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Abstract
Despite promising reports of broad cognitive benefit in studies of cognitive training, it has been argued that the reliance of many
studies on no-intervention control groups (passive controls) make these reports difficult to interpret because placebo effects
cannot be ruled out. Although researchers have recently been trying to incorporate more active controls, in which participants
engage in an alternate intervention, previous work has been contentious as to whether this actually yields meaningfully different
results. To better understand the influence of passive and active control groups on cognitive interventions, we conducted two
meta-analyses to estimate their relative effect sizes. While the first one broadly surveyed the literature by compiling data from 34
meta-analyses, the second one synthesized data from 42 empirical studies that simultaneously employed both types of controls.
Both analyses showed no meaningful performance difference between passive and active controls, suggesting that current active
control placebo paradigms might not be appropriately designed to reliably capture these non-specific effects or that these effects
are minimal in this literature.
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Being able to make causal claims is a primary goal of exper-
imental scientists. A strong demonstration of causality usually
entails both a clear temporal relationship between two vari-
ables (i.e., cause precedes effect), as well as the manipulation
and isolation of a single causal factor (i.e., two comparison
groups that are completely matched on all variables save the
one of interest). The former criterion is generally easy to sat-
isfy in experimental studies, but the latter can be more elusive.

In the medical field, clinical drug trials can circumvent or
mitigate this issue by designing placebo pills meant to provide
an identical patient experience as the experimental drug, but
which is missing the key active ingredient hypothesized to
produce therapeutic benefits. These placebos are generally
effective at controlling psychological components of treat-
ments by providing a similar clinical context and inducing
similar treatment expectations, but may sometimes fall short,
such as when obvious side effects occur that clue patients in to
their assigned treatment arm. Things can get even more prob-
lematic in other fields of research, however, when the precise
therapeutic ingredient has not been well-elucidated and thus
cannot be effectively isolated. Or even if it has been, the in-
tervention properties may be more difficult to disentangle
from non-specific effects, especially if the therapeutic ingre-
dients themselves have a strong psychological component
(e.g., Kirsch 2005). In the following, we focus on the cogni-
tive training field, where both these limitations exist.

Cognitive training—or often colloquially referred to as
“brain training”—encompasses a broad field of research,
whereby the primary goal is to enhance certain cognitive skills
through behavioral interventions designed to target those or
related skills. A pertinent and popular example is working
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memory training, where participants train on memory tasks
and/or games that require the simultaneous maintenance and
manipulation of multiple pieces of information. One of the
primary aims of such working memory-based interventions
is not only to improve the specific skills acquired through
practicing the training task itself but also more importantly
to generalize or “transfer” those skills to other tasks or do-
mains that go beyond the trained task (Pahor et al. 2018).
Researchers commonly distinguish between “near” transfer,
where the training task and outcome measure presumably
share many overlapping features and processes, and “far”
transfer, where the outcome measure is thought to be more
different from the training task, although it has been difficult
to quantify the boundary conditions of such transfer effects
(Barnett and Ceci 2002). Nonetheless, various meta-analyses
within the working memory training field have demonstrated
that near transfer effects are more consistently observed as
compared to far transfer effects, and the effect sizes seem to
be larger in near transfer measures (e.g., Soveri et al. 2017;
Weicker et al. 2016). Neuroimaging work has been consistent
with that distinction in that the frontostriatal system seems to
mediate near transfer effects, whereas the dorso- and ventro-
lateral prefrontal cortices seem to engage domain-general net-
works that facilitate learning more broadly (e.g., Salmi et al.
2018, for a recent meta-analysis).

Even though the causal rationale of transfer effects in work-
ing memory training (i.e., training working memory leads to
improvements in tasks that rely on working memory) seems
straightforward at first, the task impurity problem (e.g.,
Schweizer 2007) and the fact that it is quite common that
different working memory tasks often share less than 25% of
variance (e.g., Ackerman et al. 2005) complicates this ratio-
nale considerably. Therefore, it is not surprising that, unlike in
pharmaceutical studies, it is often difficult in behavioral inter-
ventions to isolate one single component theorized to confer a
cognitive benefit. It is a non-trivial and perhaps even impos-
sible endeavor to strip a working memory training task of its
working memory component and still maintain the perceived
integrity of the intervention the same way a pill can be ren-
dered inert by replacing its active ingredients with sugar yet
still remain believable to participants. Early cognitive training
studies often took a broad strokes approach and simply com-
pared intervention groups to no-intervention control groups,
an approach which is commonplace in educational contexts
where the controls often consist of “business as usual” groups,
or in the clinical field, where “wait-list controls” are employed
in order to provide everyone the chance to eventually receive
the potentially effective intervention. These no-intervention
controls, hereafter referred to as passive control groups, effec-
tively control for practice effects on the outcome measures by
completing pre- and posttest assessments, but having minimal
or no contact with experimenters or any part of the experimen-
tal protocol in the interim. Early studies in the cognitive

training field using these types of designs were very influential
(Chein and Morrison 2010; Dahlin et al. 2008; Jaeggi et al.
2008; Schmiedek et al. 2010), but arguably might have
overestimated the actual impacts of cognitive training.
Specifically, the use of passive controls exposed these studies
to a variety of threats to internal validity related to non-
specific characteristics of the training protocol such as exper-
imenter contact, participant and/or experimenter expectancies,
and demand characteristics where participants unconsciously
conform to what they believe to be the purpose of the exper-
iment (Boot et al. 2013; Nichols and Maner 2008). Therefore,
any performance advantage of the experimental group over
these passive controls could not be exclusively attributed to
the intervention itself since these non-specific characteristics
also differed between groups. The advantages and disadvan-
tages of various control groups, as well as the role of beliefs
and expectations, are further discussed below, but are also the
subject of ongoing debates (Au et al. 2016; Boot et al. 2013;
Melby-Lervåg and Hulme 2013; Melby-Lervåg et al. 2016;
Shipstead et al. 2012; Tsai et al. 2018).

The presumed solution to these threats adopted by many in
the research community has been to use active controls, in
which the control group participates in an alternative interven-
tion not designed to target the core cognitive skills of interest.
Critics have contended that the use of such active control
groups renders the most promising results of cognitive train-
ing studies null and have demonstrated via meta-analysis that
positive far transfer effects within the sub-field of working
memory training are only driven by studies with passive con-
trols (Melby-Lervåg et al. 2016). It has been concluded by
many, therefore, that any effects observed as a result of work-
ing memory interventions merely reflect placebo and other
non-specific artifacts. However, this conclusion seems prema-
ture, as the meta-analytic work on which it is based is merely
correlational in nature. It cannot be precluded that factors be-
yond the nature of the control groups themselves contribute to
the lack of effects associated with studies that use active con-
trols. Supporting this notion is the finding that the reason
working memory training studies with active controls yield
smaller meta-analytic effect sizes than studies with pas-
sive controls is due to differences in performance of
the experimental groups between the two types of stud-
ies, rather than differences between the control groups.
In fact, when looking at the pre-post changes within the
control groups, both passive and active controls perform
pretty similarly (Au et al. Au et al. 2015, 2016 see
Fig. 1b; Soveri et al. 2017). Though it is not known
what might cause this discrepant performance among
the experimental groups between these two types of
studies, there is currently no direct evidence within the
subset of studies analyzed to date supporting the claim
that positive training effects only arise as a result of
using passive controls (Au et al. 2016).
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Nevertheless, the popular belief among researchers remains
that interpretation of the cognitive training field should rely
solely on studies that use active controls, while discounting
studies that use passive controls (Melby-Lervåg et al. 2016).
The current work seeks to contribute data to this debate by
meta-analyzing studies from an extensive range of cognitive
interventions going beyond just the field of working memory
training in order to comprehensively quantify the performance
difference between passive and active controls. Using two

complementary quantitative approaches, we first performed
a meta-meta-analysis, that is, a meta-analysis of existing cog-
nitive training meta-analyses comparing passive and active
control groups across studies. This technique has been used
before (e.g., Cleophas and Zwinderman 2017) and is an effec-
tive way of overviewing a very broad swath of literature. We
followed up the meta-meta-analysis with a more direct, but
less comprehensive (due to smaller sample size), meta-
analysis of primary studies that used both a passive and an

Fig. 1 Flow chart of study
extraction process
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active control within the same study. By directly controlling
for all other within-study variables that may influence effect
sizes, this second meta-analysis goes beyond the correlational
findings of the meta-meta-analysis and approximates a causal
framework. In both analyses, we hypothesized no meaningful
differences between performance of passive and active con-
trols on measures of cognitive function, as we and others have
previously observed among working memory training studies
(Au et al. 2015, 2016; Soveri et al. 2017).

Methods

Design

We conducted two meta-analyses in order to survey the cogni-
tive training literature and summarize the effect size differences
between passive control groups and active control groups. First,
we conducted a meta-meta-analysis that broadly surveyed the
literature by synthesizing results from 34 cognitive training
meta-analyses, which together summarized the effects of more
than 1000 primary studies. We followed this up with a tradi-
tional meta-analysis of 42 primary studies which all employed
both passive and active control groups within the same study
(going forward referred to as double-controlled meta-analysis).
Both analyses, where possible, adhered to PRISMA guidelines
(Moher 2009). Details of these two approaches are further de-
scribed in their respective sections.

