
ORIGINAL ARTICLE

Who Benefits the Most? Individual Differences in the Transfer
of Executive Control Training Across the Lifespan

Julia Karbach1,2
& Tanja Könen1,2

& Marion Spengler1,3

Received: 10 May 2017 /Accepted: 8 November 2017 /Published online: 20 November 2017
# Springer International Publishing AG, part of Springer Nature 2017

Abstract Training studies have shown that cognitive plastic-
ity, that is the potential modifiability of a person’s cognitive
abilities, is considerable across the lifespan and extends to
very old age. Cognitive training can not only result in signif-
icant performance improvements on the trained tasks, but also
benefit performance on new untrained tasks (transfer).
However, even though interventions can be very successful
at the group level, individual differences in training gains tend
to be large. Why do some individuals benefit more than
others? In the present study (N = 168), we investigated transfer
of executive control training in children (N = 56, 8–10 years of
age), younger adults (N = 56, 18–28 years of age), and older
adults (N = 56, 62–77 years of age) in a pretest-training-
posttest design. Results of latent change modeling showed a
training-induced reduction of age differences and individual
differences across training and transfer tasks in all age groups.
Moreover, individuals with lower cognitive abilities at pretest
showed larger training and transfer benefits after the training.
This effect was significantly higher in the training group com-
pared to an active control group, indicating that it was based
on the executive control training and not on non-focal effects
(e.g., regression to the mean). These findings reveal a pattern
of compensation effects with the largest training-induced im-
provements in participants who needed them the most.

Keywords Cognitive plasticity . Executive control training .

Lifespan cognitive development . Individual differences .

Compensation effect

Introduction

In everyday life, we frequently have to select one specific
action out of many possible action alternatives and to flexibly
adapt to continuous changes in our environment. In these sit-
uations, interference needs to be controlled and goal-directed
actions have to be selected appropriately, maintained, and co-
ordinated. The higher order cognitive processes responsible
for controlling these actions are referred to as executive con-
trol functions (e.g., Miyake et al. 2000).

Recent evidence shows that executive control can be im-
proved by training across a wide range of ages (for reviews,
see Hertzog et al. 2008; Karbach and Kray 2016; Lustig et al.
2009; Noack et al. 2009; Strobach et al. 2014: Titz and
Karbach 2014; von Bastian and Oberauer 2014).
Importantly, these training-related benefits usually benefit per-
formance on untrained similar tasks assessing the same ability
as the training tasks (near transfer) and oftentimes also to
performance on tasks measuring untrained related abilities
(far transfer), even though these far transfer have not been
reported consistently across the literature (for meta-analyses
see Au et al. 2015; Karbach and Verhaeghen 2014;
Schwaighofer et al. 2015). All in all, previous research shows
that cognitive plasticity (i.e., the potential modifiability of a
person’s cognitive abilities) seems to be present across the
lifespan, even up to very old age (Buschkuehl et al. 2008;
Karbach et al. 2010; Li et al. 2008; Schmiedek et al. 2010;
Zinke et al. 2012). Still, even though many training regimes
have yielded significant improvements at the group level, we
also know that individual differences in the degree of
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improvement are often relatively large (Jaeggi et al. 2014;
Karbach et al. 2015; Kliegel and Bürki 2012; Zinke et al. 2014).

Sowhy is it that some individuals benefit more than others?
This question is closely related to the long-standing debate on
aptitude by treatment interactions (ATI), i.e., the assumption
that any intervention has to be closely tailored to the abilities
of a learner in order to achieve the best training outcome
(Cronbach 1957; Ferguson 1956). Specifically, ATI assumes
that optimal learning results when the instructions and the task
demands are exactly matched to the aptitudes of the learner
(Snow 1989). As a consequence, learning outcomes can be
predicted from combinations of aptitudes and treatments.
However, Cronbach and Snow (1977) proposed that ATI com-
binations are complex and different ATI effects need to be
sufficiently understood to be the basis for instructional prac-
tice and training. Thus, understanding why some individuals
benefit more than others is of high relevance both for the
understanding of the cognitive and neural underpinnings of
cognitive plasticity and for the adaptation of training interven-
tions to populations with specific needs, for instance, individ-
uals in older age and in clinical or educational settings.

In the literature, two different accounts have been proposed
to explain individual differences in cognitive plasticity
(Lövdén et al. 2012): The first one has been referred to as
the magnification account and assumes that individuals that
already perform very well before the training would show
larger training-induced benefits because they have more effi-
cient cognitive resources to acquire and implement new strat-
egies. Evidence for this view comes often—but not exclusive-
ly—frommemory strategy training studies applyingmnemon-
ic techniques, such as the method of loci (e.g., Baltes and
Kliegl 1992; Brehmer et al. 2007; Lindenberger et al. 1992;
Verhaeghen and Marcoen 1996). The second and opposing
account, referred to as the compensation account, assumes that
high-performing individuals would show less benefit because
they are already functioning at the optimal level and have less
room for improvement. Evidence for this view comes from a
number of training studies from the domain of executive con-
trol (e.g., Bherer et al. 2008; Cepeda et al. 2001; Karbach and
Kray 2009; Kramer et al. 1995; Kray et al. 2008; Kray and
Lindenberger 2000; Zinke et al. 2014; but see Brehmer et al.
2012). However, most of these findings are still based on
comparisons at the group level, and a systematic analysis of
individual differences in training-related performance gains is
still scarce. This is particularly critical in childhood and in
aging populations, because individuals in these groups are
likely to differ more from each other than young adults and
merely analyzing group means does little justice to individual
strengths and weaknesses. Thus, instead of investigating
whether a paradigm is either generally successful or unsuc-
cessful, it also makes sense to test for whom the training ac-
tually works, preferably by assessing individual differences
in training-induced changes on the level of latent factors

