

The subcritical regime (also known as the ‘sparse’ or ‘dust’ regime) is when K ! 0.

In this regime, the graph G(n, r) is very sparse, and mostly disconnected. Therefore,

the study of connectivity did not draw much attention in the past. See Bobrowski

and Mukherjee (2014) for a proof of the following.
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Theorem 3.1 If K ! 0 then

E b0ðnÞf g  n:

This statement can be sharpened to a central limit theorem, and a law of large

numbers can be proved for deviation from the mean. In fact, as we see in the next

section, a central limit theorem and law of large numbers continue, even into the

critical regime.

3.2 The critical regime

The critical regime (also known as the ‘thermodynamic limit’) is when

K ¼ k 2 ð0;1Þ. In this regime b0ðnÞ  cn for some constant c\1 (depending on

k), so the number of components is still HðnÞ, but is significantly lower than in the

subcritical regime. The following law of large numbers is proved in section 13.7 of

Penrose (2003).

Theorem 3.2 (Penrose 2003) If K ¼ k 2 ð0;1Þ, then:

b0ðnÞ
n

�!L
2
Z
Rd

X1
k¼1

k�1pkðkf ðxÞÞ
 !

f ðxÞdx; ð3Þ

where

pkðtÞ ¼
tk�1

k!

Z
ðRdÞk�1

hð0; y1; . . .; yk�1Þe�tAð0;y1;...;yk�1Þdy1 � � � dyk�1;

hðx1; x2; . . .; xkÞ ¼
1 Gðfx1; x2; . . .; xkg; 1Þ is connected;

0 otherwise;

�

where Gðfx1; x2; . . .; xkg; 1Þ is a geometric graph on a fixed set of vertices, and

Aðx1; x2; . . .; xkÞ :¼ j
[k
j¼1

B1ðxjÞj:

The infinite sum in (3) comes from the fact that we need to count the number of

components consisting of any possible number of vertices. The limiting expression

provided by the theorem is highly intricate, and at this point impossible to evaluate

analytically. Nonetheless, as we will discuss later, this theorem provides the only

formula available to date for the limit of the Betti numbers in the critical regime.

In addition to a law of large numbers, there is also a central limit theorem

available.
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Theorem 3.3 (Penrose 2003) If K ¼ k 2 ð0;1Þ then there exists r[ 0 such that

b0ðnÞ � E b0ðnÞf gffiffiffi
n

p �!L Nð0; r2Þ:

A more geometric view of connectivity is studied in percolation theory. Penrose

considered the case where f is a uniform probability density on a d-dimensional unit cube,

and K ¼ k. A remarkable fact is that there exists a constant kc [ 0 such that if k\kc
then a.a.s. every connected component is of order Oðlog nÞ, and if k[ kc then a.a.s.

there is a unique ‘‘giant’’ component onHðnÞ vertices. This sudden change in behavior

over a very small shift of parameter is sometimes called a sharp phase transition.

In Chapters 9 and 10 of Penrose (2003), Penrose relates percolation on random

geometric graphs to more classical continuum percolation theory. In continuum

percolation, also called the Gilbert disk model, see Gilbert (1961), one considers a

random geometric graph on a unit-intensity uniform Poisson process on Rd, and

then there is a threshold radius rc [ 0 such that for r[ rc the random geometric

graph has an infinite connected component, and for r\rc every component is finite

size. For a deeper study of continuum percolation, see Meester and Roy’s book

(1996). For an introduction and overview of the subject, see Chapter 8 of Bollobas–

Riordan (2006) or Section 12.10 of Grimmett (1999).

3.3 The supercritical regime

The supercritical regime is when K ! 1. As we will see soon, if the radius is large

enough (yet still satisfying r ! 0) then it can be shown that the graph G(n, r)

becomes connected (caveat, this statement depends on the underlying distribution).

This phase is sometimes referred to as the ‘connected regime’. As the radius

increases, starting at the critical regime where b0ðnÞ ¼ HðnÞ and ending at the

connected regime where b0ðnÞ ¼ Hð1Þ, the number of components in

G(n, r) should exhibit some kind of a decay within the supercritical regime. To

this date only partial information is available about this decay process, and we will

present it later. We start by describing the connected regime.

In the case of a uniform distribution on the d-dimensional unit box ½0; 1�d,

Penrose gives a sharp result for the connectivity threshold. See Penrose

(2003), Chapter 13.

Theorem 3.4 (Penrose 2003) Let c 2 R be fixed, and set

r ¼ 2d�1

dxd

� log nþ c

n

� �1=d

;

where xd is the volume of the unit ball in Rd. Then

PðGðn; rÞ is connectedÞ ! e�e�c

as n ! 1.
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In other words, the threshold radius for connectivity is r ¼ 2d�1

dxd
� log n

n

� �1=d

(or

K ¼ ð2d�1=dxdÞ log n). It is interesting to contrast Theorem 3.4 with the analogous

statement for a standard multivariate normal distribution Nð0; Id�dÞ in Rd , a case

which Penrose also studies. Here r must be significantly larger, roughly 1=
ffiffiffiffiffiffiffiffiffiffi
log n

p
, in

order to ensure connectivity.

Theorem 3.5 (Penrose 2003) Let Xi 
Nð0; Id�dÞ and c 2 R be fixed. If

r ¼ ðd � 1Þ log log n� ð1=2Þ log log log n� 1=
ffiffiffiffiffiffi
4p

p
þ cffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log n
p ;

then

PðGðn; rÞ is connected Þ ! e�e�c

as n ! 1.

In both cases, letting c ! �1 gives the correct width of the critical window.

The critical window is the range of functions r such that the probability of

connectedness approaches a constant strictly between 0 and 1.

Why does the threshold distance r ¼ rðnÞ have to be so much larger in the

Gaussian case? The support of the Gaussian distribution is unbounded, and there are

outlier points at distance roughly
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
. The radius must be large enough just to

connect these points to the rest of the graph.

The contrast of Theorems 3.4 and 3.5 suggests that whatever we hope to prove

about the topology of random geometric complexes will necessarily depend on the

underlying distribution. On the other hand, certain theorems in geometric

probability are fairly general and do not depend on the underlying distribution so

drastically.

For example, if we ask what is the threshold for G(n, r) to contain a given

subgraph, or what is the expected number of occurrences of a given subgraph in the

sparse regime, then in some sense the answer does not depend too much on the

underlying density function. The following is proved in Chapter 3 of Penrose

(2003).

Theorem 3.6 (Penrose 2003) Let C be a finite connected graph on k vertices, and

let NC count the number of subgraphs isomorphic to C in G(n, r). Then

E NC½ � 
 nkrdðk�1Þ ¼ nKk�1;

as n ! 1.

Note that Theorem 3.6 applies equally well to uniform distribution on ½0; 1�d and

to Gaussian distributions; there is no assumption that the underlying measure has

compact support. It is only the implied constant in the limit that depends on the

measure. This constant may be written out explicitly as an integral -
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ðnKk�1Þ�1
E NC½ �  1

k!