Study Selection and Inclusion Criteria

Figure 1 represents a flow chart of the study extraction pro-
cess. For both the meta-meta-analysis as well as the double-
controlled meta-analysis, we used liberal inclusion criteria in
that we attempted to include a comprehensive set of all cog-
nitive training studies reported in English, excluding mixed-
intervention studies such as combining a cognitive interven-
tion with electrical brain stimulation or with a physical exer-
cise regimen. For the meta-meta-analysis, we searched the
PubMed, PsycInfo, and Google Scholar databases for articles
using the following keywords and boolean operators: (“meta-
analysis” OR “systematic review” OR “quantitative review”)
AND (“cognitive training” OR “working memory training”
OR “video game training” OR “cognitive remediation”).
PubMed returned 91 hits; PsycInfo returned 20 hits; and
Google Scholar returned 15,700 hits. For the Google
Scholar database, we restricted our search to the first 1000 hits
in order to select the most pertinent articles. Abstracts were
screened for inclusion and the full text was scanned, if neces-
sary, to make sure the meta-analysis provided enough data to
obtain separate effect size estimates for studies with passive
and active controls. If not, authors were emailed to provide the
relevant information. All meta-analyses that fit these criteria

and that were published through the end of 2016 were includ-
ed in the meta-meta-analysis. In total, 97 meta-analyses were
extracted from the literature. The majority of these meta-
analyses did not separately report their effect size estimates
as a function of control group type (passive vs. active) or did
not provide enough information for us to calculate separate
effect size and variance estimates on our own and were thus
excluded. In the end, 34 meta-analyses provided enough in-
formation to be included in the final analysis.

In order to find empirical studies for the double-
controlled meta-analysis, we searched through the primary
papers listed in all 97 meta-analyses returned from our orig-
inal search and included any study that contained both a
passive and an active control group. Although there were
several instances in which authors defined an intervention
group to be an active control despite other researchers (in-
cluding ourselves) using an identical or similar intervention
as an experimental training group (Boot et al. 2008; Opitz
et al. 2014; Stephenson and Halpern 2013; Thompson et al.
2013; Vartanian et al. 2016), we decided to rely on the au-
thors’ characterization of an active control group in all in-
stances in order to reduce the number of subjective deci-
sions made on our part. In total, 1433 articles were searched,
and 34 met inclusion criteria. Additionally, in order to sup-
plement this search method, we also used a keyword search
with the following keywords and boolean operators: (“pla-
cebo training”OR “active placebo control”OR “active con-
trol” OR “treated control” OR “training control”) AND
(“nonactive control”OR “no-contact control” OR “wait-list
control” OR “untreated control” OR “nontreated control”
OR “passive control”) AND (“cognitive training” OR
“working memory training” OR “cognitive rehabilitation”
OR “cognitive remediation” OR “videogame training” OR
“intervention”). PubMed, PsycInfo, and Google Scholar
returned 41, 33, and 21,200 hits, respectively, from which
we extracted 15 additional eligible studies. See Fig. 1 for a
flowchart of the study extraction process, and the
Supplemental Online Materials for a complete bibliography
of all included studies.

Coding

After study selection was completed, every article was inde-
pendently coded by at least two members of the author team
and answers were automatically compared using an Excel
spreadsheet algorithm. Percent agreement was extremely high
between authors (>99%) because we made it a point to only
code clear, objective variables that require minimal decision-
making in order to promote transparency and enhance repli-
cability of our analyses. Disagreements, few as they were,
were resolved by group discussion. Effect sizes or test scores
that were only available as figures and not as tables were
extracted using Webplot Digitizer (Rohatgi 2017).
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Statistical Analyses

Effect Size and Bayes Factor Calculations

All effect s ize calculat ions were made with the
Comprehensive Meta-Analysis (CMA) software package
(Borenstein et al. 2005). Effect sizes were weighted by their
inverse variance, or precision, and subsequently pooled to-
gether using a random effects model (Riley et al. 2011). For
both the meta-meta-analysis as well as the double-controlled
meta-analysis, three different summary effects were calculat-
ed. First, we summarized the effect size of experimental inter-
ventions versus passive controls, then the effect size of exper-
imental interventions versus active controls, and finally, we
directly compared the effect size of active controls with that of
passive controls. Further description of these methods and
calculations are detailed below separately for the meta-meta-
analysis and the double-controlled meta-analysis.

Since we hypothesized no differences between passive and
active control groups, we also implemented Bayesian analyses
to quantify the strength of evidence in favor of the null. Bayes
factors were calculated using the meta.ttestBF function in the
Bayes Factor package in R (Morey et al. 2014; R Core Team
2013) by converting each effect size into its corresponding Z-
score as reported byCMA (Borenstein 2009). Aweighted sum
of Z-scores following this method provides largely similar
results to the inverse variance-weighted average approach de-
scribed above (Lee et al. 2016). In accordance with Rouder
et al. (2009), we set the rscale parameter to 1 to yield a stan-
dard Cauchy prior centered on zero. This approach allowed us
to take an uninformed “objective” approach that does not rely
on a subjective analysis of the prior literature, but allows the
prior distribution of true effect sizes to range from negative
infinity to positive infinity, with 50% of the probability mass
ranging from d = −1 to d = +1. However, since Bayesian sta-
tistics can be strongly influenced by prior selection, we ran a
sensitivity analysis with a range of other possible prior spec-
ifications (r = 0.01, r = 0.1, and r = 0.3) to represent very
small, small, and moderate effect size distributions. The
resulting Bayes factors are reported as BF10 or BF01 to repre-
sent evidence supporting either the alternative, or null, hy-
potheses, respectively. Typically, the evidential value of
Bayes factors below 3 are considered weak, between 3 and
10 are considered substantial, between 10 and 30 are consid-
ered strong, between 30 and 100 are considered very strong,
and over 100 are considered decisive (Jarosz andWiley 2014).

Meta-meta-analysis

Three different summary effects were calculated, one each for the
experimental vs. passive control, experimental vs. active control,
and experimental/passive minus experimental/active compari-
sons. Towards this end, effect sizes were calculated first at the

meta-analytic level, then at the population level, and finally at the
summary meta-meta-analytic level (see Figs. 2, 3, and 4).

At the meta-analytic level, effect sizes were extracted di-
rectly from the individual meta-analyses when provided. All
effect sizes represented the standardized mean difference
(SMD) in performance between experimental groups and their
respective control groups, captured as Cohen’s d. These effect
sizes largely represented performance on laboratory measures
of cognitive functioning or self/proxy-reports of behavioral/
cognitive improvement, but each meta-analysis had its own
criteria for effect size calculations; thus, we simply extracted
whatever effect size was reported. When a moderator analysis
based on control group type was not directly provided by a
particular meta-analysis, we used CMA to calculate the meta-
analytic effect sizes, based on the effect sizes reported for
individual studies.

However, since some meta-analyses contain overlapping
primary studies, we could not simply average the meta-
analytic effects to arrive at a summary meta-meta-analytic
effect size without violating the assumption of independence.
In order to mitigate this issue, we separated the 34 meta-
analyses into 8 non-overlapping population categories. We
then aggregated effect sizes within each population category
in order to come up with 8 distinct and statistically indepen-
dent effect sizes in which the same study is never represented
more than once: attention-deficit/hyperactivity disorder
(ADHD; k = 6), clinical depression (k = 1), healthy individuals
(k = 19), intellectual or learning disability (k = 2), mild cogni-
tive impairment or dementia (k = 5), Parkinson’s disease (k =
1), schizophrenia (k = 2), and traumatic brain injury (k = 2).
This approach allowed us to extract a population-aggregated
unit of analysis for the final meta-meta-analysis that does not
violate the assumption of independence.1

In this way, summary effects at the meta-meta-analytic lev-
el were calculated separately for studies with either control
type. However, in order to directly compare the relative per-
formance of passive and active controls, a further analysis was
conducted following the same procedure as above, but which
subtracted out the experimental effects within each meta-anal-
ysis. This was done by subtracting the experimental/active
control effect size from the experimental/passive control effect
sizewithin a meta-analysis, while pooling their standard errors
together according to the formula: SE ¼ 1ffiffiffiffiffiffiffiffi

PpþPa
2

p , where Pp =

precision (inverse variance) of the experimental/passive con-
trol effect size and Pa = precision of the experimental/active
control effect size (Borenstein et al. 2005). This left us with a
summary meta-analytic effect size capturing the difference in
performance between studies with passive controls and stud-
ies with active controls. As done above, these summary meta-

1 Note that none of the clinical studies contained any healthy controls, so all
population groups are indeed mutually exclusive.
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analytic effect sizes were then aggregated into population-
level effect sizes and then finally into a meta-meta-analytic
effect size. It was necessary to conduct this analysis in this
paired, within-meta-analysis fashion because effect sizes with-
in the same meta-analysis, whether they are derived from pas-
sive or active controls, can be correlatedwith each other due to
idiosyncratic decisions specific to each meta-analysis, such as
the choice of outcome measures, inclusion/exclusion criteria,
or the method of effect size calculation.

Double-Controlled Meta-analysis

We aggregated data from 42 articles containing 44 indepen-
dent comparisons between experimental intervention groups,
passive control groups, and active control groups. Once again,
three summary meta-analytic effect sizes were calculated—
one for the experimental/passive control comparison, one for
the experimental/active control comparison, and one that di-
rectly compares the within-study performance difference of
active and passive controls. Only objective cognitive outcome
measures that were not specifically trained were included in
the calculation of effect sizes. Therefore, subjective or non-

cognitive outcomes such as questionnaires, physiological in-
dices, neuroimaging metrics, etc., were excluded. Also, any
outcome that was specifically trained by either the experimen-
tal or active control group was excluded, such as instances
where a group trained on an n-back task and was then tested
on the same or a similar n-back task. Thus, our meta-analysis
is only focused on transfer to untrained tasks, and not specific
training effects.