instead of single manifest scores (Schmiedek et al. 2010).
Understanding the nature and origin of individual differences
in training-related gains is an important step towards the de-
velopment of tailored adaptive interventions designed to meet
the needs of specific individuals or aimed at improving spe-
cific cognitive processes.

So far, only very few studies have analyzed training-
induced cognitive plasticity from an individual differences
perspective. A study by Lövdén et al. (2012) examined indi-
vidual differences in training gains after intensive episodic
memory strategy training across the lifespan by means of
structural equation modeling. Whereas initial mnemonic in-
structions reduced individual differences in memory perfor-
mance, further strategy practice magnified individual differ-
ences. The authors suggested that strategy instruction may
have compensated inefficient processing strategies in low-
performing individuals while intensive training magnified in-
dividual differences by uncovering individual differences in
memory plasticity.

When it comes to executive control training, Bürki et al.
(2014) examined individual learning curves to test for intra-
individual change in training as well as inter-individual differ-
ences in intra-individual change after 10 days of working
memory training in younger and older adults. Latent growth
curve modeling (LGCM) showed a magnification of age dif-
ferences by the end of the training. Initial training performance
and training improvement were mediated differently by age
and by individual differences in cognitive performance. The
authors concluded that Bthe individual analysis of plasticity
should begin at the training performance, and not only focus
on the difference in performance between pretest and posttest.
With the sole analysis of pretest and posttest performances,
important information is neglected^ (Bürki et al. 2014, p. 832).

In two studies on working memory training in old and old-
old adults, Zinke and colleagues found a negative correlation
between training-related gains and participants’ baseline
working memory performances (i.e., individuals scoring lower
on the baseline working memory test gained more on the trained
tasks; compensation effect; Zinke et al. 2012; Zinke et al. 2014).

Finally, a recent study analyzed individual differences and
the effects of working memory training in older adults
(Borella et al. 2017). Using linear generalized mixed effects
modeling, the authors tested age, formal education, general
cognitive ability, and working memory baseline performance
as predictors of the short- and long-term training and transfer
effects. They found a differential pattern of results depending
on the type of transfer tasks: Participants that were younger
and scored higher on the crystallized intelligence measure
benefitted more on some measures of working memory, inhi-
bition, and reasoning (magnification effect). In contrast, par-
ticipants who were older and scored lower on the crystallized
intelligence or working memory measure benefitted more on
short-term memory tasks and other working memory tasks
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(compensation effect). The authors concluded that compensa-
tion and magnification effects are not mutually exclusive and
may both contribute to explain the effects of training.

Still, developmental studies on individual differences in
training-related performance gains are lacking. Given that ex-
ecutive functions are not fully matured until late adolescence
and subject to marked age-related decline in older individuals
(for a review, see Wiebe and Karbach 2017), it is particularly
important to be able to provide training interventions that are
designed to compensate developmental and age-related defi-
cits in executive control.

Therefore, the aim of the present study was to systemati-
cally test the magnification account against the compensation
account after executive-control training in different age
groups. We had children, younger adults, and older adults
perform a task-switching training intervention. Adopting this
lifespan approach allowed comparing young adults with fully
developed executive control functions to groups with devel-
oping and declining control functions. We assessed individual
differences in the performance on the switching task at the
beginning and the end of training (training gain) as well as
the switching task applied at pretest and posttest (transfer
gain). In order to investigate the effects of baseline cognitive
performance on training and transfer gains, we also analyzed
the correlation between the performance on a cognitive test
battery at pretest and these gains.

Based on previous evidence from task-switching and dual-
task studies comparing performance at the group level (e.g.,
Bherer et al. 2008; Cepeda et al. 2001; Karbach and Kray
2009; Kramer et al. 1995; Kray et al. 2008; Kray and
Lindenberger 2000), we expected to find a pattern of results
more consistent with the compensation account than the mag-
nification account, yielding a specific set of predictions: (1)
Age differences as well as individual differences in task-
switching abilities should be reduced after the training (be-
cause low-performing individuals benefit more that high per-
formers), and (2) baseline cognitive ability (i.e., performance
at pretest) should be correlated with training (i.e., low-
performing individuals should show larger training-induced
performance gains). In addition, we tested whether the pattern
was comparable (3) across training and transfer tasks. In order
to show that performance improvements from pretest to post-
test were not the result of non-focal effects (such as regression
to the mean or retest effects), we compared the performance of
the training group to an active control condition.

In contrast to many previous studies, the present one did
not assess effects of age and treatment at the group level but
applied statistical techniques (structural equation modeling),
allowing the assessment of individual differences on the latent
level, including individual differences in performance changes
and correlations between baseline cognitive ability and train-
ing and transfer benefits (cf. Lövdén et al. 2012; Schmiedek
et al. 2010).