Z
Rd

f kðxÞdx
Z
Rdk

hCð0; y1; . . .; yk�1Þdy1 � � � dyk�1;

where f kðxÞ ¼ ðf ðxÞÞk, and hCðx1; . . .; xkÞ ¼ 1 if Gðfx1; . . .; xkg; 1Þ ffi C and 0

otherwise.

As a rule of thumb, one might expect that global properties such as connectivity

depend very delicately on the underlying probability measure. Local properties,

such as subgraph counts or behavior in the subcritical regime, do not depend so

much on the underlying measure.

To conclude this section, we mention a recent result about the supercritical

regime preceding connectivity. As mentioned above, there is a huge gap remaining

between the critical regime where b0ðnÞ ¼ HðnÞ and the connectivity point where

b0ðnÞ ¼ Hð1Þ. Recent work by Ganesan studies the decay in the number of

components within the supercritical regime, in the case d ¼ 2. The assumption is

that the underlying probability measure on ½0; 1�2 is supported on a measurable

density function f, and that f is bounded above and below. The following is

Theorem 1 in Ganesan (2013).

Theorem 3.7 (Ganesan 2013) There exist a; b; c[ 0, such that if

a log n�K� b log n, then a.a.s.

b0ðnÞ� nK�1e�cK;

where the constants a and b depend only on the density function f.

We will see an analogue of this theorem for higher Betti numbers of the random

Čech and Vietoris–Rips complexes in the following section.

4 Homology and Betti Numbers

Recall that the k-th Betti number bk is the dimension of k-th homology, i.e.

bkðXÞ ¼ dimðHkðXÞÞ:

As mentioned in the introduction, the homology groups Hk (k� 1) basically

describe cycles (or holes) of different dimensions, and thus the Betti numbers

represent the number of cycles.

Betti numbers of random geometric complexes were first studied by Robins in

(2006). Robins studies ‘‘alpha shapes’’ on random point sets (see Edelsbrunner et al.

(1983)), which are topologically equivalent to Čech complexes but more convenient

from the point of view of computation. The underlying distributions are uniform on

a d-dimensional cube, but to avoid boundary effects periodic, boundary conditions

are imposed. Robins computes the expected Betti numbers over a large number of

experiments. Furthermore, she explains the shapes of these curves in the ‘‘small

radius–low intensity’’ regime, writing formulas in the d ¼ 2 and d ¼ 3 cases.

The study of the limiting Betti numbers was revisited and significantly extended

later in a series of papers by various authors, see for example - Bobrowski and Adler
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(2014); Bobrowski and Mukherjee (2014); Kahle (2011); Kahle and Meckes (2013);

Yogeshwaran and Adler (2015) and Yogeshwaran et al. (2017). In contrast to

connectivity which corresponds to the zeroth homology H0, the higher homology of

random geometric complexes HkðCrðnÞÞ, k� 1 is not monotone with respect to

r. Each homology group passes through two main phase transitions, one where it

appears and one where it disappears.

For the random Čech complex, the phase transition where Hk occurs when

K
 n�
1

kþ1 (or r
 n
� kþ2

dðkþ1Þ). This radius is within the subcritical regime (K ! 0). In

this regime the complex is sparse and highly disconnected which allows very

precise Betti number computations — in particular we will see that bkðnÞ
 nKkþ1,

and therefore bkðnÞ ¼ oðnÞ:
The phase transition where the k-th homology vanishes depends on the underlying

probability distribution, but if f has a compact support then we will see that it occurs at

K ¼ Hðlog nÞ (or r ¼ Hððlog n=nÞ1=dÞ), which is within the supercritical regime. This

radius is similar to the connectivity threshold we saw in Section 3.3, though the

constants are different. The exact vanishing radius for each of the homology groupsHk

has not been discovered yet, but it is known that it is controlled by a second order

(log log n) term that depends on k. We will discuss this in Sect. 6.

In the critical regime the analysis of the Betti numbers bkðnÞ, k� 1, is

significantly more complicated than the analysis of b0ðnÞ. In this case we will see

that bkðnÞ ¼ HðnÞ, however the limiting constants are unknown to date.

We now review the results known to date about the topology of random

geometric complexes for each of the regimes.

4.1 The subcritical regime

The work in Kahle (2011) and Kahle and Meckes (2013) provides a detailed study

for the Betti numbers in the subcritical regime. Since a random geometric complex

in this regime is so sparse, the vast majority of k-cycles are generated by ‘‘small’’

sphere-like shapes, with the minimum number of vertices possible. For the Čech

complex, the minimum number of vertices to form an k-cycle is k þ 2 (for example,

to create a 1-cycle, or a loop, we need at least 3 vertices). These sphere-like

formations are local features, so by the rule of thumb above, we might expect a

theorem that holds across a wide class of measures.

A key ingredient in the results is the following indicator function

hkðx1; . . .; xkþ2Þ ¼
1 bkðC1ðfx1; . . .; xkþ2gÞÞ ¼ 1

0 otherwise

�
;

testing whether a minimal set forms an k-cycle or not. The following theorem

provides the limit for the expected Betti numbers.

Theorem 4.1 (Kahle 2011) Let K ! 0, k� 1 and d� 2. Then

E bkðnÞf g  cknK
kþ1;

as n ! 1, where
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ck :¼
1

ðk þ 2Þ!

Z
Rd

f kþ2ðxÞdx
Z
ðRdÞk

hkð0; y1; . . .; ykþ1Þdy1 � � � dykþ1:

Theorem 4.1 states that E bkðnÞf g
 nKkþ1. Note that within the subcritical

regime the limit of the term nKkþ1 can be either zero, a finite number, or infinity (for

different choices of r). Combining with the second moment method (see for

example Chapter 4 of Alon and Spencer (2008)), this is the threshold radius for the

phase transition where homology first appears.

Theorem 4.2 (Kahle 2011) Let d� 2 and 1� k� d � 1 be fixed. Suppose that

K ! 0.

1. If

K � n�
1

kþ1;

then a.a.s. HkðCrðnÞÞ ¼ 0, and

2. if

K � n�
1

kþ1

then a.a.s. HkðCrðnÞÞ 6¼ 0.

Thus, the threshold where the k-th homology first appears is K ¼ Hðn� 1
kþ1Þ, or

r ¼ Hðn�
kþ2

dðkþ1ÞÞ.
The parallel result for Vietoris–Rips complexes is also given in Kahle (2011).

Theorem 4.3 (Kahle 2011) Let d� 2 and k� 1 be fixed. Suppose that K ! 0.

1. If

K � n�
1

2kþ1;

then a.a.s. HkðRrðnÞÞ ¼ 0, and

2. if

K � n�
1

2kþ1

then a.a.s. HkðRrðnÞÞ 6¼ 0.

The difference in exponents stems from the fact that in the Vietoris–Rips

complex case, the smallest possible vertex support for a nontrivial cycle in Hk is on

2k þ 2 vertices (rather than k þ 2 in the Čech complex), a triangulated sphere

combinatorially isomorphic to the boundary of the ðk þ 1Þ-dimensional cross

polytope. Another difference is that while in the Čech complex the homology

degree is bounded by d � 1 (a consequence of the Nerve Lemma), for the Vietoris–

Rips complex it is unbounded, and we can have cycles of every possible dimension.