All studies used a pretest-intervention-posttest design and
effect sizes were calculated as the SMD in performance be-
tween the groups of interest, after adjusting for small sample
sizes using Hedge’s g (Rosenthal 1991). This was calculated
as the mean difference in gain scores on all objective outcome
measures within a study, standardized by the pooled standard
deviation at pretest (Morris 2008), as used in prior analyses

(see Au et al. 2016; Melby-Lervåg and Hulme 2016): g ¼
μ1post−μ1preð Þ− μ2post−μ2preð Þ

SDpre−pooled
� 1−ð 3

4*df −1 ). Effect sizes from all out-

comes within a study were averaged together into one net
effect, weighted by their inverse variance. Positive values re-
flect superior pre-post gains among the experimental groups,
or the active control group in the case of the active/passive

Fig. 2 Meta-meta-analysis of experimental vs. active control comparisons. Across meta-analyses, cognitive training studies using active control groups
yield an overall effect size of d = 0.308. Positive effect sizes favor experimental groups
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control comparison. If a study contained multiple intervention
groups (whether an experimental or an active control group),
all compared to the same control, then the raw scores of all
intervention groups were averaged together first, and then
compared to the control group in order to get one statistically
independent net effect. However, if each intervention group
was compared to its own respective control, then a Hedge’s g
effect size was calculated for each comparison and treated as
independent (Borenstein 2009). There was never a situation in
which multiple passive control groups were all compared to
one intervention group. The end result was an independent set
of effect sizes such that no condition within a study was rep-
resented more than once in the overall meta-analysis. The
overall weighted average effect size comprises data from
396 objective cognitive assessments across all studies.

Risk of Bias and Heterogeneity

Per PRISMA guidelines, bias was assessed both within and
between the studies included in the double-controlled meta-
analysis. Potential bias within each study is described in
Table S1, but no quantitative analysis was run due to the
subjective nature of evaluating intra-study bias. Bias between

studies was evaluated with a statistical analysis of publication
bias, also referred to as the “file drawer problem.” Publication
bias refers to the phenomenon in which studies that report null
results are less likely to be published. Therefore, the extant
literature included in a meta-analysis is susceptible to a posi-
tive bias. We assessed publication bias qualitatively through
the use of a funnel plot and quantitatively with Egger’s regres-
sion for the double-controlled meta-analysis. The funnel plot
is a graphical measure of publication bias or related small-
study effects that plots effect sizes against standard errors.
Under conditions of no bias, effect sizes should appear sym-
metric around the mean, with large studies (indexed by low
standard errors) clustering tightly together near the top, but
with increasing variability in effect size in smaller studies
closer to the bottom. Under conditions of bias, where small
or negative effect sizes are omitted from the literature, the plot
will look more asymmetrical, especially with the small studies
near the bottom which are more likely to be selected for pos-
itive or large effects. Egger’s regression is a quantitative meth-
od of analyzing funnel plots and regresses the standard normal
deviate, defined as the effect size divided by the standard
error, against its precision (inverse standard error). With a
perfectly symmetrical funnel plot, the intercept should be

Fig. 3 Meta-meta-analysis of experimental vs. passive control comparisons. Across meta-analyses, cognitive training studies using passive control
groups yield an overall effect size of d = 0.344. Positive effect sizes favor experimental groups
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close to zero, and the larger the deviation from zero, the great-
er the evidence for small-study effects such as publication
bias. Negative values suggest bias in the direction of selecting
larger effects in small studies. No assessment of bias was
conducted on the meta-meta-analysis, given that meta-
analyses do not seem to be systematically less likely to be
published for reporting null results.

Heterogeneity was assessed using the I2 statistic, which
represents the percentage of total variation between studies
that can be attributed to differences in true effect sizes rather
than chance or sampling error alone. High I2 values reflect
greater heterogeneity and suggest that true differences exist
between studies due to study design, population, or other
factors other than sampling error alone. Conversely, a low I2

value indicates homogeneity across studies and argues that the
same basic effect is consistent across all studies, regardless of
differences in study design, population, and other factors.
Additionally, prediction intervals were calculated according
to Borenstein et al. (2017) with the following formula:

d � t dfð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vd þ τ2

p
, where d is the mean effect size, t is the

critical t value with a given degrees of freedom (df) equal to
the number studies minus two, Vd is the variance of the effect
size, and τ2 is the variance of true effect sizes. The prediction
interval is the range in which the true effect size would vary
across 95% of heterogeneous populations/conditions.

Results

Meta-meta-analysis

The 34 effect sizes on the left-hand side of Fig. 2 represent the
SMD between experimental and active control performance,
as reported by each individual meta-analysis. The 8 effect
sizes on the right represent the pooled SMD between experi-
mental and active control performance within each popula-
tion. Figure 3 displays the same information for the studies
with passive controls. Aggregating the 8 population effect
sizes together, the SMD among studies with active controls
is d = 0.308 (SE = 0.020, p < 0.001, BF10 = 1.35 × 1023),

Fig. 4 Meta-meta-analysis of studies with active vs. passive controls.
Across meta-analyses, cognitive training studies with passive controls
yield an effect size that is d = 0.030 larger than studies with active
controls. Positive effect sizes favor studies with passive controls, and

suggest the possibility, but not the necessity, of placebo-like effects.
However, the difference is only marginally significant (p = 0.052), and
Bayesian statistics provide no support for the alternative hypothesis that
any difference truly exists (BF10 = 0.859)
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whereas the SMD among studies with passive controls is d =
0.344 (SE = 0.023, p < 0.001, BF10 = 1.83 × 1026).

From both a frequentist and a Bayesian perspective, the
analyses provide overwhelming support for a positive cogni-
tive intervention effect with respect to both active and passive
controls. However, in order to directly compare the relative
difference between these effect sizes, we ran a paired within-
meta-analysis comparison of the influence of active and pas-
sive controls (Fig. 4), revealing a very small, but nonetheless
trending effect size difference of d = 0.030 (SE = 0.15, p =
0.052), numerically in favor of studies with passive controls
outperforming studies with active controls. Despite the bor-
derline significance of this finding, Bayesian analyses
assessing the strength of evidence in favor of the alternative
hypothesis find no support that there is any difference between
either type of control group (BF10 = 0.859). Even the sensitiv-
ity analyses revealed little support for very small (r = 0.01,
BF10 = 1.093), small (r = 0.1, BF10 = 1.572), or moderate
(r = 0.3, BF10 = 1.606) effects.

Double-Controlled Meta-analysis

Figures 5 and 6 show significant cognitive intervention effects
against both active (g = 0.250, SE = 0.045, p < 0.001, BF10 =
1.138 × 105) and passive controls (g = 0.309, SE = 0.046,
p < 0.001, BF10 = 1.832 × 108), with Bayesian analyses pro-
viding decisive evidence for the alternative hypothesis in both
cases. However, when directly comparing the performance of
active and passive controls to each other (Fig. 7), no signifi-
cant performance differences were found (g = 0.058, SE =
0.044, p = 0.194) and in fact, Bayesian analyses strongly sup-
ported this null finding (BF01 = 12.046). However, sensitivity
analyses on the Bayes factor showed weak evidence for the
null (but no evidence for the alternative) when aiming to de-
tect very small (r = 0.01; BF01 = 1.017) or small (r = 0.1;
BF01 = 1.660) effects and showed substantial evidence when
allowing for more moderate effects (r = 0.3; BF01 = 3.78).

Publication Bias

In the double-controlled meta-analysis, the likelihood for pub-
lication bias is small because the studies in our sample are
generally published based on the merits of the experimental
groups and not on the performance of the control groups.
Nevertheless, we cannot exclude the possibility that publica-
tion bias may be selecting more strongly for the experimental/
active control comparison rather than the experimental/
passive control comparison. To examine this, we carried out
an analysis of publication bias for both comparisons using
funnel plots (Fig. 8) and Egger’s regression intercept (Egger
et al. 1997). In the experimental/active control comparison,
Egger’s intercept was − 0.447 (SE = 0.425, p = 0.299) and
with the experimental/passive control comparison, Egger’s

intercept was − 0.163 (SE = 0.517, p = 0.754). Neither analy-
sis reached significance to endorse small-study effects, despite
reasonable meta-analytic power with 44 effect sizes. More
critically for our analyses, however, there is little evidence that
bias, even if it exists, systematically affects comparisons with
active control groups differently than comparisons with pas-
sive control groups, as their confidence intervals are highly
overlapping.

Heterogeneity

Heterogeneity was assessed in the meta-meta-analysis using
the full sample of 34meta-analyses, rather than the 8 collapsed
population groups in order to prevent the averaging over of
heterogeneity that may exist within populations. In the com-
parison with active controls, significant heterogeneity was
found (Q = 115.166, I2 = 71.346, p < 0.001, τ2 = 0.022), with
the 95% prediction interval suggesting that 95% of true effects
range from d = 0.003 to d = 0.613 (Borenstein et al. 2017). In
the comparison with passive controls, no significant heteroge-
neity was found (Q = 7.789, I2 = 10.130, p = 0.352, τ2 =
0.001), with 95% of true effects ranging from d = 0.264 to
d = 0.424. In both cases, heterogeneity estimates likely repre-
sent a lower bound since many meta-analyses shared primary
studies with each other, thereby potentially masking some
heterogeneity effects.

Within the double-controlled meta-analysis, no evidence
for heterogeneity was found (Q = 8.225, I2 = 0.000, p =
1.000, τ2 = 0.000), with 95% of true effects ranging from
g = − 0.032 to g = 0.148.