Method

Participants

We investigated a total of 168 participants. The training group
included 126 individuals, 42 children (mean age = 9.2 years,
SD = 0.6; age range 8–10; 45% female), 42 young adults
(mean age = 22.0 years, SD = 2.3; age range 18–28; 45% fe-
male), and 42 older adults (mean age = 68.7, SD = 3.2; age
range 62–77; 60% female). The active control group consisted
of 42 participants, 14 children (mean age = 9.3 years, SD =
0.5; age range 8–10; 43% female), 14 young adults (mean
age = 23.4 years, SD = 2.3; age range 19–26; 50% female),
and 14 older adults (mean age = 69.7, SD = 2.5, age range
66–76; 43% female). They were recruited from the subject
pool at Saarland University, tested individually, and paid 60
€ for participating in the eight sessions of the study. Note that
part of the sample was reanalyzed from a previous study (75%
of the sample; corresponding to groups 1–3 fromKarbach and
Kray 2009). This previous publication, however, was restrict-
ed to the comparison of mean performances at the group level.
It showed gains in the training task and transfer to an untrained
switching task in all age groups (i.e., larger gains in the train-
ing group than in the control group).

Design and Procedure

We applied a pretest-training-posttest design to assess training
and transfer gains. Transfer was defined as performance im-
provement at posttest relative to baseline performance at pre-
test (compared to an active control condition). The two pretest
sessions included baseline measurements of task-switching
and single-task performance (including tasks A and B de-
scribed below) as well as a battery of cognitive tasks. In the
training group, they were followed by four task-switching
training sessions (including tasks C and D described below)
and in the active control condition by four sessions including
training on the single tasks C and D (see below). Finally, all
participants performed two posttest sessions that were identi-
cal to the pretest sessions.

Pretest and Posttest Assessments

At pretest and posttest, we applied an untrained switching task
(transfer task) as well as a battery of tasks assessing baseline
cognitive ability at pretest (working memory, reasoning, per-
ceptual speed, and semantic knowledge).

Task Switching We used a modified version of the task-
switching paradigm including performance in single-task
(task A or B only) and mixed-task blocks (switching between
both tasks) (see Karbach and Kray 2009). In mixed-task
blocks, subjects were instructed to switch tasks on every

396 J Cogn Enhanc (2017) 1:394–405



second trial. Task A required participants to decide whether a
picture showed a fruit or a vegetable (Bfood^ task) and task B
whether a picture was small or large (Bsize^ task). Participants
completed 8 single-task and 12 mixed-task blocks (each one
including 17 trials).

Cognitive Test Battery at Pretest To assess baseline cogni-
tive performance at pretest, participants performed a test bat-
tery including measures for the following four abilities. For
each one of the tasks, the test score referred to the mean num-
ber of correctly solved items across tasks.

Working Memory We applied the symmetry span task and
the navigation span task adapted from Kane and colleagues
(Kane et al. 2004). In the symmetry span task, participants
recalled sequences of locations marked by red squares in a
4 × 4 matrix against a background symmetry-judgment task.
In the navigation span task, participants recalled the paths of
moving balls across the screen against a background task of
counting the corners of polygons. The test score was the sum
of correctly recalled items averaged across both tasks (inter-
task correlation r = .63, p < .01).

Reasoning Figural reasoning and letter series served as mea-
sures for reasoning ability (Lindenberger et al. 1993). In the
figural reasoning task, items followed the format, BA is to B as
C is to ?.^ In the letter series task, subjects saw items
consisting of five letters followed by a questions mark (e.g.,
a c e g i ?) and named the letter that would logically fill the
position of the question mark. The test score was the sum of
correctly solved items averaged across both tasks (inter-task
correlation r = .45, p < .01).

Perceptual Speed Participants performed the digit-symbol
and letter-symbol substitution test (Lindenberger et al. 1993;
Wechsler 1982). The test sheet displayed nine digit/letter-
symbol mappings. Below, 100 digits/letters without the corre-
sponding symbols were displayed. Participants were
instructed to fill in as many symbols as possible within 90 s.
The test score was the sum of correctly solved items averaged
across both tasks (inter-task correlation r = .92, p < .01).

Semantic Knowledge Participants performed the spot-a-word
test (Lehrl 1977). They were successively presented items
containing one word and four pronounceable pseudowords
and instructed to identify the one word. The test score was
the sum of correctly solved items. We used this as a proxy for
semantic knowledge (as it reflects a single bit central part of
the construct).

Task-Switching Training (Training Group)

Across the four training sessions, participants practiced a
switching task that was structurally similar to the one at pretest
and posttest. In task C, subjects had to decide whether a pic-
ture showed planes or cars and in task D whether one or two
planes/cars were presented. In order to maximize demands on
executive control, participants only performed mixed-task
blocks during training (with a total of 1768 training trials).

Single-Task Training (Active Control Group)

Participants in the active control condition performed the
same tasks C and D as the training group but only in single-
task blocks. Thus, demands on executive control were mini-
mized while the rest of the protocol was identical to the train-
ing condition.