344 O. Bobrowski, M. Kahle

123



Kahle and Meckes studied limiting distributions of Betti numbers in the

subcritical regime in (2013). When K ¼ Hðn� 1
kþ1Þ (or r ¼ Hðn�

kþ2
dðkþ1ÞÞ), the following

is a refinement of Theorem 4.2, and shows that at the threshold where the homology

Hk first appears, there is a regime in which the Betti number bkðnÞ converges in law

to a Poisson distribution.

Theorem 4.4 (Kahle and Meckes 2013) Let 1� k� d � 1 and l[ 0 be fixed, and

suppose that nKkþ1 ! l. Then

bkðnÞ�!
L

Poisson lckð Þ;

as n ! 1, where ck is defined in Theorem 4.1.

When r is above the threshold, the number of cycles goes to infinity, and with the

proper normalization it obeys a central limit theorem. Let Nð0; 1Þ denote a normal

distribution with mean 0 and variance 1.

Theorem 4.5 (Kahle and Meckes 2013, 2015) Let 1� k� d � 1 and suppose that

K ! 0 and

K � n�
1

kþ1:

Then

bkðnÞ � E½bkðnÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ½bkðnÞ�

p �!L Nð0; 1Þ

as n ! 1.

Again, because we are in the subcritical regime, these results hold for a wide

variety of measures—whenever the underlying probability measure has a measur-

able density function which is bounded above. They hold even without compact

support, for example for a multivariate normal distribution. In Kahle and Meckes

(2013) Theorems 4.4 and 4.5 are accompanied by formulas for expectation and

variance of the Betti numbers. Parallel limit theorems are also proved for Vietoris–

Rips complexes.

4.2 The critical regime

The study of the Betti numbers becomes significantly more complicated in the

critical regime. In the subcritical regime, since the random geometric complex is

very sparse and disconnected, the vast majority of k-cycles are vertex-minimal—

spanning k þ 2 vertices for the Čech complex, 2k þ 2 for the Rips. In the critical

regime a giant connected component emerges—see the discussion in Sect. 3.2 on

percolation theory—and this significantly complicates the analysis.

To date, there has been some partial progress in studying these cases. For

example, we have the following result for expectation.

Topology of random geometric complexes: a survey 345

123



Theorem 4.6 (Kahle 2011) Suppose that d� 2 and 0� k� d � 1 are fixed, and

K ¼ k 2 ð0;1Þ. Then for the Čech complex CrðnÞ we have

E bkðnÞf g
 n:

A parallel theorem in Kahle (2011) gives the same result for the Vietoris–Rips

complex RrðnÞ, but in this case one does not require the assumption that k� d � 1;

in the critical regime, bk is growing linearly for every k� 0.

The last theorem provides us with the expected order of magnitude of the Betti

numbers, but the actual constants have not yet been discovered. Nevertheless, recent

work by Yogeshwaran et al. (2017) gives laws of large numbers and central limit

theorems for Betti numbers of random Čech complexes in the thermodynamic limit.

We state here a few of these results relevant for the Čech complex CrðnÞ. The

following law of large numbers is Theorem 4.6 in Yogeshwaran et al. (2017).

Theorem 4.7 (Yogeshwaran et al. 2017) If K ¼ k 2 ð0;1Þ, then for each

1� k� d � 1 we have almost surely that

lim
n!1

bkðnÞ � E bkðnÞf g
n

¼ 0:

The version of the central limit theorem proved in Yogeshwaran et al. (2017) is

for an underlying uniform distribution, and for simplicity assumes that it is

supported on the unit cube in Rd. In this case, they define IdðPÞ as an interval in R

whose endpoints are the percolation radii for CrðnÞ and RdnCrðnÞ.

Theorem 4.8 (Yogeshwaran et al. 2017) Let 1� k� d � 1 and K ¼ k 2 ð0;1Þ
such that k 62 IdðPÞ. Then there exists a finite r2 [ 0 such that

bkðnÞ � E bkðnÞf gffiffiffi
n

p �!L N ð0; r2Þ:

It is mentioned in Yogeshwaran et al. (2017) that it is not clear whether the

restriction to k 62 IdðPÞ is required or just a technical artifact of the proof. For the

Poisson process Pn similar theorems are proved for all k[ 0.

4.3 The supercritical regime

In the supercritical regime the correct order of magnitude of the Betti numbers is

still not known, but there are bounds. In particular, we have the following for the

random Vietoris–Rips complex, which is Theorem 5.1 in Kahle (2011).

Theorem 4.9 (Kahle 2011) Let RrðnÞ be the random Vietoris–Rips complex,

generated by a uniform distribution on a unit-volume convex body in Rd. Then,

bkðnÞ ¼ OðnKke�cdKÞ;

for some constant cd [ 0. Here cd depends on the dimension d but not on k.

In particular, if K ! 1 (the supercritical regime) then E bkðnÞf g ¼ oðnÞ.
Theorem 4.9 can be compared to Theorem 3.7 which bounds the number of
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connected components. As an immediate corollary of Theorem 4.9 we have the

following.

Corollary 4.10 If K� c log n then a.a.s. HkðRrðnÞÞ ¼ 0. Here c is any constant

such that c[ 1=cd , where cd is defined in Theorem 4.9.

The proof of Theorem 4.9 uses discrete Morse theory to collapse the Vietoris–

Rips complex onto a homotopy equivalent CW complex with far fewer faces.

Combining Theorem 4.3 with Corollary 4.10 gives the following global picture for

vanishing and non-vanishing homology of the random Vietoris–Rips complex.

Theorem 4.11 (Kahle 2011) Let d� 2 be fixed, and suppose that the underlying

distribution is uniform on a convex body. Then there exist a, b such that

1. If

K � n�
1

2kþ1;

then a.a.s. HkðRrðnÞÞ ¼ 0,

2. if

n�
1

2kþ1 � K� a log n;

then a.a.s. HkðRrðnÞÞ 6¼ 0,

3. and if

K� b log n

then a.a.s. HkðRrðnÞÞ ¼ 0.

For the Čech complex similar bounds are studied in Bobrowski and Oliveira

(2017); Bobrowski and Weinberger (2017), using Morse theory for the distance

function (discussed in Sect. 5). The idea there is to look for critical points of the

distance function, that are responsible for changes in the k-th homology. We note

that the following bounds were proven for closed manifolds (compact and without a

boundary), while a similar proof can be repeated for the compact and convex case.

We shall discuss these bounds in detail in Sect. 6.