Moderator Analyses

Despite the lack of a significant main effect and the lack of
heterogeneity in the double-controlled meta-analysis, we nev-
ertheless attempted an exploratory moderator analysis in order
to reveal whether there might be indications for differential
placebo effects as a function of a specific subset of our data,
and if so, whether there were specific populations or types of
outcome measures or types of active control designs that
might be particularly prone to placebo effects. None of the
population effects approached significance: clinical popula-
tions (g = 0.090, SE = 0.107, p = 0.400, BF01 = 6.606),
healthy participants (g = 0.051, SE = 0.049, p = 0.296,
BF01 = 14.811), younger participants under 60 years old
(g = 0.055, SE = 0.065, p = 0.393, BF01 = 13.419), older par-
ticipants over 60 years old (g = 0.060, SE = 0.061, p = 0.326,
BF01 = 12.581). None of the outcome measures approached
significance: visual outcomemeasures (g = 0.056, SE = 0.056,
p = 0.320, BF01 = 13.408), verbal outcome measures (g =
0.040, SE = 0.049, p = 0.417, BF01 = 18.447), mixed modality
outcome measures (g = 0.078, SE = 0.056, p = 0.167, BF01 =
8.603), fluid intelligence outcomes (g = 0.023, SE = 0.068,
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p = 0.731, BF01 = 17.167), working memory outcomes (g =
0.049, SE = 0.054, p = 0.361, BF01 = 15.290), process-based
outcomes (including all cognitive laboratory tasks; g = 0.058,
SE = 0.047, p = 0.220, BF01 = 12.493), and non-process-
based outcomes (including crystallized intelligence and motor
tasks; g = − 0.128, SE = 0.098, p = 0.189, BF01 = 13.313).
None of the active control design effects approached signifi-
cance: working memory interventions (g = 0.054, SE = 0.104,

p = 0.604, BF01 = 10.654), memory-based interventions (g =
0.056, SE = 0.100, p = 0.572, BF01 = 10.777), process-based
interventions (g = 0.071, SE = 0.07, p = 0.311, BF01 =
10.723), non-process-based interventions (including socio-
emotional stimulation, reading books or watching movies,
motor tasks, etc.; g = 0.049, SE = 0.057, p = 0.396, BF01 =
15.071), attention-based interventions (g = 0.082, SE =
0.171, p = 0.634, BF01 = 6.649), or speed-based interventions

Fig. 5 Meta-analysis of
experimental/active control com-
parisons. Within our sample of
double-controlled studies, the ef-
fect size of cognitive training on
objective cognitive tests when
compared to active controls is g =
0.250. Outcomes that were spe-
cifically trained were excluded
from analysis; thus, this effect size
only reflects transfer to untrained
tasks

J Cogn Enhanc (2020) 4:192–210 201



(g = 0.129, SE = 0.178, p = 0.572, BF01 = 5.587). See
Table S2 for examples of each moderator category.

Discussion

The goal of the present work was to determine potential per-
formance differences between active and passive control
groups in cognitive training studies (e.g., Melby-Lervåg
et al. 2016; Shipstead et al. 2012). Overall, our results do not
provide evidence within a broad spectrum of the existing

Fig. 6 Meta-analysis of
experimental/passive control
comparisons. Within our sample
of double-controlled studies, the
effect size of cognitive training on
objective cognitive tests when
compared to active controls is g =
0.309. Outcomes that were spe-
cifically trained were excluded
from analysis; thus, this effect size
only reflects transfer to untrained
tasks
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cognitive intervention literature that the type of control group
used in a study pervasively influences results on objective
neuropsychological or ability measures. Two complementary
approaches led us to this conclusion.

First, a meta-meta-analysis consisting of 34 individual
meta-analyses revealed significant intervention effects in stud-
ies using both types of control, which refutes the notion that
cognitive training effects get erased when active controls are

used (c.f., Melby-Lervåg et al. 2016). Moreover, the small
difference between the two effect sizes (d = 0.03; Fig. 4) was
found to be only marginally significant (p = 0.052) in favor of
stronger effects among studies using only passive controls.
Additionally, Bayesian analyses offer very little evidence to
support the existence of true differences, with Bayes factors
ranging from a negligible 0.859 to 1.606 using a wide range of
plausible priors. Even disregarding the support for the null, the

Fig. 7 Meta-analysis of active/
passive control comparisons.
Within our sample of double-
controlled studies, the within-
study performance difference be-
tween active and passive control
groups is not significant (g =
0.058), and Bayesian statistics
support the null hypothesis
(BF01 = 12.046). Outcomes that
were specifically trained were
excluded from analysis
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effect estimate of d = 0.03 seems of little practical relevance,
especially given that the intervention effects of the experimen-
tal groups were found to be 0.308 and 0.344 (Figs. 2 and 3), an
over tenfold difference.

Although these meta-meta-analytic results support the
notion that experimental results from studies with passive
or active controls do not differ, interpretation is still limited
as these results are correlational in nature and there could be
a variety of other factors associated with the control group
design choice that may also moderate the effect size (see Au
et al. 2016). In order to provide further evidence for or
against an effect of control group type, we conducted an
additional meta-analysis on cognitive training studies that
used both a passive and an active control group within the
same experiment. In this way, any other correlated factors
that may exist within the same study are controlled for.

Similar to our first analysis, we found no significant
difference in performance between passive and active
controls when compared directly (g = 0.058, p = 0.194).
Despite a numerical advantage of active controls, once
again Bayesian statistics provide no evidence for any
true effects. In fact, the null model is 12 times more
likely than the alternative, suggesting strong evidence
for the equivalence of active and passive control group
performance. Our sensitivity analyses show that
selecting a moderate prior of r = 0.3, which places
50% of the prior probability mass on effect sizes rang-
ing from − 0.3 to + 0.3, there is still substantial evi-
dence for the null (BF01 = 3.798). Even when using lib-
eral priors of r = .01 or r = 0.1 to capture very small or
small effects, Bayes factors for the null hypothesis are
1.017 and 1.660, respectively, which contain no to little
evidential value one way or the other. Thus, across a
range of analytical approaches, there is accumulated ev-
idence that the use of passive or active control groups
in the current cognitive training literature cannot explain

moderate to large effects on objective outcome mea-
sures, and there is no indication one way or another
that even small effects exist. In the following sections,
we explore whether these effects may still exist in a
subsection of the data, discuss possible reasons why
they are absent, and finally offer ideas for next steps
and future directions.

Do Some Studies Show More Control Group
Differences than Others?

Having established the absence of an overall effect of control
type within the cognitive training literature at large, we next
sought to determine whether certain study or active control
design choices influence the ability to detect these effects.
At the meta-meta-analytic level, we detected significant het-
erogeneity among studies with active controls, but not among
studies with passive controls. This suggests the possibility that
not all active controls are created equal, and some may pro-
vide more rigorous controls than others, thus erasing experi-
mental effects in those studies. For instance, the prediction
interval around studies with active controls extends down to
d = 0.003, suggesting that a subset of studies show zero true
effects, whereas the effect sizes from studies with passive
controls all hover fairly homogenously around the mean esti-
mate of d = 0.344. However, before endorsing the conclusion
that some active controls are designed more rigorously than
others, we first reiterate that these analyses are correlational,
and alternative explanations still exist. For example, we have
previously analyzed this precise pattern of effects in a specific
subset of studies examining the influence of n-back training
on fluid intelligence measures, and there we demonstrated that
this pattern was not driven by any differences in control group
performance (Au et al. 2015, 2016). Rather, we observed a
curious and as yet unexplained underperformance of experi-
mental groups in the studies that happened to use active

Fig. 8 Funnel plots from comparisons of experimental with passive and
active control groups (double-controlled studies). No asymmetry was
statistically detectable in the funnel plots, neither for the comparison of
experimental groups with passive controls (left) nor the comparison with

active controls (right). More critically, the degree of asymmetry, though
non-significant, is similar between both comparisons, suggesting that if
bias does exist, it does not systematically affect one type of control group
over the other
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controls, leading to the smaller effect sizes observed in these
studies relative to those that used passive controls (Au et al.
2015, 2016). Moreover, Fig. 4 in our current data, which sum-
marizes the effect size advantage of studies with passive con-
trols over those with active controls, shows extreme effects in
both directions, with the prediction interval ranging from d =
− 0.347 to d = 0.407, suggesting the existence of a subset of
studies that favor active control performance as well as a sub-
set of studies that favor passive control performance. Thus, it
is difficult to convincingly argue that our observedmeta-meta-
analytic heterogeneity is driven by any systematic advantage
of studies that employ one control type over another.

When analyzing heterogeneity in our double-controlled
meta-analysis, which better approximates a causal framework
by controlling for any within-study idiosyncrasies, we detect-
ed no significant heterogeneity in any of the three compari-
sons, including the direct active/passive control comparison.
However, the lack of heterogeneity may be at least in part
attributed to the small sample sizes used in cognitive training
studies, leading to wide, overlapping confidence intervals that
can potentially mask the existence of true heterogeneity.
Notably, even the experimental/control comparisons did not
demonstrate heterogeneity, despite using a wide range of in-
tervention tasks and populations. Thus, to further probe pos-
sible heterogeneity, additional moderator analyses were run
attempting to detect any possible influences of outcome mea-
sures, population, or active control design. However, none of
the analyses revealed any differences (Table S2). Thus, the
cognitive training effect size is fairly homogenous within this
dataset of 42 studies, and no argument can be convincingly
made that a systematic advantage for active controls exists in
any subset of studies.