Statistical Analyses

Dependent Variables For the switching tasks, we calculated
two types of switch costs measuring two aspects of executive
control: General switch costs were defined as the difference in
mean performance between single-task and mixed-task blocks
(i.e., measuring task-set selection and maintenance), and spe-
cific switch costs were defined as the difference between stay
and switch trials within mixed-task blocks (i.e., measuring
cognitive flexibility on trial-to-trial transitions).

Measurement Invariance Over Time All our models were
estimated assuming scalar measurement invariance over time.
Thus, the latent variables are constrained to have exactly the
same unstandardized factor loadings and unstandardized in-
tercepts across time. We tested this assumption by comparing
different levels of invariance (configural, metric, scalar, and
strict) with χ2 difference tests (e.g., Cheung and Rensvold
2002). If scalar invariance constraints are satisfied, latent var-
iable scores at each time of measurement are on the same
metric and stronger conclusions are warranted (cf. Widaman
et al. 2010).

Modeling Training and Transfer Gains Transfer effects to
general switch costs in the training group can be compared
with the active control group, because both groups completed
the same tasks at pretest and posttest. However, training ef-
fects in specific switch costs in the training group cannot be
compared with the active control group, because the active
control group completed single tasks as control condition.
Thus, analyses of training effects in specific switch costs were
modeled as single-group models (the training group), whereas
analyses of transfer effects to general switch costs were
modeled as multi-group models (the training vs. active control
group).
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In order to test for training-induced changes in individual
differences, we tested in latent state models whether the vari-
ance in specific switch costs decreased during training (i.e.,
from the first training session to the last training session; train-
ing gain) and whether the variance in general switch costs
significantly decreased after training (i.e., from pretest to post-
test; transfer gain). Therefore, we used χ2 difference testing
and compared a model with freely estimated variances to a
nested model in which the variances at the two measurement
occasions were constrained to be equal. The latent state model
included two latent unobserved variables representing partic-
ipants’ performances on the switching task before and after
training, respectively (see Fig. 1a). Importantly, this model
allows estimating the means of pretraining and posttraining
performance, individual differences in pretraining and
posttraining performance, as well as the correlation between
them. Pre- and posttraining were represented by a factor with
odd and even numbered task blocks as indicators in the
switching tasks. We fitted this model as single-group model
to the training task data in the training group (with specific
switch costs in the first and the last session as indicators for the
pretraining and posttraining performances). For the transfer
task, we fitted the model as multi-group model comparing
the training and active control group (with general switch
costs at pretest and posttest as indicators for the pretraining
and posttraining performances). In addition, we included cog-
nitive composites of working memory, reasoning, perceptual
speed, and semantic knowledge as covariates (which were
allowed to freely covary among themselves and with both
pretraining and posttraining performance). Considering the
large age range in our sample, we included age as linear and
quadratic predictors in both models (see Fig. 1a, b) because
there is ample evidence for both types of age effects on general
and specific switch costs (e.g., Cepeda et al. 2001; Kray et al.
2008; Reimers and Maylor 2005; see Karbach and Unger
2014 and Verhaeghen and Cerella 2002, for a reviews).
Thus, the correlations of the other variables (working memory,
perceptual speed, reasoning, and semantic knowledge) with
pretraining switch costs and gain are controlled for age.

Our main analyses were then based on latent change
models representing the changes between either the first and
last training session (specific switch costs) or baseline and
posttest performance (general switch costs). Latent change
models are just reparametrizations of the respective latent state
models (Steyer et al. 1997), but they include the changes be-
tween two measurement occasions explicitly as variables.
Latent change variables (e.g., Fig. 1b) include individual dif-
ferences in these changes and are less affected by measure-
ment error than manifest difference scores. We tested their
correlations with relevant predictors to understand which in-
dividuals benefited the most during training. For the transfer
task (general switch costs), we also tested whether these cor-
relations were significantly higher in the training compared to

the active control group. This would indicate that the effects
were based on the training and not on non-focal effects (e.g.,
regression to the mean).

All models were calculated with Mplus 7.4, using full infor-
mation maximum likelihood (FIML) estimations. Thus, all cases
were included without loss of information. For model identifica-
tion, the first factor loading of each latent variable was fixed to
one. Model fit was evaluated with the χ2 test, the Comparative
Fit Index (CFI), the Root Mean Square Error of Approximation
(RMSEA), and the Standardized Root Mean Square Residual
(SRMR) in reference to Beauducel and Wittmann (2005). We
reported the RMSEA, but this index has to be interpreted with
caution in our case as it is known to overreject properly specified
models with small degrees of freedom (Kenny et al. 2015).

Results

Descriptive statistics can be found in Table 1. Means and
standard deviations of pretest performance are reported for
the three different age groups separately for the training and
control group.

Between-Group Differences at Baseline

We tested for between-group differences (control, training) in
baseline cognitive abilities (general and specific switch costs,
working memory, perceptual speed, semantic knowledge, rea-
soning) by means of one-way analyses of variance (ANOVA)
as a function of age. None of these comparisons was signifi-
cant (all p values > .17; see Table 1), indicating that training
and control groups were comparable at baseline in each of the
age groups.