Theorem 4.12 Let CrðnÞ be the random Čech complex, generated by a uniform

distribution on a unit-volume convex body in Rd. If K ! 1, then there exist

ak; bk [ 0 and cd;1; cd;2 [ 0 such that

aknK
k�2e�cd;1K � E bkðnÞf g� bknK

ke�cd;2K:

Combining Theorems 4.2 and 4.12, we have the following statement for the Čech

complex.
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Theorem 4.13 (Kahle 2011) Let d� 2 and 1� k� d � 1 be fixed, and suppose

that the underlying distribution is uniform on a convex body. Then there exist A, B

such that

1. If

K � n�
1

kþ1;

then a.a.s. HkðCrðnÞÞ ¼ 0,

2. if

n�
1

kþ1 � K�A log n;

then a.a.s. HkðCrðnÞÞ 6¼ 0,

3. and if

K�B log n

then a.a.s. HkðCrðnÞÞ ¼ 0.

Theorems 4.11 and 4.13 show that the vanishing threshold radius for higher

homology has the same order of magnitude as the connectivity threshold that we

saw in Theorem 3.4, i.e. it occurs when the average degree is K
 log n. Note that

this is also when the union of balls Br=2ðPnÞ is known to completely cover the

support of the distribution, in which case it can be shown that HkðBr=2ðPnÞÞ ¼ 0.

The proof in Kahle (2011) uses this fact together with the Nerve Lemma 2.3 to

prove part 3 of the Theorem.

In Sect. 6 we discuss a more refined picture of this transition. We will also see in

Sect. 6 that these results can be generalized — for example, to any compact

manifold, and for any probability distribution with a density function that is

bounded away from zero.

5 Morse theory for the distance function

In Bobrowski and Adler (2014) and Bobrowski and Weinberger (2017), a different

approach was taken to study the homology of Čech complexes which focuses on

distance functions. For a finite set of points P 	 Rd we can define the distance

function as follows

dPðxÞ ¼ min
p2P

x� pk k: ð4Þ

Our interest in this function stems in the following straightforward observation

about the sub-level sets of the distance function:

d�1
P ð½0; ��Þ ¼ B�ðPÞ:

In other words, the sub-level sets of the distance function are exactly the union of

balls used to generate a Čech complex. Moreover, from the Nerve Lemma 2.3 we
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know that these sets have the same homology as the corresponding Čech complex.

Morse theory links the study of critical points of functions with the changes to the

homology of their sub-level sets. Thus, we conclude that studying the critical points

of dP might assist us in studying the homology of the Čech complex. In this section

we explore the limiting behavior of the critical points for the random distance

function and its consequence to the study of random Čech complexes.

5.1 Critical points of the distance function

The classical definition of critical points in calculus is as follows. Let f : Rd ! R be

a C2 function. A point c 2 R is called a critical point of f if rf ðcÞ ¼ 0, and the real

number f(c) is called a critical value of f. A critical point c is called non-degenerate

if the Hessian matrix Hf ðcÞ is non-singular. In that case, the Morse index of f at c,

denoted by lðcÞ is the number of negative eigenvalues of Hf ðcÞ. A C2 function f is a

Morse function if all its critical points are non-degenerate, and its critical values are

distinct.

Note that the distance function dP defined in (4) is not everywhere differentiable,

therefore the definition above does not apply. However, following Gershkovich and

Rubinstein (1997), one can still define a notion of non-degenerate critical points for

the distance function, as well as their Morse index. Extending Morse theory to

functions that are non-smooth has been developed for a variety of applications

Baryshnikov et al. (2014); Bryzgalova (1978); Gershkovich and Rubinstein (1997);

Matov (1982). The class of functions studied in these papers have been the minima

(or maxima) of a functional and called ‘min-type’ functions.

We wish to avoid the exact definitions of critical points for the distance function

and their indexes and introduce them in a more intuitive way. For the full rigorous

definitions and statements see Bobrowski and Adler (2014). Figure 3 presents the

values of dP and the critical points for a set P consisting of three points (the blue

circles) in R2. Obviously, the minima (index 0 critical points) of dP are the points in

the set P where dP ¼ 0. The yellow circle in the middle would be a maximum

Fig. 3 Critical points for the distance function in R2
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(index 2) and the green circles are saddle points (index 1). Note that each of the

saddle points lies on the segment connecting two sample (blue) points, whereas the

maximum lies inside the 2-simplex spanned by all the three sample points. This is

the typical behavior of the critical points of the distance function, and in general we

claim that the existence and location of every critical point of index k of dP is

determined by the configuration of a subset S 	 P with Sj j ¼ k þ 1.

5.2 Morse theory

The study of homology is strongly connected to the study of critical points of real

valued functions. The link between them is called Morse theory, and we shall

describe it here briefly. For a deeper introduction, we refer the reader to Milnor

(1963).

The main idea of Morse theory is as follows. Suppose that M is a closed manifold

(a compact manifold without boundary), and let f : M ! R be a Morse function.

Denote

Mq :¼ f�1ðð�1; q�Þ ¼ x 2 M : f ðxÞ� qf g 	 M

(sublevel sets of f). If there are no critical values in (a, b], then Ma and Mb are

homotopy equivalent and in particular have isomorphic homology. Next, suppose

that c is a critical point of f with Morse index i, and let v ¼ f ðcÞ be the critical value

at c. Then the homology of Mq changes at v in the following way. For a small

enough � we have that the homology of Mvþ� is obtained from the homology of Mv��

by either adding a generator to Hk (increasing bk by one) or terminating a generator

of Hk�1 (decreasing bk�1 by one). In other words, as we pass a critical value, either a

new k-dimensional cycle is formed, or an existing ðk � 1Þ-dimensional cycle is

bounded or filled.

While classical Morse theory deals with smooth (or C2) Morse functions on

compact manifolds Milnor (1963), it has been extended to many more general

situations, and the extension to ‘‘min-type’’ functions presented in Gershkovich and

Rubinstein (1997) enables one to apply similar concepts to the distance function dP
as well.

Let X n be the binomial process we had before. For 0� k� d, we define CkðrÞ to

be the number of critical points of index k of the distance function dXn
, for which the

critical value is less then or equal to r. According to Morse theory (and the Nerve

Lemma 2.3), the critical points accounted for by CkðrÞ are the ones generating the

homology of CrðnÞ.
Similarly to the study in Sect. 4, we can study the limiting behavior of the

random values CkðrÞ as n ! 1 and r ! 0. This was studied in Bobrowski and

Adler (2014). This limiting behavior is in some ways very similar to what we

observed for the Betti numbers bkðnÞ. However, as opposed to homology which

involves global behavior, the nature of critical points is much more local. This

enables us to compute precise limits for CkðrÞ even in the critical and supercritical

regimes, where the analysis of the Betti numbers at this point has yet to be

completed. We present here the limiting results for the expected values of CkðrÞ.
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Theorem 5.1 (Bobrowski and Adler 2014) For 1� k� d we have,

1. If K ! 0 then

E CkðrÞf g  ~cknK
k;

2. If K ¼ k 2 ð0;1� then
E CkðrÞf g  ckðkÞ � n;

The values ~ck and ckðkÞ are presented in Bobrowski and Adler (2014), and they

depend on the density function f, d and k via integration, similarly to the constants

ck in Theorem 4.1.