Why Is There No Difference Between Passive
and Active Control Groups?

We see at least two possible conclusions that can be drawn
from our data. First, some may infer that the lack of difference
between passive and active controls indicates that active con-
trols as they have been used in the extant cognitive training
literature are insufficiently designed to be able to reliably cap-
ture such differences. Second, it is also possible instead that
the lack of difference indicates that placebo and other non-
specific artifacts do not systematically and pervasively occur
with objective outcomes in the cognitive training literature.
Neither conclusion can be ruled out with the current data
and both might be true to some extent. In the following, we
elaborate more on both possible interpretations.

Interpretation 1: Current Active Control Groups Are
Insufficiently Designed To Elicit Placebo Effects

Within our sample of double-controlled studies, active control
designs ranged wildly in terms of the degree to which they
approximated the experimental task and the degree to which
they might be considered a “believable” intervention by partic-
ipants. Designs that are too dissimilar from their experimental
counterparts may not fully control for all possible confounds,
while designs that are overly similar risk inadvertently control-
ling out relevant training effects. For example, on the more
dissimilar end, one study in our meta-analytic sample examined
the effects of computerized memory and attention training on
schizophrenic patients and had control group participants sim-
ply watch television for the same amount of time (Rass et al.
2012). While this “active” control may control for non-specific
intervention effects related to experimenter contact and time
spent on a task, other potentially influential factors differ be-
tween groups such as perceived cognitive effort and expecta-
tions of improvement. However, opposite problems can arise as
well on the other end of the spectrum when active control
interventions overly resemble their experimental counterparts.
Take for instance Opitz et al. (2014), who compared visual n-
back training (experimental intervention) to auditory n-back
training (active control) to improve Chinese vocabulary learn-
ing. Although in some respects this seems like an ideal active
control because it effectively isolates a single hypothesized fac-
tor (processing of visual stimuli in working memory) while
keeping all other intervention characteristics identical, interpre-
tation must proceed carefully in a field like working memory
training where the underlying mechanisms of positive training
effects are still not well understood. For example, it is unclear to
what extent positive training results are modality-specific (e.g.,
Jaeggi et al. 2014; Schneiders et al. 2011), and therefore wheth-
er both auditory and visual working memory training might
train similar and more general underlying processes. It is very
difficult to design tasks that rely purely on one modality as
researchers cannot control any cross-modality strategies partic-
ipants choose to use (e.g., verbal encoding of visual informa-
tion). Furthermore, irrespective of that, working memory and
related processes are also known to involve both modality-
specific as well as modality-general functional networks (Hsu
et al. 2017; Li et al. 2014), and thus, researchers cannot rule out
that modality-general improvements may arise from ostensibly
modality-specific training that also benefits performance on
transfer measures. Indeed, the active/passive control effect size
in Opitz et al. (2014) is the largest in our meta-analytic sample
(g = 0.582), and it is unknown whether this came about as a
result of the auditory working memory intervention producing
real training gains, or by the induction of non-specific placebo-
like effects that inflated performance at posttest over and above
the passive control group, or by some combination of the two.
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As illustrated, proper design of active control interven-
tions is not a simple matter, and the border between what
constitutes a control task and an experimental task is
fuzzy (Rebok 2015). In fact, there were several instances
in our meta-analytic sample in which researchers chose a
task as an active control in hopes of creating a believable
intervention that elicits no meaningful cognitive benefit
(Boot et al. 2008; Opitz et al. 2014; Stephenson and
Halpern 2013; Thompson et al. 2013; Vartanian et al.
2016), while other researchers actually decided to use
those very same tasks as experimental interventions to
elicit cognitive improvement (Jaeggi et al. 2008; Smith
et al. 2013; Thorell et al. 2009; Vartanian et al. 2016).

Interpretation 2: Placebo and Other Non-specific
Artifacts Do Not Pervasively Occur with Objective
Cognitive Measures

Although the existence of placebo and other non-specific in-
tervention effects is not controversial, it should not be univer-
sally assumed that these effects are pervasive and can be mea-
sured reliably across all domains. The concept of a placebo
effect first originated in the medical field where the primary
dependent variable is the (often subjectively assessed) symp-
tomatology improvement of the patient, such as the perception
of pain (Beecher 1955). However, evidence for placebo-like
enhancement on objective neuropsychological outcomes,
such as the ones used in the current meta-analysis, has been
more difficult to elicit (Green et al. 2001; Hróbjartsson and
Gøtzsche 2001, 2004, 2010; Looby and Earleywine 2011;
Schwarz and Büchel 2015). For example, in a recent working
memory-based intervention study, Tsai et al. (2018) induced
positive and negative participant expectations but did not ob-
serve any group differences (experimental vs. active control)
in objective performance as a function of induction. Instead,
only the experimental group demonstrated transfer to an un-
trained working memory task, irrespective of having negative
expectations, while the control group showed no improve-
ment despite having positive expectations. Similarly,
Schwarz and Büchel (2015) induced expectations of cognitive
improvement in participants during an inhibitory control task,
and although participants did indeed believe they performed
better, their objective performance itself did not change. Green
et al. (2001) likewise found no consistent improvements on a
battery of executive function tests after placebo glucose ad-
ministration, observing improvement on only one test, out of
eight. Furthermore, a meta-analysis of 27 clinical trials across
a diverse set of health conditions compared active control
groups to no-treatment groups and found no overall placebo
advantage on objective measures of symptom improvement
despite demonstrating self-reported improvements on subjec-
tive outcomes (Hróbjartsson and Gøtzsche 2001).
Nevertheless, isolated incidents of placebo improvement on

objective neuropsychological measures have also been docu-
mented (Foroughi et al. 2016). The rationale for subjective
improvements after placebo induction is clear, since they op-
erate in the domain of beliefs and expectations, leading to
response biases. However, the pathway to objective improve-
ments is more indirect since it relies on the power of belief to
exert some physiological change in the body and for that
change to become relevant to the outcome being measured.
While such physiological changes have certainly been docu-
mented, such as changes in neurotransmission and opioid re-
ceptor activity during placebo-induced analgesia or changes in
brain glucose metabolism with placebo anti-depressants,
(Benedetti et al. 2005; Price et al. 2008; Wager and Atlas
2015), these objective effects are less well understood and less
consistent outside the pain and analgesia literature (Benedetti
et al. 2005; Hróbjartsson and Gøtzsche 2001). Moreover, it is
not always clear which types of objective outcomes are affect-
ed by these physiological changes and under what conditions,
so it should not be assumed by default that cognitive improve-
ments automatically fall under this umbrella. In fact, our cur-
rent data, in accordance with the literature, suggest that if these
cognitive effects exist, they are not easy to induce even when
studies explicitly aim to do so.

How To Move Forward

What could be the resolution to this conundrum? First, it
seems that the research community needs to recognize the
problem and direct more efforts into specifying and quantify-
ing any non-specific intervention effects that may exist, such
as placebo effects, experimenter demand characteristics, and
other influences. It is insufficient to simply rely on active
control designs to rule out these influences. Instead, data are
required to measure the extent to which these factors influence
performance of both experimental and control groups, for dif-
ferent types of interventions and different types of outcome
measures. For instance, it would be beneficial if studies would
routinely assess (and/or manipulate) expectations, motivation,
fatigue, and other psychological phenomena, a practice which
is rarely done in the current literature. A few enterprising
studies have already taken this route (Foroughi et al. 2016;
Katz et al. 2018; Tsai et al. 2018). However, to date, they have
yielded inconsistent evidence, showing that expectations may
(Foroughi et al. 2016) or may not (Tsai et al. 2018) influence
transfer results from cognitive training and that different mo-
tivational influences affect cognitive performance on different
tasks in different ways (Cerasoli et al. 2014; Katz et al. 2018).
Although the complex pattern of results may be daunting to
tackle, it is imperative that we continue to measure these ef-
fects in cognitive training studies in order to develop a better
understanding of their influence and the conditions under
which they manifest (or not). Furthermore, long-term fol-
low-ups should be incorporated whenever possible, as any
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confounding effects of motivation and fatigue are more likely
to wash out after a period of time in order to allow a more pure
measurement of training effects (e.g., Klauer and Phye
2008). Additionally, a stronger emphasis on the under-
lying mechanisms of cognitive training would be fruitful
in elucidating the extent to which an active control task
may overlap with an experimental task without acciden-
tally incurring meaningful benefits. This line of research
is already underway (Buschkuehl et al. 2014; Dahlin
et al. 2008; Hsu et al. 2013; Hussey et al. 2017;
Jaeggi et al. 2014; Katz et al. 2018; Salmi et al.
2018) but we are still far from a satisfactory under-
standing of the mechanisms under which transfer of
cognitive training occurs.

Until our understanding of these issues reach maturity, it is
difficult to strategically and rigorously design appropriate ac-
tive controls, and we caution against an exclusive reliance on
studies using active controls, as has become the current trend
(i.e., Melby-Lervåg and Hulme 2013; Melby-Lervåg et al.
2016). Rather, interpretations about the efficacy of cognitive
training should be based on the totality of the extant literature,
and it would be imprudent to dismiss a meaningful portion of
that literature on the assumption that passive controls perform
differently than active controls. Moreover, there are advan-
tages to the use of passive controls that are often overlooked:
Passive control groups provide a consistent and generally re-
liable control for retest effects across studies. Therefore, effect
sizes derived from passive controls can be compared to the
same standard across studies for different experimental inter-
ventions. This is supported by our meta-meta-analytic obser-
vation of fairly homogenous effect sizes across the spectrum
of studies using passive controls, but not among those using
active controls. Furthermore, they are more cost-effective and
easier to implement, which may be useful for preliminary
phase 1 trials, or small proof-of-principle studies (C. S.
Green et al. 2019; Willis 2001). Reducing these impediments
has several benefits. First, it allows for a relatively low-
investment opportunity to evaluate the feasibility of new in-
terventions, as it curtails the expenses associated with paying
research staff and participants to be involved with the design
and the implementation of an active control intervention.
Second, it allows for all basic efficacy intervention studies to
be easily compared on a meta-analytic level because they
would all have a homogenous control that purely accounts
for retest effects. Although interpretation would have to pro-
ceed with the knowledge that non-specific confounds may
exist (a problem which currently has no convincing solution
even with the use of active controls), at the very least, inter-
ventions could be compared to each other in order to deter-
mine relative effects.