Measurement Invariance Over Time

We tested measurement invariance by comparing different
levels of invariance (configural, metric, scalar, and strict, see
for example Cheung and Rensvold 2002) with χ2 difference
tests. Table 2 includes the fit indices for all levels of invariance
over time. Overall, all models fitted the data well (all χ2 with
ps > .29), with the exception of general switch costs with strict
measurement invariance (χ2 with p < .01). This was further
the only case in which the χ2 difference test was significant.
Up to scalar measurement invariance, however, there were no
significant drops in χ2 or the descriptive fit indices (for both
specific and general switch costs). Taken together, we estimat-
ed latent change models with scalar measurement invariance
across time demonstrating perfect model fit (all χ2 with p-
s > .29; Table 2). Scalar measurement invariance allows for
the comparison of means across time (e.g., Steenkamp and
Baumgartner 1998) and is thus essential in latent change
modeling.
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Training-Related Reductions of Variance

At first we tested in a confirmatory factor model (latent state
model) with two factors (first and last training session), two
indicators each (switch costs in odd/even blocks), and scalar
measurement invariance over time whether the variance in latent
specific switch costs decreased over time in the training group.
Therefore, we compared a model with freely estimated variances
to a nested model in which the variances at two measurement
occasions (i.e., first and last training session) were constrained to
be equal. The model with freely estimated variances fitted the
data well [χ2 (df = 3) = 0.58, p = .90; CFI = 1.00; RMSEA= 0
(90% CI = 0.00–0.06); and SRMR=0.01] but constraining the
variances to be equal resulted in a significant drop of model fit
[Δχ2 (df = 1) = 24.24; p< .01], indicating that the variance was
significantly reduced from the first to the last session (variance
first session = 8192.59, variance last session = 3453.00).

Then, we tested in another confirmatory multi-group factor
model with two factors (pre- and posttest) per group (training
and control), two indicators each (switch costs in odd/even
blocks), and scalar measurement invariance over time whether
the variance in latent general switch costs decreased over time
in the training or active control group. Again, the model with
freely estimated variances fitted the data well [χ2 (df = 7) =
11.52, p = .12; CFI = 0.99; RMSEA = 0.09 (90% CI = 0.00–
0.18); and SRMR= 0.06] but constraining the variances in the

training group to be equal resulted in a significant drop of
model fit [Δχ2 (df = 1) = 24.06; p < .01], indicating that the
variance was significantly reduced from pre- to posttest (variance
pretest = 28,503.73, variance posttest = 10,960.90). Constraining
the variances in the control group to be equal, however, did not
change the model fit [Δχ2 (df = 1) = 0.97; p = .33], indicating
that the variance was comparable at pre- and posttest.

Latent Change Modeling

Via reparametrization (Steyer et al. 1997), we transferred the
state models into latent change models. Latent state and
change models are equivalent models with exactly the same
model fit (see above for both models). Latent means of the
state and change models indicated that both specific switch
costs [Mpre = 126.12 (SE = 8.67), Mpost = 54.94 (SE = 6.27),
MDifference = − 71.18 (SE = 6.75), z = − 10.55, p < .01] as well
as general switch costs [Mpre = 280.17 (SE = 17.63), Mpost =
92.26 (SE = 12.65), MDifference = − 187.91 (SE = 13.33), z = −
14.10, p < .01] were on average reduced over time in the train-
ing group, indicating that the participants on average benefited
from training. In the control group, general switch costs also
decreased over time [Mpre = 311.16 (SE = 37.23), Mpost =
258.52 (SE = 12.65), MDifference = − 52.65 (SE = 22.00), z =
− 2.39, p = .02], but significantly less compared to the training
group (cf. Karbach and Kray 2009).

a b

Fig. 1 Illustration of the models (a latent state; b latent change) to
estimate correlations between baseline cognitive ability and training/
transfer gains. The models were estimated with scalar measurement
invariance over time. Observed variables are represented by squares,
latent variables by circles, regression weights by one-headed arrows,
and variances and correlations by two-headed arrows. The triangle
indicates means. Please note that age linear and age quadratic are
predictors, and thus, the correlations of working memory, perceptual
speed, reasoning, and semantic knowledge with pretraining and gain are

controlled for age. C1/C2 = switch costs in odd/even numbered blocks,
pretraining = performance in the first training session/at pretest,
posttraining = performance in the last raining session/at posttest, WM =
working memory, PS = perceptual speed, R = reasoning, SK = semantic
knowledge, Gain = training/transfer gain (i.e., performance
improvements in the last training session/at posttest relative to the first
training session/pretest). Parts of the figure are displayed in color in order
to support the readability
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The Role of the Participants’ Age and Baseline
Performance

Further, we correlated the latent change variables of specific
and general switch costs (one model each for specific and
general switch costs) to baseline cognitive performance and
age to understand which individuals benefited the most during
training. Training effects in specific switch costs were ana-
lyzed in a single-group model (the training group), whereas
transfer effects to general switch costs were analyzed in a
multi-group model (the training vs. active control group).
Both models are conceptually depicted in Fig. 1 and fitted
the data well [specific switch costs: χ2 (df = 15) = 15.82,
p = .39; CFI = 1.00; RMSEA = .02 (90% CI = 0.00–0.08);
and SRMR = 0.03] or acceptable [general switch costs: χ2

(df = 31) = 54.08, p < .01; CFI = 0.98; RMSEA = 0.09 (90%
CI = 0.05–0.14); and SRMR = 0.05].