In the subcritical regime, one can observe that the expected value of CkðrÞ is

similar to the limit of bkðnÞ and differs mostly by the index k. This is due to the fact

that a critical point of index k is generated by a subset of k þ 1 vertices (see

discussion above) whereas an k-cycle in the subcritical regime is generated by a

subset of k þ 2 vertices. Not surprisingly, the distribution of CkðrÞ has limit

theorems very similar to the ones presented in Sect. 4 for the Betti numbers (see

Bobrowski and Adler (2014)).

In the critical regime we have CkðrÞ ¼ HðnÞ for all 0� k� d, which, with Morse

theory in mind, perfectly agrees with Theorem 4.7 stating that bkðnÞ ¼ HðnÞ as

well. As opposed to the Betti numbers, studying the critical points yields precise

limits for the expectation as well as a central limit theorem (cf. Bobrowski and

Adler (2014)). This will enable us later to get a very interesting conclusion

regarding the Euler characteristic of CrðnÞ.
In the supercritical regime, we still have the exact limits for the number of critical

points. However, in this case, it will not reveal much information about CrðnÞ, since

most of the critical points accounted for by CkðrÞ were formed in the critical regime

(note that CkðrÞ is a monotone function of r), and the number of critical points

actually being formed in the supercritical regime is actually o(n). Nevertheless, in

some cases (see Sect. 6), it is possible to study the behavior of critical points within

the supercritical regime in a finer resolution and use that to draw conclusions about

the vanishing of the different degrees of homology.

5.3 The Euler characteristic

The Euler characteristic of a simplicial complex S has a number of equivalent

definitions, and a number of important applications. One of the definitions, via Betti

numbers, is

vðSÞ ¼
X1
k¼0

ð�1ÞkbkðSÞ: ð5Þ

Thus, one can think of the Euler characteristic as an integer ‘‘summary’’ of the set of

Betti numbers of the complex. In the case of the random Čech complex CrðnÞ we

have
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vrðnÞ :¼ vðCrðnÞÞ ¼
Xd
k¼0

ð�1ÞkbkðnÞ:

However, using Morse theory for the distance function, vrðnÞ can also be computed

in the following way

vrðnÞ :¼
Xd
k¼0

ð�1ÞkCkðrÞ:

The limiting behavior of the critical points presented in Sect. 5.2, thus leads us to

the following conclusion.

Corollary 5.2 (Bobrowski and Adler 2014) Let vrðnÞ be the Euler characteristic

of CrðnÞ, and let K ¼ k 2 ð0;1Þ. Then

lim
n!1

n�1E vrðnÞf g ¼ 1 þ
Xd
k¼1

ð�1ÞkckðkÞ; ð6Þ

where ckðkÞ are increasing functions of k and are defined in Bobrowski and Adler

(2014).

Note that (6) cannot be proven using only the existing results on Betti numbers,

since the values of the limiting mean in the critical regime are not available. This

demonstrates one of the advantages of studying the homology of the Čech complex

via the distance function. An alternative way to compute the Euler characteristic is

vrðnÞ ¼
X1
k¼0

ð�1ÞkDkðrÞ;

where DkðrÞ is the number of k-simplexes in CrðnÞ. In Decreusefond et al. (2014)

the Euler characteristic was studied this way for a uniform distribution on a d-

dimensional torus. Computing the mean value (and also the variance) of DkðrÞ is

possible, however there are going to be infinitely many summands in this formula,

which will make it highly complicated. Thus, counting critical points is still

advantageous.

Figure 4 presents the limiting expected Euler characteristic (divided by n) as a

function of k for a uniform distribution on the unit cube in R3. In this case the

functions ck (k ¼ 1; 2; 3) were computed explicitly in Bobrowski and Mukherjee

(2014) and are given by

c1ðkÞ ¼4ð1 � e�
4
3
pkÞ;

c2ðkÞ ¼ 1 þ p2

16

� �
ð3 � 3e�

4
3
pk � 4pke�

4
3
pkÞ;

c3ðkÞ ¼
p2

48
ð9 � 9e�

4
3
pk � 12pke�

4
3
pk � 8p2k2e�

4
3
pkÞ:

In Fig. 4 we observe the curve starts at positive values, turns negative and then
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becomes positive once and for all. Note that in R3 the formula (5) implies that

X ¼ b0 � b1 þ b2. This, together with the shapes of the Betti number curves in

Fig. 2 suggests the conjecture that each of the different Betti numbers becomes

dominant in a slightly different regime. A similar phenomenon is known to occur

for certain random abstract simplicial complexes, see Kahle (2014a), but it is still

not known whether and to what extent such a phenomenon exist in random geo-

metric complexes.

6 Extending to manifolds

In Sects. 3–5 the distributions studied are supported on d-dimensional subsets of Rd.

The work in Bobrowski and Mukherjee (2014) studied the same type of problems

for the case where the distributions are supported on a closed m-dimensional

manifold embedded in Rd (m\d). In Bobrowski and Weinberger (2017) the flat

torus was studied as a special case of a Riemannian manifold, and this was extended

later to compact (smooth) Riemannian manifolds in Bobrowski and Oliveira (2017).

In this section we will limit the discussion to the Čech complex, although some of

the results (in particular the behavior in the subcritical and critical regimes) could be

similarly generalized.

6.1 Closed manifolds embedded in Rd

The exact setup studied was as follows. Let M 	 Rd be a m-dimensional smooth

closed manifold (compact and without a boundary). Let f : M ! R be a probability

density function on M. Let X n ¼ fX1; . . .;Xng be a set of i:i:d: points generated by f,

and let CrðnÞ be the Čech complex generated by these points (using d-dimensional

balls). The results in this case turn out to be very similar to the ones we described

earlier, even though the proofs require different analysis tools. In the following we

briefly review the results in Bobrowski and Mukherjee (2014) and highlight the

main difference from the results in Rd.

Fig. 4 The limiting Euler characteristic curve for a uniform distribution on the unit cube in R3
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The first thing to note is that here, the average degree behaves like K ¼ nrm (m

being the intrinsic dimension of the manifold). In the subcritical regime, the results

for both the Betti numbers bkðnÞ and the number of critical points CkðrÞ are almost

identical to those presented in Sects. 4.1 and 5.2. The main difference is that the

ambient dimension d is replaced by the intrinsic dimension m, and the limiting

constants are a bit different. For example, we have that

E bkðnÞf g  ~cknK
kþ1;

where

~ck ¼
1

ðk þ 2Þ!

Z
M

f kþ2ðxÞdx
Z
ðRmÞk

hkð0; y1; . . .; ykþ1Þdy1 � � � dykþ1:

These differences stem from the fact that in the subcritical regime the Betti numbers

computation is very ‘local’, and locally, a m-dimensional manifold looks very

similar to Rm. In the critical regime we also have very similar statements to the

Euclidean setup.

The main difference in studying manifolds shows up when we study the

vanishing of the homology. When studying compact and convex bodies,

Theorem 4.13 states that homology completely vanishes when K
 log n (or

r
 log n
n

	 
1=d
). Sampling from a manifold, by the Nerve Lemma, we expect that upon

coverage the homology of the complex CrðnÞ will not vanish but rather become

equal to the homology of M. This result is stated in the following theorem.