To be clear, we are not dismissing the use of active controls
simply because they have failed to outperform passive con-
trols in the past. Rather, we recommend a more nuanced

approach in using and interpreting intervention data that rely
on both passive and active controls (see also C. S. Green et al.
2019). Until future research can convincingly elucidate both
the nature and extent of placebo and placebo-like effects on
objective cognitive outcomes and more clearly delineate the
boundary between a control task that effectively induces these
non-specific effects versus a control task that inadvertently
trains relevant cognitive processes, a sensible role for the use
of passive controls may continue to exist. We suggest active
controls, on the other hand, can be used as a second tier strat-
egy to test interventions that have at least passed the basic
efficacy phase with passive controls. Here, researchers can
strategically design the active control to assess and rule out
specific and quantifiable placebo-like effects such as expec-
tancies or Hawthorne effects. Additionally, the active control
can focus on isolating properties of the training task in order to
get at the candidate mechanisms that may underlie interven-
tion efficacy (e.g., Hussey et al. 2017; Oelhafen et al. 2013). In
an ideal-world scenario, passive and active controls should
both be used within the same study to more rigorously test
for the existence and extent of placebo-like effects.

Limitations

In our attempt to garner a comprehensive and far-reaching
perspective from the literature on this issue of passive and
active control group comparisons, we necessarily invite some
limitations to our data, chief of which is the noise inherent in
dealing with such a large and diverse dataset. For example, the
definition of what an active control entails differs between
studies as there is no current consensus or gold standard.
Although we endeavored to reduce our own subjectivity by
yielding to the definitions and categorizations of individual
authors, this variability also potentially renders active and
passive controls more similar to each other than if one univer-
sal standard was applied to all active controls. Although the
heterogeneous nature of active controls across studies is a
limitation we cannot get around, we nevertheless point out
that our moderator analyses demonstrated that all categories
of active controls that we analyzed performed similarly to
passive controls at the meta-analytic level.

We must also acknowledge the considerable heterogeneity
in how individual meta-analyses reported their effect sizes,
some using Cohen’s d, while others used Hedges’ g, and some
calculating differences in gain scores between experimental
and control groups, while others used only posttest scores,
and the different types of outcomes eachmeta-analysis accept-
ed into their analysis. However, Cohen’s d and Hedges’ g are
almost identical to each other except when sample sizes are
very small (e.g., < 10), and very few cognitive training studies
have sample sizes in the single digits. Additionally, with the
randomized designs of most cognitive training studies, effect
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sizes calculated from only posttest data or taking into account
pretest as well generally perform fairly similarly and tend to
agree closely with each other, especially when averaging
across many studies (Au et al. 2016). Furthermore, when com-
paring studies with passive and active controls to each other in
the meta-meta-analysis, we were careful to conduct this anal-
ysis in a within-meta-analysis manner so that these idiosyn-
crasies are controlled out. Therefore, we argue that the effect
sizes between meta-analyses are comparable nonetheless and,
moreover, point out that any differences that may exist occur
randomly and non-systematically.

Although our double-controlled meta-analysis circumvents
some of the noisiness inherent in the meta-meta-analysis by
controlling for within-study differences, it is also subject to its
own limitations in that it may represent a unique subset of
studies whose generalizability to the rest of the field is not
fully certain. For example, studies that employ both passive
and active control groups may be more rigorous or may be
better funded. They also tend to be more recent, as the average
year of publication within our meta-analysis was 2009.
Therefore, any interpretations of this meta-analytic dataset
must be made with these potential confounds and biases in
mind. However, it is heartening to see that the results converge
with our broader meta-meta-analysis as well, and we encour-
age readers to consider both analyses together when
interpreting our data as they both have their own unique
strengths and weaknesses that complement each other.

Conclusions

Our two complementary and comprehensive meta-analyses,
which aggregate data from a very substantial portion of the
cognitive training literature to date (1524 studies), demon-
strate no evidence that control group type meaningfully influ-
ences effect sizes from objective cognitive measures, and in
fact Bayesian statistics demonstrate strong evidence for the
null hypothesis at the meta-analytic level. Whether this indi-
cates that the current active control conditions being used
cannot capture these effects or that placebo and other non-
specific intervention effects are minimal in this literature re-
mains an open question. In either case, our empirical findings
challenge the assumption in the field that only studies with
active controls should be interpreted (Melby-Lervåg et al.
2016; Shipstead et al. 2012; Simons et al. 2016). Although
this view is well-intentioned and ostensibly reasonable, our
data demonstrate that it might be premature to only consider
studies with active controls as valid, at least until such time as
the research community is able to develop a better understand-
ing of the specific and non-specific mechanisms of cognitive
training in order to strategically design active controls that can
control for the non-specific effects.

Finally, we contend that our results are straightforward,
transparent, and replicable. Meta-analyses are often fraught
with many complex, subjective decisions to be made, leading
different researchers to arrive at different conclusions even
when evaluating the same pool of studies (e.g., Au et al.
2015, 2016; Melby-Lervåg and Hulme 2016). Sympathetic to
this issue, we endeavored to reduce the number of subjective
decisions we made in order to get a relatively unbiased estimate
of the active/passive control difference in cognitive training
studies. To this end, we restricted our analyses to variables that
were well defined and allowed reasonably straightforward cod-
ing. In instances of ambiguity, such as the issue of some re-
searchers using active controls that closely resembled or were
identical to experimental training tasks used by other re-
searchers, we always relied on the authors’ interpretations.
Furthermore, we also point out that our double-controlled me-
ta-analysis is in the rather unique position of being theoretically
free of systematic publication bias since none of the included
primary studies were published based on the merits of their
control groups, and indeed, we found no evidence that publica-
tion bias differentially affects comparisons with active controls
as comparisons with passive controls.

Funding This work was supported in part by the National Science
Foundation Graduate Research Fellowship, Grant No. DGE-1321846
(JA) and the National Institute of Health/National Institute on Aging,
Grant Nos. 1R01MH111742 and 1K02AG054665 (SMJ).

Compliance with Ethical Standards

Conflict of Interest MB and KB are employed at the MIND Research
Institute, whose interests are related to this work. SMJ has an indirect
financial interest in the MIND Research Institute. No other authors de-
clare any competing financial interests.

References

Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory
and intelligence: the same or different constructs? Psychological
Bulletin, 131(1), 30–60. https://doi.org/10.1037/0033-2909.131.1.
30.

Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S.
M. (2015). Improving fluid intelligence with training on working
memory: a meta-analysis. Psychonomic Bulletin & Review, 22(2),
366–377. https://doi.org/10.3758/s13423-014-0699-x.

Au, J., Buschkuehl, M., Duncan, G. J., & Jaeggi, S. M. (2016). There is
no convincing evidence that working memory training is NOT ef-
fective: a reply to Melby-Lervåg and Hulme (2015). Psychonomic
Bulletin & Review, 23(1), 331–337. https://doi.org/10.3758/s13423-
015-0967-4.

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what
we learn? A taxonomy for far transfer. Psychological Bulletin,
128(4), 612–637.

Beecher, H. K. (1955). The powerful placebo. Journal of the American
Medical Association, 159(17), 1602–1606.

Benedetti, F., Mayberg, H. S., Wager, T. D., Stohler, C. S., & Zubieta, J.-
K. (2005). Neurobiological mechanisms of the placebo effect.

208 J Cogn Enhanc (2020) 4:192–210

https://doi.org/10.1037/0033-2909.131.1.30
https://doi.org/10.1037/0033-2909.131.1.30
https://doi.org/10.3758/s13423-014-0699-x
https://doi.org/10.3758/s13423-015-0967-4
https://doi.org/10.3758/s13423-015-0967-4


Journal of Neuroscience, 25(45), 10390–10402. https://doi.org/10.
1523/JNEUROSCI.3458-05.2005.

Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G.
(2008). The effects of video game playing on attention, memory, and
executive control. Acta Psychologica, 129(3), 387–398. https://doi.
org/10.1016/j.actpsy.2008.09.005.

Boot, W. R., Simons, D. J., Stothart, C., & Stutts, C. (2013). The perva-
sive problem with placebos in psychology: why active control
groups are not sufficient to rule out placebo effects. Perspectives
on Psychological Science, 8(4), 445–454. https://doi.org/10.1177/
1745691613491271.

Borenstein, M. (2009). Introduction to meta-analysis. Chichester: Wiley.
Borenstein, M., Higgins, J., & Rothstein, H. (2005). Comprehensive

meta-analysis version 2 (version 2). Englewood: Biostat.
Borenstein, M., Higgins, J. P. T., Hedges, L. V., & Rothstein, H. R.

(2017). Basics of meta-analysis: I2 is not an absolute measure of
heterogeneity. Research Synthesis Methods, 8(1), 5–18. https://doi.
org/10.1002/jrsm.1230.