Considering the large age range in our sample, we included
age as linear and quadratic predictors in both models (see
Fig. 1a, b). Thus, the correlations of the other variables (work-
ing memory, perceptual speed, reasoning, and semantic
knowledge) with pretraining switch costs and gain are con-
trolled for age. In the training group, age predicted both latent
differences in specific switch costs (blinear = − 9.54; zlinear = −
2.74, p < .01; bquadratic = 4.78, zquadratic = 2.88, p < .01; pseudo-

R2 = 12%) and general switch costs (blinear = − 26.74; zlinear =
− 4.09, p < .01; bquadratic = 14.50, zquadratic = 4.72, p < .01;
pseudo-R2 = 42%) in a way that children and older adults
benefited more than young adults (see Fig. 2). Age further
predicted baseline specific switch costs (blinear = 22.99; z-
linear = 5.67, p < .01; bquadratic = − 12.24, zquadratic = − 6.27,
p < .01; pseudo-R2 = 29%) as well as baseline general switch
costs (blinear = 29.11; zlinear = 3.62, p < .01; bquadratic = − 22.82,
zquadratic = − 5.94, p < .01; pseudo-R2 = 31%) in a way that
children and older adults demonstrated lower baseline perfor-
mance than young adults. In the control group, age was unre-
lated to the latent change in general switch costs (ps > .19) but
the quadratic age-term was related to baseline general switch
costs (blinear = 30.57; zlinear = 1.68, p = .09; bquadratic = − 20.17,
zquadratic = − 2.46, p = .01; pseudo-R2 = 16%) in a way that
children and older adults demonstrated lower baseline perfor-
mance than young adults.

Correlations Between Baseline Cognitive Ability
and Training/Transfer Gains

We assessed the correlations among pretest performance,
gain, and cognitive covariates (see Tables 3 and 4).
Tables 3 and 4 include correlations of working memory,
perceptual speed, reasoning, and semantic knowledge at

Table 1 Descriptive statistics for cognitive baseline performance (pretest) as a function of age group (children, younger adults, older adults) and
experimental group (training group, active control group); significance (p value) for tests of between-group differences (training, control)

Training group (N = 126) Active control group (N = 42) Test for between-
group differences

M SD M SD p

Children General switch costs 388.59 159.62 362.51 227.39 .64

Specific switch costs 343.52 145.26 380.86 175.43 .43

Working memory 1.26 0.87 1.50 0.89 .38

Perceptual speed 34.59 7.87 35.86 8.57 .61

Reasoning 15.06 2.16 15.19 2.77 .85

Semantic knowledge 10.57 3.49 10.14 3.23 .69

Young adults General switch costs 166.89 117.18 170.23 184.06 .94

Specific switch costs 207.03 137.35 217.20 195.21 .83

Working memory 3.57 1.58 3.54 1.12 .94

Perceptual speed 68.19 10.29 69.07 8.81 .78

Reasoning 18.52 1.29 18.90 1.45 .36

Semantic knowledge 23.17 3.24 23.79 4.30 .57

Older adults General switch costs 372.11 187.96 344.92 243.49 .67

Specific switch costs 337.44 159.98 343.98 243.80 .91

Working memory 1.62 1.33 1.89 1.39 .51

Perceptual speed 52.65 10.73 52.29 12.27 .92

Reasoning 15.23 2.43 16.24 2.11 .17

Semantic knowledge 27.50 3.37 27.86 3.98 .74

Nchildren = 56; NAdults = 56; NOld = 56

M mean (number of correctly solved items/milliseconds), SD standard deviation
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baseline with latent pretraining performance and latent
gain after controlling for a linear and quadratic age pre-
dictor (see Fig. 1).

In the training group, we found strong positive correlations
between pretest performance and gain, indicating that partic-
ipants with lower pretest performance gained more from the
training than those with higher pretest performance. Out in
other words, higher pretraining switch costs were related to
higher training success (i.e., reduction in switch costs; r = .75
and .81). Moreover, lower baseline cognitive performances
were related to higher training success (i.e., reduction in
switch costs; r = − .20 to − .29). The transfer task (general
switch costs) allowed for comparing the strength of these cor-
relations in the training and active control group (Table 4,
Notes) because both groups completed the same task.
Therefore, we compared a model in which all correlations
were freely estimated to a model in which one correlation
was constrained to be equal in both groups, respectively.
The correlation between baseline perceptual speed and train-
ing gain was not significantly different in the training and
active control group (Table 4, Notes). However, baseline gen-
eral switching costs and baseline working memory perfor-
mance were significantly higher correlated with training gains
in the training group than in the active control group (Table 4,
Notes). This indicates that they were more likely based on the
effects of executive control training than on non-focal effects
(e.g., regression to the mean or retest effects).