Theorem 6.1 (Bobrowski and Mukherjee 2014) Suppose that fmin ¼
infx2M f ðxÞ[ 0, and let �[ 0 be fixed. If

K� 2m

xmfmin

þ �

� �
log n

then HkðCrðnÞÞ ffi HkðMÞ for all 0� k�m a.a.s. and if

K� 2m

xmfmin

� �

� �
log n

then HkðCrðnÞÞ 6ffi HkðMÞ for all 1� k�m a.a.s. where xm is the volume of the m-

dimensional unit ball.

We note that while the second part of this theorem did not appear explicitly in

Bobrowski and Mukherjee (2014), it is a direct consequence of the calculations

done there in addition to the Morse theoretical arguments made in Bobrowski and

Weinberger (2017) (discussed later). Also note that the vanishing radius for Hk

(k� 1) is twice the radius of connectivity in the same setup (an analogous result of

Theorem 3.4 was proved for the flat torus in Penrose (2003), and can be extended to

any compact embedded or Riemannian manifold using the techniques in Bobrowski

and Mukherjee (2014); Bobrowski and Oliveira (2017)). This phenomenon has a

non formal, yet convincing, explanation. In Penrose (2003) (Theorem 13.17) it is

shown that at the edge of connectivity the graph G(n, r) consists roughly of a giant
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component and some isolated vertices. For a vertex to be isolated, a ball of radius r

around it has to be vacant (i.e. with no other points in X n inside it). To get all the

higher homology groups correctly, we need to guarantee that the balls of radius r / 2

(the ones used to construct the Čech complex) cover the support. Now, the support

is covered if and only if there is no vacant ball of radius r / 2. Thus, it seems harder

to reach coverage than connectivity, and the vacancy radii involved have the same

ratio as the thresholds we presented.

The statement in Theorem 6.1 has an important consequence to problems in

manifold learning, since it shows that by studying Čech complexes we can recover

the homology of an unknown manifold M from a finite (yet probably large) number

of random samples. The analysis of this type of ‘‘topological manifold learning’’

was established by the seminal work in Niyogi et al. (2008) and (2011), and

Theorem 6.1 can be viewed as an asymptotic and extended version of the main

results there. Considering asymptotic behavior has the advantage of covering a more

general class of distributions and using fewer assumptions.

Theorem 6.1 shows that for large enough radii, the Betti numbers computed

bkðnÞ converge to the Betti numbers of the manifold bkðMÞ. Denoting the error by

b̂kðnÞ ¼ bkðnÞ � bkðMÞ;

Theorem 6.1 can be viewed as describing the vanishing of the ‘noisy homology’ (so

that b̂kðnÞ ! 0).

6.2 Riemannian manifolds and homological connectivity

The work in Bobrowski and Oliveira (2017) and Bobrowski and Weinberger (2017)

studied a similar case to the previous one, only that now the random point process is

generated on a d-dimensional Riemmanian manifold (M, g). The main difference in

this setup, is that now the balls used to create the geometric complexes, are d-

dimensional intrinsic balls on the manifold (i.e. using the Riemannian rather than

the Euclidean metric). As before, most of the statements we had for random

geometric complexes in Euclidean spaces, can be extended to the Riemannian

setting. In this section we focus on one particular aspect that has been further

studied in the case of compact Riemannian manifolds. In the following we will limit

ourself to uniform distributions on manifolds with a unit volume (in which case

f � 1).

By ‘homological connectivity’ we refer to the phenomenon described above

where the k-th homology of the Čech complex becomes isomorphic to that of the

underlying manifold (i.e. HkðCrðnÞÞ ffi HkðMÞ). We note that this term was coined

by Linial and Meshulam in (2006). The result in Theorem 6.1 (which could be

extended to compact Reiamannian manifolds) states that for all k� 1 homological

connectivity for Hk occurs around K ¼ ð2d=xdÞ log n. Note, however, that this result

does not differentiate between the different homology groups. Since our previous

study shows that cycles in different dimensions are formed by different type of

structures, and occur at different radii, we also expect to observe differences in the

homological connectivity thresholds for different dimensions k.
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The work in Bobrowski and Weinberger (2017) revisited the study of critical

points for the distance function for the case when M is the flat torus

(i.e. Td ¼ Rd=Zd which can be viewed as the unit box ½0; 1�d with the metric

qðx; yÞ ¼ minD2Zd x� yþ Dk k). By providing more details estimates to the number

of critical points, the following statement was proved.

Proposition 6.2 (Bobrowski and Weinberger 2017) Let 1� k� d � 1. If K ! 1,

then there exist ak; bk [ 0 such that

aknK
k�2e�2�dxdK � E bkðnÞf g� bkðTdÞ þ bknK

ke�2�dxdK:

To get the upper bound, we denote by ĈkðrÞ the number of critical points whose

critical value is bigger than r. Then bkðnÞ� bkðMÞ þ Ĉkþ1ðrÞ since by Morse theory

all the cycles in HkðCrðnÞÞ that do not belong to HkðMÞ are to be terminated by some

critical point of index k þ 1. For the lower bound, we look for critical points of

index k with a special local behavior that guarantees to generate a new k-cycle (See

Bobrowski and Weinberger (2017) for details). The last inequality then leads to the

following result.

Theorem 6.3 Let 1� k� d � 1 and suppose that wðnÞ ! 1 as n ! 1. Then,

lim
n!1

PðHkðCrðnÞÞ ffi HkðTdÞÞ ¼ 1 K ¼ ð2d=xdÞðlog nþ k log log nþ wðnÞÞ;
0 K ¼ ð2d=xdÞðlog nþ ðk � 2Þ log log n� wðnÞÞ:

�

Note that: (a) This statement is about isomorphism of the homology groups,

which is stronger than just the equality of the Betti numbers; (b) There is a gap in

this description of the phase transition, as the two thresholds differ a log log n factor.

In Bobrowski and Oliveira (2017) these results were extended from the flat torus to

any compact smooth d-dimensional Riemannian manifold. However, it is not clear

how this result generalizes to spaces that have boundaries (as the ones in Sect. 4.3).

Finally, we note that we believe the following conjecture to be the most accurate

description of the phase transition for homological connectivity.

Conjecture 6.4 Let (M, g) be a smooth d-dimensional compact Riemannian

manifold. Let 1� k� d � 1 and suppose that wðnÞ ! 1 as n ! 1. Then,

lim
n!1

PðHkðCrðnÞÞ ffi HkðMÞÞ ¼ 1 K ¼ ð2d=xdÞðlog nþ ðk � 1Þ log log nþ wðnÞÞ;
0 K ¼ ð2d=xdÞðlog nþ ðk � 1Þ log log n� wðnÞÞ:

�

The reason why this conjecture should be true is that the same phase transition can

be shown to describe the vanishing of isolated k-faces (k-simplexes that do not have

any ðk þ 1Þ-coface). In all other random simplicial complexes studied in the past it was

shown that these isolated faces generate the last cycles that prevent homology from

converging. Proving this conjectures, however, remains as future work.
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7 Stationary point processes

The results we presented so far in this survey describe the behavior of geometric

complexes constructed from either the binomial process Xn or the Poisson process

Pn. Both models exhibit a strong level of independence which plays a significant

role in the proofs. For the binomial process X n the number of points is fixed, while

the locations of the points are independent. For the Poisson process Pn the amount

of points in different regions are independent, and given the number of points in a

region their locations are independent.