Buschkuehl, M., Hernandez-Garcia, L., Jaeggi, S. M., Bernard, J. A., &
Jonides, J. (2014). Neural effects of short-term training on working
memory. Cognitive, Affective, & Behavioral Neuroscience, 14(1),
147–160. https://doi.org/10.3758/s13415-013-0244-9.

Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic motivation
and extrinsic incentives jointly predict performance: a 40-year meta-
analysis. Psychological Bulletin, 140(4), 980–1008. https://doi.org/
10.1037/a0035661.

Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s
workspace: training and transfer effects with a complex working
memory span task. Psychonomic Bulletin & Review, 17(2), 193–
199. https://doi.org/10.3758/PBR.17.2.193.

Cleophas, T. J., & Zwinderman, A. H. (2017). Meta-meta-analysis. In T.
J. Cleophas & A. H. Zwinderman (Eds.), Modern meta-analysis:
review and update of methodologies (pp. 135–143). https://doi.org/
10.1007/978-3-319-55895-0_11.

Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L. (2008).
Transfer of learning after updating trainingmediated by the striatum.
Science, 320(5882), 1510–1512. https://doi.org/10.1126/science.
1155466.

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in
meta-analysis detected by a simple, graphical test. BMJ, 315(7109),
629–634. https://doi.org/10.1136/bmj.315.7109.629.

Foroughi, C. K., Monfort, S. S., Paczynski, M., McKnight, P. E., &
Greenwood, P. M. (2016). Placebo effects in cognitive training.
Proceedings of the National Academy of Sciences, 113(27), 7470–
7474. https://doi.org/10.1073/pnas.1601243113.

Green, M. W., Taylor, M. A., Elliman, N. A., & Rhodes, O. (2001).
Placebo expectancy effects in the relationship between glucose and
cognition. British Journal of Nutrition, 86(02), 173. https://doi.org/
10.1079/BJN2001398.

Green, C. S., Bavelier, D., Kramer, A. F., Vinogradov, S., Ansorge, U.,
Ball, K. K., et al. (2019). Improving methodological standards in
behavioral interventions for cognitive enhancement. Journal of
Cognitive Enhancement. https://doi.org/10.1007/s41465-018-0115-
y.

Hróbjartsson, A., &Gøtzsche, P. C. (2001). Is the placebo powerless? The
New England Journal of Medicine, 2001(344), 1594–1602.

Hróbjartsson, A., & Gøtzsche, P. C. (2004). Is the placebo powerless?
Update of a systematic review with 52 new randomized trials com-
paring placebo with no treatment. Journal of Internal Medicine,
256(2), 91–100.

Hróbjartsson, A., & Gøtzsche, P. C. (2010). Placebo interventions for all
clinical conditions. The Cochrane Library. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1002/14651858.CD003974.pub3/
full. Accessed 1 June 2017.

Hsu, N. S., Buschkuehl, M., Jonides, J., & Jaeggi, S. M. (2013). Potential
mechanisms underlying working memory training and transfer.

Presented at the Psychonomic Society Annual Meeting. Toronto:
Ontario.

Hsu, N. S., Jaeggi, S. M., & Novick, J. M. (2017). A common neural hub
resolves syntactic and non-syntactic conflict through cooperation
with task-specific networks. Brain and Language, 166, 63–77.
https://doi.org/10.1016/j.bandl.2016.12.006.

Hussey, E. K., Harbison, J. I., Teubner-Rhodes, S. E., Mishler, A.,
Velnoskey, K., & Novick, J. M. (2017). Memory and language im-
provements following cognitive control training. Journal of
Experimental Psychology. Learning, Memory, and Cognition,
43(1), 23–58. https://doi.org/10.1037/xlm0000283.

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008).
Improving fluid intelligence with training on working memory.
Proceedings of the National Academy of Sciences, 105(19), 6829–
6833. https://doi.org/10.1073/pnas.0801268105.

Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2014). The role of
individual differences in cognitive training and transfer. Memory &
Cognition, 42(3), 464–480. https://doi.org/10.3758/s13421-013-
0364-z.

Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to
computing and reporting Bayes factors. The Journal of Problem
Solving, 7(1). https://doi.org/10.7771/1932-6246.1167.

Katz, B., Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2018).
The effect of monetary compensation on cognitive training out-
comes. Learning and Motivation, 63, 77–90. https://doi.org/10.
1016/j.lmot.2017.12.002.

Kirsch, I. (2005). Placebo psychotherapy: synonym or oxymoron?
Journal of Clinical Psychology, 61(7), 791–803. https://doi.org/10.
1002/jclp.20126.

Klauer, K. J., & Phye, G. D. (2008). Inductive reasoning: a training
approach. Review of Educational Research, 78(1), 85–123. https://
doi.org/10.3102/0034654307313402.

Lee, C. H., Cook, S., Lee, J. S., & Han, B. (2016). Comparison of two
meta-analysis methods: inverse-variance-weighted average and
weighted sum of Z-scores. Genomics & Informatics, 14(4), 173–
180. https://doi.org/10.5808/GI.2016.14.4.173.

Li, D., Christ, S. E., & Cowan, N. (2014). Domain-general and domain-
specific functional networks in working memory. NeuroImage,
102(02), 646–656. https://doi.org/10.1016/j.neuroimage.2014.08.
028.

Looby, A., & Earleywine, M. (2011). Expectation to receive methylphe-
nidate enhances subjective arousal but not cognitive performance.
Experimental and Clinical Psychopharmacology, 19(6), 433–444.
https://doi.org/10.1037/a0025252.

Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training
effective? A meta-analytic review. Developmental Psychology,
49(2), 270–291. https://doi.org/10.1037/a0028228.

Melby-Lervåg,M., &Hulme, C. (2016). There is no convincing evidence
that workingmemory training is effective: a reply to Au et al. (2014)
and Karbach and Verhaeghen (2014). Psychonomic Bulletin &
Review, 23(1), 324–330. https://doi.org/10.3758/s13423-015-0862-
z.

Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory
training does not improve performance on measures of intelligence
or other measures of “far transfer” evidence from a meta-analytic
review. Perspectives on Psychological Science, 11(4), 512–534.

Moher, D. (2009). Preferred Reporting Items for Systematic Reviews and
Meta-Analyses: the PRISMA statement. Annals of Internal
Medicine, 151(4), 264. https://doi.org/10.7326/0003-4819-151-4-
200908180-00135.

Morey, D., Rouder, J. N., & Jamil, T. (2014). Bayes factor: computation
of Bayes factors for common designs (R package version 0.9.8).
Retrieved from http://CRAN.R-project.org/package=BayesFactor.
Accessed 1 Aug 2017.

J Cogn Enhanc (2020) 4:192–210 209

https://doi.org/10.1523/JNEUROSCI.3458-05.2005
https://doi.org/10.1523/JNEUROSCI.3458-05.2005
https://doi.org/10.1016/j.actpsy.2008.09.005
https://doi.org/10.1016/j.actpsy.2008.09.005
https://doi.org/10.1177/1745691613491271
https://doi.org/10.1177/1745691613491271
https://doi.org/10.1002/jrsm.1230
https://doi.org/10.1002/jrsm.1230
https://doi.org/10.3758/s13415-013-0244-9
https://doi.org/10.1037/a0035661
https://doi.org/10.1037/a0035661
https://doi.org/10.3758/PBR.17.2.193
https://doi.org/10.1007/978-3-319-55895-0_11
https://doi.org/10.1007/978-3-319-55895-0_11
https://doi.org/10.1126/science.1155466
https://doi.org/10.1126/science.1155466
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1073/pnas.1601243113
https://doi.org/10.1079/BJN2001398
https://doi.org/10.1079/BJN2001398
https://doi.org/10.1007/s41465-018-0115-y
https://doi.org/10.1007/s41465-018-0115-y
http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD003974.pub3/full
http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD003974.pub3/full
http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD003974.pub3/full
https://doi.org/10.1016/j.bandl.2016.12.006
https://doi.org/10.1037/xlm0000283
https://doi.org/10.1073/pnas.0801268105
https://doi.org/10.3758/s13421-013-0364-z
https://doi.org/10.3758/s13421-013-0364-z
https://doi.org/10.7771/1932-6246.1167
https://doi.org/10.1016/j.lmot.2017.12.002
https://doi.org/10.1016/j.lmot.2017.12.002
https://doi.org/10.1002/jclp.20126
https://doi.org/10.1002/jclp.20126
https://doi.org/10.3102/0034654307313402
https://doi.org/10.3102/0034654307313402
https://doi.org/10.5808/GI.2016.14.4.173
https://doi.org/10.1016/j.neuroimage.2014.08.028
https://doi.org/10.1016/j.neuroimage.2014.08.028
https://doi.org/10.1037/a0025252
https://doi.org/10.1037/a0028228
https://doi.org/10.3758/s13423-015-0862-z
https://doi.org/10.3758/s13423-015-0862-z
https://doi.org/10.7326/0003-4819-151-4-200908180-00135
https://doi.org/10.7326/0003-4819-151-4-200908180-00135
http://cran.r-project.org/package=BayesFactor


Morris, S. B. (2008). Estimating effect sizes from pretest-posttest-control
group designs. Organizational Research Methods, 11(2), 364–386.
https://doi.org/10.1177/1094428106291059.

Nichols, A. L., & Maner, J. K. (2008). The good-subject effect: investi-
gating participant demand characteristics. The Journal of general
psychology, 135(2), 151-166.