Discussion

In the present study, we investigated the question why some
individuals benefit more than others after executive-control

training. Even though results regarding the transfer of cogni-
tive training are heterogeneous across the literature, the vast
majority training of training studies has shown that executive
functions can be improved by training across a wide range of
ages (for reviews, see Hertzog et al. 2008; Karbach and Kray
2016; Lustig et al. 2009; Noack et al. 2009; Strobach et al.
2014: Titz and Karbach 2014; von Bastian and Oberauer
2014). Recently, however, a lot of work has also shown that
not every participant benefits to the same degree, that is, indi-
vidual differences in training-induced gains are often signifi-
cant (cp. Borella et al. 2017). While studies from the domain
of strategy-based memory training mostly reported magnifi-
cation effects (i.e., larger gains in high performing individ-
uals), training of executive control has often resulted in com-
pensation effects (i.e., larger gains in low-performing individ-
uals), at least at the group level. In the present study, we
systematically tested the magnification account against the
compensation account by analyzing training-induced changes
on the latent level. Children, younger adults, and older adults
performed a task-switching training and we analyzed training
gains (i.e., the reduction of specific switch costs from the first
to the last training session) as well as transfer gains (i.e., the
reduction of general switch costs from pretest to posttest)
compared to an active control group performing single-task
training.

The analyses yielded four important main findings: (1)
Individual differences in performance were reduced after
the training, (2) age differences in performance were re-
duced after the training (i.e., children and older adults
benefitted more), (3) baseline cognitive abilities were sig-
nificantly correlated with the training-induced gain (i.e.,
low-performing individuals benefitted more), and (4)
these findings were consistent across training and transfer

Table 2 Tests of measurement invariance over time for latent state and change models of specific and general switch costs

Measure Invariance level χ2 (df) CFI RMSEA (90% CI) SRMR Δχ2 (df) ΔCFI

Specific switch costs 1. Configural 0.05 (1), p = .83 1.00 0 (0–0.14) 0.002

2. Metric 0.35 (2), p = .83 1.00 0 (0–0.10) 0.012 0.31 (1), p = .581,2 0

3. Scalar 0.58 (3), p = .90 1.00 0 (0–0.06) 0.013 0.23 (1), p = .632,3 0

4. Strict 6.12 (5), p = .29 0.995 0.04 (0–0.14) 0.055 5.54 (2), p = .063,4 0.005

General switch costs 1. Configural 0.65 (1), p = .42 1.00 0 (0–0.19) 0.006

2. Metric 0.75 (2), p = .69 1.00 0 (0–0.11) 0.009 0.10 (1), p = .751,2 0

3. Scalar 3.73 (3), p = .29 0.998 0.04 (0–0.14) 0.030 2.98 (1), p = .082,3 0.002

4. Strict 18.76 (5), p < .01 0.953 0.13 (0.07–0.19) 0.060 15.06 (2), p < .013,4 0.045

Notes. There are no distinctions between latent change and state models in this table because latent change models are reparametrizations of latent state
models and have therefore exactly the same model fit. Training effects in specific switch costs were analyzed in the training group only (N = 126) and the
transfer effects to general switch costs were analyzed in both the training and active control group (N = 168, see the BStatistical Analyses^ section for
details)

CFI Comparative Fit Index, RMSEA Root Mean Square Error of Approximation, CI confidence interval, SRMR Standardized Root Mean Square
Residual
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gains and significant compared to an active control group.
Considering that training and transfer task were very sim-
ilar (task-switching paradigms with a different set of tasks

and stimuli), it is not surprising that the pattern of results
was comparable across tasks but supports the robustness
of the effects. All in all, this pattern of findings is exactly
in line with the compensation account and strongly con-
tradicts the magnification account.

Thus, our analysis is consistent with previous findings
showing that executive control training resulted in a re-
duction of age differences in performance at the group
level (e.g., Bherer et al. 2008; Cepeda et al. 2001;
Karbach and Kray 2009; Kramer et al. 1995; Kray et al.
2008; Kray and Lindenberger 2000; but see Brehmer et al.
2012) and extends these findings by showing that they
hold on the interindividual level and that they are signif-
icant for both training and transfer gain as well as in
comparison to an active control condition.

The fact that we found compensation effects after the
training of executive control is in stark contrast to evidence
from strategy-based memory training, which often resulted
in magnification effects (e.g., Baltes and Kliegl 1992;
Brehmer et a l . 2007; Lindenberger e t al . 1992;
Verhaeghen and Marcoen 1996). This pattern has been ex-
plained by younger adults having more cognitive resources
to acquire and implement new strategies. However, the
finding provides further evidence indicating that process-
based and strategy-based trainings may tap very different
cognitive processing capacities and therefore yield very
different training outcomes. In contrast to strategy-based
trainings, process-based trainings, like the one applied in
the present study, target more general processing capaci-
ties, such as working memory or executive functions. And
not only have these trainings been more beneficial for low-
performing individuals, but they also tend to result in larg-
er transfer effects of training (Karbach and Verhaeghen
2014; Rebok et al. 2007; Verhaeghen et al. 1992).
Knowing about these differential outcomes of different
types of cognitive training may help explaining inconsis-
tent findings in the literature and—more importantly—may

a

b

Fig. 2 Training gains (a) and transfer gains (b) in the training group as a
quadratic function of age. Please note that higher values indicate training
and transfer success (costs are reduced). ms milliseconds

Table 3 Correlations of latent training gains with pretraining switch costs and baseline cognitive performance after controlling for age (in the training
group)

1 2 3 4 5

1. Training gain specific switch costs 1

2. Pretraining specific switch costs 0.75* 1

3. Baseline working memory − 0.20* − 0.25* 1

4. Baseline perceptual speed − 0.06 − 0.16* 0.57* 1

5. Baseline reasoning − 0.18 − 0.25* 0.68* 0.48* 1

6. Baseline semantic knowledge − 0.01 − 0.05 0.26* 0.60* 0.26*

Notes. The interpretation is in the direction that higher pretraining switch costs and lower baseline cognitive performance were related to higher training
success (i.e., reduction in switch costs)

*p < .05
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have significant implications for designing tailored train-
ings for individuals or populations with specific needs or
deficits.