Recent work by Yogeshwaran and Adler (2015) extends some of the results

presented in this survey to a more general class of spatial point processes allowing

certain attractive and repulsive point processes, as well as stationary determinantal

processes. In this section we wish to briefly review their results.

A general point process in Rd can be thought of as a random measure Uð�Þ ¼P
i dXi

ð�Þ where dx is the Dirac delta measure concentrated at x. In that case, for

every subset A 	 Rd, UðAÞ is a random variable counting the number of points lying

inside A. The distribution of a random point process U can be characterized by its

factorial moment measure functions aðmÞ defined as follows -

aðmÞðB1; . . .;BmÞ ¼ E
Ym
i¼1

UðBiÞ
( )

;

where B1; . . .;Bm are disjoint Borel subsets of Rd. A stationary point process is such

that the functions aðmÞ are translation invariant. For example, for the homogeneous

Poisson process with constant rate l, we have that

aðmÞðB1; . . .;BmÞ ¼ lm
Yk
i¼1

Bij j;

which depends only on the volumes of the sets and therefore invariant to transla-

tions. Note that if U is a stationary point process, and CrðUÞ is the corresponding

Čech complex, then depending on r either E bkðCrðUÞÞf g ¼ 0 or E bkðCrðUÞÞf g ¼ 1
(since the process is supported in an infinite domain). Therefore, it does not make

sense to try to analyze bkðCrðUÞÞ. Instead, we can define

Un :¼ U \ �n1=d

2
;
n1=d

2

� �d
;

and try to study

bUk ðnÞ :¼ bkðCrðUnÞÞ:

Note that if U is a homogeneous Poisson process with rate l ¼ 1, and Pn is the

Poisson process we used previously supported on the unit cube, then CrðUnÞ is a

scaled version of Cn�1=drðPnÞ, and so bUk ðnÞ ¼ bkðnÞ. Therefore, we can view the

results in Yogeshwaran and Adler (2015) as an extension of the models described

earlier in this survey. Similarly to the study of the binomial and the Poisson
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processes we described before, the limiting behavior of bUk ðnÞ splits into three main

regimes. Due to the different scaling, the term controlling the limiting behavior is r

rather than K.

The sparse (or the subcritical) regime is when r ! 0. In this case, Yogeshwaran

and Adler (2015) shows that there exists a sequence of functions f ðkÞ such that either

f ðkÞ � 1 or limr!0 f
ðkÞðrÞ ¼ 0 (depending on the distribution of U), and then

E bUk ðnÞ
 �


 nrdðkþ1Þf ðkþ2ÞðrÞ;

where the exact limiting constant is given by a formula similar in spirit to ck in

Theorem 4.1. The results in Yogeshwaran and Adler (2015) also provide equivalent

limits for the distribution as in Theorems 4.4, 4.5.

The critical (thermodynamic) regime is when r ¼ k 2 ð0;1Þ. In this case,

Yogeshwaran and Adler (2015) show that E bUk ðnÞ
 �

¼ HðnÞ and provide a limit for

the Euler characteristic similarly to Corollary 5.2.

Finally, in the supercritical regime (r ! 1) Yogeshwaran and Adler (2015)

discuss the connectivity regime, which is when rd ¼ Hðlog nÞ. Similarly to

Theorem 4.13 they show that there exists a constant c such that if r� c 1
log n

� �1=d

then CrðUnÞ is a.a.s contractible.

In addition to the Betti numbers of the Čech complex, they also provide

equivalent results for the Vietoris-Rips complexes RrðUnÞ and for the critical point

counts ck for the distance function dUn
. In Yogeshwaran et al. (2017) these theorems

are extended in some cases, to laws of large numbers and central limit theorems.

8 Extreme value analysis of random geometric complexes

The results in the supercritical regime (K ! 1) that we presented so far, assumed

that the point process is generated by a distribution with a bounded support (see

e.g. Theorems 3.4, 4.9, 4.12). As the result in Theorem 3.5 suggests, the limiting

behavior can be significantly different once we generate the point process by a

distribution with an unbounded support (e.g. the Gaussian distribution). The work in

Adler et al. (2014) and Owada and Adler (2015) studied the distribution of the Betti

numbers in these cases.

The general setup in Adler et al. (2014) and Owada and Adler (2015) is the

following. Let f : Rd ! R be a probability density function whose support is Rd,

and let CrðnÞ defined as before. The results in these paper show that as n ! 1 and

r ! 0, even when K � log n, many cycles can still show up far away from the

origin. Moreover, it can be shown that homology has a very organized spatial

structure. Loosely speaking, we can split Rd into a sequence of annuli, such that

inside each annulus we can find connected components that generate homology in

different degrees. More concretely, there is a sequence of radii

R0;n [R1;n [R2;n [ � � � [Rd;n (depending on r and f). Considering the Čech

complex generated by all vertices in the annulus ðRk;n;Rk�1;nÞ, its k-th Betti number

is finite, while for i[ k we have bi ¼ 0 and for i\k we have bi ! 1. In addition,
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there is a smaller radius Rc;n\Rd;n such that the Čech complex generated by the

vertices inside BRc;n
ð0Þ is contractible, and thus contains no nontrivial homology.

This region is referred to as ‘the core’. This phenomenon is described in Fig. 5.

The work in Owada and Adler (2015) studies this phenomena in detail,

discussing the differences between light and heavy-tailed distributions, and proving

that there is a limiting Poisson law that describes the spatial distribution of cycles

appearing in each annulus.

9 Persistent homology

Persistent homology is one of the most heavily used tools in applied topology, or

TDA (cf. Carlsson 2009; Ghrist 2008). However, very little is known about its

probabilistic properties. Briefly, the persistent homology of a Čech or a Rips

complex tracks the evolution of the homology of the complex as the radius

r changes from zero to infinity. In this section we will review some recent work

related to the persistent homology of random geometric complexes (Bobrowski

et al. 2015; Duy et al. 2016).

Loosely speaking, the k-th persistent homology PHk contains a list of all the k-

dimensional nontrivial cycles that are created (and later terminated) in a geometric

complex as r is increased from 0 to 1. For every cycle c 2 PHk, we can assign a

pair of values ðcbirth; cdeathÞ that represent the radii at which c appear and vanish

(born and dies), respectively. A popular way to visualize the information provided

by persistent homology is called the persistence diagram. Here, for every cycle

c 2 PHk we place a single point in the plane, where the x and y axes correspond to

the birth and death times, respectively. Figure 6 shows the persistence diagram of

H1 for a random Čech filtration.

9.1 Limit theorems for persistence diagrams

Denote by nk the persistence diagram for PHk. Clearly, nk 	 D, where

D :¼ fðx; yÞ : 0� x\y\1g, since death always occurs after birth (see Fig. 6).