Oelhafen, S., Nikolaidis, A., Padovani, T., Blaser, D., Koenig, T., &
Perrig, W. J. (2013). Increased parietal activity after training of in-
terference control. Neuropsychologia, 51(13), 2781–2790. https://
doi.org/10.1016/j.neuropsychologia.2013.08.012.

Opitz, B., Schneiders, J. A., Krick, C. M., & Mecklinger, A. (2014).
Selective transfer of visual working memory training on Chinese
character learning. Neuropsychologia, 53, 1–11. https://doi.org/10.
1016/j.neuropsychologia.2013.10.017.

Pahor, A., Jaeggi, S.M., & Seitz, A. R. (2018). Brain training. In ELS (pp.
1–9). https://doi.org/10.1002/9780470015902.a0028037.

Price, D. D., Finniss, D. G., & Benedetti, F. (2008). A comprehensive
review of the placebo effect: recent advances and current thought.
Annual Review of Psychology, 59(1), 565–590. https://doi.org/10.
1146/annurev.psych.59.113006.095941.

R Core Team. (2013). R: a language and environment for statistical com-
puting. Retrieved from http://www.R-project.org/

Rass, O., Forsyth, J. K., Bolbecker, A. R., Hetrick, W. P., Breier, A.,
Lysaker, P. H., & O’Donnell, B. F. (2012). Computer-assisted cog-
nitive remediation for schizophrenia: a randomized single-blind pi-
lot study. Schizophrenia Research, 139(1–3), 92–98. https://doi.org/
10.1016/j.schres.2012.05.016.

Rebok, G. (2015). Selecting control groups: to what should we compare
behavioral interventions? In L. N. Gitlin & S. J. Czaja (Eds.),
Behavioral intervention research: designing, evaluating, and
implementing (pp. 139–160). New York, NY: Springer Publishing
Company.

Riley, R. D., Higgins, J. P. T., & Deeks, J. J. (2011). Interpretation of
random effects meta-analyses. BMJ, 342. https://doi.org/10.1136/
bmj.d549.

Rohatgi, A. (2017). WebPlotDigitizer Version 3.12 (Version 3.12).
Retrieved from http://arohatgi.info/WebPlotDigitizer. Accessed 1
Dec 2016.

Rosenthal, R. (1991). Meta-analytic procedures for social research (1st
ed.). Newbury Park: SAGE Publications, Inc..

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G.
(2009). Bayesian t tests for accepting and rejecting the null hypoth-
esis. Psychonomic Bulletin & Review, 16(2), 225–237. https://doi.
org/10.3758/PBR.16.2.225.

Salmi, J., Nyberg, L., & Laine, M. (2018). Working memory training
mostly engages general-purpose large-scale networks for learning.
Neuroscience and Biobehavioral Reviews, 93, 108–122. https://doi.
org/10.1016/j.neubiorev.2018.03.019.

Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of
cognitive training enhance broad cognitive abilities in adulthood:
findings from the COGITO Study. Frontiers in Aging
Neuroscience, 2. https://doi.org/10.3389/fnagi.2010.00027.

Schneiders, J. A., Opitz, B., Krick, C. M., & Mecklinger, A. (2011).
Separating intra-modal and across-modal training effects in visual
working memory: an fMRI investigation. Cerebral Cortex, 21(11),
2555–2564. https://doi.org/10.1093/cercor/bhr037.

Schwarz, K., & Büchel, C. (2015). Cognition and the placebo effect—
dissociating subjective perception and actual performance. PLoS
One, 10(7), 1–12. https://doi.org/10.1371/journal.pone.0130492.

Schweizer, K. (2007). Investigating the relationship of working memory
tasks and fluid intelligence tests by means of the fixed-links model
in considering the impurity problem. Intelligence, 35(6), 591–604.
https://doi.org/10.1016/j.intell.2006.11.004.

Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory
training effective? Psychological Bulletin, 138(4), 628–654. https://
doi.org/10.1037/a0027473.

Simons, D. J., Boot,W. R., Charness, N., Gathercole, S. E., Chabris, C. F.,
Hambrick, D. Z., & Stine-Morrow, E. A. L. (2016). Do “brain-train-
ing” programs work? Psychological Science in the Public Interest,
17(3), 103–186. https://doi.org/10.1177/1529100616661983.

Smith, S. P., Stibric, M., & Smithson, D. (2013). Exploring the effective-
ness of commercial and custom-built games for cognitive training.
Computers in Human Behavior, 29(6), 2388–2393. https://doi.org/
10.1016/j.chb.2013.05.014.

Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017).
Working memory training revisited: a multi-level meta-analysis of
n-back training studies. Psychonomic Bulletin & Review, 1–20.
https://doi.org/10.3758/s13423-016-1217-0.

Stephenson, C. L., &Halpern, D. F. (2013). Improved matrix reasoning is
limited to training on tasks with a visuospatial component.
Intelligence, 41(5), 341–357. https://doi.org/10.1016/j.intell.2013.
05.006.

Thompson, T.W.,Waskom,M. L., Garel, K.-L. A., Cardenas-Iniguez, C.,
Reynolds, G. O., Winter, R., et al. (2013). Failure of working mem-
ory training to enhance cognition or intelligence. PLoS One, 8(5),
e63614. https://doi.org/10.1371/journal.pone.0063614.

Thorell, L. B., Lindqvist, S., Bergman Nutley, S., Bohlin, G., &
Klingberg, T. (2009). Training and transfer effects of executive func-
tions in preschool children.Developmental Science, 12(1), 106–113.
https://doi.org/10.1111/j.1467-7687.2008.00745.x.

Tsai, N., Buschkuehl, M., Kamarsu, S., Shah, P., Jonides, J., & Jaeggi, S.
M. (2018). (Un)great expectations: the role of placebo effects in
cognitive training. Journal of Applied Research in Memory and
Cognition. https://doi.org/10.1016/j.jarmac.2018.06.001.

Vartanian, O., Coady, L., & Blackler, K. (2016). 3Dmultiple object track-
ing boosts working memory span: implications for cognitive train-
ing in military populations. Military Psychology, 28(5), 353–360.
https://doi.org/10.1037/mil0000125.

Wager, T. D., & Atlas, L. Y. (2015). The neuroscience of placebo effects:
connecting context, learning and health. Nature Reviews.
Neuroscience, 16(7), 403–418. https://doi.org/10.1038/nrn3976.

Weicker, J., Villringer, A., & Thöne-Otto, A. (2016). Can impaired work-
ing memory functioning be improved by training? A meta-analysis
with a special focus on brain injured patients. Neuropsychology,
30(2), 190–212. https://doi.org/10.1037/neu0000227.

Willis, S. L. (2001). Methodological issues in behavioral intervention
research with the elderly. In Handbook of the psychology of aging
(5th ed., pp. 78–108). San Diego: Academic Press.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

210 J Cogn Enhanc (2020) 4:192–210

https://doi.org/10.1177/1094428106291059
https://doi.org/10.1016/j.neuropsychologia.2013.08.012
https://doi.org/10.1016/j.neuropsychologia.2013.08.012
https://doi.org/10.1016/j.neuropsychologia.2013.10.017
https://doi.org/10.1016/j.neuropsychologia.2013.10.017
https://doi.org/10.1002/9780470015902.a0028037
https://doi.org/10.1146/annurev.psych.59.113006.095941
https://doi.org/10.1146/annurev.psych.59.113006.095941
http://www.r-project.org/
https://doi.org/10.1016/j.schres.2012.05.016
https://doi.org/10.1016/j.schres.2012.05.016
https://doi.org/10.1136/bmj.d549
https://doi.org/10.1136/bmj.d549
http://arohatgi.info/WebPlotDigitizer
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.1016/j.neubiorev.2018.03.019
https://doi.org/10.1016/j.neubiorev.2018.03.019
https://doi.org/10.3389/fnagi.2010.00027
https://doi.org/10.1093/cercor/bhr037
https://doi.org/10.1371/journal.pone.0130492
https://doi.org/10.1016/j.intell.2006.11.004
https://doi.org/10.1037/a0027473
https://doi.org/10.1037/a0027473
https://doi.org/10.1177/1529100616661983
https://doi.org/10.1016/j.chb.2013.05.014
https://doi.org/10.1016/j.chb.2013.05.014
https://doi.org/10.3758/s13423-016-1217-0
https://doi.org/10.1016/j.intell.2013.05.006
https://doi.org/10.1016/j.intell.2013.05.006
https://doi.org/10.1371/journal.pone.0063614
https://doi.org/10.1111/j.1467-7687.2008.00745.x
https://doi.org/10.1016/j.jarmac.2018.06.001
https://doi.org/10.1037/mil0000125
https://doi.org/10.1038/nrn3976
https://doi.org/10.1037/neu0000227

	Quantifying...
	Abstract
	Methods
	Design
	Study Selection and Inclusion Criteria
	Coding
	Statistical Analyses
	Effect Size and Bayes Factor Calculations
	Meta-meta-analysis
	Double-Controlled Meta-analysis
	Risk of Bias and Heterogeneity


	Results
	Meta-meta-analysis
	Double-Controlled Meta-analysis
	Publication Bias
	Heterogeneity
	Moderator Analyses

	Discussion
	Do Some Studies Show More Control Group Differences than Others?
	Why Is There No Difference Between Passive and Active Control Groups?
	Interpretation 1: Current Active Control Groups Are Insufficiently Designed To Elicit Placebo Effects
	Interpretation 2: Placebo and Other Non-specific Artifacts Do Not Pervasively Occur with Objective Cognitive Measures
	How To Move Forward

	Limitations
	Conclusions
	References