One benefit of this study certainly is the lifespan sam-
ple, providing the opportunity to examine the validity of
the magnification and compensation accounts across a
wide range of ages and across a training and a transfer
task. Given that we also assessed baseline cognitive abil-
ities in several domains (task switching, working memory,
perceptual speed, fluid intelligence, and semantic knowl-
edge), our data showed that the correlations between base-
line ability and gains were not domain specific, even
though they were most pronounced for working memory.
Again, it should be noted that training and transfer task
were very similar and performance on both tasks showed
a similar pattern of correlations with baseline cognitive
abilities. Considering that general and specific switch
costs are also significantly correlated, it is not surprising
that the correlations between baseline abilities and gains
were comparable across tasks.

Moreover, the findings that (1) pretest-posttest perfor-
mance improvements were larger in the training group
than the control groups, (2) individual differences in per-
formance decreased in the training group but not in the
control group, and (3) baseline cognitive performance was
significantly higher correlated with transfer gains in the
training group than in the active control group indicate
that the compensation effects found in the present study
are indeed more likely to reflect the effects of executive-
control training than non-focal effects (e.g., regression to
the mean or retest effects).

Finally, our use of advanced statistical procedures for
estimating latent change extends past research, circumvents

some of the methodological problems discussed in the train-
ing literature (cf. Lövdén et al. 2012; Schmiedek et al.
2010), and allowed us to extend the analysis of training-
induced gains from the group level to the level of individual
differences.

However, the study also has a number of limitations. We
realize that the sample size was relatively small for this type of
latent change modeling. Even though our findings are very
consistent across the different analyses we ran, we acknowl-
edge that the statistical power for addressing our research
questions is limited. In addition, we realize that instead of
having two indicators from the same task (derived from an
odd/even split) load on a latent factor, multiple independent
measures would have been more ideal. Still, the advantages of
analyzing the data by latent change modeling instead of just
comparing manifest group means outweigh this disadvantage.
Also, our design did not include a follow-up assessment and
the longevity of the effects we report has to be tested in an-
other study. Finally, the training task in the present study was
not adaptive—a feature which seemed to be key to elicit reli-
able training and transfer effects (e.g., Holmes et al. 2009;
Karbach et al. 2015). Yet, a recent study demonstrated that
training at different levels of difficulty may just be sufficient,
independent of whether that difficulty is adjusted to the par-
ticipant’s performance or randomly altered (von Bastian and
Eschen 2016). Thus, given that task difficulty in our training
kept constantly changing between switch and stay trials,
changing task difficulty was constantly implemented in the
training procedure.

Despite these limitations, the findings of the present study
have brought us one step closer to understand aptitude-
treatment interactions and, more specifically, individual dif-
ferences in the outcome of executive-control training. Future

Table 4 Correlations of latent transfer gains with latent pretraining switch costs and baseline cognitive performance after controlling for age (in the
training group/active control group)

1 2 3 4 5

1. Training gain general switch costs 1

2. Pretraining general switch costs 0.81*/0.41a 1

3. Baseline working memory − 0.29*/0.07b − 0.30*/− 0.27* 1

4. Baseline perceptual speed − 0.28*/− 0.10c − 0.25*/− 0.17 0.57*/0.54* 1

5. Baseline reasoning − 0.19/0.14 − 0.18*/− 0.07 0.68*/0.75* 0.48*/0.56* 1

6. Baseline semantic knowledge − 0.13/0.01 − 0.10*/− 0.03 0.26*/0.29* 0.60*/0.59* 0.26*/0.39*

Notes. The interpretation is in the direction that higher pretraining switch costs and lower baseline cognitive performance were related to higher training
success (i.e., reduction in switch costs). All results are based on a model with metric invariance across groups to compare correlations between groups
(Chen et al. 2005). Value before the slash = training group/value after the slash = active control group

*p < .05
a Correlations are significantly different [between the training and control group: Δχ2 (df = 1) = 15.40; p < .01]
b Correlations are significantly different [between the training and control group: Δχ2 (df = 1) = 4.26; p = .04]
c Correlations are not significantly different [between the training and control group: Δχ2 (df = 1) = 0.76; p = .38]
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studies need to examine whether results based on this specific
type of process-based training (task switching) hold for other
types of executive-control training and across wider range of
transfer tasks. Importantly, process-based task-switching
training clearly yields compensation effects across the
lifespan. Considering, for instance, clinical or educational is-
sues, it is very obvious that understanding the mechanisms
mediating individual differences in the effectiveness of cogni-
tive interventions may bear important practical and scientific
implications. This knowledge may help design interventions
for patients with specific cognitive impairments in clinical
contexts or interventions for students with specific learning
impairments in educational settings.
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