In Duy et al. (2016), the Čech and the Rips complex were considered, taken over

stationary point processes U (as discussed in Sect. 7). In this case, taking nk;n to be

the k-th persistence diagram of Un, then nk;n is a random point process, or random

Fig. 5 The annuli described in Adler et al. (2014) and Owada and Adler (2015). Different homology
degrees show up at different radii, where the lower degrees reach further away from the origin. Close to
the origin we have a region called the ‘core’ where the Čech complex is contractible
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Radon measure, in R2. One of the main theorems in Duy et al. (2016) states that as

n ! 1 this measure has a nonrandom limit mk. In particular,

Theorem 9.1 (Duy et al. 2016) If U is a stationary point process in Rd with finite

moments, then there exists a unique Radon measure mk on D such that

1

n
E nk;n
 �

�!n!1
mk;

where the convergence is in terms of the vague convergence of measures on D. If, in

addition, U is ergodic, then almost surely

1

n
nk;n�!

n!1
mk;

Under some additional conditions on U they show that the support of the limiting

measure mk is the subspace Rk 	 D of all (birth, death) pairs realizable by the

corresponding filtration (which can be Čech, Rips, and others). For example, for the

Čech filtration

Rk ¼
0f g � ð0;1� k ¼ 0;

D 1� k� d � 1;

; k� d:

8><
>:

In addition to the convergence of the entire measure, they study the variables br;sk
counting cycles with cbirth � r and cdeath � s. Using similar techniques to the ones in

Yogeshwaran et al. (2017) they prove a law of large numbers and a central limit

theorem.

Fig. 6 The persistence diagram of a random Čech filtration. The point process (on the left) is generated

on an annulus in R2. The H1 persistence diagram (on the right) describes the birth and death times (radii)
of all the 1-cycles that appear in this filtration. Notice that most of the points in the persistence diagram
are close to the diagonal (where death=birth), and one might consider these cycles as ‘‘noise’’. There is
one point that stands out in the diagram, which corresponds to the hole of the annulus. The persistent
homology was computed using the GUDHI library (The GUDHI Project 2015)

360 O. Bobrowski, M. Kahle

123



9.2 Maximal cycles in persistent homology

In this section we review the result in Bobrowski et al. (2015), related to extremal

cycles. Traditionally, the persistence (or significance) of a cycle c is measured by

the difference cdeath � cbirth. In this work, persistence was measured by the ratio

pðcÞ :¼ cdeath=cbirth. There are a number of reasons to measure the persistence of a

cycle multiplicatively.

• This persistence measure is scale invariant, i.e. the persistence of cycles for n

points chosen uniformly in a cube ½0; 1�d will have the same distribution as for n

points chosen uniformly in a cube ½0; k�d for any k[ 0.

• In a random geometric setting, one issue with measuring persistence by cdeath �
cbirth is that both terms are tending to zero as the number of vertices goes to infinity,

and cbirth � cdeath. For the prominent cycles, cbirth ! 0 much faster than cdeath, and

therefore if we measure persistence as cdeath � cbirth, then cbirth will just be a small

error term and it will be hard to differentiate between the birth and death times. The

multiplicative way of measuring persistence is more informative.

• Both Čech complexes CrðnÞ and Vietoris–Rips complexes RrðnÞ are central to

the theory of persistent homology, and it is important to be able to compare

them. The standard way of relating them is via the inclusion maps

� � � ,!CrðnÞ,!RrðnÞ,!C ffiffi
2

p
rðnÞ,!R ffiffi

2
p

rðnÞ,!� � �

(In general CrðnÞ,!RrðnÞ,!CarðnÞ for Čech and Vietoris–Rips complexes in

Euclidean space Rd, as long as a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d=ðd þ 1Þ

p
, as shown in Theorem 2.5 of

de Silva and Ghrist (2007). So one may relate persistent homology between the

two types of complexes. Because this relationship is naturally multiplicative in r,

our results are stated in a way that holds for both types of complexes.

The result in Bobrowski et al. (2015) was proven for a homogeneous Poisson

process on the unit cube ½0; 1�d. However, similar results should hold for any

measurable density function f on any d-dimensional compact and convex body,

provided that f is bounded from below and above.

Theorem 9.2 Let Pn be a unit-intensity Poisson process on the unit cube ½0; 1�d.

Let PHkðnÞ be the k-th dimensional persistent homology of either the Čech or the

Rips filtration generated by Pn. Define,

PkðnÞ :¼ max
c2PHkðnÞ

pðcÞ;

i.e. PkðnÞ is the maximal persistence of all k-cycles. Then a.a.s. we have that

PkðnÞ ¼ H
log n

log log n

� �1=k
 !

:

The implied constants in the asymptotic notation H only depend on the underlying

probability distribution.
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Persistent homology is becoming a very popular and powerful data analysis tool.

Studying this type of extremal behavior for persistent homology can be later used to

provide a statistical analysis to persistent homology. For example, suppose that the

data are sampled from a distribution supported on a manifold M with non trivial

homology that we wish to recover. Knowing the distribution of Pk for convex

bodies (where homology is trivial), would enable us to develop statistical tests to

differentiate between the signal (real cycles of M) and noise (artifacts of the

sampling mechanism) in this type of data analysis problem. Persistent homology in

random contexts was studied earlier by Bubenik and Kim in (2007).

10 Open problems/future directions

We close by mentioning several possible directions for future research.

• Sharper results in the thermodynamic limit. Proving strong results for

expectation of Betti numbers in the critical regime remains a challenging

problem. The best result so far is that

E½bkðnÞ�
n

! C;

where C[ 0 is some constant which depends on the underlying distribution on

Rd and the degree k, see Yogeshwaran et al. (2017). It would be a breakthrough

to write an explicit formula for C and we expect that the results would find

applications in TDA.

• Connections between the various models. Is there a model for random geometric

complex which approximates the sub-level sets of the Gaussian random field?

See Adler and Taylor (2007) and Adler and Taylor (2011) for introduction and

overview of Gaussian random fields and their topological properties.

• Torsion. All of the results in this survey for homology of random geometric

complexes do not depend on the choice of coefficients. In dimensions d� 4 and

higher, these complexes will likely have torsion in integer homology. What can

be said about the limiting distribution of this torsion group?

• Higher-dimensional percolation theory. All of the random geometric complexes

discussed here are analogues of random geometric graphs where the number of

vertices n is finite and n ! 1. Percolation theory is of a somewhat different

flavor—one considers an infinite random graph, by taking a random subgraph of

a lattice, and then analyzes large-scale structure such as whether or not an

infinite connected component appears. Analogous lattice models with higher-

dimensional cells have been studied, for example ‘‘plaquette percolation’’

(Aizenman et al. 1983; Grimmett and Holroyd 2010). So rather than study

homology-vanishing thresholds for finite random geometric complexes with size

tending to infinity, one might study the appearance of ‘‘infinite’’ cycles in lattice

models. So far, this seems to be relatively unexplored.
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